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Abstract

In the quantum random oracle model (QROM) introduced by Boneh et al. (Asiacrypt 2011),
a hash function is modeled as a uniformly random oracle, and a quantum algorithm can only
interact with the hash function in a black-box manner. QRO methodology captures all generic
algorithms. However, they fail to describe non-uniform quantum algorithms with preprocess-
ing power, which receives a piece of bounded classical or quantum advice.

As non-uniform algorithms are largely believed to be the right model for attackers, starting
from the work by Nayebi, Aaronson, Belovs, and Trevisan (QIC 2015), a line of works inves-
tigates non-uniform security in the random oracle model. Chung, Guo, Liu, and Qian (FOCS
2020) provide a framework and establish non-uniform security for many cryptographic appli-
cations. Although they achieve nearly optimal bounds for many applications with classical
advice, their bounds for quantum advice are far from tight.

In this work, we continue the study on quantum advice in the QROM. We provide a new
idea that generalizes the previous multi-instance framework, which we believe is more quantum-
friendly and should be the quantum analog of multi-instance games. To this end, we match the
bounds with quantum advice to those with classical advice by Chung et al., showing quantum ad-
vice is almost as good/bad as classical advice for many natural security games in the QROM.
More formally,

• OWFs: Even with 𝑆-qubits of quantum advice, a 𝑇 -query quantum algorithm has advan-
tage 𝑂((𝑆𝑇 + 𝑇 2)/𝑁) to invert a random function with domain and range size 𝑁 . As
shown by Corrigan-Gibbs and Kogan (TCC 2019), any further improvement will lead to
new classical circuit lower bounds.

• PRGs: An 𝑆-qubit, 𝑇 -query quantum algorithm can distinguish between a random im-
age and a random element in the range, with an winning probability at most 1/2 +
𝑂(𝑇 2/𝑁)1/2 + 𝑂(𝑆𝑇/𝑁)1/3, in contrast to 1/2 + 𝑂((𝑆5𝑇 + 𝑆4𝑇 2)/𝑁)1/19 by Chung et
al.

• Salting: A commonly used mechanism in cryptography called salting defeats preprocess-
ing, even with quantum advice, improved the bounds by Chung et al.

Finally, we show that for some contrived games in the QROM, quantum advice can be ex-
ponentially better than classical advice for some parameter regimes. To our best knowledge,
it provides the first evidence of a general separation between quantum and classical advice
relative to an unstructured oracle.
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1 Introduction

Many practical cryptographic constructions are analyzed in idealized models, for example, the
random oracle model which treats an underlying hash function as a uniformly random oracle
(ROM) [BR93]. On a high level, the random oracle model captures all algorithms that use the
underlying hash function in a generic (black-box) way; often, the best attacks are generic. Whereas
the random oracle methodology guides the actual security of practical constructions, it fails to
describe non-uniform security: that is, an algorithm consists of two parts, the offline and the
online part; the offline part can take forever, and at the end of the day, it produces a piece of
bounded advice for its online part; the online part given the advice, tries to attack cryptographic
constructions efficiently.

Non-uniform algorithms are largely believed to be the right model for attackers and usually
show advantages over uniform algorithms [Unr07, CDGS18, CDG18]. The famous non-uniform
example is Hellman’s algorithm [Hel80] for inverting permutations or functions. When a per-
mutation of range and domain size 𝑁 is given, Hellman’s algorithm can invert any image (with
certainty) with roughly advice size

√
𝑁 and running time

√
𝑁 . In contrast, uniform algorithms

require running time 𝑁 to achieve constant success probability. Another more straightforward
example is collision resistance. When non-uniform algorithms are presented, no single fixed hash
function is collision-resistant as an algorithm can hardcode a pair of collisions in its advice.

Non-uniform security in idealized models has been studied extensively in the literature. Let
us take the two most simple yet fundamental security games as examples: one search game and
one decision game. The first one is one-way function inversion (or OWFs) as mentioned above.
The goal is to invert a random image of the random oracle. The study was initialized by Yao
[Yao90] and later improved by a line of works [DTT10, Unr07, DGK17, CDGS18]. They show that
any 𝑇 -query algorithm with arbitrary 𝑆-bit advice, can win this game with probability at most
𝑂̃(𝑆𝑇/𝑁), assuming the random oracle has equal domain and range size. The other example is
pseudorandom generators (or PRG). The task is to distinguish between a random image 𝐻(𝑥) (𝑥
is uniformly at random and 𝐻 is the hash function) or a random element 𝑦 in its range. Since it is
a decision game, some techniques for OWFs may not apply to PRGs, which we will see later. Its
non-uniform security is 𝑂(1/2 + 𝑇/𝑁 +

√︀
𝑆𝑇/𝑁) by Coretti et al. [CDGS18], and later improved

by Garvin et al. [GGKL21].
The quantum setting is very similar to the classical one, except an algorithm can query the

random oracle in superposition. Boneh et al. [BDF+11] justify the ability to make superposition
queries since a quantum computer can always learn the description of a hash function and com-
pute it coherently. Besides, advice can be either a sequence of bits or qubits. We should carefully
distinguish between the two different models. Indeed, we believe non-uniform quantum algo-
rithms with quantum advice are important to understand and should be considered the “right”
attacker model when full-scale quantum computers are widely viable and quantum memory is
affordable.

Nayebi, Aaronson, Belovs, and Trevisan [NABT14] initiated the study of quantum non-uniform
security with classical advice of OWFs and PRGs. Hhan, Xagawa and Yamakawa [HXY19], Chung,
Liao and Qian [CLQ19] extended the study to quantum advice. Most recently, Chung, Guo, Liu
and Qian [CGLQ20] improved the bounds for both examples. For OWFs, their bounds are almost
optimal in terms of query complexity for both classical and quantum advice. They show that to
invert a random image with at least constant probability, advice size 𝑆 and the number of queries
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𝑇 should satisfy 𝑆𝑇 +𝑇 2 ≥ Ω̃(𝑁). However, a gap between classical and quantum advice appears
when we choose security parameters for practical hash functions against non-uniform attacks. In
practice, we ensure that an adversary with bounded resources (for example, 𝑆 = 𝑇 = 2128) only
has probability smaller than 2−128. The bounds in [CGLQ20] suggest that for OWF, the security
parameter needs to be 𝑛 = 384 (and 𝑁 = 2384) for classical advice and 𝑛 = 640 for quantum
advice, leaving a big gap between two types of advice. Even worse, when it comes to PRGs, the
security parameters are 𝑛 = 640 for classical advice v.s. 𝑛 = 3200 for quantum advice; not to
mention a large gap between their query complexity, unlike OWFs.

As understanding quantum advice is beneficial to both practical cryptography efficiency and
may inspire general computation theory (such as, 𝖰𝖬𝖠 v.s. 𝖰𝖢𝖬𝖠 [AK07, Aar21] and 𝖡𝖰𝖯/𝗉𝗈𝗅𝗒
v.s. 𝖡𝖰𝖯/𝗊𝗉𝗈𝗅𝗒 [Aar05]), we raise the following natural question:

Can quantum advice outperform classical advice in the QROM?

In this work, we provide a new technique for analyzing quantum advice in the QROM and
show that for many games, the non-uniform security with quantum advice matches the best-
known security with classical advice, including OWFs and PRGs. It gives strong evidence that for
many cryptographic games in the QROM, quantum advice provides no or little advantage over
classical one.

So far, we have seen no advantage of quantum advice in the QROM for common cryptographic
games. We then ask the second question:

Is there any (contrived) game in the QROM, in which quantum advice is “exponentially better”
than classical advice?

We give an affirmative answer to this question, for some parameters of 𝑆, 𝑇 . We show that when
algorithms can not make online queries (i.e., 𝑇 = 0), there is an exponential separation between
quantum and classical advice for certain games. This result is inspired by the recent work by
Yamakawa and Zhandry [YZ22] on verifiable quantum advantages in the QROM. We elaborate
on both results now.

1.1 Our Results

Our first result is to give a quantum analog of “multi-instance games” via “alternating measure-
ment games” (introduced in Section 6) and develop a new technique for analyzing non-uniform
bounds with quantum advice. Our techniques do not need to rewind a non-uniform quantum al-
gorithm and completely avoid the rewinding issues/difficulties in the prior work [CGLQ20]. We
delay the technical details in Section 2 and give other results below.

To show the power of our technique, we incorporate it into three important applications:
OWFs, PRGs, and salted cryptography. Note that our result below is a non-exhaustive list of ap-
plications. With little effort, we can show improved non-uniform security with quantum advice
of Merkle-Damgård [GLLZ21], Yao’s box [CGLQ20] and other games.

One-Way Functions. In this application, a random oracle is interpreted as a one-way function. A
(non-uniform) algorithm needs to win the OWF security game with the random oracle as a OWF.
Formally, let 𝐻 : [𝑁 ]→ [𝑀 ] be a random oracle.
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1. A challenger samples a uniformly random input 𝑥 ∈ [𝑁 ] and sends 𝑦 = 𝐻(𝑥) to the algo-
rithm.

2. The algorithm returns 𝑥′ and it wins if and only if 𝐻(𝑥′) = 𝑦.

When both advice and queries are classical, the best lower bound is 𝑂̃(𝑆𝑇/𝛼) by [CDGS18],
where 𝛼 = min{𝑁,𝑀} and 𝑁 , 𝑀 are the domain and range size of the random oracle. In
other words, no algorithm with 𝑆 bits of advice and 𝑇 classical queries can win with prob-
ability more than 𝑂̃(𝑆𝑇/𝛼). There is a gap between this lower bound and the upper bound
≈ 𝑇/𝛼+(𝑆2𝑇/𝛼2)1/3 provided by Hellman’s algorithm1. Later, Corrigan-Gibbs and Kogan [CK19]
study the possible improvement on the lower bound and conclude that any improvement will lead
to improved results in circuit lower bounds. Thus, 𝑂̃(𝑆𝑇/𝛼) is the best one can hope for in light
of the barrier.

Chung et al. [CGLQ20] show that if 𝑆 bits of classical advice and 𝑇 quantum queries are given,
the maximum winning probability is bounded by 𝑂̃

(︁
𝑆𝑇+𝑇 2

𝛼

)︁
. They further argue that this bound

is almost optimal. Intuitively, one can think of this as 𝑇 2/𝛼 comes from a brute-force Grover’s
algorithm [Gro96], without using any advice, and 𝑆𝑇/𝛼 comes from classical advice and hits the
classical barrier by [CK19].

For quantum advice and quantum queries, they show the maximum success probability is

𝑂̃
(︁
𝑆𝑇+𝑇 2

𝛼

)︁1/3
. As mentioned early, although the bound is optimal regarding query complexity,

the exponent seems non-tight. Thus, they ask the following question:

... Can this loss (of the exponent) be avoided, or is there any speed up in terms of 𝑆 and 𝑇 for
sub-constant success probability?.

Our first result gives a positive answer to the above question and proves that the loss on expo-
nent can be avoided.

Theorem 1.1. Let 𝐻 be a random oracle [𝑁 ] → [𝑀 ] and 𝛼 = min{𝑁,𝑀}. One-way function games in
the QROM have security 𝑂

(︁
𝑆𝑇+𝑇 2

𝛼

)︁
against non-uniform quantum algorithms with 𝑆-qubits of advice

and 𝑇 quantum queries.

The theorem guides security parameter choices of hash functions to be secure against non-
uniform attacks. The security parameter 𝑛 should be 384 to have security 2−128 against non-
uniform quantum attacks with 𝑆 = 𝑇 = 2128. Another direct implication of our theorem is that,
when quantum advice 𝑆 = 𝑂(

√
𝛼), quantum advice is useless for speeding up function inver-

sion. To put it in another way, Grover’s algorithm can not be sped up and only has probability
𝑇 2/𝛼 to succeed even with quantum advice of size 𝑂(

√
𝛼), relative to a random oracle. We list a

comparison of best-known bounds and our result below.

Pseudorandom Generators. Another important application we will focus on is pseudorandom
generators. One fundamental difference from one-way functions is its being a decision game. We
will later see that publicly verifiable games such as one-way functions are easy to deal with in the
previous work [CGLQ20]. For games that can not be publicly verified, such as decision games,
[CGLQ20] often gives worse bounds.

1Hellman’s algorithm on functions does not behave as well as on permutations. Upper and lower bounds meet at
𝑆𝑇/𝛼 only when we consider permutations.
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Classical Advice in [CGLQ20] Quantum Advice in [CGLQ20] Quantum Advice in This Work

𝑂̃
(︁
𝑆𝑇+𝑇 2

𝛼

)︁
𝑂̃
(︁
𝑆𝑇+𝑇 2

𝛼

)︁1/3
𝑂
(︁
𝑆𝑇+𝑇 2

𝛼

)︁
Table 1: Non-uniform security for OWFs with 𝑇 queries and 𝑆 bits (qubits) of advice, where 𝛼 =
min{𝑁,𝑀} and 𝑁 , 𝑀 are the domain and range size of the random oracle. Our bound is a “big-𝑂” in-
stead of “big-𝑂̃” as we also remove the dependence on log𝑁 and log𝑀 .

In this game, an algorithm tries to distinguish between an image of a random input, and a
uniformly random element in the range. Let 𝐻 : [𝑁 ]→ [𝑀 ] be a random oracle.

• A challenger samples a uniformly random bit 𝑏. If 𝑏 = 0, it samples a uniformly random
𝑥 ∈ [𝑁 ] and outputs 𝑦 = 𝐻(𝑥); otherwise, it samples a uniform 𝑦 ∈ [𝑀 ] and outputs 𝑦.

• The algorithm is given 𝑦 and returns 𝑏′. It wins if and only if 𝑏′ = 𝑏.

Our new technique demonstrates the following theorem about PRGs.

Theorem 1.2. Let 𝐻 be a random oracle [𝑁 ] → [𝑀 ]. PRG games in the QROM have security 1/2 +

𝑂
(︁
𝑇 2

𝑁

)︁1/2
+𝑂

(︀
𝑆𝑇
𝑁

)︀1/3 against non-uniform quantum algorithms with 𝑆-qubits of advice and 𝑇 quantum
queries.

Classical Advice in [CGLQ20] Quantum Advice in [CGLQ20] Quantum Advice in This Work
1
2 + 𝑂̃

(︁
𝑆𝑇+𝑇 2

𝑁

)︁1/3
1
2 + 𝑂̃

(︁
𝑆5𝑇+𝑆4𝑇 2

𝑁

)︁1/19
1
2 +𝑂

(︁
𝑇 2

𝑁

)︁1/2
+𝑂

(︀
𝑆𝑇
𝑁

)︀1/3
Table 2: Non-uniform security of PRGs with 𝑇 queries and 𝑆 bits (qubits) of advice. Our bound also
improves the previous result on classical advice by reducing the exponent on 𝑇 2/𝑁 from 1/3 to 1/2; we
note that the improvement on the exponent only follows from a simple observation and can also be applied
to the previous work as well.

“Salting Defeats Preprocessing”. Finally, instead of proving more concrete non-uniform bounds
like Merkle-Damgård [GLLZ21], we demonstrate that the generic mechanism “salting” helps pre-
vent quantum preprocessing attacks even with quantum advice. Maybe the most illustrating ex-
ample is collision-resistant hash functions. As mentioned before, no single fixed hash function
can be collision resistant against non-uniform attacks. A typical solution is to add “salt” to the
hash function. A salt is a piece of random data that will be fed into a hash function as an addi-
tional input. To attack a salted collision resistant hash function, an adversary gets a salt 𝑠 and is
required to come out with two input𝑚 ̸= 𝑚′ such that the hash evaluation on (𝑠,𝑚) equals that of
(𝑠,𝑚′). Intuitively, since salt 𝑠 is chosen uniformly at random from a large space, advice is not long
enough to include collisions for every possible salt. Thus, salting is a mechanism that compiles
a game into another game, by adding a random extra input 𝑠 and restricting the execution of the
game always under oracle access to 𝐻(𝑠, ·).

Chung et al. [CLMP13], and Coretti et al. [CDGS18] formally proved the non-uniform security
of salted collision-resistant hash in the classical ROM. Chung et al. [CGLQ20] extended the state-
ment in the quantum setting. For quantum advice, their result roughly says that if an underlying
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game 𝐺 is publicly verifiable or a decision game, then the salted version of 𝐺 is secure against
non-uniform attacks.

Our third results improve the prior ones in two different aspects. First, our theorem works not
only for publicly verifiable or decision games, but for any types of games (see our definition of
games Definition 4.3). Second, our theorem is tighter and provides a more pictorial statement for
“salting defeats preprocessing”, elaborated below. Our bounds match those with classical advice
in [CGLQ20].

Theorem 1.3 (Informal, Theorem 7.5). For any game 𝐺 in the QROM, let 𝜈(𝑇 ) be its uniform security
in the QROM. Let 𝐺𝑆 be the salted game with salt space [𝐾]. Then 𝐺𝑆 has security 𝛿(𝑆, 𝑇 ) against
non-uniform quantum adversaries with 𝑇 queries and 𝑆-qubits of advice,

1. 𝛿(𝑆, 𝑇 ) ≤ 4𝜈(𝑇 ) +𝑂(𝑆𝑇/𝐾);
2. If 𝐺𝑆 is a decision game, then 𝛿(𝑆, 𝑇 ) ≤ 𝜈(𝑇 ) +𝑂(𝑆𝑇/𝐾)1/3.

That is to say, the non-uniform security of 𝐺𝑆 and uniform security of 𝐺 only differs by a term
of 𝑂(𝑆𝑇/𝐾) or 𝑂(𝑆𝑇/𝐾)1/3 depending on the type of the game. When the game 𝐺 is a search
game, 𝐺𝑆 has non-uniform security 4𝜈(𝑇 ) + 𝑂(𝑆𝑇/𝐾). We can choose 𝑆 to ensure 𝑆𝑇/𝐾 ≤ 𝜈(𝑇 )
so that the non-uniform security of 𝐺𝑆 is in the same order of 𝐺’s security 𝜈(𝑇 ). For decision
games, we choose 𝑆 such that (𝑆𝑇/𝐾)1/3 is extremely small.

In [CGLQ20], they show that for publicly verifiable games, 𝛿 := 𝛿(𝑆, 𝑇 ) satisfies 𝛿 ≤ 𝑂̃
(︀
𝜈(𝑇/𝛿) + 𝑆𝑇

𝐾𝛿

)︀
whereas ours works for any games and 𝛿(𝑆, 𝑇 ) ≤ 4𝜈(𝑇 ) + 𝑂(𝑆𝑇/𝐾). For decision games, ours
also significantly improves prior results (see Table 3 and Theorem 7.6 in [CGLQ20] for a compar-
ison). The dependence in their theorems on uniform security 𝜈 is much more complicated and
yields loose bounds. Most notably, for decision games, when the salt size 𝐾 → ∞, the bound
in [CGLQ20] does not rule out the speed up from having 𝑆-qubits of advice (corresponding to
the term 𝜈 ′(𝑆2𝑇/𝜖8)); whereas our bound gives 𝜈(𝑇 ) — exactly the security in the uniform case,
completely ruling out the influence of quantum advice.

Quantum Advice in [CGLQ20] Quantum Advice in This Work
Any Games 𝛿 ≤ 𝑂̃ (𝜈(𝑇/𝛿) + 𝑆𝑇/(𝐾𝛿)) 𝛿 ≤ 4𝜈(𝑇 ) +𝑂(𝑆𝑇/𝐾)

Decision Games
𝛿 ≤ 1/2 + 𝜖

𝛿 ≤ 𝜈(𝑇 ) +𝑂(𝑆𝑇/𝐾)1/3
where 𝜖 ≤ 𝑂̃

(︁
𝜈′(𝑆2𝑇/𝜖8) +

√︀
𝑆5𝑇/(𝐾𝜖17)

)︁
and 𝜈′(𝑇 ) := 𝜈(𝑇 )− 1/2

Table 3: Salting “defeats” preprocessing.

Separation of Quantum and Classical Advice in the QROM. So far, we have seen many exam-
ples that quantum advice is as good/bad as classical advice. Below, we show that it is not always
the case in the QROM: there exists a game in the QROM such that quantum advice is exponentially
better than classical advice.

Theorem 1.4 (Separation of Quantum and Classical Advice in the QROM). Let𝐻 be a random oracle
[2𝗉𝗈𝗅𝗒(𝑛)]→ {0, 1}. There exists a game 𝐺 in the QROM such that,
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• 𝐺 has security 2−Ω(𝑛) against non-uniform adversaries with 𝑆-bits of classical advice and making
no queries, for 𝑆 = 2𝑛

𝑐
/𝑛 and some constant 0 < 𝑐 < 1;

• There is a non-uniform adversary with 𝑆-qubits of quantum advice and making no queries, that
achieves winning probability 1− 𝗇𝖾𝗀𝗅(𝑛), for 𝑆 = 𝑂̃(𝑛).

Although the bound only works in the parameter regime 𝑇 = 0, to our best knowledge, it is the
first example of an exponential separation between quantum and classical advice in the QROM
(or for inputs without structures).

Remark 1.5. For the parameter regime 𝑇 = 0, the above separation can be alternatively viewed as an
exponential separation of quantum/classical one-way communication complexity for some relation ℛ ⊆
𝒳 × 𝒴 × 𝑍. In the context of one-way communication complexity, there are two players, Alice and Bob.
Alice gets an input 𝑥 ∈ 𝒳 and Bob gets an input 𝑦 ∈ 𝒴 ; Alice sends one (classical or quantum) message
to Bob and Bob tries to output 𝑧 ∈ 𝒵 such that (𝑥, 𝑦, 𝑧) ∈ ℛ. Our result in Theorem 1.4 is a separation
of quantum/classical one-way communication complexity when 𝒳 = {0, 1}2𝗉𝗈𝗅𝗒(𝑛) , 𝒴 = {0, 1}𝑛, 𝒵 =
{0, 1}𝑛×𝗉𝗈𝗅𝗒(𝑛); when the message is allow to be quantum, 𝑂̃(𝑛) qubits are sufficient; on the other hand, the
classical communication complexity is Ω(2𝑛𝑐

/𝑛).
Exponential separation of quantum/classical one-way communication complexity is already known,

starting from the work by [BJK04] (later by [Gav08]) based on the so-called hidden matching problem.
We believe the hidden matching problem can be also turned into a separation of quantum/classical advice in
the parameter regime 𝑇 = 0, in the QROM. However, [BJK04] only proved average-case hardness against
deterministic classical Bob. Therefore, we pick the recent result by Zhandry and Yamakawa for simplicity
of presentation.

1.2 Organization

The rest of the paper is organized as follows. In Section 2, we give an overview of our main
technical contribution and achieve non-uniform bounds for OWFs. Section 3 and Section 4 recall
the notations and backgrounds on quantum computing, random oracles models, non-uniform
security and bit-fixing models. Section 5 introduces decomposition of advice with respect to a
game, which helps the proof of our main theorem. Section 6 proves the main theorem whereas
Section 7 applies the main theorem to various applications. Finally in Section 8, we give the
separation of quantum and classical advice.
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2 Technical Overview

This overview will primarily focus on OWF games for the random oracle𝐻 with the same domain
and range. We will turn to PRGs when we discuss the difficulty of decision games compared to
search games. The same ideas in OWF games will apply to other applications as well.

Recap [CGLQ20] for Classical Advice. We start by recalling the ideas for classical advice behind
[CGLQ20]. Let 𝒜 be any 𝑇 -query non-uniform algorithm with 𝑆-bits of classical advice for OWF
games. For convenience, we call such algorithm (𝑆, 𝑇 ) algorithm with classical advice. Inspired
from [Aar05], [CGLQ20] shows that if 𝐴 has 𝛿 success probability in winning the OWF game, then
one can run 𝒜multiple times and win the following sequential 𝑔-multi-instance version2 of OWF
games with probability roughly 𝛿𝑔:

• For each round 𝑖 ∈ [𝑔], a challenger samples a random image and gives it to an
algorithm.

• The algorithm has 𝑇 queries in the 𝑖-the round and outputs an alleged preimage
for the 𝑖-th image.

• The algorithm wins if and only if it is correct in all the rounds.

Figure 1: Multi-Instance Games for OWFs.

Since 𝒜 has only classical advice, one can always reset the whole algorithm and start 𝒜 from
scratch for each round. It is easy to observe that running and rewinding 𝒜 for each stage achieves
advantage (winning probability) 𝛿𝑔. This reduction (step 1 in Figure 2) is the main challenge for
quantum advice, as resetting and rewinding a non-uniform quantum algorithm is generally very
difficult. We will discuss it in the next section. In the last step, we can completely remove advice by
replacing the advice with a random guess (step 2 in Figure 2) and introduce a multiplicative loss
2−𝑆 . As a consequence, we obtain a uniform algorithm for 𝑔-multi-instance games with advantage
2−𝑆𝛿𝑔 from 𝒜.

Therefore, to upper bound the success probability 𝛿 for OWF games, we investigate the maxi-
mal advantage 𝜀𝑔 of uniform algorithms in the 𝑔-multi-instance games for 𝑔 := 𝑆. Clearly, 𝛿 ≤ 2𝜀
from 2−𝑆𝛿𝑔 ≤ 𝜀𝑔 for 𝑔 = 𝑆: as there exists a uniform algorithm with winning probability 2−𝑆𝛿𝑔,
but the chance can not be greater than 𝜀𝑔. [CGLQ20] show that for OWFs, the advantage of al-
gorithms with classical or quantum advice and 𝑇 queries in each round is bounded by 𝜀𝑔 for
𝜀 ≈ (𝑆𝑇 + 𝑇 2)/𝑁 . Therefore, 𝛿 is 𝑂((𝑆𝑇 + 𝑇 2)/𝑁), concluding the proof of the main theorem in
their work. We demonstrate the idea in Figure 2.

We omit many details in the above discussion — most notably, the analysis of uniform security
in the sequential multi-instance games (step 3). The discussion is delayed to the end of this section,
when it is needed.

When it comes to PRGs, setting 𝑔 = 𝑆 no longer works. The 2 factor in 𝛿 ≤ 2𝜖 leads to a trivial
bound because 𝜀 is about 1/2 for decision games. By appropriately choosing 𝑔 = 𝑆/𝛾 for some
𝛾 ∈ (0, 1), the exact same idea applies.

2The case of 𝑔-instances being given in parallel was consider in [Aar05]. [CGLQ20] improved over the idea and
proposed the sequential version, which was shown to give better implications comparing to the parallel case.
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𝛿
non-uniform security

w/ 𝑆-bits of classical advice

𝛿𝑔

non-uniform security
in the multi-instance game

w/ 𝑆-bits of classical advice

2−𝑆𝛿𝑔

uniform security
in the multi-instance game

step 1

step 2

𝜀
uniform security

in the 𝑃 -BF-QROM
setting 𝑃 = 𝑔𝑇

step 3

Figure 2: From non-uniform security with classical advice to multi-instance security for OWFs, in
[CGLQ20].

Difficulties of Rewinding Quantum Advice in [CGLQ20]. The reduction in Figure 2 is desig-
nated to classical advice. When advice is quantum, step 2 still works, but step 1 does not anymore.
Guessing a quantum advice of size 𝑆 only introduces a multiplicative loss by at most 2−𝑆 , follow-
ing [Aar05]. However, step 1 requires rewinding the non-uniform quantum algorithm 𝒜 with
quantum advice 𝑔 times. Since we will eventually set 𝑔 = 𝑆 and 𝑆 can be arbitrarily large, there is
no guarantee for 𝑔 consecutive rewindings. Even worse, as the success probability 𝛿 of 𝒜 can be
very small, a single rewinding may not even be possible.

The solution in [CGLQ20] is to boost the success probability of 𝒜 to almost 1, using multiple
copies of the same advice. When the probability is close to 1, one can gently measure outcomes
in each round and rewind a non-uniform algorithm for 𝑔 consecutive times3. Assume there are 𝑘
copies of the oracle-dependent quantum advice |𝜎𝐻⟩. To invert an image 𝑦, an algorithm ℬ runs
𝑘 copies of 𝒜 on input 𝑦 with advice |𝜎𝐻⟩ in parallel; each 𝒜 produces an alleged pre-image 𝑥𝑖; ℬ
verifies and outputs the right answer by checking whether 𝐻(𝑥𝑖) = 𝑦. Since each instance of 𝒜
wins with probability 𝛿, appropriately choosing 𝑘 will close the success probability to 1 and allow
𝑔 consecutive rewindings.

However, the above solution gives the lower bound 𝑂((𝑆𝑇 + 𝑇 2)/𝑁)1/3 for OWFs compared
to its classical advice counterpart 𝑂((𝑆𝑇 + 𝑇 2)/𝑁). This is due to the need for rewinding and
multiple copies of quantum advice.

The looseness in the exponents in OWFs is not the worst. For PRGs, the approach above does
not work at all. While in OWF games, ℬ can pick the correct answer as long as it exists by checking
whether 𝐻(𝑥𝑖) = 𝑦 for all 𝑖; it is not the case in PRG games. The reduction algorithm ℬ has no
way to tell if an answer is correct, since PRG games are not publicly verifiable. Another attempt
is to let ℬ do a majority vote over the outcomes from many copies of 𝒜. [CGLQ20] show that
this approach does not behave as expected: even if a non-uniform algorithm can answer correctly
w.p. 60%, the majority vote can pull the chance down to 40%, not 99%, even worse than a random
guess!

Their answer is to “gently” estimate the success probability in each round of the multi-instance

3There is a missing caveat. The correct answer can be non-unique, as in OWF games. There is an easy fix for this
issue in [CGLQ20]. We simply ignore it and assume answers are unique, as we do not need the fix and it does not
change the main idea.
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game and flip a coin according to this estimated probability. By utilizing an online version of
shadow tomography [AR19], they achieve lower bounds for PRG games with quantum advice.
However, the bounds for quantum advice are 1/2 + 𝑂((𝑆5𝑇 + 𝑆4𝑇 2)/𝑁)1/19 compared to the
bounds 1/2 +𝑂((𝑆𝑇 + 𝑇 2)/𝑁)1/3 for classical advice.

One may also try to apply other rewinding techniques to step 1, for example, the “measure-
and-repair” approach by Chiesa et al. [CMSZ22]. The tool introduces an inverse polynomial loss
on success probability for every rewinding and requires the valid outcomes of the game to satisfy
some form of collapsing properties. Thus, it is unlikely that their technique can be applied to this
setting, as collapsing does not hold for general games, and exponentially many rewindings result
in a huge loss. With the aforementioned difficulties, we start thinking about if multi-instance
games (Figure 1) are the right way to go?

Quantum Advice as Maximizing Overlaps (Section 5). For any non-uniform quantum algo-
rithm with quantum advice for OWFs, 𝒜 can be written formally in two parts:

1. a non-uniform oracle-dependent advice {|𝜎𝐻⟩}𝐻 , and
2. a uniform algorithm (unitary) {𝑈𝑦}𝑦∈[𝑁 ].

On input a challenge 𝑦 and oracle access to𝐻 , it operates as follows: prepares |𝜎𝐻⟩ |0𝐿⟩ and applies
𝑈𝐻
𝑦 on its internal register; measures and outputs the first 𝑛 bit of the registers as an answer. Since
|𝜎𝐻⟩ is only of 𝑆-qubits, the rest of the input should be independent of 𝐻 , and we thereby model
it as |0𝐿⟩ for any 𝐿 (it can even be exponentially large, as we only care about queries not running
time in the QROM). The verification procedure can be written as a projector 𝑉 𝐻

𝑥 on the registers,
and output 1 if and only if 𝐻(𝑥) = 𝐻(𝑥′) assuming the first 𝑛 bit in the computational basis is 𝑥′.
Due to the operational meaning of 𝑈 and 𝑉 , the success probability when given oracle access to
𝐻 can be then written as

𝛿𝐻 = 𝔼𝑥

[︂⃒⃒⃒
𝑉 𝐻
𝑥 𝑈𝐻

𝐻(𝑥) |𝜎𝐻⟩ |0
𝐿⟩
⃒⃒⃒2]︂

.

The above probability describes the progress of sampling a random challenge 𝑥, feeding 𝐻(𝑥) as
input to the non-uniform 𝒜 and checking whether 𝒜’s answer is correct with respect to 𝑥.

Here is an alternative way to look at 𝛿𝐻 . Define 𝑃𝐻 as the following Hermitian matrix: 𝑃𝐻 =

𝔼𝑥

[︁
(𝑈𝐻

𝐻(𝑥))
†𝑉 𝐻

𝑥 𝑈𝐻
𝐻(𝑥)

]︁
. 𝛿𝐻 can be alternatively written in terms of 𝑃𝐻 and the starting state:

𝛿𝐻 = ⟨𝜎𝐻 , 0𝐿|𝑃𝐻 |𝜎𝐻 , 0𝐿⟩.

As 𝑃𝐻 is Hermitian and 𝟎 ⪯ 𝑃𝐻 ⪯ 𝐈, 𝑃𝐻 has an eigen-decomposition with real eigenvalues
in [0, 1]. Without loss of generality, we assume the eigenvectors |𝜑𝑝⟩ have distinct eigenvalues
𝑝 ∈ [0, 1] and thus 𝑃𝐻 =

∑︀
𝑝 𝑝 |𝜑𝑝⟩ ⟨𝜑𝑝|. Each |𝜑𝑝⟩ together with {𝑈𝑦}𝑦 is an quantum algorithm

whose success probability in the OWF game equals to 𝑝, as ⟨𝜑𝑝|𝑃𝐻 |𝜑𝑝⟩ = 𝑝⟨𝜑𝑝|𝜑𝑝⟩ = 𝑝.
Then the success probability 𝛿𝐻 can be written in terms of eigenvalues, eigenvectors of 𝑃𝐻 and

the projection of |𝜎𝐻 , 0𝐿⟩ under the eigenbasis:

𝛿𝐻 =
∑︁
𝑝

|𝛼𝑝|2𝑝 where |𝜎𝐻 , 0𝐿⟩ =
∑︁
𝑝

𝛼𝑝 |𝜑𝑝⟩ . (1)
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A nature analogy of Equation (1) in the classical setting is that a (randomized) algorithm can
be decomposed into a collection of other algorithms, each is picked with certain probability; the
probability of the larger algorithm will be a convex combination of those smaller algorithms. In
the quantum case, as shown in Equation (1), the decomposition is still possible but we need to
work under the eigenbasis of 𝑃𝐻 : the non-uniform quantum algorithm is in superposition of |𝜑𝑝⟩
(a quantum algorithm with winning probability 𝑝) with amplitude being 𝛼𝑝.

A further interpretation of Equation (1) tells us that to maximize 𝛿𝐻 , one needs to pick an
appropriate |𝜎𝐻⟩ such that the overlap between |𝜎𝐻⟩ |0𝐿⟩ and eigenvectors with large eigenvalues
is as large as possible. One extreme example is when |𝜎𝐻⟩ has unbounded length; in this case,
we can always set |𝜎𝐻⟩ := |𝜑𝑝*⟩ for the largest 𝑝* and 𝐿 = 0, in which a success probability 𝑝* is
achieved. However, this is not always possible as |𝜎𝐻⟩ has only 𝑆-qubits and prevents us from
maximizing the overlap.

Because our target 𝛿 = 𝔼𝐻 [𝛿𝐻 ], the first attempt to bound 𝛿 is to look at eigenvalues {𝑝} and
distributions (amplitudes) of {𝑝} for each𝐻 individually. This approach is very difficult to analyze
as the structure of 𝐻 significantly affects both {𝑝} and its distribution (amplitudes). For example,
when 𝐻 is an all-zero function, the largest eigenvalue is 1; since an algorithm always wins when
all the images are 0𝑛. Whereas for an overwhelming fraction of 𝐻 , it is far away from 1. We do not
know how to analyze 𝛿𝐻 individually; if possible, it must be laborious.

Step 1: Alternating Measurement Games (Section 6). This is the analog of step 1 in Figure 2.
Let 𝐩 be the random variable of the eigenvalues (probability) when |𝜎𝐻 , 0𝐿⟩ is projected into the
eigenbasis of 𝑃𝐻 . Recall that 𝛿 = 𝔼𝐻 [

∑︀
𝑝 |𝛼𝑝|2𝑝] = 𝔼𝐻 [𝐩]. Our core idea is to give a global char-

acterization of the distribution of 𝐩. Namely, we want to bound the 𝑔-th moment of the random
variable 𝐩 for some large 𝑔: 𝔼𝐻 [𝐩𝑔]. If the 𝑔-th moment is 𝜀𝑔, that means 𝐩 concentrates round 𝜀.
More formally, by Jensen’s inequality,

𝔼𝐻 [𝐩] ≤ (𝔼𝐻 [𝐩𝑔])1/𝑔 , for all 𝑔 ≥ 1.

If we can find a game whose success probability is 𝔼𝐻 [𝐩𝑔] and upper bound the probability, we
can also upper bound 𝔼𝐻 [𝐩]. Inspired by the alternating measurement technique by Marriot and
Watrous [MW05], we come up with the following games, which we call “alternating measurement
games” and show the success probability in this game is precisely 𝔼𝐻 [𝐩𝑔]. For those who are
familiar with [MW05] and its applications in cryptography ([Zha20, ALL+21, CLLZ21, CMSZ22,
. . . ]), we are not using alternating measurements to estimate success probability, but rather turning
it directly into a security game. As far as we know, this direction has never been investigated
before.

In the 𝑔-alternating measurement games Figure 3, a challenger first prepares a uniform super-
position over all challenges |1⟩𝐗 = 1√

𝑁

∑︀
𝑥 |𝑥⟩; it then measures 𝐗 together with an adversary’s

register 𝐀; for each round in 1, 2, · · · , 𝑔:

• If the current round is odd, the challenger applies the following projection over 𝐗𝐀:

𝖢𝖯𝐻
0 =

∑︁
𝑥∈[𝑁 ]

|𝑥⟩ ⟨𝑥| ⊗ (𝑈𝐻
𝐻(𝑥))

†𝑉 𝐻
𝑥 𝑈𝐻

𝐻(𝑥) and 𝖢𝖯𝐻
1 = 𝐈𝐗𝐀 − 𝖢𝖯𝐻

0 .

In other words, 𝖢𝖯𝐻
0 is a controlled projection. If the control is 𝑥, it will run 𝒜 on input

𝐻(𝑥) (corresponding to 𝑈𝐻
𝐻(𝑥)), project into 𝒜’s winning (corresponding to 𝑉 𝐻

𝑥 ) and undo
the computation (which is (𝑈𝐻

𝐻(𝑥))
†).
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• If the current round is even, the challenger applies 𝖨𝗌𝖴𝗇𝗂𝖿𝗈𝗋𝗆 over 𝐗:

𝖨𝗌𝖴𝗇𝗂𝖿𝗈𝗋𝗆0 = |1⟩ ⟨1|𝐗 ⊗ 𝕀𝐀 and 𝖨𝗌𝖴𝗇𝗂𝖿𝗈𝗋𝗆1 = 𝐈− 𝖨𝗌𝖴𝗇𝗂𝖿𝗈𝗋𝗆0.

Finally, the winning condition is met when all the measurement outcomes are 0s.

• The challenger prepares an equal superposition |1⟩𝐗 = 1√
𝑁

∑︀
𝑥 |𝑥⟩. The whole

quantum system over 𝐗𝐀 at the start of the game is |1⟩𝐗 |𝜎𝐻 , 0𝐿⟩𝐀.
• For each round 𝑖 ∈ [𝑔], the challenger applies binary measurements over 𝐗𝐀. Let

the result be 𝑏𝑖.

1. If it is odd round, it applies (𝖢𝖯𝐻
0 ,𝖢𝖯

𝐻
1 ).

2. If it is even round, it applies (𝖨𝗌𝖴𝗇𝗂𝖿𝗈𝗋𝗆0, 𝖨𝗌𝖴𝗇𝗂𝖿𝗈𝗋𝗆1).

• The adversary wins if and only if 𝑏1 = 𝑏2 = · · · = 𝑏𝑔 = 0.

Figure 3: Alternating Measurement Games for OWFs.

The evolution of quantum states in the alternating measurement has a nice form. Marriot and
Watrous showed that for a eigenvector |𝜑𝑝⟩𝐀, when starting with |1⟩𝐗 |𝜑𝑝⟩𝐀, the state evolves to
either 𝑝𝑔/2 |𝜓𝑝⟩𝐗𝐀 in odd rounds or 𝑝𝑔/2 |1⟩𝐗 |𝜑𝑝⟩𝐀 in even rounds. Here |𝜓𝑝⟩ is some quantum
we do not need to write down explicitly, but importantly it is the same for all even rounds. For a
starting state |𝜎𝐻 , 0𝐿⟩ =

∑︀
𝑝 𝛼𝑝 |𝜑𝑝⟩, the state evolves as in Figure 4.

∑︀
𝑝 𝛼𝑝 |1⟩𝐗 |𝜑𝑝⟩𝐀

∑︀
𝑝 𝑝

1/2𝛼𝑝 |𝜓𝑝⟩𝐗𝐀

∑︀
𝑝 𝑝𝛼𝑝 |1⟩𝐗 |𝜑𝑝⟩𝐀

∑︀
𝑝 𝑝

3/2𝛼𝑝 |𝜓𝑝⟩𝐗𝐀

· · ·
𝖢𝖯𝐻

0

𝖨𝗌𝖴𝗇𝗂𝖿𝗈𝗋𝗆0

𝖢𝖯𝐻
0

𝖨𝗌𝖴𝗇𝗂𝖿𝗈𝗋𝗆0

Figure 4: Evolution in Alternating Measurement Games.

In the above figure, we do not normalize the quantum states. Their ℓ-2 norms are then the
probability of having all 0 outcomes until the current round. Thereby, 𝒜’s winning probability in
the 𝑔-alternating measurement games is exactly 𝔼𝐻 [𝐩𝑔] = 𝔼𝐻 [

∑︀
𝑝 |𝛼𝑝|2𝑝𝑔]. The remaining step is

to bound security in the alternating measurement game.
To conclude, in this paragraph, we show that if a non-uniform algorithm has advantage 𝔼[𝐩]

for the OWF game, it has advantage 𝔼[𝐩𝑔] for the 𝑔-alternating measurement game. It is an analog
of the reduction with classical advice: non-uniform security to non-uniform multi-instance secu-
rity shown in Figure 2 (step 1). The most notable benefit is that the new reduction does not need
to do rewindings4; as a consequence, neither majority vote nor tomography is required. This is
the main reason we obtain tight bounds in this work.

Step 2: Removing Advice in the Alternating Measurement Games. This part is similar to step
2 in Figure 2. In the previous section, we show a reduction from non-uniform advantage for the

4One may argue that the game itself does the rewinding, as alternating measurements can be viewed as a way of
repairing quantum programs [CMSZ22]
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OWF game to non-uniform advantage for the 𝑔-alternating measurement game. However, we did
not remove non-uniformity, which is the most troublesome part. We can set 𝑔 = 𝑆 and pay a loss
of 2−𝑆 (which comes from a random guess of quantum advice). Thus, if a 𝑆-qubit non-uniform
𝒜 has advantage 𝔼[𝐩], there must exist a uniform quantum algorithm with advantage 2−𝑆𝔼[𝐩𝑆 ]
in the 𝑆-alternating measurement game. The loss 2−𝑆 will diminish as 𝔼[𝐩𝑆 ] is also exponential
in 𝑆 in most cases. In the following paragraph, we only need to consider security of uniform
algorithms.

Step 3: Security in the Alternating Measurement Games. Recall 𝑏1, 𝑏2, · · · , 𝑏𝑔 are the binary
outcomes in the alternating measurement game Figure 3. Since 𝔼𝐻 [𝐩𝑔] = Pr[𝑏1 = · · · = 𝑏𝑔 = 0],
we have:

𝔼𝐻 [𝐩𝑔] =

𝑔∏︁
𝑖=1

Pr[𝑏𝑖 = 0 | 𝑏<𝑖 = 0].

We bound the conditional probability Pr[𝑏𝑖 = 0 | 𝑏<𝑖 = 0] for each individual 1 ≤ 𝑖 ≤ 𝑔; i.e., an
adversary wins the 𝑖-th round, conditioned on its winning all the previous rounds.

We observe that the conditional probability is monotonically non-decreasing. This is due to
Pr[𝑏𝑖 = 0 | 𝑏<𝑖 = 0] = Pr[𝑏<𝑖+1 = 0]/Pr[𝑏<𝑖 = 0] = 𝔼𝐻 [𝐩𝑖]/𝔼𝐻 [𝐩𝑖−1]. The monotonicity of the
conditional probabilities follows by Jensen’s inequality. Therefore, we only need to bound the last
term, 𝜀𝑔 := Pr[𝑏𝑔 = 0 | 𝑏<𝑔 = 0]; and 𝔼𝐻 [𝐩𝑔] ≤ 𝜀𝑔𝑔. Finally, we show 𝜀𝑔 can be bounded using the
existing theorem in [CGLQ20].

We briefly recap the idea in [CGLQ20]. To prove security in the multi-instance setting, [CGLQ20]
indeed prove a stronger statement. They show that for any 𝑃 -quantum-query uniform algorithm
𝑓 and 𝑇 -query uniform 𝒜, the probability that 𝒜 wins the OWF game conditioned on 𝑓𝐻 = 0 is
still bounded by𝑂(𝑃+𝑇 2)/𝑁 . This model is later named as 𝑃 -Bit-Fixing-QROM (or 𝑃 -BF-QROM)
by [GLLZ21]. One can view the algorithm 𝑓 as quantumly fixing 𝑃 coordinates of a random or-
acle, and the security says regardless of 𝑓 ’s behavior, as long as it is query bounded, the online
algorithm only has limited advantages of inverting a uniformly random image.

When 𝑔 is odd, the measurement on the 𝑔-th round is 𝖢𝖯𝐻
0 ,𝖢𝖯

𝐻
1 , in which an outcome 0 cor-

responds to winning the OWF game. 𝜀𝑔 is bounded by the advantage in the 𝑃 -BF-QROM when
𝑃 ≈ 𝑔𝑇 : since we can set 𝑓 as a quantum algorithm that does alternating measurements for the
first 𝑔 − 1 rounds, and 𝒜 is the algorithm that plays the OWF game. Thus, 𝜀𝑔 = 𝑂((𝑔𝑇 + 𝑇 2)/𝑁
for odd 𝑔.

When 𝑔 is even, the measurement on the 𝑔-th round is (𝖨𝗌𝖴𝗇𝗂𝖿𝗈𝗋𝗆0, 𝖨𝗌𝖴𝗇𝗂𝖿𝗈𝗋𝗆1). This step, unlike
the case for odd 𝑔, has less physical meaning and we do not know how to bound it directly. But
fortunately, we have 𝜖𝑔 ≤ 𝜖𝑔+1 = 𝑂((𝑔𝑇 + 𝑇 2)/𝑁) since we prove the conditional probability is
non-decreasing and 𝜀𝑔+1 is easy to bound for 𝑔 + 1 being odd.

Therefore, we can bound 𝜀𝑔 as well as 𝔼[𝐩𝑔] for all positive 𝑔 .

Achieving Non-Uniform Security. We combine all the steps above and achieve non-uniform
security with quantum advice for OWG games (Figure 5).

• For any non-uniform quantum algorithm with 𝑆-qubits of advice and 𝑇 queries, let its ad-
vantage be 𝛿 = 𝔼[𝐩].

• (Step 1.) Its advantage in the 𝑔-alternating measurement game is 𝔼[𝐩𝑔].

13



• (Step 2.) By guessing the quantum advice, we can further remove the non-uniformity. There
exists a uniform algorithm in the 𝑔-alternating measurement game with advantage 2−𝑆𝔼[𝐩𝑔].

• (Step 3.) By setting 𝑔 = 𝑆 and 𝑃 = 𝑆𝑇 , we can bound 2−𝑆𝔼[𝐩𝑔] by 𝑂((𝑆𝑇 + 𝑇 2)/𝑁)𝑆 .

Combining all the steps above, we have:

𝛿 = 𝔼[𝐩] ≤ (𝔼[𝐩𝑆 ])1/𝑆 ≤
(︀
2𝑆 ·𝑂((𝑆𝑇 + 𝑇 2)/𝑁)𝑆

)︀1/𝑆
= 𝑂((𝑆𝑇 + 𝑇 2)/𝑁),

finishing the proof for Theorem 1.1.

𝛿 = 𝔼[𝐩]
non-uniform security

w/ 𝑆-qubits of quantum advice

𝔼[𝐩𝑔]
non-uniform security

in the alternating measurement game
w/ 𝑆-qubits of quantum advice

2−𝑆𝔼[𝐩𝑔]
uniform security in

the alternating measurement game

step 1

step 2

𝜀
uniform security

in the 𝑃 -BF-QROM
setting 𝑃 = 𝑔𝑇

step 3

Figure 5: Our reduction (comparing with the reduction in [CGLQ20] Figure 2).

We can extend the above reduction to a general framework for non-uniform security. As long
as the advantage of a game in the 𝑃 -BF-QROM can be bounded by 𝜀, we can establish its non-
uniform security by 𝑂(𝜀). For decision games, instead of setting 𝑔 = 𝑆, we choose a different 𝑔,
but other ideas roughly follow. Please refer to Section 6 for more details.

Separation of Classical and Quantum Advice. Our separation is based on the recent work by
Yamakawa and Zhandry [YZ22]. They show, relative to a random oracle, there exists a one-way
function such that: (1) it is hard for any polynomial-query (or even subexponential-query) classical
algorithm to invert a challenge image 𝑦; (2) a quantum algorithm (Yamakawa-Zhandry algorithm)
can invert any 𝑦 with certainty. We observe that the quantum algorithm has the additional fasci-
nating property: the algorithm makes non-adaptive queries, and the queries are even independent
of 𝑦; then, post-processing depending on 𝑦 reveals a pre-image.

The OWF in [YZ22] is an example of separating classical and quantum advice for 𝑆 being some
subexponential function and 𝑇 = 0. When advice is quantum, the advice can be the queries made
by the Yamakawa-Zhandry algorithm because these queries are independent of 𝑦. The winning
probability with quantum advice is equal to that of the Yamakawa-Zhandry algorithm, which is
arbitrarily close to 1. When only classical advice is given, we show that any algorithm only knows
at most 𝑂̃(𝑆) positions of the random oracle, based on a theorem from [CDGS18]; as no more
queries are allowed, most images 𝑦 are not queried and thus can never be inverted.

3 Preliminaries

We assume readers are familiar with the basics of quantum information and computation. All
backgrounds on quantum information can be found in [NC10].
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3.1 Quantum Random Oracle Model

In the quantum random oracle model, a hash function is modeled as a random classical function
𝐻 . The function 𝐻 is sampled at the beginning of any security game and then gets fixed. Oracle
access to 𝐻 is defined by a unitary 𝑈𝐻 : |𝑥, 𝑦⟩ → |𝑥, 𝑦 +𝐻(𝑥)⟩. A quantum oracle algorithm
with oracle access to 𝐻 is then denoted by a sequence of unitary 𝑈1, 𝑈𝐻 , 𝑈2, 𝑈𝐻 , · · · , 𝑈𝑇 , 𝑈𝐻 ,
𝑈𝑇+1 followed by a computational basis measurement, where 𝑈𝑖 is a local unitary operating on
the algorithm’s internal register. The number of queries, in this case, is 𝑇 — the number of 𝑈𝐻

calls.

3.2 Other Useful Lemmas

We use the lemmas in this section to prove bounds in the alternating measurement games (Sec-
tion 6). Readers can safely skip and return to this section for understanding proofs in Section 6.

Lemma 3.1. Let 𝑁 be a positive integer and 𝑝1, · · · , 𝑝𝑁 ∈ ℝ≥0. Let 𝛼1, · · · , 𝛼𝑁 be a distribution over
[𝑁 ]: i.e., 𝛼𝑖 ∈ [0, 1] and

∑︀
𝑖∈[𝑁 ] 𝛼𝑖 = 1.

Assume 𝜇 :=
∑︀

𝑖∈[𝑁 ] 𝛼𝑖𝑝𝑖 > 0. Let 𝛽1, · · · , 𝛽𝑁 be another distribution over [𝑁 ]: 𝛽𝑖 := 𝛼𝑖𝑝𝑖/𝜇. The
following holds: ∑︁

𝑖∈[𝑁 ]

𝛽𝑖𝑝𝑖 ≥
∑︁
𝑖∈[𝑁 ]

𝛼𝑖𝑝𝑖.

Proof. Let 𝐗 be a random variable that takes value 𝑝𝑖 w.p. 𝛼𝑖. It is easy to see that 𝔼[𝐗] =
∑︀

𝑖 𝛼𝑖𝑝𝑖
and 𝔼[𝐗2] =

∑︀
𝑖 𝛼𝑖𝑝

2
𝑖 .

Since we assume 𝜇 = 𝔼[𝐗] > 0, we rewrite the inequality as follows:

∑︁
𝑖

𝛼𝑖𝑝
2
𝑖 ≥

(︃∑︁
𝑖

𝛼𝑖𝑝𝑖

)︃2

.

The lemma holds by observing that L.H.S. is 𝔼[𝐗2], R.H.S. is 𝔼[𝐗]2 and the fact that 𝐕𝐚𝐫[𝐗] :=
𝔼[𝐗2]− 𝔼[𝐗]2 ≥ 0.

Lemma 3.2. Let 𝑁 be a positive integer and 𝑝1, · · · , 𝑝𝑁 ∈ ℝ≥0. Let 𝑐1, · · · , 𝑐𝑁 be a distribution over [𝑁 ].
Assume

∑︀
𝑖∈[𝑁 ] 𝑐𝑖𝑝𝑖 > 0. Define 𝑆𝑘 for every integer 𝑘 ≥ 1:

𝑆𝑘 =

∑︀
𝑖∈[𝑁 ] 𝑐𝑖𝑝

𝑘
𝑖∑︀

𝑖∈[𝑁 ] 𝑐𝑖𝑝
𝑘−1
𝑖

.

Then {𝑆𝑘}𝑘≥1 is monotonically non-decreasing.

Proof. We fix any integer 𝑘 ≥ 1. Let 𝛼𝑖 = 𝑐𝑖𝑝
𝑘−1
𝑖 /(

∑︀
𝑖 𝑐𝑖𝑝

𝑘−1
𝑖 ). It it easy to see that 𝑆𝑘 =

∑︀
𝑖 𝛼𝑖𝑝𝑖.
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Let 𝛽𝑖 = 𝛼𝑖𝑝𝑖/𝜇 where 𝜇 =
∑︀

𝑖 𝛼𝑖𝑝𝑖. We have

𝛽𝑖 = 𝛼𝑖𝑝𝑖/𝜇

=
𝑐𝑖𝑝

𝑘
𝑖∑︀

𝑖 𝑐𝑖𝑝
𝑘−1
𝑖 · 𝜇

=
𝑐𝑖𝑝

𝑘
𝑖∑︀

𝑖 𝑐𝑖𝑝
𝑘−1
𝑖 ·

(︁∑︀
𝑖 𝑐𝑖𝑝

𝑘
𝑖 /(
∑︀

𝑖 𝑐𝑖𝑝
𝑘−1
𝑖 )

)︁
=

𝑐𝑖𝑝
𝑘
𝑖∑︀

𝑖 𝑐𝑖𝑝
𝑘
𝑖

.

Therefore, 𝑆𝑘+1 =
∑︀

𝑖 𝛽𝑖𝑝𝑖. By Lemma 3.1, 𝑆𝑘+1 =
∑︀

𝑖 𝛽𝑖𝑝𝑖 ≥
∑︀

𝑖 𝛼𝑖𝑝𝑖 = 𝑆𝑘.

Lemma 3.3 (Jensen’s inequality). Let𝑁, 𝑔 be two positive integers and 𝑝1, · · · , 𝑝𝑁 ∈ ℝ≥0. Let 𝑐1, · · · , 𝑐𝑁
be a distribution over [𝑁 ]. Assume

∑︀
𝑖∈[𝑁 ] 𝑐𝑖𝑝𝑖 > 0. If the following holds∑︁

𝑖∈[𝑁 ]

𝑐𝑖𝑝
𝑔
𝑖 ≤ 𝛿

𝑔,

then
∑︀

𝑖∈[𝑁 ] 𝑐𝑖𝑝𝑖 ≤ 𝛿.

4 (𝑆, 𝑇 ) Quantum Algorithms and Games in the QROM

In this work, we consider non-uniform algorithms against games in the QROM. We start by defin-
ing (𝑆, 𝑇 ) non-uniform quantum algorithms with either 𝑆 classical bits of advice or 𝑆 qubits of
advice. The definitions below more or less follow definitions in [CGLQ20] but are adapted for our
setting.

Definition 4.1 ((𝑆, 𝑇 ) Non-Uniform Quantum Algorithms in the QROM). A (𝑆, 𝑇 ) non-uniform
quantum algorithm with classical advice in the QROM is modeled by a collection {𝑠𝐻}𝐻:[𝑁 ]→[𝑀 ] and
{𝑈𝗂𝗇𝗉}𝗂𝗇𝗉: for every function 𝐻 , 𝑠𝐻 is a piece of 𝑆-bit advice and 𝑈𝐻

𝗂𝗇𝗉 is a unitary that calls the oracle 𝐻 at
most 𝑇 times.

A (𝑆, 𝑇 ) non-uniform quantum algorithm with quantum advice in the QROM is modeled by a collec-
tion {|𝜎𝐻⟩}𝐻 and {𝑈𝗂𝗇𝗉}𝗂𝗇𝗉: for every function 𝐻 , |𝜎𝐻⟩ is a piece of 𝑆-qubit advice and 𝑈𝐻

𝗂𝗇𝗉 is a unitary
that calls the oracle 𝐻 at most 𝑇 times.

Similarly, we denote a uniform quantum algorithm by a collection of unitaries {𝑈𝗂𝗇𝗉}𝗂𝗇𝗉: it is a non-
uniform quantum algorithm satisfying |𝜎𝐻⟩ = |0𝑆⟩ for all 𝐻 .

When the algorithm is working with oracle access to 𝐻 , its initial state is |𝑠𝐻⟩ |0𝐿⟩ or |𝜎𝐻⟩ |0𝐿⟩, re-
spectively. On input 𝗂𝗇𝗉, it applies 𝑈𝐻

𝗂𝗇𝗉 on the initial state and measures its internal register in the compu-
tational basis.

Since we are working in the idealized model, we require neither 𝐿 nor the size of the unitary
𝑈𝗂𝗇𝗉 to be polynomially bounded. In the rest of the work, we will focus on non-uniform algo-
rithms with quantum advice as our new reduction works for both cases. Therefore, ‘non-uniform
algorithms’ denotes ‘non-uniform algorithms with quantum advice’.
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Remark 4.2. We can assume quantum advice is a pure state. Due to convexity, the optimal non-uniform
algorithm can always have advice as a pure state. If the advice is a mixed state and achieves a winning
probability 𝑝, there always exists a pure state that achieves a winning probability at least 𝑝.

Next, we define games in the QROM.

Definition 4.3 (Games in the QROM). A game 𝐺 in the QROM is specified by two classical algorithms
𝖲𝖺𝗆𝗉𝐻 and 𝖵𝖾𝗋𝗂𝖿𝗒𝐻 :

• 𝖲𝖺𝗆𝗉𝐻(𝑟): it is a deterministic algorithm that takes uniformly random coins 𝑟 ∈ ℛ as input, and
outputs a challenge 𝖼𝗁.

• 𝖵𝖾𝗋𝗂𝖿𝗒𝐻(𝑟, 𝖺𝗇𝗌): it is a deterministic algorithm that takes the same random coins for generating a
challenge and an alleged answer 𝖺𝗇𝗌, and outputs 𝑏 indicating whether the game is won (𝑏 = 0 for
winning).

Let 𝑇𝖲𝖺𝗆𝗉 be the number of queries made by 𝖲𝖺𝗆𝗉 and 𝑇𝖵𝖾𝗋𝗂𝖿𝗒 be the number of queries made by 𝖵𝖾𝗋𝗂𝖿𝗒.

For a fixed 𝐻 and a quantum algorithm 𝒜, the game 𝐺𝐻
𝒜 is executed as follows:

• A challenger 𝒞 samples 𝖼𝗁← 𝖲𝖺𝗆𝗉𝐻(𝑟) using uniformly random coins 𝑟.
• A (uniform or non-uniform) quantum algorithm 𝒜 has oracle access to 𝐻 , takes 𝖼𝗁 as input and

outputs 𝖺𝗇𝗌. We call 𝒜 an online adversary/algorithm.
• 𝑏← 𝖵𝖾𝗋𝗂𝖿𝗒𝐻(𝑟, 𝖺𝗇𝗌) is the game’s outcome.

Remark 4.4. In the above definition, a quantum algorithm makes at most 𝑇 oracle queries to 𝐻 . However,
in some particular games, the algorithm can not get access to𝐻 . One famous example is Yao’s box, in which
an adversary is given a challenge input 𝑥 and the goal is to output 𝐻(𝑥). The adversary can query 𝐻 on
any input except 𝑥 (otherwise, the game is trivial). The definition Definition 4.3 does not capture this case.
Nonetheless, we will stick with the current definition. For the special case when an algorithm has access to
a different oracle 𝐻 ′, the technique in this work extends as well. This extension requires a similar definition
of games (Definition 3.3) in [CGLQ20].

Let us warm up by having a close look at the following examples.

Example 4.5. The first example is function inversion (or OWFs) 𝐺𝖮𝖶𝖥. 𝑟 = 𝑥 ∈ [𝑁 ] is a uniformly
random pre-image and 𝖼𝗁 := 𝐻(𝑥). The goal is to find a pre-image of 𝖼𝗁. The verification procedure takes
𝑟 = 𝑥 and 𝖺𝗇𝗌 = 𝑥′, it outputs 0 (winning) if and only if 𝑥′ is a pre-image of 𝐻(𝑥).

The other example 𝐺𝖯𝖱𝖦 is to distinguish images of PRG from a uniformly random element. In this
example, 𝑟 consists of (𝑏, 𝑥, 𝑦) where 𝑏 is a single bit, 𝑥 is a uniformly random pre-image in [𝑁 ] and 𝑦 is
a uniformly random element in [𝑀 ]. The challenge 𝖼𝗁 is 𝐻(𝑥) if 𝑏 = 0, otherwise 𝖼𝗁 = 𝑦. The goal is to
distinguish whether an image of a random input or a random element in the range is given. The verification
procedure takes 𝑟 = (𝑏, 𝑥, 𝑦) and 𝖺𝗇𝗌 = 𝑏′, it outputs 0 if and only if 𝑏 = 𝑏′.

Definition 4.6. We say a game 𝐺 has 𝛿(𝑆, 𝑇 ) := 𝛿 maximum winning probability (or has security 𝛿,
for cryptographic games) against all (𝑆, 𝑇 ) non-uniform quantum adversaries with classical or quantum
advice if

max
𝒜

Pr
𝐻

[︀
𝐺𝐻

𝒜 = 1
]︀
≤ 𝛿,

where max is taken over all (𝑆, 𝑇 ) non-uniform quantum adversaries 𝒜 with classical or quantum advice,
respectively.
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4.1 Quantum Bit-Fixing Model

Here we recall a different model called the quantum bit-fixing model. In the following sections,
we will relate winning probability of a game 𝐺 against (𝑆, 𝑇 ) non-uniform quantum algorithms
with that in the quantum bit-fixing model (BF-QROM). Since the previous quantum non-uniform
bounds require analyzing the quantum bit-fixing model, winning probabilities in the bit-fixing
model are already known for many games, and our improved bounds only need a new reduction.
The following definitions are adapted from [GLLZ21].

Definition 4.7 (Games in the 𝑃 -BF-QROM). It is similar to games in the standard QROM, except now
𝐻 has a different distribution.

• Before a game starts, a quantum algorithm 𝑓 (having no input) with at most 𝑃 queries to an oracle is
picked and fixed by an adversary.

• Rejection Sampling Stage: A random oracle 𝐻 is picked uniformly at random, then conditioned
on 𝑓𝐻 outputs 0. In other words, the distribution of 𝐻 is defined by a rejection sampling:

1. 𝐻 ← {𝑓 : [𝑁 ]→ [𝑀 ]}.
2. Run 𝑓𝐻 and obtain a binary outcome 𝑏 together with a quantum state 𝜏 5.
3. Restart from step 1 if 𝑏 ̸= 0.

• Online Stage: The game is then executed with oracle access to 𝐻 , and an algorithm ℬ gets 𝜏 .

A (𝑃, 𝑇 ) algorithm in the 𝑃 -BF-QROM consists of 𝑓 for sampling the distribution and ℬ for
playing the game, with 𝑓 making at most 𝑃 queries and ℬ making at most 𝑇 queries. We also call
ℬ an online algorithm/adversary.

We will also consider the following classical analog 𝑃 -BF-ROM only when showing a separa-
tion between classical and quantum advice in Section 8.

Definition 4.8 (Games in the 𝑃 -BF-ROM). It is similar to the above Definition 4.7, except both 𝑓 and ℬ
can only make classical queries.

Definition 4.9. We say a game 𝐺 has 𝜈(𝑃, 𝑇 ) := 𝜈 maximum winning probability (or is 𝜈-secure, for
cryptographic games) in the 𝑃 -BF-QROM if

max
𝑓,ℬ

Pr
𝐻

[︀
𝑓𝐻 = 0 ∧ 𝐺𝐻

ℬ = 1
]︀
≤ 𝜈,

where max is taken over all (𝑃, 𝑇 ) quantum adversaries (𝑓,ℬ) with 𝑓 making at most 𝑃 queries and ℬ
making at most 𝑇 queries.

We know the following two lemmas from [CGLQ20, GLLZ21].

Lemma 4.10 (Function Inversion in the𝑃 -BF-QROM). The OWF game has 𝜈(𝑃, 𝑇 ) = (𝑃+𝑇 2)/min{𝑁,𝑀}
in the 𝑃 -BF-QROM.

See the proof for Lemma 5.2 in [CGLQ20] and Lemma 10 in [GLLZ21].

Lemma 4.11 (PRGs in the 𝑃 -BF-QROM). The game PRG has 𝜈(𝑃, 𝑇 ) = 1/2 +
√︀
(𝑃 + 𝑇 2)/𝑁 in the

𝑃 -BF-QROM.

See the proof for Lemma 5.13 in [CGLQ20].
5In [GLLZ21], they do not need quantum or classical memory 𝜏 shared between 𝑓 and 𝒜. However, this is essential

in our proof. Nonetheless, all security proofs in the 𝑃 -BR-QROM work in the stronger setting (with 𝜏 shared between
stages).
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5 Games, POVMs and Decomposition of Advice

In this section, we will formalize an quantum algorithm’s winning probability against a game in
terms of POVMs and its corresponding eigenvectors.

For any game 𝐺 and algorithm𝒜, let 𝑉 𝐻
𝑟 be a projection that operates on the register of𝒜. 𝑉 𝐻

𝑟

project a quantum state into a subspace spanned by basis states |𝖺𝗇𝗌⟩ |𝑧⟩ where 𝖵𝖾𝗋𝗂𝖿𝗒𝐻(𝑟, 𝖺𝗇𝗌) = 1
and 𝑧 be any aux input (depending on the size of 𝒜’s working register). As an example, for
function inversion problem and 𝑟 = 𝑥, 𝑉 𝐻

𝑟 is defined as
∑︀

𝑥′:𝐻(𝑥′)=𝐻(𝑥),𝑧 |𝑥′, 𝑧⟩ ⟨𝑥′, 𝑧|.
Then for any non-uniform quantum algorithm 𝒜 = ({|𝜎𝐻⟩}𝐻 , {𝑈𝗂𝗇𝗉}𝗂𝗇𝗉), by definition, its

probability 𝜖𝒜 for winning the game 𝐺 with oracle access to 𝐻 can be then written as:

𝜖𝒜,𝐻 =
1

|ℛ|
∑︁
𝑟∈ℛ

⃦⃦⃦
𝑉 𝐻
𝑟 𝑈𝐻

𝖲𝖺𝗆𝗉𝐻(𝑟)
|𝜎𝐻⟩ |0𝐿⟩

⃦⃦⃦2
.

We define the following projections 𝑃𝐻
𝑟 :=

(︁
𝑈𝐻
𝖲𝖺𝗆𝗉𝐻(𝑟)

)︁†
𝑉 𝐻
𝑟 𝑈𝐻

𝖲𝖺𝗆𝗉𝐻(𝑟)
. Let 𝑃𝐻 be a POVM:

𝑃𝐻 :=
1

|ℛ|
∑︁
𝑟∈ℛ

𝑃𝐻
𝑟 .

We can equivalently write 𝜖𝒜,𝐻 in terms of this POVM: 𝜖𝒜,𝐻 = ⟨𝜎𝐻 , 0𝐿|𝑃𝐻 |𝜎𝐻 , 0𝐿⟩. This is due to:

𝜖𝒜,𝐻 =
1

|ℛ|
∑︁
𝑟∈ℛ

⃦⃦⃦
𝑉 𝐻
𝑟 𝑈𝐻

𝖲𝖺𝗆𝗉𝐻(𝑟)
|𝜎𝐻⟩ |0𝐿⟩

⃦⃦⃦2
=

1

|ℛ|
∑︁
𝑟∈ℛ
⟨𝜎𝐻 | ⟨0𝐿|𝑃𝐻

𝑟 |𝜎𝐻⟩ |0𝐿⟩

=⟨𝜎𝐻 , 0𝐿|𝑃𝐻 |𝜎𝐻 , 0𝐿⟩.

Since 𝑃𝐻 is a Hermitian matrix and 0 ⪯ 𝑃𝐻 ⪯ 𝐈, let {|𝜑𝐻,𝑗⟩}𝑗 be the set of eigenbasis for 𝑃𝐻

with eigenvalues {𝑝𝐻,𝑗}𝑗 between 0 and 1. We can decompose |𝜎𝐻⟩ |0𝐿⟩ under the eigenbasis:

|𝜎𝐻⟩ |0𝐿⟩ =
∑︁
𝑖

𝛼𝐻,𝑖 |𝜑𝐻,𝑖⟩ .

Therefore, 𝜖𝒜,𝐻 can be written in terms of 𝛼𝐻,𝑖 and 𝑝𝐻,𝑖: 𝜖𝒜,𝐻 =
∑︀

𝑖 |𝛼𝐻,𝑖|2 · 𝑝𝐻,𝑖. This is because:

𝜖𝒜,𝐻 = ⟨𝜎𝐻 , 0𝐿|𝑃𝐻 |𝜎𝐻 , 0𝐿⟩ =
∑︁
𝑖

|𝛼𝐻,𝑖|2 · 𝑝𝐻,𝑖.

With all the above discussions, we conclude our lemma below.

Lemma 5.1. Let 𝐺 be a game and 𝒜 = ({|𝜎𝐻⟩}𝐻 , {𝑈𝗂𝗇𝗉}𝗂𝗇𝗉) be any non-uniform quantum algorithm.
Let 𝑃𝐻 be the corresponding POVMs for function 𝐻 . Let {|𝜑𝐻,𝑗⟩}𝑗 be the set of eigenbasis for 𝑃𝐻 with
eigenvalues {𝑝𝐻,𝑗}𝑗 .

For each 𝐻 , write |𝜎𝐻⟩ |0𝐿⟩ as
∑︀

𝑖 𝛼𝐻,𝑖 |𝜑𝐻,𝑖⟩. Let 𝜖𝒜 be the winning probability of 𝒜, when 𝐻 is
drawn uniformly at random. Then

𝜖𝒜 = 𝔼𝐻

[︃∑︁
𝑖

|𝛼𝐻,𝑖|2 · 𝑝𝐻,𝑖

]︃
=

1

𝑁𝑀

∑︁
𝐻

∑︁
𝑖

|𝛼𝐻,𝑖|2 · 𝑝𝐻,𝑖.
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6 Non-Uniform Lower Bounds via Alternating Measurements

In this section, we prove the following theorem:

Theorem 6.1. Let 𝐺 be any game with 𝑇𝖲𝖺𝗆𝗉, 𝑇𝖵𝖾𝗋𝗂𝖿𝗒 being the number of queries made by 𝖲𝖺𝗆𝗉 and
𝖵𝖾𝗋𝗂𝖿𝗒. For any 𝑆, 𝑇 , let 𝑃 = 𝑆(𝑇 + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒 + 𝑇𝖲𝖺𝗆𝗉).

If 𝐺 has security 𝜈(𝑃, 𝑇 ) in the 𝑃 -BF-QROM, then it has security (maximum winning probability)
𝛿(𝑆, 𝑇 ) ≤ 2 · 𝜈(𝑃, 𝑇 ) against (𝑆, 𝑇 ) non-uniform quantum algorithms with quantum advice.

It also has security

𝛿(𝑆, 𝑇 ) ≤ min
𝛾>0
{𝜈(𝑃/𝛾, 𝑇 ) + 𝛾}

against (𝑆, 𝑇 ) non-uniform quantum algorithms with quantum advice.

As a special case of the second result, when 𝐺 is a decision game and is 𝜈(𝑃, 𝑇 ) = 1
2 + 𝜈 ′(𝑃, 𝑇 )

secure in the 𝑃 -BF-QROM, then it has security

1/2 + min
𝛾>0

{︀
𝜈 ′(𝑃/𝛾, 𝑇 ) + 𝛾

}︀
against (𝑆, 𝑇 ) non-uniform quantum algorithms with quantum advice.

The section is organized as follows: in the first subsection, we introduce a new multi-instance
game, via the so-called alternating measurement games, the idea of alternating measurement was
used in witness preserving amplification of QMA ([MW05]); in the next subsection, we elaborate
on behaviors of any non-uniform quantum algorithm in the alternating measurement game; then
we show that upper bounds (of success probabilities) in the bit-fixing model give rise to the prob-
ability of uniform quantum algorithms in the alternating measurement game; finally in the last
subsection, we give the proof for our main theorem.

6.1 Multi-Instance via Alternating Measurements

For a game 𝐺 and a quantum non-uniform algorithm 𝒜 = ({|𝜎𝐻⟩}𝐻 , {𝑈𝗂𝗇𝗉}𝗂𝗇𝗉), we start by recall-
ing the following notations as in Section 5: 𝑃𝐻

𝑟 , 𝑃𝐻 , {|𝜑𝐻,𝑗⟩}𝑗 and {𝑝𝐻,𝑖}𝑗 . Let 𝐀 be the register that
𝒜 operates on. The following controlled projection (as defined in [Zha20]) will be used heavily in
this section.

Definition 6.2 (Controlled Projection). The controlled projection for a game𝐺 and a quantum algorithm
𝒜 is the following: for every 𝐻 , the controlled projection is the measurement 𝖢𝖯𝐻 = (𝖢𝖯𝐻

0 ,𝖢𝖯
𝐻
1 ):

𝖢𝖯𝐻
0 =

∑︁
𝑟∈ℛ
|𝑟⟩⟨𝑟|𝐑 ⊗ 𝑃

𝐻
𝑟 and 𝖢𝖯𝐻

1 =
∑︁
𝑟∈ℛ
|𝑟⟩ ⟨𝑟|𝐑 ⊗ (𝐈𝐀 − 𝑃𝐻

𝑟 ).

Here 𝖢𝖯𝐻 operates on registersℛ𝒜whereℛ are registers storing random coins and 𝒜 are 𝒜’s
working registers.

Similarly, we define the following projection 𝖨𝗌𝖴𝗇𝗂𝖿𝗈𝗋𝗆 = (|1ℛ⟩ ⟨1ℛ| ⊗ 𝐈𝐀, (𝐈𝐑 − |1ℛ⟩ ⟨1ℛ|) ⊗
𝐈𝐀) over the same register as 𝖢𝖯𝐻 where |1ℛ⟩ is a uniform superposition over ℛ: i.e., |1ℛ⟩ =
1
|ℛ|
∑︀

𝑟 |𝑟⟩. We denote |1ℛ⟩ ⟨1ℛ| ⊗ 𝐈𝐀 by 𝖨𝗌𝖴𝗇𝗂𝖿𝗈𝗋𝗆0 and (𝐈− |1ℛ⟩ ⟨1ℛ| ⊗ 𝐈𝐀) by 𝖨𝗌𝖴𝗇𝗂𝖿𝗈𝗋𝗆1.

Now, We are ready to describe the new game via alternating measurements:
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Definition 6.3 (Multi-Instances via Alternating Measurments). Fix a game 𝐺 and an integer 𝑘 ≥ 1.
A uniformly random 𝐻 is sampled at the beginning. For a (potentially non-uniform) quantum algorithm
𝒜, the multi-instance game 𝐺⊗𝑘 is defined and executed as follows:

• A challenger 𝒞 initializes a new register |1ℛ⟩𝐑 and controls 𝒜’s register 𝐀.
• It repeats the following procedures 𝑘 times, for 𝑖 = 1, · · · , 𝑘:

– If the current stage 𝑖 is odd, 𝒞 applies 𝖢𝖯𝐻 on 𝐑𝐀 and obtains a measurement outcome 𝑏𝑖.
– If the current stage 𝑖 is even, 𝒞 applies 𝖨𝗌𝖴𝗇𝗂𝖿𝗈𝗋𝗆 on 𝐑𝐀 and obtains a measurement outcome
𝑏𝑖.

• The game is won if and only if 𝑏1 = 𝑏2 = · · · = 𝑏𝑘 = 0.

With this alternating measurement game, we describe the following theorem that relates the
winning probability of a (non-uniform) 𝒜 in the game 𝐺 and that of 𝒜 in the corresponding alter-
nating measurement game 𝐺⊗𝑘.

Theorem 6.4. Let 𝐺 be a game and 𝒜 = ({|𝜎𝐻⟩}𝐻 , {𝑈𝗂𝗇𝗉}𝗂𝗇𝗉) be any non-uniform quantum algorithm
for 𝐺. Let 𝑃𝐻 be the corresponding POVMs for function 𝐻 . Let {|𝜑𝐻,𝑗⟩}𝑗 be the set of eigenbasis for 𝑃𝐻

with eigenvalues {𝑝𝐻,𝑗}𝑗 .
For each 𝐻 , write |𝜎𝐻⟩ |0𝐿⟩ as

∑︀
𝑖 𝛼𝐻,𝑖 |𝜑𝐻,𝑖⟩. Let 𝜖⊗𝑘

𝒜 be the winning probability of 𝒜 in the alternat-
ing measurement game 𝐺⊗𝑘, when 𝐻 is drawn uniformly at random. Then

𝜖⊗𝑘
𝒜 =

1

𝑁𝑀

∑︁
𝐻

∑︁
𝑖

|𝛼𝐻,𝑖|2 · 𝑝𝑘𝐻,𝑖.

We leave the explanation of the theorem to the next section (the proof of Lemma 6.6) since it is
similar to the analysis of QMA amplification [MW05] and quantum traitor tracing [Zha20]. We do
not considered the proof as our main contribution. Nonetheless, we believe that the proof inspires
our analysis for 𝜖⊗𝑘

𝒜 , which together with the new multi-instance reduction is considered the main
contribution of this work.

By Lemma 3.3, we can easily conclude that any upper bound on𝒜’s success probability in𝐺⊗𝑘

yields an upper bound on its winning probability in 𝐺. The proof of the following lemma easily
follows from Lemma 3.3.

Lemma 6.5. Fix a game 𝐺 and an integer 𝑘 ≥ 1. Let 𝜖𝒜 be the success probability of (uniform or non-

uniform) 𝒜 in 𝐺 and 𝜖⊗𝑘
𝒜 be that of 𝒜 in the alternating measurement game 𝐺⊗𝑘. Then 𝜖𝒜 ≤

(︁
𝜖⊗𝑘
𝒜

)︁1/𝑘
.

Thereby, to bound 𝜖𝒜, it is enough to bound 𝜖⊗𝑘
𝒜 for some appropriate positive integer 𝑘.

6.2 Characterization of Alternating Measurements and Proof of Theorem 6.4

Fixing a function 𝐻 , the intial internal register 𝐀 of 𝒜 is |𝜎𝐻⟩ |0𝐿⟩ =
∑︀

𝑖 𝛼𝐻,𝑖 |𝜑𝐻,𝑖⟩. Let us define
the following states |𝑣0𝐻,𝑖⟩ , |𝑣1𝐻,𝑖⟩ , |𝑤0

𝐻,𝑖⟩ , |𝑤1
𝐻,𝑖⟩ (for convenience, we ignore 𝐻 in the subscripts in

the analysis below). We will also ignore 𝐻 for other notations like 𝑃𝐻
𝑟 , |𝜑𝐻,𝑖⟩ , 𝑝𝐻,𝑖 as our analysis

does not depend on 𝐻 and the final conclusion follows by taking expectation over uniformly
random functions 𝐻 . Instead, we are using 𝑃𝑟 := 𝑃𝐻

𝑟 , |𝜑𝑖⟩ := |𝜑𝐻,𝑖⟩ , 𝑝𝑖 := 𝑝𝐻,𝑖 in the analysis.
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1. |𝑤0
𝑖 ⟩ = 1√

𝑝𝑖|ℛ|

∑︀
𝑟 |𝑟⟩𝑃𝑟 |𝜑𝑖⟩.

It is easy to verify that it has norm 1:

⟨𝑤0
𝑖 |𝑤0

𝑖 ⟩ =
1

𝑝𝑖|ℛ|
∑︁
𝑟

⟨𝜑𝑖|𝑃𝑟|𝜑𝑖⟩ =
1

𝑝𝑖|ℛ|
⟨𝜑𝑖|(

∑︁
𝑟

𝑃𝑟)|𝜑𝑖⟩ =
𝑝𝑖|ℛ|
𝑝𝑖|ℛ|

= 1.

𝖢𝖯𝐻
0 |𝑤0

𝑖 ⟩ = |𝑤0
𝑖 ⟩ and 𝖢𝖯𝐻

1 |𝑤0
𝑖 ⟩ = 0.

After seeing the definition of |𝑣0𝑖 ⟩ and |𝑣1𝑖 ⟩ below, we also observe that |𝑤0
𝑖 ⟩ =

√
𝑝𝑖 |𝑣0𝑖 ⟩ +√

1− 𝑝𝑖 |𝑣1𝑖 ⟩.
2. |𝑤1

𝑖 ⟩ = 1√
(1−𝑝𝑖)|ℛ|

∑︀
𝑟 |𝑟⟩ (𝐈𝐀 − 𝑃𝑟) |𝜑𝑖⟩.

Similarly, it has norm 1, 𝖢𝖯𝐻
1 |𝑤1

𝑖 ⟩ = |𝑤1
𝑖 ⟩ and 𝖢𝖯𝐻

0 |𝑤1
𝑖 ⟩ = 0.

3. |𝑣0𝑖 ⟩ = |1⟩ℛ |𝜑𝑖⟩ =
√
𝑝𝑖 |𝑤0

𝑖 ⟩+
√
1− 𝑝𝑖 |𝑤1

𝑖 ⟩.
By the description of the game 𝐺⊗𝑘 (Definition 6.3), the overall register 𝐑𝐀 at the beginning
of the game can be written as

∑︀
𝑖 𝛼𝑖 |𝑣0𝑖 ⟩ (which we will prove below).

The state has norm 1, 𝖨𝗌𝖴𝗇𝗂𝖿𝗈𝗋𝗆0 |𝑣0𝑖 ⟩ = |𝑣0𝑖 ⟩ and 𝖨𝗌𝖴𝗇𝗂𝖿𝗈𝗋𝗆1 |𝑣0𝑖 ⟩ = 0.
4. |𝑣1𝑖 ⟩ =

√
1− 𝑝𝑖 |𝑤0

𝑖 ⟩ −
√
𝑝𝑖 |𝑤1

𝑖 ⟩.
We will not use the property of |𝑣1𝑖 ⟩ in the proof and we thus omit all the details here.

Lemma 6.6. For any fixed 𝐻 , for any non-negative integer 𝑘, the leftover state over 𝐑𝐀 conditioned on
all outcomes in the first 𝑘 rounds being 0s is in proportion to:∑︁

𝑖

𝛼𝑖𝑝
𝑘/2
𝑖

{︃
|𝑣0𝑖 ⟩ if 𝑘 is even,
|𝑤0

𝑖 ⟩ if 𝑘 is odd.

The probability of all outcomes being 0s is
∑︀

𝑖 |𝛼𝑖|2𝑝𝑘𝑖 .

The proof follows the proof of Claim 6.3 in [Zha20]. We reprove this claim for completeness.

Proof. This lemma holds for 𝑘 = 0, when no measurement is applied. This is the state is∑︁
𝑖

𝛼𝑖 |𝑣0𝑖 ⟩ =
∑︁
𝑖

𝛼𝑖 |1ℛ⟩𝐑 |𝜑𝑖⟩𝐀 = |1ℛ⟩𝐑 |𝜎𝐻 , 0
𝐿⟩𝐀 .

We now prove by induction. Assume the lemma holds up to some even 𝑘. We prove it holds for
odd 𝑘 + 1.

The leftover state after the first 𝑘 rounds is 𝑐
∑︀

𝑖 𝛼𝑖𝑝
𝑘/2
𝑖 |𝑣0𝑖 ⟩ for some normalization 𝑐. Note that

|𝑣0𝑖 ⟩ =
√
𝑝𝑖 |𝑤0

𝑖 ⟩+
√
1− 𝑝𝑖 |𝑤1

𝑖 ⟩. The state can be rewritten as

𝑐
∑︁
𝑖

𝛼𝑖𝑝
𝑘/2
𝑖

(︁√
𝑝𝑖 |𝑤0

𝑖 ⟩+
√︀
1− 𝑝𝑖 |𝑤1

𝑖 ⟩
)︁
.

In the (𝑘 + 1)-th round, the challenger measures the state under 𝖢𝖯𝐻 . Note that 𝖢𝖯𝐻
0 |𝑤0

𝑖 ⟩ =
|𝑤0

𝑖 ⟩ and 𝖢𝖯𝐻
0 |𝑤1

𝑖 ⟩ = 0. Thus, conditioned on the (𝑘 + 1)-th outcome being 0, the state is in
proportion to

∑︀
𝑖 𝛼𝑖𝑝

(𝑘+1)/2
𝑖 |𝑤0

𝑖 ⟩. We complete the induction for 𝑘 being even.
For odd 𝑘, the analysis is almost identical, by observing |𝑤0

𝑖 ⟩ =
√
𝑝𝑖 |𝑣0𝑖 ⟩+

√
1− 𝑝𝑖 |𝑣1𝑖 ⟩ and also

following from the fact that 𝖨𝗌𝖴𝗇𝗂𝖿𝗈𝗋𝗆0 |𝑣0𝑖 ⟩ = |𝑣0𝑖 ⟩ and 𝖨𝗌𝖴𝗇𝗂𝖿𝗈𝗋𝗆1 |𝑣0𝑖 ⟩ = 0.

Finally, the probability can be bounded by looking at the un-normalized states above.

Theorem 6.4 follows from summing over all functions 𝐻 and Lemma 6.6.
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6.3 Advantages of Uniform Algorithms in Alternating Measurement Games

In this section, we relate success probabilities of uniform quantum algorithms in alternating mea-
surements with probabilities in the corresponding bit-fixing model. We will show the following
theorem:

Theorem 6.7. Let 𝐺 be a game in the QROM and 𝒜 be any uniform quantum algorithm for 𝐺 making
𝑇 oracle queries. Let 𝜈(𝑃, 𝑇 ) be the security of 𝐺 in the 𝑃 -BF-QROM. For every 𝑘 > 0, every 𝑃 ≥
𝑘 (𝑇 + 𝑇𝖲𝖺𝗆𝗉 + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒),

𝜖⊗𝑘
𝒜 ≤ 𝜈(𝑃, 𝑇 )𝑘.

Recall that 𝑇𝖲𝖺𝗆𝗉, 𝑇𝖵𝖾𝗋𝗂𝖿𝗒 are the numbers of queries made by 𝖲𝖺𝗆𝗉 and 𝖵𝖾𝗋𝗂𝖿𝗒, respectively.

To bound 𝜖⊗𝑘
𝒜 for any uniform quantum algorithm, it is sufficient to bound the following con-

ditional probability: 𝜖(𝑡)𝒜 for 𝑡 = 1, · · · , 𝑘.

Definition 6.8 (Conditional Probability for the 𝑡-th Outcome). 𝜖(𝑡)𝒜 is the conditional probability Pr[𝑏𝑡 =
0 |𝐛<𝑡 = 𝟎], where 𝐛<𝑡 and 𝑏𝑡 are the first 𝑡 outcomes produced by the game𝐺⊗𝑘 with𝒜, when𝐻 is picked
uniformly at random.

Next, we characterize the conditional probability in terms of eigenvalues {𝑝𝐻,𝑗}𝑗 and ampli-
tudes under the corresponding eigenbasis {|𝜑𝐻,𝑗⟩}𝑗 .

Lemma 6.9. Let 𝐺 be a game and 𝒜 = ({𝑈𝗂𝗇𝗉}𝗂𝗇𝗉) be any uniform quantum algorithm for 𝐺. Let 𝑃𝐻 be
the corresponding POVMs for function 𝐻 . Let {|𝜑𝐻,𝑗⟩}𝑗 be the set of eigenbasis for 𝑃𝐻 with eigenvalues
{𝑝𝐻,𝑗}𝑗 .

For each𝐻 , write the starting state |0𝑆⟩ |0𝐿⟩ as
∑︀

𝑖 𝛼𝐻,𝑖 |𝜑𝐻,𝑖⟩. Let 𝜖(𝑡)𝒜 for 1 ≤ 𝑡 ≤ 𝑘 be the conditional
probability defined in Definition 6.8. Then

𝜖
(𝑡)
𝒜 =

∑︀
𝐻,𝑖 |𝛼𝐻,𝑖|2 · 𝑝𝑡𝐻,𝑖∑︀
𝐻,𝑖 |𝛼𝐻,𝑖|2 · 𝑝𝑡−1

𝐻,𝑖

.

Proof. By definition, 𝜖(𝑡)𝒜 = Pr[𝑏𝑡 = 0 |𝐛<𝑡 = 𝟎] = Pr[𝐛𝑡 = 𝟎]/Pr[𝐛𝑡−1 = 𝟎]. Since Pr[𝐛𝑘 = 𝟎] =∑︀
𝐻,𝑖 |𝛼𝐻,𝑖|2 · 𝑝𝑘𝐻,𝑖, we conclude the lemma.

In order to bound 𝜖⊗𝑘
𝒜 , it is enough to bound 𝜖

(𝑡)
𝒜 for every 1 ≤ 𝑡 ≤ 𝑘 and 𝜖⊗𝑘

𝒜 =
∏︀

1≤𝑡≤𝑘 𝜖
(𝑡)
𝒜 .

Indeed, with Lemma 3.2, we have the following straightforward corollary.

Corollary 6.10. For every game 𝐺 and uniform quantum algorithm 𝒜, {𝜖(𝑡)}𝑡≥1 is monotonically non-

decreasing. Therefore, 𝜖⊗𝑘
𝒜 ≤

(︁
𝜖
(𝑘*)
𝒜

)︁𝑘
for any 𝑘* ≥ 𝑘. In particular, 𝜖⊗𝑘

𝒜 ≤
(︀
𝜖𝑘𝒜
)︀𝑘.

Proof. The proof is direct by setting {𝑐𝑖}, {𝑝𝑖} in the statement of Lemma 3.2 as
{︁
|𝛼𝐻,𝑖|2 · 𝑝𝑡𝐻,𝑖/𝑁

𝑀
}︁

and {𝑝𝐻,𝑖}.

Finally, we show a connection between 𝜖(𝑘)𝒜 and 𝜈(𝑃, 𝑇 ) of the game 𝐺 in the 𝑃 -BF-QROM for
𝑃 ≥ 𝑘 (𝑇 + 𝑇𝖲𝖺𝗆𝗉 + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒).
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Lemma 6.11. For every game 𝐺 and uniform quantum 𝑇 -query algorithm 𝒜, every odd 𝑘 > 0, every
𝑃 ≥ (𝑘 − 1) (𝑇 + 𝑇𝖲𝖺𝗆𝗉 + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒),

𝜖𝑘𝒜 ≤ 𝜈(𝑃, 𝑇 ).

As a direct corollary by the monotonicity of 𝜖(𝑡)𝒜 , for even 𝑘 > 0, every 𝑃 ≥ 𝑘(𝑇 + 𝑇𝖲𝖺𝗆𝗉 + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒),

𝜖𝑘𝒜 ≤ 𝜖
(𝑘+1)
𝒜 ≤ 𝜈(𝑃, 𝑇 ).

Together with Corollary 6.10, we conclude the main theorem (Theorem 6.7) in this subsection.

Proof for Lemma 6.11. We only need to prove the lemma for odd 𝑘 (or even (𝑘 − 1)).
Recall in Definition 4.7, we need to specify a 𝑃 -query quantum algorithm 𝑓 and a 𝑇 -query

algorithm ℬ to describe an algorithm in the 𝑃 -BF-QROM. The game is executed if and only if 𝑓𝐻

outputs 0. We define 𝑓,ℬ as follows (Figure 6).

𝑃 -query quantum algorithm 𝑓 :

• Initialize |1ℛ⟩𝐑 |0𝑆 , 0𝐿⟩𝐀.
• Run the alternating measurement game for (𝑘 − 1)-rounds (Definition 6.3).

Let 𝜏 be the leftover state.
• Let a boolean variable 𝑏 = 0 if and only if all outcomes in (𝑘 − 1)-rounds are

0s.
• Output 𝑏 and 𝜏𝐑𝐀.

𝑇 -query online algorithm ℬ:

• Take 𝜏𝐑𝐀 as input.
• On an online challenge 𝖼𝗁 ← 𝖲𝖺𝗆𝗉𝐻(𝑟), it runs 𝒜 on internal state 𝜏 [𝐀] and

outputs the answer produced by 𝒜.

Figure 6: Turn 𝒜 into an algorithm in the 𝑃 -BF-QROM.

First, we show that (𝑓,ℬ) is a (𝑃, 𝑇 ) algorithm in the 𝑃 -BR-QROM. It is easy to see that ℬ
makes at most 𝑇 queries as 𝒜 makes at most that many queries. The number of queries made by
𝑓 is equal to that made in the alternating measurement game:

• In odd rounds, one needs to apply 𝖢𝖯𝐻 , which takes 2(𝑇 + 𝑇𝖲𝖺𝗆𝗉) + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒 queries; here

2(𝑇 + 𝑇𝖲𝖺𝗆𝗉) is for both 𝑈𝐻
𝖲𝖺𝗆𝗉𝐻(𝑟)

and its inverse
(︁
𝑈𝐻
𝖲𝖺𝗆𝗉𝐻(𝑟)

)︁†
and 𝑇𝖵𝖾𝗋𝗂𝖿𝗒 is for applying the

projection 𝑉 𝐻
𝑟 (recall the definitions in Section 5).

• In even rounds, no queries are needed.

Thus, when (𝑘 − 1) is even, the total number of queries is at most (𝑘 − 1)(𝑇 + 𝑇𝖲𝖺𝗆𝗉 + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒).

Next we prove that (𝑓,ℬ) succeeds with probability 𝜖(𝑘)𝒜 . Thus by the definition of 𝜈(𝑃, 𝑇 ), 𝜖(𝑘)𝒜
is at most 𝜈(𝑃, 𝑇 ), concluding the lemma.
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For a fixed hash function 𝐻 and even (𝑘 − 1) (or equivalently, odd 𝑘), conditioned on 𝑓𝐻

outputting 0, the leftover state 𝜏𝐑𝐀 is (by Lemma 6.6):

𝜏𝐑𝐀 ∝
∑︁
𝑖

𝛼𝑖𝑝
(𝑘−1)/2
𝑖 |𝑣0𝑖 ⟩𝐑𝐀 = |1ℛ⟩𝐑 ⊗

∑︁
𝑖

𝛼𝑖𝑝
(𝑘−1)/2
𝑖 |𝜑𝑖⟩𝐀 .

Here we ignore 𝐻 for subscripts or superscripts.
Therefore, 𝜏 [𝐀] = 𝑐

∑︀
𝑖 𝛼𝑖𝑝

(𝑘−1)/2
𝑖 |𝜑𝑖⟩𝐀 where 𝑐 is a normalization factor such that 1/𝑐2 =∑︀

𝑖 |𝛼𝑖|2𝑝𝑘−1
𝑖 . The winning probability of ℬ for this fixed 𝐻 is

𝔼𝑟

[︂⃒⃒⃒
𝑉 𝐻
𝑟 𝑈𝐻

𝖲𝖺𝗆𝗉𝐻(𝑟)
𝜏 [𝐀]

⃒⃒⃒2]︂
= 𝑐2

∑︁
𝑖

|𝛼𝑖|2𝑝(𝑘−1)
𝑖 ⟨𝜑𝑖|𝑃𝐻 |𝜑𝑖⟩

= 𝑐2
∑︁
𝑖

|𝛼𝑖|2𝑝𝑘𝑖 ,

By taking the weighted sum of the winning probability for each 𝐻 , the winning probability of
ℬ is ∑︀

𝐻,𝑖 |𝛼𝐻,𝑖|2𝑝𝑘𝐻,𝑖∑︀
𝐻,𝑖 |𝛼𝐻,𝑖|2𝑝𝑘−1

𝐻,𝑖

= 𝜖
(𝑘)
𝒜 .

Finally, since 𝐺 is 𝜈(𝑃, 𝑇 ) secure in the 𝑃 -BF-QROM, 𝜖(𝑘)𝒜 ≤ 𝜈(𝑃, 𝑇 ) for every 𝑇 query quantum
algorithm 𝒜 and 𝑃 ≥ (𝑘 − 1)(𝑇 + 𝑇𝖲𝖺𝗆𝗉 + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒).

Lastly, we prove Theorem 6.7.

Proof for Theorem 6.7. It follows easily by combining Corollary 6.10 and Lemma 6.11.

6.4 Proof of Main Theorem

In this section, we prove our main theorem, Theorem 6.1.
We start by proving the first part of the theorem.

Proof for the first part. Let 𝐺 be any game. For any 𝑆, 𝑇 , let 𝑘 = 𝑆 and 𝑃 = 𝑘(𝑇 + 𝑇𝖲𝖺𝗆𝗉 + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒) =
𝑆(𝑇 + 𝑇𝖲𝖺𝗆𝗉 + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒). 𝐺 is 𝜈(𝑃, 𝑇 ) secure in the 𝑃 -BF-QROM.

By Theorem 6.7, for any uniform 𝑇 -query quantum algorithm and 𝑘 = 𝑆, its winning proba-
bility in the alternating measurement game 𝐺⊗𝑘 is at most 𝜈(𝑃, 𝑇 )𝑘.

Therefore, for any (𝑆, 𝑇 ) non-uniform quantum algorithm 𝒜, its success probability 𝜖⊗𝑘
𝒜 is at

most 2𝑆𝜈(𝑃, 𝑇 )𝑘 = (2𝜈(𝑃, 𝑇 ))𝑆 . This is because for any non-uniform algorithm of winning proba-
bility 𝑝 with advice being an 𝑆-bit advice |𝜎𝐻⟩, we can turn it into a uniform quantum algorithm
with winning probability at least 2−𝑆𝑝 as follows ([Aar05]):

As the uniform algorithm does not know |𝜎𝐻⟩, it samples an 𝑆-qubit maximally mixed state and
runs the non-uniform algorithm on the maximally mixed state.

Since an 𝑆-qubit maximally mixed state can be written as 1/2𝑆 |𝜎𝐻⟩ ⟨𝜎𝐻 |+(1−1/2𝑆)𝜎′, the uniform
algorithm has success probability at least 𝑝/2𝑆 .

Finally, due to Lemma 6.5, any non-uniform algorithm 𝒜 is at most 2𝜈(𝑃, 𝑇 ) secure in 𝐺 for
𝑃 = 𝑆(𝑇 + 𝑇𝖲𝖺𝗆𝗉 + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒).
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The proof for the second part is similar but more laborious. Since we are dealing with decision
games, we need to carefully deal with the factor 2−𝑆 in the previous proof.

Proof for the second part. The theorem trivially holds when 𝛾 ≥ 1. We prove it for 𝛾 ∈ (0, 1].
Let 𝐺 be a decision game. For any 𝑃, 𝑇 , 𝐺 is 𝜈(𝑃, 𝑇 ) secure in the 𝑃 -BF-QROM.
Similarly by Theorem 6.7, for any uniform 𝑇 -query quantum algorithm and 𝑘, its security in

the alternating measurement game𝐺⊗𝑘 is at most 𝜈(𝑃, 𝑇 )𝑘 where 𝑃 = 𝑘(𝑇 +𝑇𝖲𝖺𝗆𝗉+𝑇𝖵𝖾𝗋𝗂𝖿𝗒). Thus,
for any (𝑆, 𝑇 ) non-uniform quantum algorithm 𝒜, 𝜖⊗𝑘

𝒜 is at most 2𝑆𝜈(𝑃, 𝑇 )𝑘.
Since for any 𝛾 ∈ (0, 1], 2 ≤ (1 + 𝛾)1/𝛾 . By setting 𝑘 = 𝑆/𝛾, we have:

𝜖⊗𝑘
𝒜 ≤ 2𝑆𝜈(𝑃, 𝑇 )𝑘 ≤ ((1 + 𝛾)𝜈(𝑃, 𝑇 ))𝑘 ≤

(︂
1

2
+ 𝜈 ′(𝑃, 𝑇 ) + 𝛾

)︂𝑘

.

The last inequality follows the union bound and 𝜈(𝑃, 𝑇 ) = 1/2 + 𝜈 ′(𝑃, 𝑇 ).
Since the above inequality holds for all 𝛾 ∈ (0, 1], we conclude the second part of our theorem,

following Lemma 6.5.

7 Applications

We show several applications of our main theorem (Theorem 6.1) in this section. We first apply
our theorem to OWF and PRG games and achieve improved lower bounds for both games. The
former ones are publicly verifiable, and the latter games are decision games and thus not publicly
verifiable. The applications for both types of games show our main theorem is general and achieve
pretty good bounds for almost all kinds of security games in the QROM against quantum/classical
advice, as long as we can analyze their security in the 𝑃 -BF-QROM.

Finally, we show that “salting defeats preprocessing” in the QROM, which extends the classical
theorem by Coretti et al. [CDGS18] and improved the result by Guo et al. [CGLQ20].

OWF. Recall the definition of 𝐺𝖮𝖶𝖥 in Example 4.5. It is shown that 𝐺𝖮𝖶𝖥 has the following
security in the in the 𝑃 -BF-QROM, 𝜈(𝑃, 𝑇 ) = 𝑂

(︀
(𝑃 + 𝑇 2)/min{𝑁,𝑀}

)︀
, where 𝑁 and 𝑀 are the

sizes of the domain and range of the random oracle, by Lemma 1.5 in [CGLQ20].
By our main theorem Theorem 6.1, we have the following theorem.

Theorem 7.1. 𝐺𝖮𝖶𝖥 has security 𝛿(𝑆, 𝑇 ) = 𝑂
(︁

𝑆𝑇+𝑇 2

min{𝑁,𝑀}

)︁
against (𝑆, 𝑇 ) non-uniform quantum adver-

saries, even with quantum advice.

The above theorem improves the bound for quantum advice, which was shown to be 𝑂̃
(︁

𝑆𝑇+𝑇 2

min{𝑁,𝑀}

)︁1/3
in [CGLQ20].

PRG. Recall 𝐺𝖯𝖱𝖦 is defined in Example 4.5. 𝐺𝖯𝖱𝖦 has security 𝜈(𝑃, 𝑇 ) = 1/2 + 𝑂
(︁
𝑃+𝑇 2

𝑁

)︁1/2
where 𝑁 is the size of the domain, by Lemma 1.6 in [CGLQ20]. Again by our main theorem
Theorem 6.1, we have the following theorem.
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Theorem 7.2. 𝐺𝖯𝖱𝖦 has security 𝛿(𝑆, 𝑇 ) = 1/2 + 𝑂
(︁
𝑇 2

𝑁

)︁1/2
+ 𝑂

(︀
𝑆𝑇
𝑁

)︀1/3 against (𝑆, 𝑇 ) non-uniform
quantum adversaries, even with quantum advice.

This improves the previous result on 𝐺𝖯𝖱𝖦 with quantum advice [CGLQ20], which was 1/2 +

𝑂̃
(︁
𝑆5𝑇+𝑆4𝑇 2

𝑁

)︁1/19
.

7.1 Salting Defeats Quantum Advice

We start by defining the cryptographic mechanism called “salting”.

Definition 7.3 (Salted Games in the QROM). Let𝐺 be a game in the QROM as defined in Definition 4.3,
with respect to a random oracle 𝐻 : [𝑁 ] → [𝑀 ]. It consists of two deterministic algorithms 𝖲𝖺𝗆𝗉𝐻 and
𝖵𝖾𝗋𝗂𝖿𝗒𝐻 and both algorithms make 𝑇𝖲𝖺𝗆𝗉 (or 𝑇𝖵𝖾𝗋𝗂𝖿𝗒) queries, respectively.

A salted game 𝐺𝑆 with salt space [𝐾] is defined as the following: 𝐺𝑆 consists of two deterministic
algorithms 𝖲𝖺𝗆𝗉𝑆 and 𝖵𝖾𝗋𝗂𝖿𝗒𝑆 :

• 𝖲𝖺𝗆𝗉𝐻𝑆 : on input 𝑠, 𝑟, it returns (𝑠, 𝖲𝖺𝗆𝗉𝐻𝑠(𝑟)). Here 𝐻𝑠 denotes oracle access to the oracle 𝐻(𝑠, ·).
• 𝖵𝖾𝗋𝗂𝖿𝗒𝐻𝑆 : on input 𝑠, 𝑟, 𝖺𝗇𝗌, it returns 𝖵𝖾𝗋𝗂𝖿𝗒𝐻𝑠(𝑟, 𝖺𝗇𝗌).

In other words, for a fixed 𝐻 : [𝐾] × [𝑁 ] → [𝑀 ] and a quantum algorithm 𝒜, the game 𝐺𝐻
𝑆,𝒜 is

executed as follows:

• A challenger 𝒞 samples a uniformly random salt 𝑠 ← [𝐾] and 𝖼𝗁 ← 𝖲𝖺𝗆𝗉𝐻𝑠(𝑟) using uniformly
random coins 𝑟.

• A (uniform or non-uniform) quantum algorithm 𝒜 has oracle access to 𝐻 , takes (𝑠, 𝖼𝗁) as input and
outputs 𝖺𝗇𝗌.

• 𝑏← 𝖵𝖾𝗋𝗂𝖿𝗒𝐻𝑠(𝑟, 𝖺𝗇𝗌) is the outcome of the game.

Lemma 7.4 (Salted Games in the 𝑃 -BF-QROM, Lemma 7.2 in [CGLQ20]). Let 𝐺 be a game in the
QROM, with security 𝜈(𝑇 ) against 𝑇 -query quantum adversaries. Then for any 𝑃 ,

• 𝐺 has security 𝜈(𝑃, 𝑇 ) ≤ 2𝜈(𝑇 ) +𝑂(𝑃/𝐾) in the 𝑃 -BF-QROM;
• 𝐺 has security 𝜈(𝑃, 𝑇 ) ≤ 𝜈(𝑇 ) +𝑂(

√︀
𝑃/𝐾) in the 𝑃 -BF-QROM.

The second bullet point is better than the first one, when 𝐺 is a decision game.

Proof. The proof is subsumed by the proof for Lemma 7.2 [CGLQ20]. Although Lemma 7.2 shows
the multi-instance security of 𝐺𝑆 , its 𝑃 -BF-QROM security is an intermediate step.

Combining with Theorem 6.1, we have the following results about salting in the QROM.

Theorem 7.5. For any game 𝐺 (as defined in Definition 4.3) in the QROM, let 𝜈(𝑇 ) be its security in
the QROM. Let 𝐺𝑆 be the salted game with salt space [𝐾]. Then 𝐺𝑆 has security 𝛿(𝑆, 𝑇 ) against (𝑆, 𝑇 )
non-uniform quantum adversaries with quantum advice,

• 𝛿(𝑆, 𝑇 ) ≤ 4𝜈(𝑇 ) +𝑂(𝑆(𝑇 + 𝑇𝖲𝖺𝗆𝗉 + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒)/𝐾);
• If 𝐺𝑆 is a decision game, then 𝛿(𝑆, 𝑇 ) ≤ 𝜈(𝑇 ) +𝑂(𝑆(𝑇 + 𝑇𝖲𝖺𝗆𝗉 + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒)/𝐾)1/3.

Proof. We only show the second bullet point. The first one is similar and more straightforward.
By Theorem 6.1, 𝛿(𝑆, 𝑇 ) ≤ min𝛾>0 {𝛾 + 𝜈(𝑃/𝛾, 𝑇 )} where 𝑃 = 𝑆(𝑇 + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒 + 𝑇𝖲𝖺𝗆𝗉). Since

𝜈(𝑃/𝛾, 𝑇 ) ≤ 𝜈(𝑇 )+𝑂(
√︀
𝑃/(𝐾𝛾)) by Lemma 7.4, 𝛿(𝑆, 𝑇 ) takes its minimum when 𝛾 = 𝑂(𝑃/𝐾)1/3.

Our second result follows.
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8 Advantages of Quantum Advice in the QROM

This section demonstrates a game in which non-uniform quantum algorithms with quantum ad-
vice have an exponential advantage over those with classical advice for some parameter regime
𝑆, 𝑇 . Although the advantage only applies to some 𝑆, 𝑇 ranges 6, we believe it is the first step to-
ward understanding a game in which quantum advice has an exponential advantage over classical
advice for a wider range of 𝑆, 𝑇 .

The game is based on the recent work by Yamakawa and Zhandry [YZ22]. We start by explain-
ing and recalling the basic ideas in their work.

Definition 8.1 ( [YZ22], YZ Functions). Let 𝑛 be a positive integer, Σ be an exponentially (in 𝑛) sized
alphabet and 𝐶 ⊆ Σ𝑛 be an error correcting code over Σ. Let 𝐻 : [𝑛]×Σ→ {0, 1} be a random oracle. The
following function is called a YZ function with respect to 𝐶 and Σ:

𝑓𝐻𝐶 : 𝐶 → {0, 1}𝑛

𝑓𝐻𝐶 (𝑐1, 𝑐2, · · · , 𝑐𝑛) = 𝐻(1, 𝑐1)||𝐻(2, 𝑐2)|| · · · ||𝐻(𝑛, 𝑐𝑛)

We will consider the following game, which we call 𝐺𝖸𝖹. The game is to invert a uniformly
random image with respect to the YZ function. More formally,

Definition 8.2 (Inverting YZ Functions). The game 𝐺𝖸𝖹 is specified by two classical algorithms:

• 𝖲𝖺𝗆𝗉𝐻(𝑟): it samples a uniformly random image 𝑦 = 𝑟 ∈ {0, 1}𝑛;
• 𝖵𝖾𝗋𝗂𝖿𝗒𝐻(𝑟, 𝖺𝗇𝗌): it checks whether 𝖺𝗇𝗌 is a code in 𝐶 and 𝑓𝐻𝐶 (𝖺𝗇𝗌) = 𝑟.

The queries made by each algorithm satisfy 𝑇𝖲𝖺𝗆𝗉 = 0 and 𝑇𝖵𝖾𝗋𝗂𝖿𝗒 = 𝑛.

Their idea is that, if we want to find a pre-image in Σ𝑛 of any 𝑦 ∈ {0, 1}𝑛, it is easy: simply
inverting each 𝐻(𝑖, 𝑦𝑖). Nevertheless, to find a pre-image in 𝐶, this entry-by-entry brute-force
no longer works. In their work, Yamakawa and Zhandry show that for some appropriate 𝐶, the
above function is classically one-way and quantumly easy to invert.

Theorem 8.3 (Theorem 6.1, Lemma 6.3 and 6.9 in [YZ22]). There exists some appropriate 𝐶, such that

• The game 𝐺𝖸𝖹 has security 2−Ω(𝑛) against 2𝑛𝑐-query classical adversaries for some constant 0 < 𝑐 <
1;

• There is a 𝑂̃(𝑛)-query quantum algorithm that wins the game 𝐺𝖸𝖹 with probability 1 − 𝗇𝖾𝗀𝗅(𝑛).
Here 𝑂̃ hides a polylog factor.

Moreover, we observe that the quantum algorithm makes non-adaptive queries and the queries
are independent of the challenge. Upon a challenge 𝑦 is received, the quantum algorithm does
post-processing on the quantum queries without making further queries 7.

We show our separation result below.

Theorem 8.4 (Separation of classical and quantum advice in the QROM). There exists some appro-
priate 𝐶 (the same in [YZ22]) such that,

6Specifically, we require 𝑇 = 0, i.e., no online query.
7For more details, please refer to Fig 1. in [YZ22]
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• 𝐺𝖸𝖹 has security 2−Ω(𝑛) against (𝑆, 𝑇 = 0) non-uniform adversaries with classical advice, for
𝑆 = 2𝑛

𝑐
/𝑛 and some constant 0 < 𝑐 < 1;

• There is an (𝑆, 𝑇 = 0) non-uniform adversary with quantum advice that achieves success probabil-
ity 1− 𝗇𝖾𝗀𝗅(𝑛), for 𝑆 = 𝑂̃(𝑛).

Proof. We first show the second bullet point. Let the quantum algorithm in Theorem 8.3 be ℬ. In
the non-uniform quantum adversary, quantum advice is the non-adaptive queries made by ℬ and
the online stage is the post-processing by ℬ. It is straightforward that the non-uniform algorithm
achieves the same probability as ℬ, which is 1− 𝗇𝖾𝗀𝗅(𝑛). Since each query has 𝑂(log 𝑛) qubits and
ℬ makes 𝑂̃(𝑛) queries, the total size of the quantum advice is still 𝑂̃(𝑛).

Next, we show the first bullet point. In the first bullet point of this theorem, we do not distin-
guish between non-uniform quantum adversaries with classical advice and non-uniform classical
adversaries. The reason is that the online algorithm does not make any query, i.e., 𝑇 = 0. These
two types of algorithms are equivalent when 𝑇 = 0.

Thus, we consider success probabilities of non-uniform classical adversaries. By a classical
analog of our main theorem Theorem 6.1 (Theorem A.1), we only need to show its success proba-
bility in the 𝑃 -BF-ROM (Definition 4.8) where 𝑃 = 𝑆(𝑇 + 𝑇𝖲𝖺𝗆𝗉 + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒) = 𝑆𝑇𝖵𝖾𝗋𝗂𝖿𝗒 = 2𝑛

𝑐
.

Assume a random oracle is lazily sampled. In other words, an outcome of the random oracle
on 𝑥 is sampled only if the outcome is queried by an algorithm; otherwise, the outcome is marked
as “not sampled”. Conditioned on any 𝑃 -query 𝑓 outputs 0, the random oracle is only fixed on
𝑃 positions and the rest of its outputs are still not sampled. The error correcting code 𝐶 used in
[YZ22] satisfies a property called (𝜁, ℓ, 𝐿) list recoverability:

• For any subset 𝑆𝑖 ⊆ Σ such that |𝑆𝑖| ≤ ℓ for every 𝑖 ∈ [𝑛], we have

|𝖦𝗈𝗈𝖽| = |{(𝑥1, · · · , 𝑥𝑛) ∈ 𝐶 : |{𝑖 ∈ [𝑛] : 𝑥𝑖 ∈ 𝑆𝑖}| ≥ (1− 𝜁)𝑛}| ≤ 𝐿.

In other words, the total number of codewords in 𝐶 with hamming distance to 𝑆1 × 𝑆2 ×
· · · × 𝑆𝑛 smaller than 𝜁𝑛 is bounded by 𝐿. Here hamming distance to 𝑆1 × 𝑆2 × · · · × 𝑆𝑛 is
defined as the number of coordinates 𝑖 whose 𝑥𝑖 is not in the corresponding 𝑆𝑖.
We call this set of codewords 𝖦𝗈𝗈𝖽.

• 𝑃 = 2𝑛
𝑐
< ℓ, 𝜁 = Ω(1) and 𝐿 = 2𝑛

𝑐′
for some 0 < 𝑐′ < 1.

In 𝐺𝖸𝖹, when a challenge 𝑦 is sampled uniformly at random from {0, 1}𝑛, there are two cases:

• Case 1: there exists a codeword 𝑐 in 𝖦𝗈𝗈𝖽, such that 𝑦 = 𝑓𝐻𝐶 (𝑐). This case happens with
probability at most |𝖦𝗈𝗈𝖽|/2𝑛 ≤ 𝐿/2𝑛.

• Case 2: complement of Case 1. In this case, an adversary wins only if it outputs a codeword
that is not in 𝖦𝗈𝗈𝖽.
For every codeword 𝑐 = (𝑥1, 𝑥2, · · · , 𝑥𝑛) ̸∈ 𝖦𝗈𝗈𝖽, there are at least 𝜁𝑛 coordinates whose ran-
dom oracle outputs (i.e., 𝐻(𝑖, 𝑥𝑖)) have not been sampled yet in the lazily sampled random
oracle. For any 𝑐 ̸∈ 𝖦𝗈𝗈𝖽, Pr[𝑓𝐻𝐶 (𝑐) = 𝑦] ≤ 2−𝜁𝑛. Therefore, regardless of the algorithm’s
output, the success probability is at most 2−𝜁𝑛.

The overall winning probability is bounded by 𝐿/2𝑛 + 2−𝜁𝑛 = 2−Ω(𝑛). We conclude the first
bullet point of the theorem.
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A Classical Version of Our Main Theorem

The following theorem is a classical version of our main theorem (Theorem 6.1), improved from
Theorem 1 in [GLLZ21].

Theorem A.1. Let 𝐺 be any game with 𝑇𝖲𝖺𝗆𝗉, 𝑇𝖵𝖾𝗋𝗂𝖿𝗒 being the number of queries made by 𝖲𝖺𝗆𝗉 and
𝖵𝖾𝗋𝗂𝖿𝗒. For any 𝑆, 𝑇 , let 𝑃 = 𝑆(𝑇 + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒 + 𝑇𝖲𝖺𝗆𝗉).

If 𝐺 has security 𝜈(𝑃, 𝑇 ) in the 𝑃 -BF-ROM, then it has security 𝛿(𝑆, 𝑇 ) ≤ 2 · 𝜈(𝑃, 𝑇 ) against (𝑆, 𝑇 )
non-uniform classical algorithms with classical advice.

In Theorem 1 in [GLLZ21], 𝑃 = (𝑆+log 𝛾−1)(𝑇 +𝑇𝖵𝖾𝗋𝗂𝖿𝗒+𝑇𝖲𝖺𝗆𝗉) and there is an extra additive
term 𝛾 for 𝛿(𝑆, 𝑇 ).

Theorem A.2 (Theorem 1 in [GLLZ21]). Let 𝐺 be any game with 𝑇𝖲𝖺𝗆𝗉, 𝑇𝖵𝖾𝗋𝗂𝖿𝗒 being the number of
queries made by 𝖲𝖺𝗆𝗉 and 𝖵𝖾𝗋𝗂𝖿𝗒. For any 𝑆, 𝑇, 𝛾 > 0, let 𝑃 = (𝑆 + log 𝛾−1)(𝑇 + 𝑇𝖵𝖾𝗋𝗂𝖿𝗒 + 𝑇𝖲𝖺𝗆𝗉).

If 𝐺 has security 𝜈(𝑃, 𝑇 ) in the 𝑃 -BF-ROM, then it has security 𝛿(𝑆, 𝑇 ) ≤ 2 · 𝜈(𝑃, 𝑇 ) + 𝛾 against
(𝑆, 𝑇 ) non-uniform classical algorithms with classical advice.
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