
SafeWalk: a Simulation Tool Kit for Exploring
Software Requirements in a Safety-Critical

Product Line

James I. Lathrop∗, Robyn R. Lutz†, Cameron Brecount‡, Hugh Potter§,
Kathryn Rohlfing ¶, Jesse Slater ‖ and Joshua Wallin ∗∗

Department of Computer Science, Iowa State University, Ames, Iowa, USA

Email: ∗jil@iastate.edu, †rlutz@iastate.edu, ‡brecount@iastate.edu §hdpotter@iastate.edu
¶kathrynr@iastate.edu ‖jcslater@iastate.edu ∗∗wallin.j@northeastern.edu

Abstract—SafeWalk is a tool kit designed for simulation of
a safety-critical product line of astronaut jetpacks. It provides
(1) a Unity-based simulation development environment and (2)
software artifacts inspired by a real jetpack used by astronauts
during spacewalks. SafeWalk has been developed to be a readily
extensible and real-time configurable product line for use in
research and education. It provides a rich environment conducive
to empirical research into safety-critical requirements and to
visualization of safety-related human-cyberphysical interactions.

Index Terms—Requirements engineering, Simulation toolkit,
Safety-critical, Product Line

I. INTRODUCTION

SafeWalk is a tool kit designed for simulation of a safety-

critical product line project. It consists of the simulation

development environment and the project’s software artifacts.

SafeWalk is inspired by a real NASA backpack propulsion

unit (“jetpack”) used by astronauts to return safely to a space

station’s airlock if their tether fails during a spacewalk [2].

SafeWalk has been developed as a configurable and extensible

product line with multiple versions and realistic variants to

simulate. It is designed to provide a rich environment con-

ducive to empirical research into safety-critical requirements

and to visualization of safety-related human-cyberphysical

interactions.

SafeWalk provides a simple software simulator of a NASA-

inspired astronaut jetpack, extended by our project into a

product line, together with the software artifacts created in its

development. Its creation was motivated by the lack of readily

available safety-critical software product lines for research and

education. This lack of artifacts impedes both researchers and

educators. SafeWalk has been developed to help fill this gap.

It supports research and teaching for safety-critical software

product lines’ requirements engineering.

Intended users. The intended users are researchers ex-

ploring the requirements engineering of safety-critical prod-

uct lines, especially those involving safety-critical human-

cyberphysical interactions, and instructors of RE project-based

courses, especially those involving student-team projects to

create and simulate alternative and variant requirements.

RE challenge addressed. Simulation tools are a powerful

mechanism to explore and demonstrate new ideas, including

in requirements engineering [5], but can be time-consuming

and tricky to use. To be practical, our SafeWalk tool kit

needs to be easy for a researcher or student to add new

features to the simulated model; the simulation must enable

visualization and exploration of alternative requirements, e.g.,

to mitigate hazards; and the simulated model must have

traceability among its evolving software development artifacts.

The simulation solution must be configurable, including at

runtime; include both the user who engages in the simulated

activity and the operator who configures and observes the

simulation; and invoke a simplified but adequately realistic

physics engine.

Proposed solution. SafeWalk is a new simulation toolkit

to specify, design and simulate software requirements and

configuration interfaces for the user (the “astronaut”) and

the future developer (the researcher or student extending the

SafeWalk product line with additional capabilities) so that

the results are elegant, easy to understand and maintain, and

suitable for open-sourcing, allowing others to build on them.

II. SAFEWALK METHODOLOGY AND TOOL KIT

The methodology underlying SafeWalk is goal-oriented

requirements engineering, with a focus on obstacle analysis

[6]. We developed the requirements for a simple software

simulator of an astronaut’s self-rescue using a jetpack in order

to safely return to a space station airlock if their tether to

the space station fails during a spacewalk. Hazards are thus

obstacles to achieving the safety requirements. The available

software artifacts for SafeWalk include the jetpack product

line’s feature model, safety hazards, software requirements,

architectural design, sequence diagrams, and source code.

SafeWalk’s simulation tool kit harnesses rich visualization

capabilities through its use of the Unity game and physics

engine to process user inputs and sensor inputs, control

simulated thrusters, monitor at runtime for safe operation, and

update the operator (simulation controller) and user (astronaut)

displays in order to reach the target airlock in the reference

frame. The Unity-based simulation development environment

267

2022 IEEE 30th International Requirements Engineering Conference (RE)

2332-6441/22/$31.00 ©2022 IEEE
DOI 10.1109/RE54965.2022.00038

Fig. 1. An example of the SafeWalk simulation tool from the operator’s point
of view, as the astronaut/user being monitored approaches the space station.

is used for visualizing and playing out various safety-critical

mission scenarios.

Example scenario. We designed SafeWalk so that it is easy

for users to add their own features to the baseline product line.

The tool demonstration video provided with this paper (see

link at end) shows us adding a new product-line feature and

then simulating it. The example safety-critical scenario shown

is that an astronaut runs out of fuel (propellant) before reaching

the space station. Runtime monitoring gives information about

the fuel remaining. To mitigate the hazard, we show how

we can add a new feature: a Backup Fuel Tank. This, in

turn, enables a new software requirement: “When SafeWalk

detects low fuel, it shall switch over to using the backup tank.”

The tool demonstration video shows how we then simulate
this safety-critical scenario in order to verify that the safety

requirement is met in the new product and to validate that the

new requirement achieves its intended behavior.

III. ARCHITECTURE AND IMPLEMENTATION

Our tool uses the Unity game engine to implement an entity

component architecture and a modular design. The architecture

supports two roles: the operator (researcher or developer)

who selects the product-line features to enable and configures

the simulator controller, and the user (player/astronaut) who

executes the mission simulation. The baseline product runs

the simulation on a computer. The implementation allows

SafeWalk to be extended later to remote operators, to be run

in a browser, and to interface with a VR headset.

Implementation. SafeWalk is implemented in Unity and

C#, and developers extend the baseline product using the C#

language. Figure 1 shows a screenshot of an example simu-

lation of an astronaut maneuvering toward the International

Space Station (ISS) with the jetpack’s arms visible in the

foreground and the ISS visible in the background. The figure

shows the default configuration display that the operator sees.

SafeWalk evaluation. We performed unit and interface tests

on our jetpack model using the simulations. We also used an

early version of SafeWalk for student projects in an RE course,

and describe our experience in [4]. Current limitations include

simplifications of the thruster behavior and the physics engine.

Availability. Our project plans to release the SafeWalk

development environment for product-line research on the

jetpack, which enables addition and simulation of features

and products, as well as our development software artifacts.

SafeWalk requires Unity to be installed, and Unity provides a

royalty-free license for educational and personal use.

Related industrial and research efforts. Gamification, as

in SafeWalk, uses gaming engines for development of non-

gaming applications such as training or investigation, and has

proven effective for multiple software engineering purposes

[1], [5]. We also benefited from public information about two

NASA simulators for its SAFER backpack propulsion device,

one a complex, physical simulation for astronaut training and

the other a VR simulation on the space station [3].

IV. FUTURE PLANS AND CONCLUSION

Support for RE research and instruction. SafeWalk gives

RE researchers the opportunity to visualize and evaluate their

ideas in a configurable simulation environment with product-

line software artifacts and development infrastructure already

built-out. Examples of RE research questions that might be

explored in SafeWalk are exploring preferences among alterna-

tive requirements; identifying unwanted interactions between

product-line features; gauging the acceptability of eliciting

requirements using game-like scenarios; using simulation vi-

sualizations to verify safety requirements; and probing the

future role of simulation in safety arguments. For educators,

an example assignment for student team projects might be to

extend SafeWalk with a new feature that, given a safe path

from the starting position of the user (the astronaut) to the

space station airlock, automatically synthesizes parameters to

reduce time, battery use, or propellant, while maintaining the

required safety properties.

In summary, SafeWalk provides a simulation environment

that supports focused exploration of software requirements

elicitation, analysis, and validation questions for a safety-

critical jetpack product line.

V. ACKNOWLEDGMENTS

This research is supported in part by NSF grants 1513717

and 1900716.

Tool Video: https://iastate.box.com/v/SafeWalkToolDemo

REFERENCES

[1] A. Bucchiarone, A. Cicchetti, and A. Marconi, “Towards engineering
future gameful applications,” in ICSE-NIER. ACM, 2020, pp. 105–108.

[2] J. Crow et al., NASA Formal Methods Specification and Verification
Guidebook, NASA-GB-001-97, Vol. 2, 1997.

[3] A. D. Garcia, J. Schlueter, and E. Paddock, Training Astronauts Using
Hardware-in-the-Loop Simulations and Virtual Reality, 2020.

[4] R. R. Lutz, J. I. Lathrop, C. Brecount, K. Gast, K. Rohlfing, and J. Wallin,
“Using an astronaut jetpack project to teach human-CPS requirements
engineering,” in REET@RE 2020. IEEE, 2020, pp. 9–10.

[5] H. Samin, N. Bencomo, and P. Sawyer, “Pri-aware: Tool support for
priority-aware decision-making under uncertainty,” in RE 2021. IEEE,
pp. 450–451.

[6] A. van Lamsweerde, Requirements Engineering: From System Goals to
UML Models to Software Specifications. Wiley, 2009.

268

