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Abstract

Unclonable encryption, first introduced by Broadbent and Lord (TQC’20), is a one-time encryp-
tion scheme with the following security guarantee: any non-local adversary (A, B,C) cannot
simultaneously distinguish encryptions of two equal length messages. This notion is termed
as unclonable indistinguishability. Prior works focused on achieving a weaker notion of un-
clonable encryption, where we required that any non-local adversary (A, 5,C) cannot simul-
taneously recover the entire message m. Seemingly innocuous, understanding the feasibility
of encryption schemes satisfying unclonable indistinguishability (even for 1-bit messages) has
remained elusive.
We make progress towards establishing the feasibility of unclonable encryption.

* We show that encryption schemes satisfying unclonable indistinguishability exist uncon-
ditionally in the quantum random oracle model.

¢ Towards understanding the necessity of oracles, we present a negative result stipulating
that a large class of encryption schemes cannot satisfy unclonable indistinguishability.

¢ Finally, we also establish the feasibility of another closely related primitive: copy-protection
for single-bit output point functions. Prior works only established the feasibility of copy-
protection for multi-bit output point functions or they achieved constant security error
for single-bit output point functions.

1 Introduction

Quantum information ushers in a new era for cryptography. Cryptographic constructs that are
impossible to achieve classically can be realized using quantum information. In particular, the
no-cloning principle of quantum mechanics has given rise to many wonderful primitives such as
quantum money [Wie83] and its variants [AC12, Zha21, RS22], tamper detection [Got02], quan-
tum copy-protection [Aar09], one-shot signatures [AGKZ20], single-decryptor encryption [GZ20,
CLLZ21], secure software leasing [AL21], copy-detection [ALL*21] and many more.
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Unclonable Encryption. Of particular interest is a primitive called unclonable encryption, in-
troduced by Broadbent and Lord [BL20]. Roughly speaking, unclonable encryption is a one-time
secure encryption scheme with quantum ciphertexts having the following security guarantee: any
adversary given a ciphertext, modeled as a quantum state, cannot produce two (possibly entan-
gled) states that both encode some information about the original message. This is formalized in
terms of a splitting game.

A splitting adversary (A, B,C) first has A receive as input an encryption of my, for two mes-
sages mo and m;. A then outputs a bipartite state to B and C. B and C additionally receive as
input the classical decryption key and respectively output bp and bc. They win if b = bp = bc.
Clearly, A could give B the entire ciphertext and C nothing, in which case bp = b but bc would
be independent of b, giving an overall winning probability of 1/2. Security therefore requires that
the splitting adversary wins with probability only negligibly larger than 1/2. This security prop-
erty, introduced by [BL20], is called unclonable indistinguishability. Unclonable indistinguishability
clearly implies plain semantic security, as .A could use any semantic security adversary to make a
guess by for b, and then simply send b4 to B and C, who set bg = bc := ba.

Unclonable encryption is motivated by a few interesting applications. Firstly, unclonable en-
cryption implies private-key quantum money. It is also useful for preventing storage attacks
where malicious entities steal ciphertexts in the hope that they can decrypt them when the de-
cryption key is compromised later. Recently, the works of [CMP20, AK21] showed that unclonable
encryption implies copy-protection for a restricted class of functions with computational correct-
ness guarantees.

Despite being a natural primitive, actually constructing unclonable encryption (even for 1-bit
messages!) and justifying its security has remained elusive. Prior works [BL20, AK21] established
the feasibility of unclonable encryption satisfying a weaker property simply called unclonability:
this is modeled similar to unclonable indistinguishability, except that the message m encrypted is
sampled uniformly at random and both B and C are expected to guess the entire message m. This
weaker property is far less useful, and both applications listed above — preventing storage attacks
and copy-protection — crucially rely on indistinguishability security. Moreover, unclonability does
not on its own even imply plain semantic security, meaning the prior works must separately posit
semantic security.

The following question has been left open from prior works:

Q1. Do encryption schemes satisfying unclonable indistinguishability, exist?

Copy-Protection for Point Functions. Copy-protection, first introduced by Aaronson [Aar09], is
another important primitive closely related to unclonable encryption. Copy-protection is a com-
piler that converts a program into a quantum state that not only retains the original functionality
but also satisfies the following property: a splitting adversary (A, B,C) first has A receive as input
a copy-protected state that can be used to compute a function f. A then outputs a bipartite state
to B and C. As part of the security guarantee, we require that both B and C should not be able to
simultaneously compute f.

While copy-protection is known to be impossible for general unlearnable functions [AL21],
we could still hope to achieve it for simple classes of functions. Of particular interest to us is the
class of point functions. A single-bit output point function is of the form f,(-): it takes as input
and outputs 1 if and only if 2 = y. One could also consider the notion of multi-bit output point
functions, where the function outputs a large string, rather than 0 or 1.
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Prior works [CMP20, AK21] either focus on constructing copy-protection for multi-bit output
point functions or they construct copy-protection for single-bit output point functions with con-
stant security, rather than optimal security, where the adversary can only do negligibly better than
a trivial guess.

Yet another important question that has been left open from prior works is the following;:

Q2. Does copy-protection for single-bit output point functions, with optimal security, exist?

As we will see later, the techniques used in resolving Q1 will shed light on resolving Q2. Hence, we
focus on highlighting challenges in resolving Q1. The reader familiar with the challenges involved
in constructing unclonable encryption could skip Section 1.1 and directly go to Section 1.2.

1.1 Achieving Unclonable Indistinguishability: Challenges

We need to achieve a one-time secure encryption scheme for 1-bit messages satisfying unclonable
indistinguishability: how hard can this problem be? Indeed one might be tempted to conclude that
going from the weaker unclonability property to the stronger unclonable indistinguishability no-
tion is a small step. The former is a search problem while the latter is a decision problem, and
could hope to apply known search-to-decision reductions. As we will now explain, unfortunately
this intuition is false, due both to the effects of quantum information and also to the fact that
unclonable encryption involves multiple interacting adversaries.

¢ Recall that in an unclonable encryption scheme, the secret key is revealed to both Band C. As
a consequence, the secret information of any underlying cryptographic tool we use to build
unclonable encryption could be revealed. For example, consider the following construction:

to encrypt m € {0, 1}, compute (r, PRF(k,r) & m), where k & {0, 1} is the pseudorandom

function key and r & {0,1}* is a random tag. In the security experiment, the secret key,
namely k, will be revealed to both B and C. This restricts the type of cryptographic tools we
can use to build unclonable encryption.

¢ Another challenge is to perform security reductions. Typically, we use the adversary to
come up with a reduction that breaks a cryptographic game that is either conjectured to be
or provably hard. However, this is tricky when there are two adversaries, 5 and C. Which
of the two adversaries do we use to break the underlying game? Suppose we decide to use
B to break the game. For all we know, A could have simply handed over the ciphertext it
received to BB and clearly, B cannot be used to break the underlying game. Even worse, Alice
can send a superposition of B getting the ciphertext and C receiving nothing v.s. C receiving
the ciphertext and B getting nothing.

¢ Even if we somehow manage to achieve unclonable indistinguishability for 1-bit messages, it
is a priori unclear how to achieve unclonable indistinguishability for multi-bit messages. In
classical cryptography, the standard transformation goes from encryption of 1-bit messages
to encryption of multi-bit messages via a hybrid argument. This type of argument fails
in the setting of unclonable encryption. Let us illustrate why: suppose we encrypt a 2-bit
message m = m1||mg by encrypting 1-bit messages m; and ms, denoted respectively by p;
and po. This scheme is unfortunately insecure. An encryption of 11 can be (simultaneously)
distinguished from an encryption of 00 by a non-local adversary (A, B,C): A can send p;
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to B and p to C. Since, both B and C receive the secret key, they can check whether the
underlying message was 1 or 0.

¢ A recent result by Majenz, Schaffner and Tahmasbi [MST21] explores the difficulties in con-
structing unclonable encryption schemes. They show that any unclonable encryption scheme
satisfying indistinguishability property needs to have ciphertexts, when represented as den-
sity matrices, with sufficiently large eigenvalues. As a consequence, it was shown that [BL20]
did not satisfy unclonable-indistinguishability property. Any unclonable encryption scheme
we come up with needs to overcome the hurdles set by [MST21].

We take an example below that concretely highlights some of the challenges explained above.

Example: Issues with using Extractors. For instance, we could hope to use randomness extractors.
To encrypt a message m, we output (pz, ¢, Ext(r, z) & m), where p, is an unclonable encryption
of = satisfying the weaker unclonability property, ¢, is a classical encryption of a random seed r,
and Ext is an extractor using seed r. The intuition for this construction is that unclonable security
implies that at least one of the two parties, say B cannot predict x, and therefore = has min-entropy
conditioned on B’s view. Therefore, Ext(r, z) extracts bits that are statistically random against 5,
and thus completely hides m.

There are a few problems with this proposal. First, since A generates B’s state and has access
to the entire ciphertext, the conditional distribution of x given Bob’s view will depend on ¢,. This
breaks the extractor application, since it requires r to be independent. One could hope to perform
a hybrid argument to replace ¢, with a random ciphertext, but this is not possible: B eventually
learns the decryption key for ¢, and would be able to distinguish such a hybrid. This example
already begins to show how the usual intuition fails.

A deeper problem is that extractor definitions deal with a single party, whereas unclonable
encryption has two recipient parties. To illustrate the issue, note that it is actually not the case
that 2 has min-entropy against one of the parties: if A randomly sends the ciphertext to B or C,
each one of them can predict x with probability 1/2, so the min-entropy is only 1. In such a case
the extractor guarantee is meaningless. Now, in this example one can condition on the message
A sends to B,C, and once conditioned it will in fact be the case that one of the two parties has
high min-entropy. But other strategies are possible which break such a conditioning argument.
For example, A could send messages that are in superposition v.s. B getting the ciphertext (and C
nothing) v.s. C getting the ciphertext (and B nothing). By being in superposition, we can no longer
condition on which party receives the ciphertext.

1.2 Our Results

We overcome the aforementioned challenges and make progress on addressing both questions Q1
and Q2. We start with our results on unclonable encryption before moving onto copy-protection.
Unclonable Encryption. For the first time, we establish the feasibility of unclonable encryption.

Our result is in the quantum random oracle model. Specifically, we prove the following.

Theorem 1.1 (Informal). There exists an unconditionally secure one-time encryption scheme satisfying
unclonable indistinguishability in the quantum random oracle model.



Our construction is simple: we make novel use of coset states considered in recent works [CLLZ21].
However, our analysis is quite involved: among many other things, we make use of threshold pro-
jective implementation introduced by Zhandry [Zha21].

A recent work [AK21] showed a generic transformation from one-time unclonable encryp-
tion to public-key unclonable encryption!. By combining the above theorem with the generic
transformation of [AK21], we obtain a public-key unclonable encryption satisfying the unclonable
indistinguishability property.

Theorem 1.2 (Informal). Assuming the existence of post-quantum public-key encryption, there exists a
post-quantum public-key encryption scheme satisfying the unclonable indistinguishability property in the
quantum random oracle model.

It is natural to understand whether we can achieve unclonable encryption in the plain model.
Towards understanding this question, we show that a class of unclonable encryption schemes,
that we call deterministic schemes, are impossible to achieve. By ‘deterministic’, we mean that the
encryptor is a unitary U and the decryptor is UT. Moreover, the impossibility holds even if the
encryptor and the decryptor are allowed to run in exponential time!

In more detail, we show the following.

Theorem 1.3 (Informal). There do not exist unconditionally secure deterministic one-time encryption
schemes satisfying the unclonable indistinguishability property.

In light of the fact that any classical one-time encryption scheme can be made deterministic with-
out loss of generality?, we find the above result to be surprising. An interesting consequence of the
above result is an alternate proof that the conjugate encryption scheme of [BL20] does not satisfy
unclonable indistiguishability®. This was originally proven by [MST21].

We can overcome the impossibility result by either devising an encryption algorithm that
traces out part of the output register (in other words, performs non-unitary operations) or the
encryption scheme is based on computational assumptions.

Copy-Protection for Point Functions. We also make progress on Q2. We show that there exists
copy-protection for single-bit output functions with optimal security. Prior work by Coladangelo,
Majenz and Poremba [CMP20] achieved a copy-protection scheme for single-bit output point func-
tions that only achieved constant security.

We show the following.

Theorem 1.4 (Informal). There exists a copy-protection scheme for single-bit output point functions in
the quantum random oracle model.

While there are generic transformations from unclonable encryption to copy-protection for point
functions explored in the prior works [CMP20, AK21], the transformations only work for multi-
bit point functions. Our construction extensively makes use of the techniques for achieving un-
clonable encryption (Theorem 1.1). Our result takes a step closer in understanding the classes of
functions for which the feasibility of copy-protection can be established.

'While their result demonstrates that the generic transformation preserves the unclonability property, we note that
the same transformation preserves unclonable indistinguishability.

*We can always include the randomness used in the encryption as part of the secret key.

*1t is easy to see why conjugate encryption of multi-bit messages is insecure. The insecurity of conjugate encryption
of 1-bit messages was first established by [MST21] .



1.3 Organization

The rest of the paper is organized as follows. In Section 2, we cover all the necessary prelimi-
naries, including Jordan’s lemma, measuring success probability of a quantum adversary and the
definitions of unclonable encryption schemes. Followed by Section 4, we recall coset states and
their properties. We introduce a new game called “strengthened MOE games in the QROM” and
prove security in this game. This part contains the main technical contribution of our paper. In
Section 5, we build our unclonable encryption on the new property . In the final section (Section 6),
we present our construction for copy-protection of single-output point functions. Finally, we talk
about our impossibility result in Section 3.

1.4 Technical Overview

Attempts based on Wiesner States. We start by recalling the unclonable encryption scheme pro-
posed by Broadbent and Lord [BL20]. The core idea is to encrypt a message m under a randomly
chosen secret key x and encode z into an unclonable quantum state p,. Intuitively, for any split-
ting adversary (A, B,C), there is no way for A to split p, into two quantum states, such that
no-communicating B and C can both recover enough information about « to decrypt Enc(z, m).

A well-known choice of no-cloning states is the Wiesner conjugate coding (or Wiesner states
for short) [Wie83]. For a string x = 122 - - -z € {0, 1}*, X bases are chosen uniformly at random,
one for each ;. Let §; denote the basis for z;. If ; is 0, x; is encoded under the computational basis
{]0), 1)} otherwise, z; is encoded under the Hadamard basis {|+) , |—)}. The conjugate coding of
x under basis @ is then denoted by |2?). By knowing 6, one can easily recover z from the Wiesner
state.

The unclonability of Wiesner states is well understood and characterized by monogamy-of-
entanglement games (MOE games) in [TFKW13, BL20]. In the same paper, Broadbent and Lord
show that no strategy wins the following MOE game* with probability more than 0.85*.

A challenger samples uniformly at random z, 6 € {0, 1}* and sends |z?) to A.

A taking the input from the challenger, produces a bipartite state to 3 and C.

The non-communicating B and C then additionally receive the secret basis infor-
mation ¢ and make a guess z, x¢ for x respectively.

The splitting adversary (A, B,C) wins the game if and only if 23 = z¢ = «.

Figure 1: MOE Games for Wiesner States.

A natural attempt to construct unclonable encryption schemes is by composing a one-time pad
with Wiesner states. A secret key is the basis information § € {0,1}". An encryption algorithm
takes the secret key 6 and a plaintext m, it samples an z € {0,1}" and outputs m @ z together
with the Wiesner conjugate coding of z, i.e. |z%). On a high level, no split adversaries can both
completely recover z, thus it is impossible for them to both recover the message m. However,

*This is a variant of MOE games discussed in [TFKW13]. We will use this notation throughout the paper.



such a scheme can never satisfy the stronger security: unclonable indistinguishability. Recall that
unclonable indistinguishability requires either B or C can not distinguish whether the ciphertext
is an encryption of message mg or m;. Broadbent and Lord observe that although it is hard for
B and C to recover the message completely, they can still recover half of the message and hence
simultaneously distinguish with probability 1.

Towards unclonable indistinguishability, they introduce a random oracle H : {0, 1}*x{0,1}* —
{0, 1}™ in their construction (Figure 2). If an adversary can distinguish between mo & H (o, ) and
m1 & H(a,z), it must query H (o, ) at some point; hence, one can extract z from this adversary
by measuring a random query. Following the same reasoning, one may hope to base the security
(of Figure 2) on the MOE games (of Figure 1), by extracting  from both parties.

Gen(1*): on input A, outputs uniformly random («, ) € {0, 1}>*.
Enc((a,6),m): samples z € {0,1}*, outputs (|z%) ,m @ H(a, z)).

Decf ((a, 0), (]2%) , ¢)): recovers x from |2?), outputs ¢ & H (v, x).

Figure 2: Unclonable Encryption by Broadbent and Lord.

The above idea, thought intuitive, is hard to instantiate. It will require simultaneous extraction
of the secret x from both B and C. Since B and C can be highly entangled, a successful extraction
of x on B’s register may always result in an extraction failure on the other register. Broadbent and
Lord use a “simultaneous” variant of the so-called “O2H” (one-way-to-hiding) lemma [Unr15] to
prove their scheme satisfies unclonable indistinguishability for un-entangled adversaries 3,C, or
messages with constant length. The unclonable indistinguishability for general adversaries and
message spaces remains quite unknown.

Even worse, Majenz, Schaffner, and Tahmasbi [MST21] show that there is an inherent limita-
tion to this simultaneous variant of O2H lemma. They give an explicit example that shatters the
hope of proving unclonable indistinguishability of the construction in [BL20] using this lemma.

Instantiating [BL20] using Coset States. Facing the above barrier, we may resort to other states
possessing some forms of unclonability. One candidate is the so-called “coset states”, first pro-
posed by Vidick and Zhang [VZ21] in the context of proofs of quantum knowledge and later
studied by Coladangelo, Liu, Liu, and Zhandry [CLLZ21] for copy-protection schemes.

A coset state is described by three parameters: a subspace A C 2 of dimension \/2 and two
vectors s, s’ € F3 denoting two cosets A + s and AL + s'°(A+ denotes the dual subspace of A); we
write the state as |4, ). Coset states have many nice properties, among those we only need the
following;:

1. Given |A; ¢) and a classical description of subspace A, an efficient quantum algorithm can
compute both s and s'.

5There are many vectors in A + s. In the rest of the discussion, we assume s is the lexicographically smallest vector
in A + s. Similarly for s'.



2. No adversary can win the MOE game (Figure 3) for coset states with probability more than
Ve - (cos(m/8))* (first proved in [CLLZ21]).

* A challenger samples uniformly at random a subspace A C F} of dimension \/2
s,s' € F and sends |4, ¢) to A.

* A taking the input from the challenger, produces a bipartite state to 5 and C.

* The non-communicating B and C then additionally receive a classical description
of the subspace A and make a guess sz, sj, s¢, s for s, s’ respectively.

e The splitting adversary (A, B,C) wins the game if and only if sg = s¢ = 5,55 =
se=+¢.

Figure 3: MOE Games for Coset States.

Readers may already notice the similarity between Wiesner states and coset states. If we sub-
stitute the basis information 6 with A and the secret = with s||s’, we get coset states and their
corresponding MOE games. Hence, we can translate the construction in [BL20] using the lan-
guages of coset states. A question naturally arises: if these two kinds of states are very similar,
why does replacing Wiesner states with coset states even matter?

Indeed, they differ in one crucial place. Let us come back to Wiesner states. As shown by
[Lut10] in the setting of private key quantum money, given |2%) together with an oracle P,° that
outputs 1 only if input y = z, there exists an efficient quantum adversary that learns x without
knowing 6. This further applies to the MOE games for Wiesner states: if A additionally gets oracle
access to P, the MOE game is no longer secure.

MOE games for coset states remain secure if oracles for checking s and s’ are given. More
formally, let P4 s be an oracle that outputs 1 only if the input y € A + s, similarly for P,., .. No
adversary (A, B,C) can win the MOE games for coset states with more than some exponentially
small probability in A, even if A, B,C all query Ps,s and P41, polynomially many times. We
call this game MOE game for coset states with membership checking oracles.

We now give our construction of unclonable encryption that satisfies unclonable indistin-
guishability in Figure 4. In our construction, we also get rid of the extra input a in [BL20] con-
struction. We believe o can be similarly removed in their construction as well. Also, note that
in our construction, we only require coset states and random oracles. The membership checking
oracles will only be given to the adversary when we prove its security. Thus, we prove a stronger
security guarantee (with membership checking oracle are given). Due to this, we can not prove
the security of their construction using Wiesner states following the same idea; nonetheless, we
do not know how to disprove it. We leave it as an interesting open question.

*[Lut10] showed that an algorithm breaks the money scheme, given oracle access to P?; P? outputs 1 if and only
if input y = x under basis specified by §. One can change the algorithm so that it only needs P, to break the money
scheme.



Gen(11): on input ), outputs uniformly random subspace A C F3 of dimension \/2.
Enc? (A, m): samples s, s’ € F3?, outputs (|Ag ), m ® H(s,s')).

Dec (A, (|As.¢) ,c)): recovers s, s’ from the coset state, outputs ¢ © H (s, s').

“We again require s, s’ to be the lexicographically smallest vector in A + s and A+ + s'.

Figure 4: Our Unclonable Encryption Scheme.

Basing Security on Reprogramming Games. Now we look at what property we require for
coset states to establish unclonable indistinguishability. We will focus on the case n = 1 (length-1
messages) in this section. By a sequence of standard variable substitutions, unclonable indistin-
guishability of our scheme can be based on the following security game in the identical challenge
mode (please refer to Figure 5), where each of B,C tries to identify whether the oracle has been
reprogrammed or not. We want to show any adversary (A, B,C) only achieves successful proba-
bility 1/2 + negl. This ideal security matches the trivial attack: B gets the coset state and C makes
a random guess, they win with probability 1/2.

Note that in the above reprogramming game (Figure 5), A has no access to H(s,s’). This
is different from unclonable indistinguishability games or MOE games. Nevertheless, we show
that A never queries (s, s’) and thus H(s, s") does not help A and thus can be safely removed by
introducing a small loss.

The security of the reprogramming games in the identical challenge mode can be reduced to
the security in the independent challenge mode. A careful analysis of Jordan’s lemma (Section 2.3)
is required to show such a reduction. We believe that this reduction is non-trivial and we leave it
to the last section in the overview.

The remaining is to show the security of the game in the independent challenge mode. Inspired
by the work of [Zha20] which initiates the study of measuring success probability of a quantum
program, we show there is an efficient procedure that operates locally on both the entangled ad-
versaries (B,C) and outputs (B8',pg), (C', pc) such that: (informally)

* 3’ and C’ are un-entangled’.
 The success probability of B’ on guessing whether it has access to Hy or H; is pg.
* The success probability of C' on guessing whether it has access to Hy or Hj is pc.

e The expectation of p - p¢ is equal to (B, C)’s success probability in the reprogramming game
in the independent challenge mode.

The above estimation procedure requires to run 5’ and C’' on Hy and H;. In other words, the
procedure should be able to reprogram H, )_,, on the input (s, s"). Since the procedure will be
used in the reduction for breaking MOE games for coset states, it should not know s or s/, but only

7B’ and C’ satisfy a weaker guarantee than being un-entangled. Informally, conditioned on any event of non-
negligible chance on one’s side, the other party still has success probability pc (or ps, respectively). The same analysis
applies to this weaker guarantee. For ease of presentation, we assume that they are un-entangled.



H be a random oracle with binary range, H : F) x F3 — {0, 1}.

Additionally, A, B, C get oracle access to P4y, and Py1 .

A challenger samples a coset state |45 ) and sends (|As ), H(s,s")) to A.

A taking the input from the challenger, has oracle access to H, s_,, and produces
a bipartite state to B and C. Here H, ), is the same as H except H(s,s') is
replaced with L“.

The non-communicating B and C then receive a classical description of the sub-
space A:

— Let Hy := H be the original random oracle.

— Let H; be identical to H, except the outcome on (s, ') is flipped.

— (Identical Challenge Mode): Flip a coin b, both B and C get oracle access to
H,.

— (Independent Challenge Mode): Flip two coins bz, bc, B has oracle access to
Hy,, and C gets oracle access to Hj,..

e BB3,C makes a guess V', b respectively.

* The adversary (A, B,C) wins the game if and only if ¥ = 0" = b (in the identical
challenge mode), or ¥/ = b and b’ = b¢ (in the independent challenge mode).

“In the actual proof, H(s, s") is replaced with a uniformly random w. Both approaches work.

Figure 5: Reprogramming Games for Coset States in the QROM

knows A and P4y, Py1 . Nonetheless, we show with the membership checking oracle, such
reprogramming is possible. For example, H; can be reprogrammed as follows:

Hy = {ﬂH(s,s’) Qs(z) =land Qu(2') = 1

Hs )—1(2,2") Otherwise ’
where @), is the point function that only outputs 1 on s, similarly for Q. The remaining is to show
Qs (or Q) can be instantiated by the classical description of A and Pa (or Py, . respectively).
Qs can be implemented by (1) check if the input z is in A + s, (2) check if the input z is the lexi-
cographically smallest in A + s. Step (1) can be done via Ps. Step (2) can be done by knowing
A and some z € A + s (which is known from step (1)): one can check if there exists some lexico-
graphically smaller z* such that (z — z*) € span(A); this can be done efficiently, by enumerating
each coordinate and doing Gaussian elimination. Thus, both Q)5 and Qs can be implemented.
Without membership checking oracle, we do not know how to reprogram the oracle, or run
the above procedure. Thus the proof fails for Wiesner states.

Finally, we prove the security of reprogramming game in the independent challenge mode. If
(A, B,C) has non-trivial success probability 1/2 + ~ for some large v, the above procedure must
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output large pg,pc > 1/2 + /2 with non-negligible probability. If B’ never queries Hy or H; on
(s,s"), the best probability it can achieve is 1/2. Thus, by measuring a random query of 5’, we
can extract s, s’ with non-negligible probability. Similarly for C’. This violates the MOE games
for coset states with membership checking oracles, a contradiction. Therefore, the security of the
reprogramming game in the independent mode is established.

Relating Identical Challenge Mode to Independent Challenge Mode. In the end, in this sec-
tion, we discuss how to relate the reprogramming game in the identical challenge mode to that
in the independent challenge mode. We refer the readers to the proof of Theorem 4.8 for further
details.

We first elaborate on the above discussion for independent challenge mode. It helps us establish
the language for the presentation of identical challenge mode and give a nice characterization of the
state produced by Alice.

For a random choice of A, s, s and oracles H(, oy, |, let |o) g be the joint quantum state shared
by Bob and Charlie after Alice’s stage. We additionally define projections I17 and TI§ for b € {0, 1}:

o IIF: Run Bob on its own register o[B] with oracle access to Hy, project onto Bob outputting
0 and rewind;

e IIP: Run Bob on o[B] with oracle access to Hy, project onto Bob outputting 1 and rewind.

We can similarly define II§ and I1{. Namely, I1Z is the projection for Bob’s success on H, and II’
is the projection for Charlie’s success on Hy,.
By definition, the success probability in the independent challenge mode is:

Tr KHE;H?> ® <ng;n§> o) <0[] . (1)

Since (I1F + I17) /2 is a POVM, let {|¢,) } ycr be the set of eigenvectors with eigenvalues p € [0, 1]5.
Similarly, let {|¢;)},cr be the set of eigenvectors with eigenvalues ¢ € [0,1] for (II§ + 1) /2.
Therefore, we can write |o) under the bases {|¢,)} and {|¢)}:

o) = Zap,q [Pp) |tq) -

p.q

The analysis in the last paragraph (for independent challenge mode) can show in this setting
that, p and ¢ cannot be simultaneously far away from the trivial guessing probability 1/2, i.e., for
any inverse polynomial ¢,

2%0

Z lap.q

p:lp—1/2|>e
q:lg—1/2|>¢

In other words, |o) is very close to the summation of the following subnormalized states:

o) = Z p,q |dp) [tg) + Z p,q | dp) 1) -

p:lp—1/2|<e pip—1/2|>¢
q:lg—1/2|<e

8There can be multiple eigenvectors with the same eigenvalues. In the overview, we assume that eigenvalues are
unique.
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Here we simply call the first subnormalized state as |02?), denoting Bob can not behave in a

significantly different way from random guessing; and call second subnormalized state as |0229)
for Charlie. We have |o) = |05*) + |082¢). Thus, 1 is bounded by at most 1/2 + ¢ for any inverse
polynomial ¢, concluding the security in the independent challenge mode.

The above analysis gives a characterization of |o). Note that although the analysis is done
assuming Alice, Bob and Charlie play the game in the independent challenge mode, it holds for
the game in identical challenge mode as well.

Finally, we focus on the identical challenge mode. The success probability in the identical
challenge mode is:

IF o IO§ +IIf @ 0f
Tr[<0® » o 1)]0><0@. @)
By plugging |o) = |o2*) + [08%9) in the above formula, 2 is at most:
1 1 a a a a
5 et 5 (|oBmE @ uf o) + oy @ nfjet) ). ©)

The only difference between 2 and 1 is the cross terms |(o29|II7 @ I |089) |, for b € {0,1}. Per-
haps surprisingly, we prove that the cross terms are zero. To show it, we prove a corollary of
Jordan’s lemma (see Corollary 2.4) that for any two projections Iy, IT;, let |¢,,) be the set of eigen-
vectors for (Iy +I11)/2; if p+ ¢ # 1 and p # g, then their cross terms (¢, |Iy|¢q) = (¢p|1]pq) = 0.
Applying this corollary to 3, we can show that |[(of9|II7 ® IT{'|0g29)| = 0 for both b € {0,1}.
Therefore, we conclude the security in the identical challenge mode.

1.5 Related Work

Unclonable Encryption. Broadbent and Lord [BL20] demonstrated the feasibility of unclonable
encryption satisfying the weaker unclonability property. They present two constructions. The first
construction based on Wiesner states achieve 0.85"-security (i.e., the probability that both B and
C simultaneously guess the message is at most 0.85"), where n is the length of the message being
encrypted. Their second construction, in the quantum random oracle model, achieves 2% +negl(\)-
security. In the same work, they show that any construction satisfying 27"-unclonability im-
plies unclonable indistinguishability property. Following Broadbent and Lord, Ananth and Ka-
leoglu [AK21] construct public-key and private-key unclonable encryption schemes from compu-
tational assumptions. Even [AK21] only achieve unclonable encryption with the weaker unclon-
ability guarantees.

Majenz, Schaffner and Tahmasbi [MST21] explore the difficulties in constructing unclonable
encryption schemes. In particular, they show that any scheme achieving unclonable indistin-
guishability should have ciphertexts with large eigenvalues. Towards demonstrating a better
bound for unclonability, they also showed inherent limitations in the proof technique of Broadbent
and Lord.

Copy-Protection. Copy-protection was first introduced by Aaronson [Aar(9]. Recently, Aaron-
son, Liu, Liu, Zhandry and Zhang [ALL*21] demonstrated the existence of copy-protection in
the presence of classical oracles. Coladangelo, Majenz and Poremba [CMP20] showed that copy-
protection for multi-bit output point functions exists in the quantum random oracle model. They
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also showed that copy-protection for single-bit output point functions exists in the quantum ran-
dom oracle model with constant security.

Ananth and La Placa [AL21] showed a conditional result that copy-protection for arbitrary un-
learnable functions, without the use of any oracles, does not exist. Recently, Coladangelo, Liu, Liu
and Zhandry [CLLZ21], assuming post-quantum indistinguishability obfuscation and one-way
functions, demonstrated the first feasibility of copy-protection for a non-trivial class of functions
(namely, pseudorandom functions) in the plain model. Another recent work by Broadbent, Jeffrey,
Lord, Podder and Sundaram [BJL*21] studies copy-protection for a novel (but weaker) variant of
copy-protection.
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2 Preliminaries

2.1 Basics

We will briefly introduce some basic notations in our work and some preliminaries on quantum
computing in this section.

We denote by A the security parameter. We write poly(-) to denote an arbitrary polynomial and
negl(-) to denote an arbitrary negligible function. We say that an event happens with overwhelming
probability if the probability is at least 1 — negl(\).

Readers unfamiliar with quantum computation and quantum information could refer to [NC10]
for a comprehensive introduction.

Given Hilbert space H, we write S(#) for the unit sphere set {z : ||z||2 = 1} in H, U(H) for the
set of unitaries acting on Hilbert space #, D(# ) for the set of density operators on #. We write
‘Hx to denote the Hilbert space associated with a quantum register X. Given two quantum states
p, o, we denote the (normalized) trace distance between them by

1
TD(p,0) i= 5 I~ ol

We say that two states p, o are d-close if TD(p, o) < 6.

A positive operator-valued measurement (POVM) on the Hilbert space H is defined as a set
of positive semidefinite operators { £;} on # that satisfies ) . E; = I. A projective measurement
means the case that E;s are projectors.

A common technique in quantum computation is uncomputing [BBBV97]. A quantum algo-
rithm could be modeled as a unitary U acting on some hilbert space #, then perform measurement
on output registers on without loss of generality. By uncomputation we mean that acting U' on
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the same hilbert space after the measurement. It is easy to examine that if the measurement out-
puts same result with overwhelming probability, the trace distance between the final state and the
original state is negligible.

Quantum Oracle Algorithms A quantum oracle for a function f is defined as the controlled
unitary Oy: Oy |z) |y) = |x) |y @ f(x)). We define a query to the quantum oracle as applying Oy
on the given quantum state once.

We say that a quantum adversary A with access to oracle(s) is query-bounded if it makes at most
p(A) queries to each oracle for some polynomial p(-).

2.2 Quantum Random Oracle Model (QROM)

This is the quantum analogue of Random Oracle Model, where we model a hash function H as a
random classical function, and it can be accessed by an adversary in superposition, modeled by
the unitary Og.

The following theorem, paraphrased from [BBBV97], will be used for reprogramming oracles
without adversarial detection on inputs which are not queried with large weight:

Theorem 2.1 ([BBBV97]). Let A be an adversary with oracle access to H : {0,1}™ — {0, 1}™ that makes
at most T' queries. Define |¢;) as the global state after A makes i queries, and W, (|$;)) as the sum of squared
amplitudes in |¢;) of terms in which A queries H on input y. Let € > 0 and let ' C [0,T — 1] x {0,1}™
be a set of time-string pairs such that 3 . p Wy(|¢i)) < e2/T.

Let H' be an oracle obtained by reprogramming H on inputs (i,y) € F to arbitrary outputs. Define
|¢;) as above for H'. Then, TD(|¢r) , |¢/)) < €/2.

Note that the theorem can be straightforwardly generalized to mixed states by convexity.

2.3 More on Jordan’s lemma
We first recall the following version of Jordan’s lemma, adapted from [Reg05] and [Vid21]:

Lemma 2.2. Let w € [0, 1], H be a finite-dimensional Hilbert space and let 11y, I1; be any two projectors in
H, then there exists an orthogonal decomposition of H into one-dimensional and two dimensional subspaces
H = @;S; that are invariant under both 11y and 11y; each S; is spanned by one or two eigenvectors of
wHO =+ (1 — w)Hl.

Whenever S; is 2-dimensional, there is a basis for it in which 11y and I1; (restricting on S;) take the

form:
11 = 10 ﬂ]’ld II = CZZ Cidi
0.5 0 O 1S CiS; 82 ’

where ¢; = cos 6; and s; = sin 0; for some principal angle 6; € [0, 7/2].

Proof. The proof for the case w = 1/2 can be found in the references above, and the generalization
is straightforward. O

We additionally show a relation between two eigenvalues in the same Jordan block.
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Lemma 2.3. For any two projectors Iy, 11, let S; be a 2-dimensional subspace in the above decomposition.
Let |¢o) , |¢1) be two eigenvectors of wlly + (1 — w)ILy that span S; and Ao, A1 be their eigenvalues. We
have Ao + A1 = 1.

Proof. Restricting on S;, we have:
Mo+ =Tr[(Mos, +1is,) /2] = (1+ ¢ +57)/2 = 1.
O

Corollary 2.4. For any two projectors Iy, I1y, let |po) and |¢p1) be two eigenvectors of wlly + (1 — w)II;
with eigenvalues Ao, A\1. If Ao + \1 # 1 and \g # A1, then

(¢o|Tlo|p1) = (¢o|Il1|¢1) = 0.

Proof. If Ao+ A1 # 1, by Lemma 2.3, |¢y) and |¢1) cannot be in the same Jordan block. Because |¢o)
still belongs to the corresponding subspace S of its Jordan block after the action of Iy, ITj |¢) is
orthogonal to |¢1). Similarly, IT; |¢g) is orthogonal to |¢;). O

2.4 Measuring Success Probability

In this section, we give preliminaries on how to measure success probability of quantum programs
(with respect to a test distribution). Part of this section is taken verbatim from [ALL*21, CLLZ21].
Since this section will only be used for proving the strengthened monogamy-of-entanglement
game of coset states in the quantum random oracle model (see Section 4), the reader can safely
skip it to view our construction first, and return to this section when understanding the proof of
the strengthened MOE game.

In classical cryptography, we are often interested in the success probability of a given program
with respect to a test distribution. Assume that the test distribution is known to everyone and
can be efficiently sampled, one can efficiently estimate the success probability of a given program
within any inverse polynomial error. The estimating algorithm is fairly simple: just run the pro-
grams multiple times and output how many times the program succeeds. However, this method
does not quite work when quantum programs are taken into account. One crucial reason is that
the estimation algorithm only gets a single copy of the program. It is in general impossible to
run the program multiple times without rewinding. However, rewinding a quantum program
appears to be one of the difficulties in quantum cryptography. We refer the reader to [Zha20] for a
more in-depth discussion.

Measure Probability. In [Zha20], Zhandry formalizes a measurement operator for estimating
the success probability of a quantum program. This operator is inefficient to implement, but
Zhandry also shows how to efficiently estimate the probability with large statistical confidence
in the same work (following the idea in QMA amplification [MWO05]). We will discuss the efficient
measurement procedure later in this section.

The starting point is that a binary POVM specifies the probability distribution over outcomes
{0,1} (“success” or “failure”) on any quantum program, but it does not uniquely determine the
post-measurement state. Zhandry shows that, for any binary POVM P = (P, I — P), there exists a
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nice projective measurement such that the post-measurement state is an eigenvector of P. In par-
ticular, Zhandry observes that there exists a projective measurement £ which measures the success
probability of a state with respect to P. More precisely,

e & outputs a probability p € [0, 1] from the set of eigenvalues of P. (We stress that £ actually
outputs a real number p).

¢ The post-measurement state upon obtaining outcome p is an eigenvector of P with eigenvalue
p; it is also an eigenvector of ) = I — P with eigenvalue 1 — p.

Note that since £ is projective, we are guaranteed that applying the same measurement again
on the leftover state will yield the same outcome. Thus, what we obtain from applying £ is a state
with a “well-defined” success probability with respect to P.

Furthermore, £ is compatible with P. In other words, one can safely measure the success
probability of a program without disturbing the overall success probability. We now give the
formal theorem statement.

Theorem 2.5 (Inefficient Measurement). Let P = (P, Q) be a binary outcome POVM. Let D be the set
of eigenvalues of P. There exists a projective measurement £ = { E}, },cp with index set D that satisfies the
following: for every quantum state p, let p, be the sub-normalized post-measurement state obtained after
measuring p with respect to E,. That is, p, = E,pE,. We have,

(1) For every p € D, p, is an eigenvector of P with eigenvalue p;

(2) The probability of p when measured with respect to P is Tr[Pp] = > 5 Tr[Ppp].

pED

A measurement £ which satisfies these properties is the measurement in the common eigen-
basis of P and () = I — P (due to simultaneous diagonalization theorem, such common eigenbasis
exists since P and ) commute). Let P have eigenbasis {|¢;)} with eigenvalues {\;}. Without loss
of generality, let us assume p is a pure state |¢) (¢)| and {\;} has no duplicated eigenvalues. We
write [¢)) in the eigenbasis of P: |¢) = Y . ; |[¢;). Applying € will result in an outcome \; and a
leftover state |¢;) with probability |a;|?.

Looking ahead, we will write a quantum program under the eigenbasis of P in the proof of
the strengthened MOE game.

Theorem 2.6 (Inefficient Threshold Measurement). Let P = (P, Q) be a binary outcome POVM.
Let P have eigenbasis {|1;)} with eigenvalues {\;}. Then, for every v € (0,1) there exists a projective
measurement £, = (E<~, E.) such that:

(1) E<. projects a quantum state into the subspace spanned by {|v;)} whose eigenvalues \; satisfy
Ai <

(2) E-., projects a quantum state into the subspace spanned by {|1y;)} whose eigenvalues \; satisfy
Ai > .

Similarly, for every v € (0,1/2), there exists a projective measurement £, = (E<.,, E.) such that:
(1) E<, projects a quantum state into the subspace spanned by {|v;)} whose eigenvalues \; satisfy

Xi— 3l <
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(2) E>v projects a quantum state into the subspace spanned by {|¢;)} whose eigenvalues \; satisfy
i =31 > .

It is easy to see how to construct £,,&! from &, e.g. by setting E<, = D i—1/2/<y Ex- Note

that for any quantum state p, Tr [E>7 p] is the weight over eigenvectors with eigenvalues A that are
v away from 1/2.

Efficient Measurement. The projective measurement £ above is not efficiently computable in
general. However, they can be approximated if the POVM is a mixture of projective measure-
ments, as shown by Zhandry [Zha20], using a technique first introduced by Marriott and Watrous
[MWO5].

Consider the following procedure as a binary POVM P = (P, Q) acting on a quantum program
p: samples a random challenge r, evaluates the program on r, and checks if the output is correct.
This procedure can be viewed as (1). picking a uniformly random challenge r; (2). applying a
projective measurement U,. In this case, P = & >, U, where R is the size of the challenge space.
This POVM captures the situation where a challenger randomly samples a classical challenge and
tests if a quantum program’s classical outcome is correct on that challenge.

Below, we give the formal theorem statement about efficient approximated threshold measure-
ment, which is adapted from Theorem 6.2 in [Zha20] and Lemma 3 in [ALL*21].

Theorem 2.7 (Efficient Threshold Measurement). Let P, = (P, Q) be a binary outcome POVM over
Hilbert space Hy, that is a mixture of projective measurements for b € {1,2}. Let P, have eigenbasis {|1)*)}
with eigenvalues {\}. For every 1,72 € (0,1),0 < ¢ < min(y1/2,72/2,1 — 1,1 — 42) and § > 0,
there exist efficient binary-outcome quantum algorithms, interpreted as the POVM element corresponding

to outcome 1, ATI;D’;S,7 such that for every quantum program p € D(H1) @ D(Hz) the following are true

about the product algorithm ATI;;‘lS - ® ATI;,’;S N

(0) Let (E%,y, ng) be the inefficient threshold measurement in Theorem 2.6 for H,,.

(1) The probability of measuring 1 on both registers satisfies
€,0 €,0 1 2
Te|(ATIE |, @ ATIE ) p| = Tr [(BL, . © E2,,.) -] — 2

(2) The post-measurement state p’ after getting outcome (1,1) is 49-close to a state in the support of
{|1/111> |¢J2>} such that \} >~ — 2¢ and A? > vy — 2.

(3) The running time of the algorithm is polynomial in the running time of Py, Ps, 1/e and log(1/6).

Intuitively the theorem says that if a quantum state p has weight p on eigenvectors of (Py, P»)
with eigenvalues greater than (y1 + €,72 + ¢), then the quantum algorithm will produce (with
probability at least p — 20) a post-measurement state which has weight 1 — 44 on eigenvectors with
eigenvalues greater than (y; — 2¢,v2 — 2¢).

In this paper, we will work with indistinguishability games. Therefore, we will particularly be
interested in the projective measurement that projects onto eigenvectors with eigenvalues away
from 1/2 (meaning its behavior is more than random guessing). For this reason, we will need the
following symmetric version of Theorem 2.7:

17



Theorem 2.8 (Efficient Symmetric Threshold Measurement). Let P, = (P, Qp) be a binary outcome
POVM over Hilbert space H,;, that is a mixture of projective measurements for b € {1,2}. Let P, have
eigenbasis {|1?) } with eigenvalues {\!}. For every v1,v2 € (0,1/2),0 < € < min(y1/2,v2/2),and § > 0,
there exist efficient binary-outcome quantum algorithms, interpreted as the POVM element corresponding

to outcome 1, SATI;;‘; ., such that for every quantum program p € D(H1) ® D(Hs) the following are true
. €,0 €,0
about the product algorithm SATIp @ SATIp, _

(0) Let (E. , EY

2., ) be the inefficient threshold measurement in Theorem 2.6 for H.

(1) The probability of measuring 1 on both registers satisfies
€,0 €,0 1 2
Tr [(SATIS ,, @ SATIS ) p| > Tr [(BL,, @ B2,,..) - p| — 26,
(2) The post-measurement state p’ after getting outcome (1,1) is 49-close to a state in the support of
{|¢}> |¢]2.>} such that | A} — 1/2] > v — 2eand [A2 — 1/2] > 5 — 2e.

(3) The running time of the algorithm is polynomial in the running time of Py, P, 1/€ and log(1/9).

2.5 Unclonable Encryption

In this subsection, we provide the definition of unclonable encryption schemes. By unclonable
encryption, we are refering to the security defined in [AK21]. This is a variant of the original
security definition in [BL20], which forces one of mg, m; to be uniformly random. We would
remark that our security is stronger than the original one in [BL20], since in our definition mg, m;
can be arbitrarily chosen.

Definition 2.9. An unclonable encryption scheme is a triple of efficient quantum algorithms (Gen, Enc, Dec)
with the following interface:

* Gen(1%) : sk on input a security parameter 1, returns a classical key sk.

o Enc(sk, |m) (m|) : pe takes the key sk and the message |m) (m| for m € {0,1}P°YXN outputs a
quantum ciphertext pes.

® Dec(sk, pct) : pm takes the key sk and the quantum ciphertext p.:, outputs a message in the form of

quantum states p,.

Correctness. The following must hold for the encryption scheme. For sk <+ Gen(1*), we must have
Tr[|m) (m| Dec(sk, Enc(sk, |m) (m]))] > 1 — negl(X).

Unclonability. In the following sections, we focus on unclonable IND-CPA security. To define our un-
clonable security, we introduce the following security game.

Definition 2.10 (Unclonable IND-CPA game). Let A € N*t. Given encryption scheme S, consider the
following game against the adversary (A, B,C).

e The adversary A generates mo, my € {0,1}"N) and sends to the challenger as the chosen plaintext.
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o The challenger randomly chooses a bit b € {0,1} and returns Enc(sk,m;) to A. A produces a
quantum state ppc in register B and C, and sends corresponding registers to B and C.

* Band C receive the key sk, and output bits bg and bc respectively
and the adversary wins if bg = be = b.

We denote the advantage (success probability) of above game by advg 4 5c(X). We say that
scheme S is informational (computational) secure if for all(efficient) adversaries (G, A, B,C),

1
advg ac(N) < 5T negl(\).

3 On the Impossibility of Deterministic Schemes

In this section, we provide an impossibility result for deterministic information-theoretically secure
schemes. This result suggests that either computational assumptions or randomness is neces-
sary for achieving unclonable encryption with optimal security. We also noticed that previously
in [MST21], the authors have provided an impossibility result for more general schemes. Nev-
ertheless, our result provides a better asymptotic lower bound for deterministic schemes and is
based on observations on Haar random states.

To be precise, we define deterministic schemes as follows:

Definition 3.1 (Deterministic Scheme). We call an encryption scheme (Gen, Enc, Dec) is a deterministic
encryption scheme if it satisfies following:

e The encryption algorithm Enc can be realized as a unitary Uy acting on the plaintext register |m;)
and ancillary bits initialized to 0, resulting in the ciphertext pure state in the form |cs) of length .

 The decryption algorithm Dec acts the inverse USTk on received registers, then measures in computa-
tional basis to obtain the message.

The correctness of deterministic schemes is satisfied. An example of deterministic scheme is
the following: let sk encode two (arbitrary and) orthogonal states |¢) , |¢1); a message b is mapped
to |¢p). Another example is the conjugate encryption defined in [BL20]:

1. sk = (r,0) where r, 6 is independent random samples from {0, 1}"
2. Enc(sk,m) = |(m @ 7)?) (m @ r)?|, where |2?) = H" @ H”? @ - .- @ H |z) is the BB84 state.

3. Dec(sk, p): computes p' = HpH?, measures p’ in computational basis to obtain ¢, obtaining
m=cor.

Though the authors in [BL20] have already proven this scheme does not satisfy the unclon-
able IND-CPA security, our attack scheme provided a no go theorem for a larger class of possible
constructions.

For these schemes, we provide a universal adversary for the unclonable IND-CPA game.
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Theorem 3.2. For any deterministic encryption scheme, we have a universal information-theoretical ad-
versary (G, A, B, C) that satisfies

advg 4 5c(A) > 0.568,
as A — oo.

Since any deterministic encryption scheme can only suffice one-time security, we also consid-
ered whether our result can be extended to general encryption schemes that take randomness as
input, such as the following scheme inspired by [GL89].

e sk = (0,u) for 6,u « {0,1}*.
o Enci(m,r) = |r%) |(r,u) @ m) form € {0,1}, r < {0, 1},

* Dec(p) : Decode r by applying H on first ) register, and measure p in computational basis
to get ct. We can extract m = (cty._x,u) ® ctyt1.

However, our impossibility result met some barriers in the generalization. We would try to char-
acterize them as following:

¢ Since in quantum algorithms, randomness is generated intrinsically from measurements.
Consider implementing a classical randomized algorithm by quantum circuits, the random
bits in the classical algorithm would be replaced by measuring |+) states in the computa-
tional basis. Thus for general encryption algorithms, they should be modeled as quantum
channels rather than unitaries, with cipher texts modeled as mixed states accordingly. How-
ever, the understanding on the actions of random unitaries on mixed states is a much less
studied and more complicated problem.

® Our adversary (A, B,C) also relies on all information of the cipher text states to decide its
measurement. But if the encryption algorithm additionally takes some randomness, then
the adversary B and C cannot decide the actual ciphertext state.

3.1 Preliminaries on Haar Measure

To prove our result, we provide a quick introduction to the theorems related to Haar measure in
this subsection. For more information on Haar measure, readers can refer to [Wat18]. We denote
the uniform spherical measure on unit sphere S((C?)®") as j,, the Haar measure on the unitary
group U((C%)®") as ny,.

The following lemma relates the Haar measure on unitary operators to uniform spherical mea-
sure.

Lemma 3.3. Let f be a function from S((C%)®") x S((C?)®"™) — R. Then for any two fixed vectors
|0, [1) € S((C?)®™) such that (¢o|d1) = 0, we have that

E f(Ulgo),Uler)) = E F(o) s [¥1))-

Uscnn [%0),|%01) pin, (o l11)=0

We introduce Lévy’s lemma, which could be viewed as the counterpart of Chernoff bound on
the uniform spherical measure.
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Lemma 3.4 (Lévy’s Lemma). Let f be a function from S((C?)®™) — R that satisfies

[£(10)) = f())] < &l @) = [¥) []2,

for some x> 0. Then there exists a universal 6 > 0 for which the following holds. For every ¢ > 0:

0e2™
>e| <3exp| — 5 |-
K

The following simplified theorem from [MZB16] plays a crucial role in our proof.

Pr
|'¢'><_,Ufn

fv) = E [f(é)]

|#)<—tin

Theorem 3.5. Let 1), |12) € S((C?)®2") be two states independently sampled from po,. Then let
p1, p2 be the corresponding reduced density matrix in the first n qubit register. As n — oo, the trace
distance TD(p1, p2) almost surely converges to

11
TD(py, po) =5 7+ -~ 0568
s

For simplicity, in this section, E|, stands for taking expectation over |¢/) sampled from uni-
form spherical measure on corresponding Hilbert space, Ey stands for V' over Haar measure re-
spectively.

3.2 Attack schemes

We are ready to present an attack for any deterministic information-theoretically secure schemes.

Attack.

¢ For the adversary /4, it first chooses 00...00,00...01 and sends to the challenger. After
receiving the n qubit ciphertext state |ct;), it applies a random Haar unitary V, then divides
the output register into two parts, R for the qubits indexed |1, %], R for the qubits indexed

3+ 1,7
*» A then sends two registers respectively to B and C, together with the description of V .

* With the given information, B and C can perform POVMs {117}, and {II{'};, to distinguish
different messages. We will define the POVM s in detail in the following section.

The success probability of our attack scheme is equal to the success probability of the following
game.

Definition 3.6. Let A\ € N*t. Consider the following game with a challenger and an (unbounded) adversary
(B,C).

® The challenger generates two Haar random states |¢o) , |¢1) with restriction (po|¢p1) = 0 and sends
the description of two states'® to B and C.

“Here we actually mean sending the corresponding minimal distance V in the e-net of U(HS™) to approximate the
distribution of V. Thus we can sample from a finite set instead. Since we have a constant advantage in the end, we can
take e small enough such that it will only have a negligible effect on our result.

%Similarly, A sends an element in the e-net of S(H?) in implementation.
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* The challenger randomly chooses by, € {0, 1}, and divides the state |¢y,_, ) into two parts, Rp for the
qubits indexed [1, 3], Rc for the qubits indexed [ + 1, \].

* Band C perform POVM {HEB Yo and {Hbcc}bc on their received registers, outputs bp and bc from
measurement results.
The adversary wins the game if bg = bc = bep,.

The success probability of our distinguishing game is given by the following optimization
problem:

B C
nz Hrgnc nc2 (<¢0’H0 @ 10§ |¢o) + (o1 | TIY @ 10} [#1))
st I +0P =1, 10§ + 10§ = 1,
2

M

0<IP <I1,,0<1¢ <1I,.
2 2

The 1 comes from the requirement that the challenger sends |¢o) , |¢1) with equal probability.
We denote this probability as G(|¢o) , \gbl )). For simplicity, in following sections we will abbreviate
{nB . Jop and {Hbc}bc as {I1%} and {11} respectively.

In our attack scheme, our success probability is given by Ex Ev [G(V Uy [0...00), VU |0...01))].
By lemma 3.3, we have that

E[G(VU;|0...00),VU|0...01))] = E (G (|6o) , |¢1))] = Pr[(B,C) wins]
v [60),|1) (bol1)=0

Then we can provide a lower bound for the success probability via following inequalities:

Pr((B,C) wins| [¢o) , [¢1)]

= {n%%{}ﬁc}Pr[(bB = ben) A (bo = ben) {TIP}, {TIY, [¢o) , [61)]

=1~ min Prlb # beal{TI%}. 60, |91)] — min Prlbc # b {11}, [60) . [¢1)]

1 1
=1—5(1=TD(pf, pf)) = (1 =TD(§ o))

1
where the first line is by definition, the second line follows from union bound, the third line is by
the property of trace distance.

Then by taking expectation, we have that for large enough A,

Pr[(B,C) wins| = E Pr[(B,C) wins| |¢g) , |#1)]
[#0),]¢1),{¢0ld1)=0

1
2 | |:(TD pB7 pB + TD pC, pC ):|
[#0),¢1),(¢ol#1)=0 2 ( 0 1 ) ( 0 1 )

1
E [2(TD(poB,pf) + TD(P%P?))} — negl(\)
™ go)ldn)

% + 1> 056,
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where the first line is by definition, the second line is by the inequality before, the third line is by
concentration property of the Haar measure, the last line is by theorem 3.5 as A — oco. Thus we
finished the proof of theorem 3.2

Here we provide rigorous proof of the third line. Note that for an arbitrary |¢), given |¢o) it
can be written as |¢1) = a |¢o) + /1 — |a|? |5 ), where a = (¢o|¢1) and (¢po|¢g) = 0. By symmetry,

we have that 4, [|a|?] = 2% Taking € = )\2_%, k = 2 in lemma 3.4, we obtain that

A S\2
> N < 3eXp 1 |
22 4

2
1
E [[a|] < 3exp <—52> “1+1- ﬁj_ = negl(\).

|¢1)

thus we can derive that
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Consider the trace distance TD(p{, p¥) for two random states |¢) , |¢1). By definition it can
be rewritten as | Trc[|¢o) (¢o| — |¢1) (¢1]]]1, then following the decomposition of |¢1) = a|¢pg) +
/1 —1al? |5 ), we expand the expectation of the term as

B [ [l )60} 6ol - 103 (051 — VI Ta(e o) (01 + o* 6 (oD
¢0),1¢5°)
(¢oldg)=0

1
< &[5 eclion) ool — lon) all | + Ellal
|¢0),1¢1) @

(¢ol¢1)=0

< B [TD(f.o8)] + nel),
|#0),lé1)
(¢ol#1)=0

where the second line is by definition, the third line is from the decomposition of |¢), the fourth
line is by triangle inequality and renaming |¢5-) to |¢1), the last line is by definition and previous
bounds on E[|al].

4 More on Coset States

In this section, we will recall the basic properties of coset states. We will then introduce a strength-
ened unclonable game in the quantum random oracle model (QROM), upon which we will build
our unclonable encryption scheme. The last subsection is devoted to prove the security of this
strengthened game.

4.1 Preliminaries

In this subsection, we recall the basic definitions and properties of coset states in [CLLZ21]. Let
A C F% be a subspace. Define its orthogonal complement of A as A+ = {b € F% | (a,b) mod 2 =
0, Va € A}. Tt satisfies dim(A) + dim(A+) = n. We also let |A| = 24(4) denote the size of A.
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Definition 4.1 (Coset States). For any subspace A C Iy and vectors s, s’ € 3, the coset state |Ag o) is
defined as:

5’“>a s) .
Ay o) = \/ITZ la+ s)

a€A

By applying H®" to the state | A /), one obtains exactly |AZ ). Given 4, s, s/, the coset state is
efficiently constructible. 7

For a subspace A and vectors s, s, we define A+ s = {v+s:v € A},and At +5' = {v + 5" :
v € At}. We define Py, and P, as the membership checking oracle for both cosets.

It is also convenient for later sections to define a canonical representation of a coset A + s, with
respect to subspace A,

Definition 4.2 (Canonical Representative of a Coset). For a subspace A, we define the function Can 4(-)
such that Can4(s) is the lexicographically smallest vector contained in A + s. We call this the canonical
representative of coset A + s.

If 5 € A+s,then Cany(s) = Cany(3). We also note that Can 4(-) is polynomial-time computable
given the description of A. Accordingly, we can efficiently sample from CS(A) := {Cana(s) : s € F3},
which denotes the set of canonical representatives for A.

For a fixed subspace A, the coset states {|A4,¢)} form an orthonormal basis.

(See Lemma C.2 in [CLLZ21])

SECS(A),s'€CS(AL)

Next, we recall the regular direct product and MOE properties of coset states. These properties
will be used to prove the strengthened unclonable property.

Direct Product Hardness

Theorem 4.3 (Theorem 4.5,4.6 in [CLLZ21]). Let A C 2 be a uniformly random subspace of dimension
2, and s, s' be two uniformly random vectors from F}. Let € > 0 such that 1/e = o(2"/?). Given one copy
of | As ) and oracle access to Pays and Py, an adversary needs Q(y/€22) queries to output a pair
(v,w) that v € A+ s and w € A+ + s' with probability at least e.

An important corollary immediately follows.

Corollary 4.4. There exists an exponential function exp such that, for any query-bounded (polynomially
many queries to Pays, Py ) adversary, its probability to output a pair (v,w) that v € A + s and
w € At + 5" is smaller than 1/exp (N).

Monogamy-of-Entanglement (with Membership Checking Oracles).
Definition 4.5. Let \ € NT. Consider the following game between a challenger and an adversary (A, B,C).

e The challenger picks a uniformly random subspace A C F2 of dimension %, and uniformly random
vectors (s, s') € CS(A) x CS(A™L). It sends |Ag o) to A.

* A,B,C get (quantum) oracle access to Pyy, and Py1 , ..
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A creates a bipartite state on registers B and C. Then, A sends register B to B, and C to C.

 The description of A is then sent to both 3, C.

e Band C return respectively (s1, s}) and (sz, sh).
(A, B,C) wins if and only if for i € {1,2}, s; = sand s}, = ¢

We denote the advantage (success probability) of the above game by adv 4 5 (). We have the
following theorem.

Theorem 4.6 (Theorem 4.14, 4.15 in [CLLZ21]). There exists an exponential function exp such that, for
every A € N, for any query-bounded (polynomially many queries to Pays, Py o) adversary (A, B,C),

advapc(A) < 1/exp(N).

Note that in [CLLZ21], the authors only proved the above theorem for a sub-exponential func-
tion and membership checking oracles are given in the form of indistinguishability obfuscation
(iO). The proof trivially holds if we replace iO with VBB obfuscation (quantum access to these
oracles). Culf and Vidick [CV21] further proved the theorem holds for an exponential function.

4.2 Strengthened MOE Game in the QROM

In this subsection, we will introduce the strengthened MOE game in the QROM and state our
main theorem. We present the proof in the next section.

Definition 4.7. Let A € NT. Consider the following security game between a challenger and an adversary
(A, B,C) with a random oracle H : F) x Fy — {0,1}"V)

e The adversary A generates A € {0,1}"Y) and sends A to the challenger.

e The challenger samples a random subspace A C T of dimension \/2 and two random vectors
(s,s") € CS(A) x CS(A™L). The challenger also randomly chooses a bit b € {0, 1} and calculates
w=H(s,s")®(b-A).

It gives |As o) and w to A.
* A, B,C get (quantum) oracle access to Pyys and Py1 | .
* A produces a quantum state over registers BC and sends B to B and C to C.
* B,C are given the description of A, they try to produce bits bg, bc.
(A, B,C) win if and only if by = be = b.

We denote the advantage of the above game by adv 4 5¢()). Note that since s, s’ is defined as
the canonical vector of both cosets, they are uniquely defined; similarly, H (s, s") is also uniquely
defined.

We show the following theorem:

Theorem 4.8. Let n = Q(\), then for every X\ € N* and all query-bounded algorithms (A, B,C),
advapc(A) < 5+ negl(M).
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4.3 Proof for Theorem 4.8
Proof. We prove the theorem by following hybrid arguments.
Hybrid 0. This hybrid is the original game.

Hybrid 1. This hybrid follows Hybrid 0, but the oracle of A will be reprogrammed as H; o defined
as follows:

u ifz=s5,2=¢

Hs,s/(zv Z/) = {

H(z,2') otherwise

where u € {0,1}" is chosen uniformly at random.

Hybrid 2. This hybrid will modify the access to random oracle of 5 and C.
e The adversary A generates A € {0,1}"™ and sends A to the challenger.

* The challenger samples a random subspace A C F} of dimension A/2 and two random
vectors (s, s’) € CS(A) x CS(AL). The challenger uniform randomly samples a bit b € {0, 1}
and r € {0,1}"™"), and defines the oracle H! ,, as follows:

r@d(b-A) ifz=s2=¢
H(z,2') otherwise

Hg}s,(z,z') = {

It gives |A; ) and 7 to A.
¢ A,B,C get (quantum) oracle access to Pa4s and Py, .

¢ With access to quantum random oracle H; o, A produces a quantum state over registers BC
and sends B to Band Cto C.

* With access to quantum random oracle H’ ,, B,C are given the description of A, they try to

produce bits b, be. 7
A, B,C) win if and only if by = be = b.
y

We denote by p; the optimal success probability of the game in Hybrid i. For the relations
between different p;, we have following lemmas:

Lemma 4.9. |pp — p1| < negl(A).
Lemma 4.10. p; = po.
Lemma 4.11. py < 5 + negl(\).

Combining the three lemmas, we have completed the proof of Theorem 4.8.

Now we provide proofs for lemmas beyond.
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Proof for Lemma 4.9. We prove by contradiction. Suppose py > p1 + 1/¢(\) for some polynomial
q()\), then we can construct an adversary A’ that violates the direct product hardness of coset
states. A’ will perform as follows:

o A’ samples a random oracle H : 3 x ) — {0,1}")

e A’ simulates A using H and applies computational basis measurement on a random quan-
tum query made by A to the random oracle.

By Theorem 2.1, assuming .4 makes at most 7" queries, then A’ gets (s, s’) with probability at least
4/(¢*T), a contradiction to Corollary 4.4. O

Proof of Lemma 4.10. Fixing A and b, the two games are identical by renaming the w = H(s,s’) @
(b- A) tor. Since H (s, s') is uniformly random, its distribution is identical to r. O

Proof of Lemma 4.11. Fixing A,r, A, two canonical vectors s, s, let H_; s be a partial random oracle
that is defined on every input except (s, s’). Fix any partial random oracle H_; ;/, we define two
projectors TIE  TIZ over register B as:

e II¥: runs B on input A with oracle access to H? , where H? , is the same as H_ ¢ except on
input (s, s') it outputs r; it measures if the outcome is r; then it undoes all the computation.

e IIP: similar to II§ except on input (s, s'), the random oracle H! , outputs r & A and it checks
if the outcome is r @ A.

Let {|¢:)}i be a set of the eigenvectors of (IIF + IT17) /2 with eigenvalues {\;};.
Fixing the same A, s, ', and H_ ¢, we can similarly define II§, TI{ for C. Let {|1;)}, be a set
of the eigenvectors of (11§ + I1{') /2 with eigenvalues {1} ;.

Let |¢gc) be the state prepared by .A. Without loss of generality, we can assume the state is
pure. We write the state under the basis {|¢;) }; and {|;)};:

QSBC Zaz,j ’d)z & |1/)J>

7]

Lemma 4.12. Tnken the randomness of A, s, s’ and H_g g, for every polynomial p(-), there exists a negli-
gible function negl such that with overwhelming probability the following weight is bounded:

> |ai j* < negl(n).
i |[A—1/2|>1/p
Jr I —=1/2[>1/p

The proof for this lemma is given at the end of this section.
With the above lemma, we can claim that over the randomness of A, s, s’ and H_; ¢, for every
polynomial p(-), |¢sc) is negligibly close to the following state |¢g):

Yo ailede® et Y. il ® W)c
i \i—1/2|<1/p i:|Ai—1/2|>1/p
Jilui—1/21<1/p

For convenience, we name the left part as |¢};) (indicating B can not win) and the right part as
|¢7) (indicating C can not win). Thus, for every polynomial p(-), there exists a negligible function
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negl(-), | [oBc) — (|¢R) +|o¢))|1 is at most negl(-) (in expectation, taken the randomness of A4, s, s',r
and H_; o).

The probability that (A, B,C) wins is at most:
(| @ 10§ |¢o) | + |(@F @ IF) |¢e)| ) /2

I1¥ ® 11§ is the case that they both get access to Hy and I1¥ ® II{ for Hj.
The probability is at most

(|(IF @ TIS) (10) + [¢6))|* + |18 @ T ) (|6p) + [60))[*)/2

% (sl (I§ @ TI5) |9ls) + (5| (117 @ TIT)[¢fs) + (62| (I @ TI5)|0¢) + (¢ (117 @ 1Y) |¢c))
+Re ((¢lg| (11§’ @ II§) [ 9) + (9] (117 @ 1Y) ()

% (Bl (15" @ Dolg) + (5] (IF @ I)|élg) + (9| (I © TIG)|6g) + {del(T @ 1T)|¢c))

+Re ({¢] (11§ @ TIF)|6¢) + (@I(I7 @ T17)|o)) -

We bound each term separately.

o 5 (85 0F @ DIdlg) + (¢|(IF @ 1)]|¢)). Tt is equal to (¢|(IIF + IIf')/2 @ I|¢fs); by the
definition of |¢3), it will be at most (5 + )| |¢7) |*-

2 (LI @IS |¢L) + (op| (I @ TIT)|¢)). Similar to the above case, it is at most (5+ %)] o0 |

Re ((¢|(IIF ® 11§ )|¢)). By Corollary 2.4, the inner product will be 0:

(Ol @I op) = > ST al (6118 on) (0G|
X —1/2|<1/p i":|\y—1/2|>1/p
3'tlpy —1/21<1/p

since every possible i, i satisfy \; + A\ # 1, we have (¢;|I1F|¢;/) = 0.
* Re ((¢j|(IIF @ TI7)|¢L)). By Corollary 2.4, the inner product will be 0 as well.
Therefore, the total probability will be at most (% + %) (] |¢23> |2 + | \¢’C> |2) + negl(n) < % +

negl(n).

Since the above statement holds for every polynomial p(-), it finishes the proof for Theorem 4.8.
O

+

=

Finally, we give the proof for Lemma 4.12.

Proof of Lemma 4.12. We prove by contradiction: suppose there exists an adversary (A, B,C) such
that the weight, which we call W, is non-negligible, i.e. W > 1/q()) for some polynomial ¢(-),
with some non-negligible probability 7()\). For convenience, we will omit X in the proof when it
is clear from the context.

We construct the following adversary (A’, B/, C’) that breaks the regular MOE game in Defini-
tion 4.5:
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1. A',B',C’ get (quantum) oracle access to P44 and Py1_ ..

2. A first receives A from simulated .4, it samples » € {0, 1} and a random oracle H. Given
|As &), r and two membership checking oracles, it simulates A via reprogrammed H; s/, and
produces |¢pc); it gives B to B’ and C to C'.

Note that, although H is a total random oracle, we will later reprogram H at the input (s, s’).
Thus, H will only serve as H_; . Since A" does not know (s, s’), it is hard for A’ to only
sample H_; ..

3. Define two projectors 11§, TI¥ over register B as what we have described at the beginning of
the proof, with the random oracle H? , and H} , is defined as:

r ifz=35,2 =35
Hg,sl(z,z') = . ! ,
H(z,2') otherwise

and

Hl

S,8

, roA ifz=5,2'=4¢
(z,2') = k .
H(z,2') otherwise

Given Psys, Py o and the description of A, one can efficiently implement point functions

that check the canonical vectors s and s’; thus, additionally given H, H 27 g and H 81 & can also

B

be efficiently simulated. Therefore, B’ can implement both I1F, II? efficiently.

B’ gets B, it applies the efficient approximate threshold measurement SATIE’;?,’ Q)
rem 2.8 with P = (II§ +118)/2,Q =1 — P,y = 3/4p,e = 1/4pand § = 2.

If the outcome is 1, B’ then runs B on the leftover state with Hy or H; picked uniformly at
random. It measures and outputs a random query B makes to the random oracle.

in Theo-

4. Similarly define IT§, TI{ as above on register C. C’ gets C, it applies the efficient approximated
threshold measurement SATIE’If Q) with P = (TI§ +11$)/2,Q = I — P,y = 3/4p, e = 1/2p,
and § = 27

When the outcome is 1, ¢’ runs C on the leftover state with Hy or H; picked uniformly at
random. It measures and outputs a random query to the random oracle.

By Theorem 2.8 bullet (1), conditioned on W > 1/¢, both B’ and C’ will get outcome 1 with
probability 1/¢—26 = O(1/q). When both outcomes are 1, by bullet (2) of Theorem 2.8, the leftover
state is 46-close to the the following state:

> Bijleis © e
:[\;—1/2|>1/4p
Jilpi—1/2[>1/4p
Observe that when B does not query (s, s'), it will succeed with probability exactly 1/2. There-
fore, by Theorem 2.1, the query weight of B on (s, s') is at least 1/4p>T — negl(\), where T is an
upper-bound on the number of queries made by B. Arguing similarly for C, we conclude that the
adversary (A, B',C’) wins with probability at least O(n/(qp*T?)), which is non-negligible.
O
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5 Unclonable Encryption in the QROM

The following is the unclonable encryption scheme for a single bit:
1. sk = A where A is a random subspace A C F3 of dimension n/2;

2. Enc’(sk,m): it samples s + CS(A) and s’ +— CS(A™) uniformly at random; it outputs |A; ),
c=H(s,s)®om;

3. Decf(sk = A, (|As ), 0)):

¢ [t first computes s in superposition. We know that there is a classical algorithm that
on any vector in A + s and the description of A, outputs the canonical vector of A + s
(which is s in this case). See [CLLZ21] Definition 4.3 for more references.

We can run this classical algorithm coherently on |A; o) to learn s.

¢ Since the algorithm on any vector in A + s outputs the same vector, the quantum state
stays intact. We can run the same algorithms coherently on the Hadamard basis and
the description of A* to learn s'.

e Outputc® H(s,s').
With Theorem 4.8, we can show the scheme satisfy the unclonable IND-CPA security.

Proof. If we have some adversary (A, BB,C) for the scheme beyond, we can construct an adversary
(A", B',C’) for the strengthened MOE game with the same advantage.

e The adversary A’ gets (mg, m1) < A and sends A = mgy @ m; to the challenger.

o After receiving |A; ¢) and w from the challenger, A’ calculates ¢ = w & myg, and sends
(|As,¢) , ¢) to A. The output registers B, C of A are sent to ', C’ respectively.

e B',C’ exactly run the algorithm of B, C, and output their output respectively.

Thus we have concluded the unclonable IND-CPA security of our game.
Ul

Remark 5.1. Notice that compared to the strengthened MOE game, our construction does not provide
additional membership checking oracles.

6 Copy-Protection for Point Functions in QROM

6.1 Copy-Protection Preliminaries
Below we present the definition of a copy-protection scheme.

Definition 6.1 (Copy-Protection Scheme). Let F = F(\) be a class of efficiently computable functions
of the form f : X — Y. A copy protection scheme for F is a pair of QPT algorithms (CopyProtect, Eval)
such that:
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* Copy Protected State Generation: CopyProtect(1*,dy) takes as input the security parameter 1
and a classical description d; of a function f € F (that efficiently computes f). It outputs a mixed
state py € D(Hz), where Z is the output register.

e Evaluation: Eval(1*, p, z) takes as input the security parameter 1*, a mixed state p € D(Hz), and
an input value x € X. It outputs a bipartite state p’ ® |y) (y| € D(Hz) @ D(Hy ).

We will sometimes abuse the notation and write Eval(1*, p, z) to denote the classical output y € Y
when the residual state p’ is not significant.

Definition 6.2 (Correctness). A copy-protection scheme (CopyProtect, Eval) for F is d-correct if the
following holds: for every x € X, f € F,

Pr|f(x) «+ Eval(l)‘,pf,x) D pp CopyProtect(l’\,df)} > 0.

If 6 > 1 — negl(X), we simply say that the scheme is correct.

Remark 6.3. When ¢ is negligibly close to 1, the evaluation algorithm Eval can be implemented so that it
does not disturb the state py. This ensures that p; can be reused polynomially many times with arbitrary
inputs.

We define security via a piracy experiment.

Definition 6.4 (Piracy Experiment). A piracy experiment is a security game defined by a copy-protection
scheme (CopyProtect, Eval) for a class of functions F of the form f : X — Y, a distribution Dx over F,
and a class of distributions © x = {Dx (f)} rer over X x X. It is the following game between a challenger
and an adversary, which is a triplet of algorithms (A, B,C):

¢ Setup Phase: The challenger samples a function f < Dr and sends py < CopyProtect(1*,d ) to
A.

 Splitting Phase: A applies a CPTP map to split py into a bipartite state pgc; it sends the B register
to B and the C register to C. No communication is allowed between I3 and C after this phase.

® Challenge Phase: The challenger samples (vp,zc) < Dx(f) and sends xp,xc to B,C, respec-
tively.

* Output Phase: B and C output yg € Y and yc € Y, respectively, and send to the challenger. The
challenger outputs 1 if yp = f(xp) and yc = f(xc), indicating that the adversary has succeeded,
and 0 otherwise.

The bit output by the challenger is denoted by PirExp%?g;OteCt’Eval(l’\, (A, B,C)).

As noted by [CMP20], the adversary can always succeed in this game with probability negli-

gibly close to
triv D = P
PUPrDx) = max B maxPriy | o)
(zp,xc)=Dx(f)

by sending p; to B and have C guess the most likely output y given input z¢ (or vice versa). In
other words, p'" is the success probability of optimal guessing strategy for one party E € {B,C}
given only the test input 2.
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Bounding the success probability of the adversary is bounded by p'" captures the intuition
that p; is no more helpful for simultaneous evaluation than a black-box program that could only
be given to one party.

Definition 6.5 (Copy-Protection Security). Let (CopyProtect, Eval) be a copy-protection scheme for a
class F of functions f : X — Y. Let D be a distribution over F and Dx = {Dx(f)};cr a class
of distributions over X. Then, (CopyProtect, Eval) is called (Dr,® x)-secure if there exists a negligible
function negl such that any QPT adversary (A, B, C) satisfies

Pr [b =1 : b« PirExplorprorect Bval (1& (A, B,C))} < P (Dr, D) + negl(\).

Copy Protection for Point Functions A point function f, : {0,1}" — {0,1} is of the form

1 =
fylw) = {0’ i

When dealing with point functions, the classical description of f, will simply be y, and accord-
ingly the distribution D over point functions will be represented by a distribution D = D) over
{0,1}™. Since copy protection is trivially impossible for a learnable distribution D, we are going
to restrict our attention to unlearnable distributions.

Definition 6.6. A distribution Dy over {0,1}™, with m = poly(X), is called unlearnable if for any
query-bounded adversary A%s") with oracle access to f,(-), we have

<D
Prly =y y/(_afy(?)\(l)\) < negl(\).

Definition 6.7 (Copy-Protection Security for Point Functions). Let m = poly(\) and F be the class
of point functions fy : {0,1}™ — {0,1}. Let Dx = {Dx(f)} e be a class of input distributions over
{0,1}™x{0,1}™. A copy protection scheme (CopyProtect, Eval) for F is called ® x-secure if there exists a
negligible function negl such that (CopyProtect, Eval) is (D), ® x )-secure for all unlearnable distributions
Dy over {0,1}™.

6.2 Construction

In this section, we design copy-protection for a class of point functions. We set n = 2\ and d = A
throughout the section. Our construction will use two hash functions: (a) G : {0,1}* — {0, 1}
and (b) H : F§ x F§ — {0, 1}4"+A. In the security proof, we will treat G and H as random oracles.
We will use F3 and {0, 1}" interchangeably.

We denote the set of all d-dimensional subspaces of Fy by S;. We will need the following
lemma for correctness.

Lemma 6.8. There exists a set of efficient unitaries {Uas } ares, € U(Hx @ Hz ® Hanc), where X, Z, anc
are registers of length n, 2n, poly(X), such that the following holds for any A € Sg:

e Foranys e CS(A),s' € CS(AL), we have Ug |Ay.y) [027), [0POY)) |4, )]s, 8), [0POYCN)

anc anc’
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* Forany A" € Sy such that |AI2QA‘ < v(A), for some negligible function v(-), there exists a negligible

function v'(\) such that the following holds for all s € CS(A), s' € CS(A*):

2
|(1x @ 15, 505,512 @ Tanc) (U 140,90 102)5 [0°Y ) ) |7 < /().

Proof. To get unitaries satisfying the first bullet, recall that there exists an efficient procedure which
computes Cany(-) given the description of A. We can represent this procedure by a unitary U
followed by measurement of s, s. We describe U as follows:

1. Apply U to the X, anc registers. Copy the answer to the first half of the Z register. Note that
the answer is always s since |A; o) is a superposition of vectors in A + s.

2. Apply UT to the X, anc registers.

3. Apply QFT on the X register to obtain |Ajs>.

4. Repeat the first two steps and copy the answer s’ to the second half of the Z register.
5. Appy QFT again to recover |A; o)y

We will show that the second bullet follows from the first bullet. We first observe that the inner
product between the coset states |45 ) and |4 ) is small. Indeed, since (A +s) N (A" + )| =

AN A'| <2%(\), we have
2

‘<AS,S”A; )< > a+s| ———

\/lA* > ()& d 4 5)

a'e A’

[z

< |2ty

=V 2.

Fix Uyr. Recall that the coset states {]At t,>}

first bullet, we have

form an orthonormal basis. By the

‘2

teCS(A),t’eCS(AL)

H(IX X |Sa S/><S> 5/|Z X Ianc) (UA’ ‘At,t/>x |02n>Z |0p0|y(>\)>anc)

2
= | x @ 15,55, 812 @ Lane) (|400)x 11 1) 107 ) ) | = 0
for any (¢,t") # (s, s'). Therefore, we have
2
H(IX ® ‘57 S/> <57 S/|Z ® Ianc) (UA’ ’As,s’>x |O2n>z IOPOIy(A)>anc> ‘

2

Z (Ix @ [s,5")(s, 8|z ® Lanc) (UA’ |4 t’> ( ;,t/’AS,8’>X |02n>z |Op0ly()\)>anc)
teCS(A)
'€CS(AT)

= |<AS,S’ |A/s,s’>

as desired. O

2 <u(N)2

33



Construction. We describe the copy-protection scheme (CopyProtect, Eval) for a class of point
functions 7 = {fy()},c0,1} as follows:

e CopyProtect (1, y): it takes as input A in unary notation, y € {0,1}* and does the following:
1. Compute v = G(y). Parse v as a concatenation of d vectors vy, . . ., vq, where each v; has
dimension n. Abort if the vectors {v1,...,v4} are not linearly independent.
2. Let A = Span (v1,...,vq).
3. Sample s +— CS(A) and s’ <+ CS(A1) uniformly at random.
4. Output the copy-protected state 0 = |A; ) (As s/|x @ |H(s,s'))(H(s,s)|y.
* Eval(o, z): on input the copy-protected state 0 € D(Hx ® Hy), input = € {0, 1}?, it does the
following:
1. Measure the register Y of o to obtain the value . Call the resulting state o’

2. Compute v = G(z). Parse v as a concatenation of d vectors vy, ..., v, where each v;
has dimension n. Abort if the vectors {v1, ..., v4} are not linearly independent.

3. Let A = Span (vi,...,vq).

4. Apply U4 (defined in Lemma 6.8) coherently on o’ @ |0%")(0?"|z @ [0POY(N)) (0POY V)|,
to obtain the state o”.

5. Query H on the register Z and store the answer in a new register out.

6. Measure the register out in the computational basis. Denote the post-measurement
state by ooyt and the measurement outcome by ¢'.

7. If 0 = ¢, output ooyt ® |1)(1]. Otherwise, output ooyt @ [0) (0.

We first discuss at a high level why this construction works. Regarding correctness, we argue

that Eval on input « # y computes a random subspace A’, such that |A’, ) is nearly orthogonal to

|As s). As aresult, Eval recovers (s, s') incorrectly. Since as a sufficiently expanding hash function
H is injective with high probability, Eval fails.

As for security, first we show that it is hard for A to query the oracles G, H on inputs y, (s, s’).
Next, we argue that B and C cannot both recover (s, s’), otherwise they break the MOE game in
Theorem 4.6.

Most meaningful input distributions © x (y) for a point function f, can be parameterized by a
triple (p, ¢, 7):

e With probability p, output (y, y)
* With probability g, output (y, z¢), where x¢ # y is a random string.
* With probability r, output (zp,y), where xp # y is a random string.

e With probability 1 — p — ¢ — r, output (2, x¢), where xp, z¢ # y are random strings.
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We show that our scheme is secure with respect to product distributions, i.e. when (p, ¢,7,1 —
p — q — r) is of the form (pp’, pq’, qp’, q¢') withp + ¢ = p’ + ¢ = 1, in Lemma 6.13. We also show
security for maximally correlated input distributions, i.e. when ¢ = r = 0, in Corollary 6.20. The
way the random strings x g, x¢ are sampled (uniformly or otherwise) turns out to be inconsequen-
tial in our security proof.

We give the formal statements below.
Lemma 6.9. (CopyProtect, Eval) satisfies correctness.

Proof of Lemma 6.9. We first argue that step 1 of CopyProtect aborts only with negligible probability:

Claim 6.10. Let n = 2d = 2\ and vy, v, ...,vq € Fy be uniformly random independent vectors, then
there exists a negligible function vy such that vy, ..., vq are linearly dependent with probability at most

().

Proof. Let p; be the probability that {v1, ..., v;} is linearly independent given that {v;,...,v;_1} is
linearly independent. Since v; is uniformly random and the span of {v1,...,v;—1} has size 2i—1,
we have p; = 1 — 2071 /2" Thus, the probability that {v1,...,vs} is linearly independent is given
by

d d ' N
[Ip =TI -2 = (1-27) 21— x27,
i=1 i=1
where we used the union bound in the last step. Hence, the claim holds for vp()\) = A\27. O

We will condition on step 1 of CopyProtect not aborting henceforth. Let y € {0,1}* and o +
CopyProtect (1, y). Note that o is of the form |4 ) (A, ¢ |x ® |0)(0]y, where the following holds:

1. v = G(y) and v is a concatenation of d linearly independent vectors vy, ..., vq
2. A= Span (v1,...,vq)

3. s € CS(A) and s’ € CS(A™) are selected uniformly at random.

4. 0=H(s,s)

We now consider the two cases: z = y and x # .

Case 1. Eval(o,y) = gout ® |1)(1], for some state oout. 1f we follow the first four steps of Eval(o,y),
we will end up with the subspace A (defined above). From Lemma 6.8, we have the following:
after applying Uy on |A; ¢) |0),,.- We obtain (s, s’) in anc register. That is, anc register has the
state |s, s’). After querying H on anc, the value stored in out is H(s,s’). Thus, measuring the
register out yields the value 6/ = H(s,s’). Since 6’ = 6, the output of Eval(o,y) is oout @ |1)(1],
where oyt is the residual state.

Case 2. Vz # y, TD(Eval(o, ), 0out ® |0)(0]) < v(\), for some negligible function v(\) and some state

oout- To prove this, it suffices to show that the probability that Eval(o, z) outputs 1 is negligible in
A. Consider the following claim:
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Claim 6.11. If H : {0,1}?" — {0, 1}4"* is picked uniformly at random, the probability that H is not
injective is at most vy (), for some negligible function vy (-).

Proof. For any a # b € {0,1}?", the probability that H(a) = H(b) is ?4"%‘ By a union bound
argument, the probability that H is not injective is at most 2(:4 < 242:% = 2% O
Let us condition on the event that H is injective. We consider the first four steps of execution of
Eval(o, x):

* Measure the register Y of o to obtain the value . Call the post-measurement state o’.

e Compute v = G(z). Parse v as a concatenation of d vectors vy, ...,v4, where each v; has
dimension n. Abort if the vectors {v1,...,v4} are not linearly independent.

e Let A’ = Span (vy,...,vq).
Consider the following claim.
Claim 6.12. If z # y, then there exists a negligible function vo(\) such that the probability (over the coins

of G) that |A/2QA| < vo() holds is at least 1 — vo(N).

Proof. Since z # y and G is a random oracle, A and A’ are independently sampled. By Claim 6.10,
A and A’ are uniformly random independent subspaces of dimension d each with probability at
least 1 — 219(\). Conditioned on this, we can bound the expected size of their intersection as

E[lAnA|] =) PrlveAnA] =) Prive AP =1+(2" - 1)(2d—”>2 <2. (4)
veFY veFy

Let vo(\) = 275 + 2u9(\). Then, by Markov’s Inequality and eq. (4) we have

Pr [‘A/ N4 > Vg(/\)] < 2uv(N) + W

5 < 2u(\) + 272 < ().

‘A;r;m < 15(A). By Lemma 6.8, we have that

We will condition on the event that

2
pi= H(IX ® ’8a S/> <37 S,’Z & Ianc) (UA’ ’As,s’> ‘O2n>Z ‘OPOIy(A)>anc) ’ < V3(/\)'

for some negligible function v3(\). Since we have conditioned on the event that H is injective,
the probability that Eval(1*, o, 2) outputs 1 is given by

2
=D

| v z.ane @ [H (5, 8))(H (5, 5)lout) (Ix ziane © O7) U |4 )5 [09YD) o 10) g
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where O¥ is the unitary that computes H. Combining this with Claim 6.10, Claim 6.11 and Claim 6.12,
we conclude that for any = # y,

|ANA’| S
Pr |1 < Eval(1*,0,2)| < Pr |1« Eval(1*, 0,2 2 <v2(A), Ha is injective,,
) ) ) )
CopyProtect(1*,y) or Eval(1*,0,z) doesn’t abort

+ Pr {CopyProtect(l)‘, y) or Eval(1*, o, ) aborts} + Pr [H; is not injective]

AN A
+ Pr P ; | > 1a(A) | Hais injective]
< 1/3()\) + 21/0()\) + 11 ()\) + 1/2()\)
< negl(A).

O

Lemma 6.13. (CopyProtect, Eval) is a © x-secure copy-protection scheme for point functions with input
length X\, where D x (y) = DF x DF is a product distribution.

Proof of Lemma 6.13. Fix an unlearnable distribution D = D). We will define a sequence of hybrids:

Hybrid 1. This is the real piracy experiment for (CopyProtect, Eval) defined in Definition 6.4, where
(A, B,C) all have access to both random oracles G and H. The input to CopyProtect is denoted by
y € {0,1}* as in the construction.

Hybrid 2. In this hybrid, we change, for A only, the oracle G to G, which is the punctured oracle
defined as

Ju, r=y
Gy(‘”)‘{Gm), _

where u € {0,1}"? is a fresh uniformly random string.

Hybrid 3. In this hybrid, we have the challenger sample A C §; uniformly at the start. Using this
A, we change the oracle G for B and C both to G;‘, which is the reprogrammed oracle defined as
follows:

¢ Fix a random basis (v1, . ..,v4) of A.
e Ifz =y, then Gﬁ(x) outputs (v1, . .., vq).
o Ifx # y, then Gﬁ(x) outputs G(x).
Hybrid 4. In this hybrid, we change, for A only, the oracle H to the punctured oracle H, o defined

as
v, (t,t)
H(t,t), (t,t)

(s, )

(5,5

ol

H, o (t,t") = {

where v € {0, 1}%"** is a fresh uniformly random string.

Let p; be the probability that (A, B,C) wins in Hybrid i, and let p'™V = p*V(D,, D x). We will
show the following lemmas about the hybrids:
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Lemma 6.14. |p; — p2| < negl(\).
Lemma 6.15. |p2 — p3| < negl(\).
Lemma 6.16. |p3 — p4| < negl(N).
Lemma 6.17. py < p'™ + negl()).

Proof of Lemma 6.14. Let pg)c be the bipartite state sent by .4 to B and C in the ith Hybrid. We will
show that TD (p(Blc), p(82c)> < negl(A). Since Hybrid 1 and Hybrid 2 are identical after the splitting
phase and trace distance cannot increase by post-processing, this suffices to prove the lemma.
Suppose that TD (pgc), péfé) is non-negligible. Using A from Hybrid 2 we will construct an
adversary A’ which violates the unlearnability of D, (Definition 6.6) without using the oracle

fy()-

e A’ samples random oracles G, H, a random subspace A € Sy, and random (s, s’) € CS(A) x
CS(A1).

e A’ runs A on input (G, H,|Asg),H(s,s )) Then it measures a random query y’' made by A
to G, and outputs y/'.

By Theorem 2.1, the probability Pr [y’ = y| is non-negligible, thus A’ breaks unlearnability.
O

Proof of Lemma 6.15. This easily follows by the fact that Hybrid 2 and Hybrid 3 are identical condi-
tioned on the fact that G(y) outputs a valid basis, which happens with overwhelming probability
by Claim 6.10. O

Proof of Lemma 6.16. Similarly as before, it suffices to show TD (pgc), p(BQC)) < negl(X). Suppose this

is not the case, we will construct an adversary A’ which breaks direct product hardness (Corol-
lary 4.4) using A from Hybrid 4:

o A’ receives | A, ¢) from the challenger, where (s,s’) € CS(A) x CS(A1). It samples random
oracles G, H, and a random string v € {0, 1}*"*+.

e A’ runs A on input (G JH A s) s v). It measures and outputs a random query (¢,¢') made to
H during the execution.

By Theorem 2.1, the probability Pr [(¢,t') = (s, s")] is non-negligible, thus A’ breaks direct product
hardness.

O
Proof of Lemma 6.17. We will use the same template as in the proof of Lemma 4.11. Let pgc := p(B%
be the bipartite state created by .A. We can assume without loss of generality that pgc := |¢Bc) (¢BC|

is a pure state. Define POVM elements 18 TI¢ as follows:

o I15: samples x5 « ’DyB ; it runs B on input oracles Gﬁ, H and test input z g; it measures if the
output is f,(xp); then it undoes all the computation.

o II¢: defined similarly for C.
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Now we write the state in its spectral decomposition

|dBC) = Y i ldi)s ¥)c

/[:7j

where |¢;)g is an eigenvector of II” with eigenvalue ); and [¢;). is an eigenvector of II” with
eigenvalue p1;. Let ptfV (pfV) be the trivial guessing probability when B (C) makes a blind guess,

so that p™™ = max(p%", pfi¥). We will need a lemma similar to Lemma 4.12.

Lemma 6.18. Let p(-) be a polynomial. With overwhelming probability over y, (s, s'), Gy, Hs.s, H(s, s'),
and A, we have

Z ‘Ozi,j’2 < negl()\).

i )\i>pt§"+1/p
Ji wi>p&+1/p

Using this lemma, we can bound the success probability of (A, B,C) as

(decl (P @ 1) |gac) = Y _ laij1* Ain;
i7j

2
< D | " Aigu
i )\i>p‘j§i"+1/p
3 mi>pd ' +1/p

1 ) o )
sel) X daf(el) X
i A <P +1/p irji 1y <pE+1/p
triv

J: Ki>Po +1/p

o1
<+ nel(M).

Since p(-) was chosen as an arbitrary polynomial, this suffices for the proof.

Proof of Lemma 6.18. Suppose for the sake of contradiction that the sum of weights is non-negligible
with non-negligible probability over the randomness of v, (s,s"), Gy, Hs s, H(s, s'). We will con-
struct an adversary (A’, B’,C’) that breaks the MOE game (Definition 4.5):

e (A, B,C") get oracle access to Pais, P41, and A’ receives the state |4, o) from the chal-
lenger.

o A uniformly samples random oracles G’, H’, as well as random strings y + Dy, v € {0, 1}4,
It runs A on input (G’ JH A o) ,v) to obtain the bipartite state pgc. It sends the B register
to B’ and the C register to C. It also sends (G, H', y,v) to both B and C'.

e In the second phase, B’ and C’ learn the description of A. Define the binary POVM elements
18, T1¢ over registers B, C as above. Note that IT” and II¢ are mixtures of projections since
one can sample from D), using classical randomness, so that they satisfy the condition of
Theorem 2.7.

We observe that B’ can efficiently implement IT” as follows:

— Sample zp <+ ’Df and reprogram G’ on input y to output A, obtaining (GQ/)A.
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— Sample uniformly (s, s’) +- CS(A) x CS(A1) and reprogram H' on input (s, s') to output

v using the membership oracles P4, P41, obtaining (H. ).

— Run B using the reprogrammed oracles (G})*, (H.

8,8’

)V and test input z 5.
— Measure B’s output z. Undo all the computation.

- If z = f,(xzp), output 1; otherwise output 0.

Using this, B’ applies the efficient approximated threshold measurement ATIEﬁ} Q) in The-
orem 2.7 with P =118, Q = I — 118 4, = p%V + 3/4p, e = 1/4p, and 6 = 27*, with outcome
bp.

If bg = 0, B’ aborts. If bg = 1, then B’ runs a test execution on B, described as follows: B’
runs the first three steps of II” above on B, and measures a random query (¢p, t);) made by
B during the third step to the oracle (H. _,)". Then, B’ outputs (tp,t);). We define C' sym-
metrically, so that it will measure b¢, and if bo = 1 output a query (tc, t;) made by C in the
test execution.

By Theorem 2.7 bullet (1), bp = bc = 1 with non-negligible probability. We will finish the
proof by showing that B’ and C’ both output (s, s’) with non-negligible probability conditioned on
bp = bc = 1. Note that we can intertwine the order of local operations between the two registers
this way thanks to no-signalling.

If bp = bc = 1, then by Theorem 2.7 bullet (2) the post-measurement state is negligibly close
to a state of the form

> Bijlene® v
i \i>1/2+1/4p
J: my>1/2+1/4p
Therefore, in the test execution, if B’ had not measured (¢p,t’;) in the third step, B would cor-
rectly output f,(zp) correctly with probability greater than p%f" + 1/4p. Consider a modified
adversary B’ which is identical to B’ except it uses the oracle H' (without reprogramming) when
running B. We claim that if 5’ is replaced by B/, then B would output f,(z) correctly with proba-
bility at most p%%" at the end of the test execution, had B’ not measured a query (tg,t’3). This claim
and Theorem 2.1 imply that (¢p,t3) = (s, s’) with non-negligible probability.

To prove this claim, suppose the opposite. We will describe a sequence of games, starting with
Game 1, between (A’, B’) acting as the challenger and (A, B) acting as the adversary:

* A gets oracle access to G, H' and gets input |A; &) , v, all of which are as sampled above by
A’ and the MOE challenger.

¢ Asends a quantum state pg to B

€,0
* ATl (PvQ)v’Yl

reprogramming alongside (G;)A, obtaining bp. If bp = 0, the game is aborted.

as defined above, is applied to (5, pg) by B, which uses the oracle H' without

e A test execution by B’ is run on B with its leftover state and B outputs z.

* The adversary wins if the output is correct, i.e. z = f,(z).
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Note that since H' is not reprogrammed, the value v is a random string independent from the
rest of the game. Now we modify the game by replacing |A; ) in the first step with the maximally
mixed state, resulting in Game 2. The success probability of the adversary is unaffected due to the
fact that the random strings (s, s’) only occur in |4, o) in Game 1, and

Z ‘As,s’><As,s’| =1

s€CS(A)
s'€eCS(AL)

for any subspace A.

Next, we replace the first oracle (G;)A with a random oracle, obtaining Game 3. The success
probability of the adversary again is affected only negligibly since A is a random subspace inde-
pendent of the rest of Game 2, which is statistically close to a random value by Claim 6.10. Now,
y is an independent value from all of Game 3 except for the test input =g, hence the adversary is
restricted to making a trivial guess, so that it cannot succeed with probability greater than p7".

Similarly, we argue that conditioned on (¢p,t;) = (s,s’), the probability that (¢¢, ) is non-
negligible. This follows by a similar argument after observing that after B’ measures a query, the
post-measurement state is still negligibly close to a state of the form

> bilonglvi)e
gt 1 >pE+1/4p

for some states |0;), so that C will output correctly with probability greater than pfV +1/4p during
the final execution made by C'.
O

O

Lemmas 6.14 to 6.17 together with triangle inequality imply that p; < p'™ + negl(\) as desired,
finishing the proof of Lemma 6.13.
O

Remark 6.19. In our security proof, the adversary can run in unbounded time as long as it is query-
bounded.

Following techniques from the proof of Theorem 4.8, we can show security for correlated input
distributions as well.

Corollary 6.20. Let w € [0, 1] and let D% (y) be the following input distribution:
o Sample x5, xc + {0,1}*\ {y} independently and uniformly at random.
o With probability w, output (xp, xc).
o With probability 1 — w, output (y,y).

Then, (CopyProtect, Eval) above is a D% -secure copy-protection scheme for point functions with input
length \.
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Proof. Fix an unlearnable distribution Dy and define the following hybrids:
Hybrid 1. This is the real piracy experiment for (CopyProtect, Eval).

Hybrid 2. This hybrid matches Hybrid 4 in the proof of Lemma 6.13. In other words, we make
the following changes:

* The oracles G, H for A are replaced with reprogrammed oracles G, H; »/, where G, (y) and
H; ¢ (s,s") are reprogrammed to freshly random values.

¢ In addition, the oracle G for B and C both is changed to G;‘, where Gf(y) is reprogrammed
to output a random (fixed) basis (v1, ..., vq) of A.

Let p; be the probability that (A, B,C) wins in Hybrid i. Note that p™™ := ptV(D,,D%) =
max(w, 1 —w). By Lemmas 6.14 to 6.16, we have |p; — pa| < negl()), since these lemmas are proved
irrespective of the input distribution. Thus, it suffices to show that p, < max(w,1 — w).

Let pgc be the bipartite state created by A in Hybrid 2. Without loss of generality assume
that pgc = |¢Bc)(PBC| is a pure state. Fix y < D), fix Gy, Hs ¢, H(s,s"), A which are randomly
sampled, and fix random inputs (75, z¢) < {0,1}*\ {y}. We define the following projectors:

. H(‘,B : runs B on input oracles G;‘, H and test input z p; it measures if the output is fy(zp);
then it undoes all the computation.

e I1P: runs B on input oracles Gﬁ, H and test input y; it measures if the outputis fy(zp); then
it undoes all the computation.

o II§ and II{ are defined similarly for C.

Now we write the state |¢gc) in its spectral decomposition with respect to (wIlf + (1 —w)[1¥)®
(wII§ + (1 — w)IY) as

oBC) = > ijlois ¥5)c
iJ

where |¢;)g is an eigenvector of (wIIf + (1 —w)IIP) with eigenvalue \; and [¢);) - is an eigenvector
of (wII§ + (1 — w)II§) with eigenvalue ;.
O

We first make the following observation:

Lemma 6.21. Let p(-) be a polynomial. With overwhelming probability over y, (s, s'), Gy, Hs s, H(s,s'), A,
and (zp, xc), we have

Z ’Ozm"g S negl()\).
i | Aq—1/2|>|w—1/2|+1/p
I lpg=1/2[>w=1/2|+1/p
Proof. Note that the condition |\; — 1/2| > |w — 1/2| + 1/p is satisfied if and only if \; > p*"V +1/p
or 1—); > pV +1/p. The proof is nearly identical to the proof of Lemma 6.18. To avoid repetition,
we only mention a few notable differences:
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e After sampling y < D,, A’ additionally samples random inputs x5 # y and z¢ # y.

* Instead of ATI, B’ applies SATI%
¢ = 1/2p. Similarly for C'.

PQW ,with P = wllf + (1 —w)[1¥,Q = I — P, v, = 3/4p, and

* When implementing I, B’ uses = 5 as input, and it uses y when implementing I1¥. Similarly
for C'.

¢ In the end when we say that an adversary, with no knowledge of y other than the test input
given, can succeed with probability at most p'V, we instead argue the success probability
of such an adversary, denoted by ¢, must satisfy max(q,1 — q) < p*". This is because the
adversary can always flip its output bit to succeed with probability ¢ instead of 1 — gq.

O

By Lemma 6.21, with overwhelming probability |¢gc) is negligibly close to the state |¢};) +|¢}),

where
|9) = Z Qi j
i+ = 1/2/<fw—1/2|+1/p
[¢e) = > aij di)g Vi) -
i A—1/2>w—1/2|+1/p
g+ lpi—1/2[<lw—-1/2[+1/p

¢i>B |¢j>c=

The rest of the proof will imitate the analysis in the proof of Lemma 4.11:

w|(I1§ @ TIS) (|¢) + 166))] + (1 — w) |17 @ TIT) (|¢fg) + 160))]”

w(@p|(F @ TIS) | ¢ls) + (1 — w) (] (I @ I§)|9lg) + w(d|(IF © IO | de)

1 —w)(@ (P @ 1) |64)) + 2Re (w(dfpl (ITF @ ) |6k) + (1 — w)(dpl(IF @ T)| %))
w(@|(TF © 1)|dlg) + (1 — w)(p|(IF ® I)|¢fg) + w(dh|(I © TIT)|df)

1 —w){¢el(I © TIE)[67)) + 2Re (w (@] (¥ @ TIT)|0%) + (1 — w) (@] (TP @ IF)|¢k) ) -

We bound each term separately.

o (w(g|(IF @ 1)) + (1 — w) (@ (IIF @ I)|d)g)). It is equal to (¢f|(wIIF + (1 — w)IIF) ®
I|¢}); by the definition of |¢}), it will be at most

(1/2+ |w = 1/2[ + 1/p)||¢lp) [ = max(w,1 — w)| |¢5) |

IN +

(
(
(w
(

_l’_

o (w(gL|(II§ @ I)|¢L) + (1 — w){¢pp|(II{ ® I)|¢})). Similar to the above case, it is at most
max(i, 1 - w)| |6 2

o Re ((¢5|(IIF @ 11F)|¢)). By Corollary 2.4, this term will vanish:

(@115 @ I15) 6¢) = > > ol o (5|11 ) s TIG (o)
i ANi—1/2|<jw—1/241/p i : |Ni—1/2|>|lw—1/2|+1/p
3" g —1/2|<|w—1/2|+1/p

since every possible 4,4’ satisfy \; + Ay # 1, we have (¢;|TIF|¢;) = 0.
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o Re (¢ (11 @ I17)|¢)). Similarly, this term vanishes as well.

Therefore, the total probability is at most

2 2 1
w|(IF @ TI§) (|¢) + [66)) | +(1—w) (I @ IT)(|¢5) + [¢))| +negl(n) < max(w, 1w}t negl(n).
Since the polynomial p(-) is arbitrary, this suffices for the proof.
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