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Abstract: The heightened dipolar interactions in solids render solid-state NMR (ssNMR)

spectra more difficult to interpret than solution NMR spectra. On the other hand, ss-

NMR does not suffer from severe molecular weight limitations of solution NMR. In re-

cent years, ssNMR has undergone rapid technological developments that have enabled

structure-function studies of increasingly larger biomolecules including membrane pro-

teins. Current methodology includes stable isotope labeling schemes, non-uniform sam-

pling with spectral reconstruction, faster magic angle spinning, and innovative pulse se-

quences that capture different types of interactions among spins. However, computa-

tional tools for the analysis of complex ssNMR data from of membrane proteins and

other challenging protein systems have lagged behind those for solution NMR. Before a
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structure can be determined, thousands of signals from in-
dividual types of multidimensional ssNMR spectra of sam-
ples, which may have differing isotopic composition, must
be recognized, correlated, categorized, and eventually as-
signed to atoms in the chemical structure. To address these
tedious steps, we have developed an automated algorithm
for ssNMR spectra called “ssPINE”. The ssPINE software
accepts the sequence of the protein plus peak lists from a
variety of ssNMR experiments as input and offers auto-
mated backbone and side-chain assignments. The alpha
version of ssPINE, which we describe here, is freely avail-
able through a web submission form at https://poky.-

clas.ucdenver.edu /ssPINE.
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1. Introduction

NMR spectroscopy is one of the major biophysical
methods, along with X-ray crystallography ][1, 2] and cryo-
electron microscopy [3], for determining structures of
biomolecules. NMR is used to study structure-function
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relationships of membrane proteins and large macromolecular assemblies [4] along with
their interactions with small molecules [5] as an approach to drug discovery [6].

Both solution and solid-state NMR techniques provide important information about the structures and dynamics
of membrane proteins [7, 8]. Solid-state NMR (ssNMR) witﬁ magic angle spinning (MAS) has advantages over
solution NMR for studies of large and immobilized proteins [9, 10]. Anisotropic nuclear sEin interaction information
from ssNMR can be extremely useful for structure determination and dynamics [11, 12]. The orientation of regions of
membrane proteins can be extracted from ssNMR spectra of mechanically or magnetically aligned membranes [13].
The broad lines and low resolution of ssNMR spectra resulting from anisotropy can be overcome in part by ultra high
MAS, cross-polarization, refined pulse sequences [14], and non-uniform sampling (NUS). Ultra high-field NMR
spectrometers operating at 1.1 GHz and 1.2 GHz are improving the resolution and sensitivity of ssNMR spectra of
membrane proteins and their complexes. The above-mentioned methods are enabling the collection of improved
spectral data, but manual analysis of the data to obtain chemical shift assignments and structural constraints is
tedious because thousands of signals need to be analyzed, correlated, and labeled.

Software technology has reduced the burden of analyzing data from solution NMR studies of biomolecules.
Available web-based resources provide automated and semi-automated algorithms for determining different
parameters of biomolecules and their structure [15-18]. We recently developed an updated version of the assignment
engine PINE [19], I-PINE (Integrative Probabilistic Interaction Network of Evidence) [20], which utilizes a Bayesian-
based probabilistic interaction network. I-PINE supports a larger range of NMR experiments and integrates real-time
statistical analysis of the PACSY database [21]. The I-PINE web server produces higher assignment coverage and
accuracy than PINE, and supports structure determinations based on chemical shift assignments. The POKY suite
includes iPick [22], for peak picking and cross-validation of peaks from different spectra, I-PINE and PINE-SPARKY.2
[23], a user-friendly graphical user interface (GUI) for submitting, importing, and validating the data [24].

For ssNMR data, PISA-SPARKY [25], a plugin for the assignment program, NMRFAM-SPARKY [26], supports
the analysis of data from oriented samples [275J P%SA—SPARKY, along with its features are now included in the EOKY
suite. Recently, the Veglia group introduced “a one-shot approach” called PHORONESIS that generates up to ten 3D
"H-detected ssSNMR spectra [28{ They used the I-PINE webserver to analyze the spectra, and found that the yield of
sequential assignments was similar to that for solution NMR data. The Hunter Moseley and Chad Rienstra groups
developed an ssNMR version of AutoAssign and demonstrated its ability to assign ssNMR data from the small
protein, GB1 [29]. Software returned 84.1% correct assignments. The ssFLYA algorithm, which was introduced by
Schmidt and colleagues [30] and currently is available only for commercial users, yielded 88-87 % and 77-90%
correctness on protein microcrystals and amyloids.

Here, we describe ssPINE (solid-state PINE), a software package that is designed to handle the challengin
features of ssNMR data from membrane proteins and other complex protein systems. ssPINE accepts, as input, 2
and 3D ssNMR data and gives, as output, chemical shift assignments and their probabilistic correctness. We have
evaluated the performance of ssPINE with data from GB1 and with additional protein NMR data from the BMRB
database [31]. The alpha version of ssPINE is freely available through a web server utility at
https:/ /poky.clas.ucdenver.edu/ssPINE.

2. Materials and Methods
2.1. ssPINE algorithm

As its first step, ssPINE generates spin system matrices [32] as shown in Figure 1. The main difference between
the I-PINE and ssPINE algorithms is in their approach to comparing peaks from different experiments. I-PINE uses N;
and H; in root experiments to find correlated signals (CA/CB/CO,;, CA/CB/CO;) in different experiments and to
establish di-peptide arrays {CA/CB/CO,; N; CA/CB/COj}. Then, it establishes a vector [CA,;, CB.;, CO:;, N, CA,
CB;, CO;] and compares it to [CA.;, CB.;, CO:] and [CA;, CB;, CO/] from the other di-peptide arrays. Finally, I-PINE
compares [CA;;, CBi;, CO.] to [CA;, CB, CO] in all vectors. By contrast, ssPINE uses CO;;, N; and CA; in root
experiments to find di-peptide signals (CX;;, CX)). If an experiment is providing CO.;, N; and CA;but in a single peak
is not provided (e.g. CANCO), ssPINE combines information from different experiments, such as NCOCACB and
NCACB, to obtain these correlations. Unlike I-PINE, ssPINE generates each spin system matrix by iterated spectral
resolution steps (tolerances) using inter-residue connectivities optimized by a probability approach. This is a basic and
important component of the ssNMR algorithm, because it helps to overcome the variable spectral resolution of
ssNMR spectra. ssPINE calculates the quality of the data at each step until it reaches the point where there is no
further improvement in the spin system matrix. If the quality of the data is above a threshold value, as determined by
the number of spin systems and correlations between spin systems is identified compared to the numbers expected,
then the process continues to the pentapeptide generation step. Otherwise, the process terminates and informs the
user that more information is required. The pentapeptide generation step, which assigns signals to atoms in sequences
of five amino acid residues, finds the best marginal probabilities by using the belief propagation algorithm [33] to
evaluate relations between spin systems . This step includes the identification of secondary structural elements, the
evaluation of possible referencing errors, and the continued assignment of backbone spin systems until convergence is
reached or, alternatively, until the specified number of iterations has occurred. The last step utilizes the Bayesian
network model of PINE and I-PINE to assign side chain signals [16, 20]. See the Supporting Information for a detailed
description of the ssPINE algorithm.
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NCOCACB IDX [N(i-1)|CA(i-1)|CB(i-1) |CO(i-1)| N(i) | CA(i) | CB(i) | CO(i)
(a) 1 X X X X
C
(b) IDX [N(i-1)|CA(i-1)|CB(i-1) |CO(i-1)| N(i) | CA(i) | CB(i) | CO(i)
1 X X X X X X
C

IDX | N(i-1)[CA(i-1)(CB(i-1) |CO(i-1)| N(i) | CA(i) [CB(i) | CO(i)

(c)

1 X X X X X X
2 X X X X X X
3 X x X X X X
4 X X X X X X
5 X X X X X X
6 X X X X X X
7 X X X X X X

Figure 1. Spin system matrix assembly in ssPINE. (a) Peaks from the strip of the NCOCACB experiment containing the CA(i-1) and
CB(i-1) resonances are inserted in the row of the table corresponding to the i residue (IDX). Note that the peak is selected from the
CO(i-1) and N(i), in root information. (b) Similarly, peaks from the strip of the NCACB experiment containing the CA(i) and CB(i)
resonances are inserted in the row of the table corresponding to the i residue. N(i) and CA(i) in root information are used to select
a peak from NCACB. (c) The process is repeated for all residues in the peptide sequence.

Table 1. ssNMR experiments supported by ssPINE with their dimensionali?r and connectivity profiles. CX(i) represents carbon A,
B, D, E, G, or H atoms of the i residue; Ng) represents the nitrogen atom of the i residue; and CO(i-1) represents the carbon atom
of the carboxyl group of the preceding residue. The minimum set of experiments needed is indicated by asterisks.

Experiment Dimension Profile

CcC 2D CX/0O()-CX/0O()

NCA’ 2D N(i)-CA()

NCACB 2D N(i)-CA/B()

NCO’ 2D N(i)-CO(i-1)

NCACO 3D N(i)-CA()-CO()

NCACB 3D N(i)-CA(i)-CA /B(i)

NCACX 3D N(i)-CA()-CX(i)

NCOCX' 3D N(i)-CO(i-1)-CX/C(i-1)

NCOCA 3D N(i)-CO(i-1)-CA(i-1)

NCOCACB 3D N(i)-CO(i-1)-CA /B(i-1)

CANCO 3D CA(i)-N(31)-CO(i-1)

CANCOCX’ 3D CA(1)-N(@i)-CX/O(i-1)

CANCOCA 3D CA(i)-N(i)-CA /O(i-1)
CA(i)-N(@1)-CO/A/B(i-

CANCOCACB 3D 1

"Minimum experiments to run ssPINE.

2.2. Input files

As with PINE and I-PINE, peak lists (either raw or refined) and sequence files are used as inputs to ssPINE.
Supported solid-state NMR experiments and their profiles are shown in Table 1. The minimum set of peak lists for
assignments are those from 2D-CC, 2D-NCA, 2D-NCO, 3D-NCACX, 3D-NCOCX, and CAN(CO)CX ssNMR
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eﬁperiments. Data from additional ssNMR experiments can be added to improve the accuracy and completeness of
the results.

2.2.1. Preparation of peak lists

Several peak list formats are accepted: Sparky (UCSF-/NMRFAM-SPARKY or POKY) with the .list file extension
prepared in the peak list window (two-letter-code “It” with the Data Heights option turned on), XEASY with the .peaks
file extension [34], nmrDraw with the .ft2 file extension, NMRView witﬁ the .xpk file extension, and I-PINE witﬁ the
.txt file extension. The file extension in the file name should match its actual format. Other programs can generate the
Sparky format, which is one of the most common file formats in the field. For example, CARA has the
WriteSparkyPeakList.lua script, and CCPNMR v2 has the Format Converter program [35, 36]. The POKY suite contains
multiple options for generating peak lists; of these, one of the easiest approacﬁes is iPick. With iPick, the user simply
selects one or more spectra from the session and clicks on the “Run iPick” button. After peak lists have been generated
for each spectrum, the “Peak List” window opens, and by clicking on the “Save” button, the user can designate the
names for the peak lists. Peak lists can be refined by hand or by software to remove noise or other spurious peaks.

2.2.2. Protein sequence

ssPINE accepts peptide sequences in either one- or three-letter amino acid code as ASCII text files. Sequences
submitted in RTF (Rich Text Format; .rtf), ODT (OpenDocument Text; .odt), or DOCX (Office Open XML; .docx) are
automatically converted to ASCII.

2.3. Output files

The ssPINE output consists of several files: (1) The list of ssNMR experiments used. (2) A bar graph indicatin
the assignment probabilities of each residue in the protein (Figure 2). (3) Separate files with the backbone an
sidechain chemical shift assignments of each residue of the protein in NMR-STAR 2.1 and 3.1 formats. (4) Sparky
format assignment labels and frequencies. (5) Protein secondary structure prediction by PECAN (Protein Energetic
Conformational Analysis from NMR chemical shifts) [37]. (6) Chemical shift referencing errors in each experiment, as
detected by LACS (Linear Analysis of Chemical Shifts) [38], which is used in redefining offsets during the assignment
iteration. (It is recommended that the user use these values to correct the offset for each peak list when a job is
resubmitted. This will reduce the computational time and improve the assignment accuracy.)

2.4. Data used in developing ssPINE
2.4.1. Data from GBI

In the early stages of developing ssPINE, we used unpublished ssNMR data from the uniformly *C/*N labeled
small (56 residue, 6.2 kDa) protein GB1 generously provided by Chad Rienstra’s group. GB1, which is the
streptococcal Bl immunoglobulin-binding domain of protein G20, has been used frequently as a standard sample in
the development of NMR technology. We prepared both unrefined and refined peak lists from raw data from the
following ssNMR experiments: 2D-CC, 2D-NCA, 2D-NCACB, 2D-NCO, 3D-NCACB, 3D-NCACX, 3D-NCACO, 3D-
CANCO, 3D-CANCOCX, 3D-NCOCA, 3D-NCOCACB, and 3D-NCOCX. We prepared unrefined peak lists
automatically with the iPick peak picking tool of POKY (two-letter-code iP). Subsequently, we created refined peak
lists by using the cross-validation tool of iPick to weed out noise and non-sequential signals.

2.4.2. Other protein NMR data

Additional data from the PACSY database [21] were used in refining and optimizing the ssPINE algorithm.
PACSY is a relational database that contains post-processed information from BMRB [39] and PDB [40]. Data from 82
proteins, including both large (181 residues) and small (26 residues) proteins, were included (SI Table 1). Most data
sets were from solution NMR, because few ssNMR entries in the BMRB contain complete assignments. We created
synthetic peak lists for 2D-CC, 2D-NCA, 2D-NCACB, 2D-NCO, 3D-NCACB, 3D-NCACX, 3D-NCACO, 3D-CANCO,
3D-CANCOCX, 3D-NCOCA, 3D-NCOCACB, and 3D-NCOCX ssNMR spectra of these proteins. For more controlled
evaluation, we only regarded sequential cross peaks.

2.5. ssPINE web server

We utilized multiple technologies in implementing the ssPINE algorithm as a web server. Programs written in
Perl, Python, and shell scripting handle various parts of the task. A web-facing server hosts a form that the user can
fill out with their information: the amino acid sequence file and the peak lists from specified 2D and 3D solid-state
NMR experiments. By clicking the “Submit” button, this information is validated and sent to a processing server.
After the automated backbone and sidechain assignments are completed, the result is sent back to the user’s email
address. From there, the user can download all the result files. The actual running time is determined by the size of
the protein and the complexity of the problem including peak list quality provided by the user, but jobs usually
require less than one hour. The ssPINE web server is hosted at the University of Colorado Denver and is accessible at:
https:/ /poky.clas.ucdenver.edu/ssPINE. No login or signup is required, and the server is open to all researchers at
no cost and processes submissions in the order in which they are received.
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3. Results

We evaluated the results with GB1 in terms of their completeness and correctness. “Completeness” is the number
of automatically assigned chemical shifts by ssPINE divided by the number of assignments for GB1 derived from our
manual assignment of the ssNMR data. “Correctness” is the number of correct assignments made by ssPINE divided
by the number of manual assignments. Because ssPINE provides multiple assignment candidates with associated
probabilities, only the assignment candidate with the highest probability is used in the evaluation of completeness
and correctness.

With the unrefined peak lists of GB1 as input, ssPINE yielded 100% (219/219) completeness and an average of
97.26% (213/219) correctness for the backbone chemical shift assignments (Figure 2a). With the refined peak lists of
GB1, ssPINE yielded 100% (219/219) completeness and 100% (219/219) accuracy (Figure 2b).

(a) 1

Probability
o
U

10 20 30 40 50

(b Residue

—

Probability
o
U

10 20 30 40 50
Residue

Figure 2. Bar graphs indicating the correct assignment probability (p) for each residue of GBI resulting from ssPINE analysis. Green
indicates p greater than 0.99; cyan indicates p = 0.85 — 0.99; yellow indicates p = 0.5 — 0.84; red indicates p less than 0.5; and gray
indicates no assignment (not seen with these test sets). (a) Unrefined GBI data as input. (b) Refined GBI data as input.

We also tested ssPINE algorithm with synthetic peak lists from other proteins whose assigned chemical shifts
had been deposited in BMRB (see section 2.4.2.). These BMRB assignments are assumed to be correct and were used in
evaluating the correctness of the ssPINE results. The numbers of BMRB and ssPINE assignments were used,
respectively, as the denominator and numerator in the completeness calculation. The number of valid ssPINE
assignments (“given” assignments) at the different probability cutoffs were used as the denominator in the
correctness calculation.

The total number of assignment candidates returned by ssPINE are plotted as a function of their probability
scores in Figure 3a. They are shown as “correct”, “incorrect”, “given” (sum of correct and incorrect), and “all”. The
“all” category includes “given” plus invalid assignments, namely those with scores below the probability cutoff.

The correctness and completeness parameters for all assignment candidates with the highest probability for each
protein are plotted with respect to their probability in Figure 3b. Correctness decreased moderately as a function of
lower probability. The fact that it remained above 85% means that more than 85% of the given chemical shift values
were assigned correctly. Overall, completeness ranged between 85% and 97%. Completeness increased abruptly
between 1.0 and 0.9 probability and then more gradually to 0.0 probability. Plots of percentages of completeness
versus correctness for each BMRB entry at each probability are given in SI Figure 2.
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Figure 3. Results from ssPINE analysis of synthetic ssSNMR data as averages for the 82 proteins studied. (a)
Chemical shift assignment probabilities returned by ssPINE for all assignment candidates (x-axis) versus assignment
type (y-axis). All (dashed black) and, given (dashed blue) and correct (solid green) assignments are represented by the
numbers on the left side, whereas the incorrect assignments (solid red) are represented by the numbers on the right

side. (b) Data from the assignment candidate for each protein with the highest assignment probability. Completeness
(solid blue) and correctness (solid green) are plotted as a function of that assignment probability.

The unrefined GB1 peak lists led to a few incorrect *Ce assignments (Figure 2a) because false signals picked by
automated peak picking algorithm were close to the BMRB average chemical shift value. Manual refinement of the
peak lists alleviated this problem by removing false-positive peaks, adding unpicked peaks, and resolving overlaps.

Of the 82 synthetic sets of peak lists analyzed by ssPINE, only three yielded assignment correctness below 70%
with probability cutoff 0.5. These are denoted by red circle in SI lzigure 2 and by rec? text in SI Table 1. One of the
poorest scoring data sets (completeness = 84.5% (474/561); correctness = 66.9% (317/474)) corresponded to BMRB
entry 15716 (the AlgE6R1 subunit from the Azotobacter vinelandii Mannuronan C5-epimerase), a 153 amino acid

protein containing 27 glycine residues with many overlapping peaks in the carbon alpha region (~45ppm).

4. Discussion

In this report, we have introduced the ssPINE algorithm, for the automated analysis and assignment of solid-
state
NMR data from membrane proteins and other difficult proteins systems. ssPINE builds on the technology of our I-
PINE web server for solution NMR data, which serves several thousand jobs annually. We have adapted the I-PINE
algorithm to account for the challenging features of ssNMR data from these systems. These include broader lines,
extensive inter-residue dipolar interactions, and 2/3D ssNMR experiments that yield a variety of connectivities. As
with I-PINE, ssPINE accepts as input the amino acid sequence of the protein and raw or refined peak lists from a
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variety of NMR experiments (Table 1). The output of ssPINE includes peak assignments and their probabilities. We
have tested and refined the implementation of the ssPINE algorithm with the excellent set of sle\/E)R data from the
small protein GB1. We also used as input to ssPINE a set of synthetic peak lists that simulated ssNMR data from 82
other proteins of various size generated from solution NMR data deposited in BMRB. As shown above, the choice of
probability cutoff is an important factor in maximizing correct assignments. In solution NMR, the recommended
probability cutoff for I-PINE is 0.5, because it leads to a higher probability of correct assignments [20]. With ssNMR
data, a cutoff of 0.6 appears to provide optimal completeness and assignment correctness. Glycine residues are harder
to assign because they lack the CB signals that ssPINE uses to evaluate connectivities. Proteins that contain a high
glycine content (e.g., BMRB entry 15716) are particularly problematic because ssPINE has difficulty distinguishing
among the several glycine candidates.

Currently, the user can use the ssPINE extension in POKY (two-letter-code EP) to generate and submit peak lists
from the web browser to the ssPINE webserver. The user can use the Convert (ss)I-PINE outputs to POKY plugin in
POKY (two-letter-code ip) to convert the assigned chemical shift table file from ssPINE to the POKY resonance list file
with the chosen probability cutoff. Finally, the POKY Notepad (two-letter-code Pn) can be used to propagate assigned
peaks onto ssNMR spectra: this is enabled by the script, Simulate SSNMR peaks with assignments labels (predict-and-
confirm).

The anaIKsis of ssNMR data from membrane proteins is highly challenging. ssPINE offers a promising approach
to resolving the chemical, structural, and dynamic information contained in these spectra. Information of this kind is
crucial to understanding the mechanisms underlying membrane transport, energy transfers, and signaling. We
encourage feedback from users of ssPINE, particularly those analyzing ssNMR spectra of membrane proteins, as a
means for guiding its further development. Our immediate goals with ssPINE are to incorporate information from
strategies commonly used in NMR spectroscopy of membrane proteins, including mutational analysis, F labeling,
and /or selective isotopic labeling.

Longer-term plans are to develop and release a program (ssPINE-POKY) that will include a graphical user
interface analogous to that in PINE-SPARKY.2 for solution NMR. In addition, we envision an “integrative” version of
ssPINE that will increase assignment correctness and completeness by implementing adaptive probability density
functions that incorporate machine learning (ML) based chemical shift and structure prediction methods, and will
provide comprehensive visualization of structural and dynamic information from ssNMR data, analogous to that
afforded by I-PINE for solution NMR data.

5. Web server availability

The usage of the webserver is described in section 2.5. The web server for ssPINE is freely accessible at
https:/ /poky.clas.ucdenver.edu /ssPINE.
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