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Abstract—The field of cyber-molecular systems is growing
rapidly. In these nanotechnology applications the computa-
tional logic is encoded by developers into the molecules them-
selves. Many planned applications are safety-critical, including
bio-compatible sensors, pollution trackers, and targeted drug-
delivery devices. Requirements engineering (RE) activities and
artifacts are essential to assuring the safety of molecular pro-
grams. However, molecular programmed devices offer challenges
to traditional RE activities. Molecular programmed systems are
nanoscale, so hard to monitor; execute at scale, typically 10*°
devices in solution at once; and have probabilistic behavior.
Toward safe molecular programs, we propose a new framework,
RE4DNA, for their safety requirements discovery, specification,
and verification. Its contribution is to bridge the cyber and the
molecular in the requirements engineering process. Further, use
of RE4DNA identifies building blocks that can contribute to a
preliminary safety case. In this paper we introduce RE4DNA,
describe how it handles some particular challenges of molecular
programming, illustrate its use on a benchmark molecular
program, and discuss future work.

Index Terms—Requirements engineering, molecular program-
ming, safety case

I. INTRODUCTION

Tun et al. advised at RE’19 that requirements engineers
“look out” more into the physical world. [29]. The emerging
field of molecular programmed systems, also called cyber-
molecular systems, bridges the computational and physical
worlds. This field currently stands to benefit greatly from
increased attention of requirements engineers to its particular
challenges. Many of the planned applications are safety-
critical. In this RE@Next! paper, we propose a new framework
to bridge the cyber and the molecular in the requirements
engineering (RE) of safety-critical molecular programs.

A striking advantage of molecular systems is that they are
bio-compatible. Many will be designed to work in vivo (in
the body). The public must be able to trust these systems.
Our proposed framework is offered in anticipation that many
molecular programmed systems will need to be certified either
internally, or externally by a government agency. There is a
thus a need for safety cases to be created for programmed
molecular systems. While it cannot yet be known precisely
what that regulatory landscape will look like [1], [8], it is
incumbent on us to begin planning what belongs in the safety
case. There is evidence that the incremental development of the
safety case alongside the development of the system, starting
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in the requirements phase, yields better results and is preferred
by regulators [15], [22].

The RE4DNA framework proposed here supports safety-
aware requirements discovery, specification, and verification
of molecular programs. This differs from most previous work
on software engineering of molecular programs by focusing
specifically on the requirements engineering phase of compu-
tational programs implemented in DNA molecules. We propose
that a structured requirements engineering process can improve
molecular program quality and safety, as well as significantly
reduce costly design-and-test cycles in the laboratory. More-
over, for safety-critical molecular programs, analysis results
from the RE4DNA activities can provide essential building
blocks toward composing preliminary safety arguments [12].

Requirements engineering activities and artifacts are essen-
tial to assuring the safety of molecular programs. However,
a molecular programmed system offers several challenges to
traditional RE activities: (1) probabilistic behavior, inherent
in its nanoscale physical implementation and operation in a
molecular environment; (2) scalability to very large numbers
(over 10'Y) concurrently executing components; and (3) the
need to use a shared, transdisciplinary model to communicate
requirements specifications.

In RE4DNA we aim to provide a customization and ex-
tension of existing RE tools and techniques to handle these
particular challenges of molecular programming. Toward this
objective, we here report initial results from investigation of
three research questions:

RQ1: What current RE techniques support requirements en-
gineering for a safety-critical molecular programmed system?
RQ2: What extensions and domain-specific specializations of
current RE techniques assist that effort?

RQ3: What RE4DNA artifacts serve as building blocks for a
preliminary safety argument?

The contributions of this RE@Next! paper are fourfold:

1) It proposes a new framework, RE4DNA, to bridge the
cyber and the molecular in the requirements engineering
of safety-critical molecular programs.

It shows how RE4DNA handles some particular chal-
lenges of RE for molecular programming and illustrates
its use on the requirements development for a small,
safety-critical molecular programmed device.
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3) It demonstrates how RE4DNA identifies building blocks
that can contribute to a preliminary safety case.

4) It outlines a research plan for needed future work on
RE4DNA and suggests its potential for broader reuse in
the RE of other very large, highly distributed, stochastic
systems.

The paper is organized as follows. Sect. II describes back-
ground and related work. Sect. III describes our approach in
RE4DNA, and Sect. IV reports from its application on an
example molecular program. Sect. V concludes with research
directions for future work by ourselves and others.

II. BACKGROUND AND RELATED WORK

Molecular programming is transdisciplinary in that it is at
the intersection of requirements engineering, computer sci-
ence, mathematics, chemistry, molecular biology and physics.

Molecular programmed systems. Molecular programming
uses the inherent information and computational capabilities of
DNA to create programmable molecular devices and structures
that self-assemble. These DNA nanotechnology systems are
dynamic and able to respond to changes in their environment
by changing their behavior. They are programmed by the
developers’ careful selection of the DNA strands that will
achieve the system’s functional and nonfunctional goals.

A simple example is a molecular (DNA) biosensor pro-
grammed to detect a target molecule of concern, such as
a specific pollutant or tumor marker [34]. When the DNA
molecular strands selected to implement the biosensor are
combined in solution, they self-assemble into an open-V,
tweezers-like shape that, if it encounters the target molecule
of concern, closes to trap it. The change in shape is externally
visible via microscopy or fluorescence, indicating whether
or not the biosensor has detected the presence of the target
molecule.

Stochastic chemical reaction networks (CRNs) are often
used in molecular programming to specify the program re-
quirements [10], [26]. The stochastic CRN model is Turing
universal [25]. A CRN represents the program’s behavior as a
set of reactions over a set of abstract molecular species (here,
abstract DNA strands). For example, the reaction X + Y LA
27 + S specifies that, when an X molecule collides with a Y
molecule, they are consumed and two Z molecules and an S
molecule are produced as a result, where k is the rate constant
at which this reaction occurs. A CRN’s state is a vector
specifying the number of each molecular species present, and
the CRN’s execution is a continuous time Markov process
executing at a rate determined by its rate constants [3].

RE for molecular programmed systems. While there have
been significant recent advances in the verification of CRN
specifications, there has been only limited attention to re-
quirements discovery for molecular programs. Related work
on specifying goals in uncertain environments has formulated
failure patterns [28] and formalized the required probability of
goal satisfaction [5]. However, molecular systems may have
such a large number of individual components in solution
that failures with any significant probability almost certainly
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will occur in many individual components. Probabilistic model
checking has been used to verify molecular programs, in-
cluding DNA nanorobots [11], [13], [18], [19]. Satisfiability
Modulo Theories (SMT) also have been used to analyze DNA
computing [33]. Alloy has been used to model a class of
small CRNs relevant to synthetic biology [31]. Simulation and
testing of CRNs offer additional approaches to verification of
CRNs [14].

Early composition of safety arguments. Composing a safety
argument is core to any safety case and thus has been widely
studied [4], [16], [17], [23], [24]. Assurance cases for synthetic
biology already have been developed [9]. Beginning this effort
early in the development of a new safety-critical product is
recommended and motivates our work here [22], [32]. The
process of composing a safety case also continues throughout
development. For example, laboratory experiments and, for
some systems, clinical trials, will be essential, later sources
of evidence that safety goals of a molecular program are met.
However, in this paper we focus on the requirements and the
contributions that the RE4ADNA activities can make to the early
safety argument.

III. RE4DNA

This section describes RE4DNA, our proposed framework
to bridge the cyber and the molecular in the requirements
engineering of safety-critical molecular programs. We provide
an illustrative example of its use in Section IV. In RE4DNA
we aim to provide a customization and extension of existing
RE tools and techniques to handle the particular needs of
molecular programming, specifically, its stochasticity, inherent
in its physical implementation and operation in a molecular
environment; its scalability to very large numbers of concur-
rently executing devices; and its transdisciplinary communi-
cation needs. Although each of these needs is not unique
to molecular programming, the combination creates some
particular difficulties in requirements discovery, specification
and verification for these systems. Additionally, RE4ADNA
provides the building blocks and traceability needed toward
early, incremental safety arguments.

RE4DNA wuses an underlying Traceability Information
Model (TIM), shown in Figure 1, that defines the artifact types,
permitted trace types, and the traceability paths. Such a TIM
is fairly standard in the development of safety-critical systems
[71, [22], [27] and especially useful for multi-disciplinary
teams of developers, as occurs with molecular programs.

A. Requirements discovery.

Intent discovery. The system-to-be and its purpose are
initially described informally in this step, often in multiple
cross-disciplinary discussions. We have found that cross-
trained students with knowledge of both molecular chemistry
and computer science are valuable assets in facilitating these
discussions and providing needed contextual information.

Goal modeling. Goal modeling is used in RE4DNA as an
effective technique to refine, represent and jointly review the
requirements for a new molecular program [30]. A molecular



program’s probabilistic behavior both enables and constrains
its computation. An advantage of goal modeling is that it
supports capture of the domain properties and environmental
assumptions simultaneously with the goals. Determination of
which failures are feasible in a molecular environment and
what their effects will be is strongly rooted in the domain
properties (e.g., that there is a finite amount of each of
the molecules used) and of environmental assumptions (e.g.,
that the solution is well-mixed, and that a signal requires
a threshold number of signal molecules to be present). The
safety requirements that will need to be shown to be satisfied in
the planned system are then specified in Continuous Stochastic
Logic (CSL) in RE4DNA to enable their subsequent formal
verification.

Safety analysis. Early analysis of risks at the goal level,
based on the Identify/Assess/Control approach in [5], [30],
helps discover which obstacles to achievement of goals can
occur in the molecular environment. For safety-critical molec-
ular programs [21], our framework employs fault tree analysis
to identify, assess, and mitigate risks to achieving safety
requirements. Use of fault tree analysis helps communication
as well. We have found that molecular biologists are familiar
with fault trees because they use similar diagnostic reasoning
in their lab notebooks.

B. Requirements specification.

The operationalized behavioral requirements for the molec-
ular program are specified by assigning the goals to the spe-
cific molecular agents (the abstract DNA strands) responsible
for them [30]. We express these program requirements as
a chemical reaction network (CRN), a widely used model
for molecular programming described in Section II. A CRN
defines the rules of interaction for the molecular agents.

CRN specification of the requirements serves as an ef-
fective communication bridge across the disciplines involved
in molecular programming. We have found CRNs useful for
both communicating and reviewing the behavioral require-
ments. Requirements review by stakeholders representing the
diversity of fields from software engineers to the laboratory
scientists who will implement the requirements creates more
robust molecular programs and finds problems earlier. Find-
ing requirements errors, omissions and physical infeasibilities
early will reduce the design-and-test cycles in the laboratory
[28]. Moreover, specification of the requirements as a CRN
enables automated verification and compilation into concrete
DNA strands for implementation.

C. Requirements verification.

Requirements verification of molecular programs faces chal-
lenges of scalability. With requirements verification we seek
evidence that we have “gotten the requirements right” in the
specification. However, there are usually very many devices
(copies of the system) operating in parallel in the solution.
To claim that the safety requirements hold across a range of
molecular population counts, diversity of evidence is needed
[20]. Use of CSL to specify the safety requirements supports
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probabilistic model checking in the PRISM tool [18], [19]
for small populations (in the hundreds) and simulation using
Ordinary Differential Equations in MatLab’s SimBiology tool
for very large populations.

D. Requirements evolution.

Due to the complexities of probabilistic behavior at scale
(i.e., the need for safe and robust behavior from inherently
unreliable molecular devices), and the fact that this is an
emerging field, changes to requirements, assumptions, and
domain properties occur frequently. Many changes result from
new domain knowledge in theoretical (e.g., improved model-
ing of energy wells) or experimental (e.g., more automated
microfluidic laboratory equipment) advances. Many changes
also are perfective, i.e., new opportunities for improved per-
formance (e.g., reduced molecular leaks). These changes also
can cause emergent risks that need to be discovered and
mitigated by new or modified requirements. Additionally,
argument structures and their building blocks must be updated
accordingly [2]. READNA is designed to support the incremen-
tal, evolving requirements engineering needed for molecular
programs; however, much work remains, especially in terms
of automated traceability and safe reuse of requirements, risk
and argument patterns.

E. Traceability to safety argument building blocks

Safety cases should be built incrementally as development
progresses [22], [32]. RE4ADNA assists by identifying building
blocks that contribute to a preliminary safety argument that
the safety requirements, together with the specified domain
properties and environmental assumptions, are satisfied by
the CRN specification. The argument thus documents the
reasoning about safety. This safety-aware focus in RE4ADNA
responds to the need for better integration of safety arguments
into the development of safety-critical molecular programs.

The TIM in Figure 1 shows the trace links available in
RE4DNA for achieving this safety-focused traceability from
its artifacts to the safety argument building blocks and rela-
tions. The elements shown in square brackets in the artifacts in
Fig. 1 correspond to the partial safety argument composed in
the illustrative example in Fig. 4. The safety argument uses the
core Goal Structuring Notation (GSN) v.3 [23] and its six core
safety argument building blocks. These are: Goal (safety claim,
expressed as a proposition), Context (operating environment),
Assumption (made in the argument), Strategy (how a higher-
level goal is inferred from lower-level goals), Justification
(rationale), and Solution (composition of evidence) [17]. We
maintain consistency with the description of preliminary safety
arguments in [12] to facilitate potential future use of their
AdVoCATE assurance case toolset.

IV. APPLICATION

RE4DNA is a framework that will provide a clear and
coherent structuring of the requirements engineering process
that others can use to develop their own, new molecular
programs. This paper shows how the RE4ADNA framework can
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Fig. 1. The Traceability Information Model (TIM) for the artifacts and

associations created and used in the RE4DNA framework are displayed in
the figure. The annotations in square brackets trace forward to the safety-
argument building blocks derived from each artifact type, and map to the
example molecular program whose development is described in Section IV.

be used to systematize and promote more fully what needs
to be done during RE to justifiably rely on a safety-critical
molecular program.

We illustrate RE4ADNA by describing its use on an example
molecular system. In prior work we developed a molecular
oscillator [13], and we use it here as our illustrative exam-
ple. Oscillators have been used in molecular programming
as benchmarks [6], [26], in part due to their ubiquity in
both natural (e.g., gene regulatory networks) and synthetic
(molecular programming) biology. In many cases oscillators
are safety-critical.

Some artifacts used by RE4ADNA in our example appear
in [13], including formal requirements, and CRN simulation
and model checking results. The RE4DNA framework is
imposed retrospectively on those artifacts toward evaluating its
feasibility. Other artifacts used by RE4DNA in our example are
newly created for this paper, including the TIM and the safety
argument. These new artifacts add traceability and formally tie
the safety requirements to the safety case. While prior work
did not integrate these fully into the RE process, RE4ADNA
incorporates an updated and improved understanding of their
essential roles.

A. Requirements discovery

Intent discovery. The intent of our molecular system-to-
be was initially described informally in discussions among
multi-disciplinary stakeholders. We proposed to develop a
programmed molecular component to self-monitor and report
its health status. Our innovation in [13] was to add an output
capability to a standard oscillator such that it regularly sends
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Achieve [Output reflects
system’s health status]

/

Achieve [Produce signal Avoid [Produce signal
while healthy] while unhealthy]

/7 Achieve [Signal abates] /
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Fig. 2. Incremental Goal Model software artifact developed for the molecular
oscillator during requirements discovery [13], [30]. The solid lines represent
the original goal model. The dashed lines represent an additional, molecular
domain-specific goal subsequently identified during safety analysis.

an “I'm OK” signal to adjacent systems if it is healthy. How-
ever, if the oscillator fails, the signal must stop. The absence
of a signal for a period of time indicates to adjacent systems
that the oscillator has failed. It is safety-critical because other
adjacent molecular components, some of which are safety-
critical, will depend on it.

Goal modeling. Figure 2 shows part of the Goal Model
for the self-monitoring molecular oscillator. The top-level
goal is that the presence or absence of an “I'm OK” health
signal reflect its actual health status. As shown in Fig. 2,
the top-level goal is then initially refined into the AND of
two subgoals: ACHIEVE [Produce signal while healthy] and
AVOID [Produce signal while unhealthy]. These subgoals are
subsequently formalized as safety requirements in Continuous
Stochastic Logic (CSL) for use in formal reasoning. For
example, the first subgoal above is formalized in CSL as
P>1[0O(healthy = P>1_s, [O<s, ((sigHigh V —healthy)])].

Safety analysis. Following the Identify/Assess/Control ob-
stacle analysis steps, in the Identify step RE4DNA uses fault-
tree analysis [21] to identify two scenarios that cause the
oscillator to fail. In the first safety scenario, the oscillator
fails because the component runs out of one of the three
molecules that drive its phased oscillations. In the second
safety scenario, the oscillator fails because the count of each of
the three molecules converges toward equilibrium, disrupting
the oscillations. In the Assessment step these are both found
to be feasible and likely obstacles to achieving the goals
represented in the Goal Model. In the Control step, the needed
mitigation adds a newly discovered safety subgoal to the Goal
Model. This captures the molecular reality that stopping a
molecular signal requires not only stopping the production
of signal molecules but also actively removing (consuming)
them. This new goal is represented in Fig. 2 as the subgoal
Achieve [Signal abates] in the dashed box.

B. Requirements specification

Specification of the behavioral requirements as a chemi-
cal reaction network (CRN) model is used by RE4DNA to



operationalize them and to enable their automated verifica-
tion. Operationalization assigns the goals and environmental
assumptions to specific molecular agents responsible for them.

The CRN below specifies the three phases of the oscillator
and its "I'm OK" signal, S. The initial condition is that the
count of only one of the three molecules, X, is high (i.e., it
starts in Phase X), and the count of Y and Z are similar and
low. Thus, the first and third reactions are equally likely to
occur. When either occurs, it increases the rate of the first
reaction and decreases the rate of the third reaction. This goes
on until the count of Y is highest (i.e., it enters Phase Y).
Similarly, the oscillator continues on to Phase Z. The count
of S molecules increases in the first reaction, and decreases
(abates) in the last two reactions.

X+v&Hov+s
Y+2z4522
Z+Xx 5 ox
Z+85% 7
5 £z
C. Requirements verification

As noted in Sect. II, CRNs are an increasingly common
lingua franca in which to specify a molecular program’s
requirements. In READNA the CRN serves as our chosen way
to communicate the molecular requirements specifications, via
a shared, transdisciplinary model. This also enables the CRN
to be input to existing requirements verification tools, includ-
ing simulation, model checking, proof assistants, and model
testing. To analyze and verify the oscillator’s requirements
we used two of these toolsets. The first was MATLAB’s
SimBiology package. Figure 3 shows some simulation results
that were part of our verification that the CRN specification
for the oscillator satisfies the subgoal ACHIEVE [Produce
signal while healthy]. The second was the probabilistic model
checker, PRISM [18], [19]. PRISM checked that the CRN
specification satisfied the formal CSL safety requirements.

D. Requirements evolution.

We have described the RE4ADNA framework in a sequential
manner. However, the activities were often performed itera-
tively and incrementally. For example, simulation was done re-
peatedly as the goal model and CRN specification evolved both
to correct errors and to improve the oscillator. Requirements
engineering was complicated by the fact that the oscillator is
a molecular system. For example, the “OK" signal itself is
molecular, meaning that the oscillator must verifiably produce
a sufficient count of signal molecules while it is healthy.
Similarly, although the signal molecules will never entirely
disappear, their count must verifiably abate over time when the
oscillator has failed. The probabilistic molecular environment
often defeated intuition or enforced de-idealizations. This
complexity, even for a seemingly simple system such as
the oscillator, encouraged us to continue integrating formal
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Fig. 3. Simulation with MATLAB’s SimBiology is used by RE4DNA to

verify that the requirements specification for the oscillator meets its goals.
Purple peaks in bold font show the regular issuance of the "OK" signal when
the oscillator is healthy. The other three colors show the count of X, Y
and Z molecules, respectively, in the oscillator’s three phases. The X axis
is simulation time in seconds; the Y axis is total molecular count [13].

requirements verification into RE4DNA. Formal reasoning to
detect when goals were infeasible and what environmental
assumptions were missing from the specification was very
useful in getting the requirements right.

E. Traceability to safety argument building blocks.

Figure 4 shows how the artifacts created by the RE4ADNA
activities can form part of the safety argument that the top-
level goal Achieve [Output reflects system’s health status] is
satisfied. The unique IDs on the node labels provide trace-
ability between the building blocks in the argument and the
artifacts in the TIM in Figure 1. The mapping here was done
manually but can be automated in the future, perhaps using
[12]. Additionally, tooling might support broader potential use
of RE4DNA’s approach for non-molecular, highly distributed
networks with probabilistic behavior that are safety-critical.

F. Discussion

This RE@Next! paper reports early results in our ongoing
investigation of three research questions:

RQ1: What current RE techniques support requirements en-
gineering for a safety-critical molecular programmed system?
We have shown that goal modeling, safety analysis (specifi-
cally, fault tree analysis, which is familiar to lab scientists), and
formal specification using chemical reaction network modeling
as a standard bridge to a variety of automated requirements
verification tools (model checking, simulation) can assist in
addressing the challenges of probabilistic behavior, scalability
and transdisciplinary stakeholders.

RQ2: What extensions and domain-specific specializations of
current RE techniques assist that effort? We have described
the primacy of accurate domain properties and environmental
assumptions in creating safe and robust molecular programs,
suggested the need for additional domain-specific obstacle
patterns to address the particularities of the molecular envi-
ronment (specifically, signal abatement and signal leakage,
as well as the certainty that at this very large scale some
molecular components will fail), and noted that rigorous
requirements analysis can reduce costly design-and-test cycles
in the laboratory.



Goal1 (Safety Claim):

Context1: Output reflects A};§umption1 g
Solution is system’s health status Finite amount of
well-mixed X, Y,and Z
molecules
Goal2: Goal3:
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while system is healthy
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Fig. 4. A portion of the safety argument for the self-monitoring oscillator,
showing the goals, strategies, solutions, and associated building blocks gen-
erated as RE4ADNA artifacts. The unique labels on the nodes trace to the TIM
in Figure 1

RQ3: What RE4DNA artifacts serve as building blocks for
a preliminary safety argument? We have proposed a TIM for

RE4DNA and traced artifacts from the RE4ADNA activities to
the structural elements and relations needed for a preliminary
safety argument.

V. DIRECTIONS FOR FUTURE WORK AND CONCLUSION

This paper has proposed a framework for the requirements
engineering of safety-critical molecular programs that incor-
porates best-practice RE techniques and tools while addressing
some particular challenges of the cyber-molecular domain.
Additionally, our framework uses the artifacts produced by its
requirements engineering activities to identify building blocks
for safety arguments toward a preliminary safety case.

The long-term objective of our work is to provide a re-
quirements engineering structure and guide that is useful and
used by both molecular programming research and industrial
groups when developing new molecular programmed systems.
We are especially concerned with providing support for safety-
critical applications, such as DNA drug-delivery capsules and
biosensors. There is much future work to do toward this. Next
steps, many of which offer opportunities for new collaborative
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work, include identifying how best to specify the domain
properties and assumptions for ease of comprehension by all
stakeholders (software engineers to lab scientists); offering
domain-tailored display options; creating additional obstacle
patterns from recurring molecular program difficulties; incor-
porating rationales into the safety argument; and automating
the composition and update of safety arguments as RE artifacts
evolve.
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