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Abstract—The field of cyber-molecular systems is growing
rapidly. In these nanotechnology applications the computa-
tional logic is encoded by developers into the molecules them-
selves. Many planned applications are safety-critical, including
bio-compatible sensors, pollution trackers, and targeted drug-
delivery devices. Requirements engineering (RE) activities and
artifacts are essential to assuring the safety of molecular pro-
grams. However, molecular programmed devices offer challenges
to traditional RE activities. Molecular programmed systems are
nanoscale, so hard to monitor; execute at scale, typically 1010

devices in solution at once; and have probabilistic behavior.
Toward safe molecular programs, we propose a new framework,
RE4DNA, for their safety requirements discovery, specification,
and verification. Its contribution is to bridge the cyber and the
molecular in the requirements engineering process. Further, use
of RE4DNA identifies building blocks that can contribute to a
preliminary safety case. In this paper we introduce RE4DNA,
describe how it handles some particular challenges of molecular
programming, illustrate its use on a benchmark molecular
program, and discuss future work.

Index Terms—Requirements engineering, molecular program-
ming, safety case

I. INTRODUCTION

Tun et al. advised at RE’19 that requirements engineers

“look out” more into the physical world. [29]. The emerging

field of molecular programmed systems, also called cyber-

molecular systems, bridges the computational and physical

worlds. This field currently stands to benefit greatly from

increased attention of requirements engineers to its particular

challenges. Many of the planned applications are safety-

critical. In this RE@Next! paper, we propose a new framework

to bridge the cyber and the molecular in the requirements

engineering (RE) of safety-critical molecular programs.

A striking advantage of molecular systems is that they are

bio-compatible. Many will be designed to work in vivo (in

the body). The public must be able to trust these systems.

Our proposed framework is offered in anticipation that many

molecular programmed systems will need to be certified either

internally, or externally by a government agency. There is a

thus a need for safety cases to be created for programmed

molecular systems. While it cannot yet be known precisely

what that regulatory landscape will look like [1], [8], it is

incumbent on us to begin planning what belongs in the safety

case. There is evidence that the incremental development of the

safety case alongside the development of the system, starting

in the requirements phase, yields better results and is preferred

by regulators [15], [22].

The RE4DNA framework proposed here supports safety-

aware requirements discovery, specification, and verification

of molecular programs. This differs from most previous work

on software engineering of molecular programs by focusing

specifically on the requirements engineering phase of compu-
tational programs implemented in DNA molecules. We propose

that a structured requirements engineering process can improve

molecular program quality and safety, as well as significantly

reduce costly design-and-test cycles in the laboratory. More-

over, for safety-critical molecular programs, analysis results

from the RE4DNA activities can provide essential building

blocks toward composing preliminary safety arguments [12].

Requirements engineering activities and artifacts are essen-

tial to assuring the safety of molecular programs. However,

a molecular programmed system offers several challenges to

traditional RE activities: (1) probabilistic behavior, inherent

in its nanoscale physical implementation and operation in a

molecular environment; (2) scalability to very large numbers

(over 1010) concurrently executing components; and (3) the

need to use a shared, transdisciplinary model to communicate

requirements specifications.

In RE4DNA we aim to provide a customization and ex-

tension of existing RE tools and techniques to handle these

particular challenges of molecular programming. Toward this

objective, we here report initial results from investigation of

three research questions:

RQ1: What current RE techniques support requirements en-

gineering for a safety-critical molecular programmed system?

RQ2: What extensions and domain-specific specializations of

current RE techniques assist that effort?

RQ3: What RE4DNA artifacts serve as building blocks for a

preliminary safety argument?

The contributions of this RE@Next! paper are fourfold:

1) It proposes a new framework, RE4DNA, to bridge the

cyber and the molecular in the requirements engineering

of safety-critical molecular programs.

2) It shows how RE4DNA handles some particular chal-

lenges of RE for molecular programming and illustrates

its use on the requirements development for a small,

safety-critical molecular programmed device.
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3) It demonstrates how RE4DNA identifies building blocks

that can contribute to a preliminary safety case.

4) It outlines a research plan for needed future work on

RE4DNA and suggests its potential for broader reuse in

the RE of other very large, highly distributed, stochastic

systems.

The paper is organized as follows. Sect. II describes back-

ground and related work. Sect. III describes our approach in

RE4DNA, and Sect. IV reports from its application on an

example molecular program. Sect. V concludes with research

directions for future work by ourselves and others.

II. BACKGROUND AND RELATED WORK

Molecular programming is transdisciplinary in that it is at

the intersection of requirements engineering, computer sci-

ence, mathematics, chemistry, molecular biology and physics.

Molecular programmed systems. Molecular programming

uses the inherent information and computational capabilities of

DNA to create programmable molecular devices and structures

that self-assemble. These DNA nanotechnology systems are

dynamic and able to respond to changes in their environment

by changing their behavior. They are programmed by the

developers’ careful selection of the DNA strands that will

achieve the system’s functional and nonfunctional goals.

A simple example is a molecular (DNA) biosensor pro-

grammed to detect a target molecule of concern, such as

a specific pollutant or tumor marker [34]. When the DNA

molecular strands selected to implement the biosensor are

combined in solution, they self-assemble into an open-V,

tweezers-like shape that, if it encounters the target molecule

of concern, closes to trap it. The change in shape is externally

visible via microscopy or fluorescence, indicating whether

or not the biosensor has detected the presence of the target

molecule.

Stochastic chemical reaction networks (CRNs) are often

used in molecular programming to specify the program re-

quirements [10], [26]. The stochastic CRN model is Turing

universal [25]. A CRN represents the program’s behavior as a

set of reactions over a set of abstract molecular species (here,

abstract DNA strands). For example, the reaction X + Y
k−→

2Z + S specifies that, when an X molecule collides with a Y

molecule, they are consumed and two Z molecules and an S

molecule are produced as a result, where k is the rate constant

at which this reaction occurs. A CRN’s state is a vector

specifying the number of each molecular species present, and

the CRN’s execution is a continuous time Markov process

executing at a rate determined by its rate constants [3].

RE for molecular programmed systems. While there have

been significant recent advances in the verification of CRN

specifications, there has been only limited attention to re-

quirements discovery for molecular programs. Related work

on specifying goals in uncertain environments has formulated

failure patterns [28] and formalized the required probability of

goal satisfaction [5]. However, molecular systems may have

such a large number of individual components in solution

that failures with any significant probability almost certainly

will occur in many individual components. Probabilistic model

checking has been used to verify molecular programs, in-

cluding DNA nanorobots [11], [13], [18], [19]. Satisfiability

Modulo Theories (SMT) also have been used to analyze DNA

computing [33]. Alloy has been used to model a class of

small CRNs relevant to synthetic biology [31]. Simulation and

testing of CRNs offer additional approaches to verification of

CRNs [14].

Early composition of safety arguments. Composing a safety

argument is core to any safety case and thus has been widely

studied [4], [16], [17], [23], [24]. Assurance cases for synthetic

biology already have been developed [9]. Beginning this effort

early in the development of a new safety-critical product is

recommended and motivates our work here [22], [32]. The

process of composing a safety case also continues throughout

development. For example, laboratory experiments and, for

some systems, clinical trials, will be essential, later sources

of evidence that safety goals of a molecular program are met.

However, in this paper we focus on the requirements and the

contributions that the RE4DNA activities can make to the early

safety argument.

III. RE4DNA

This section describes RE4DNA, our proposed framework

to bridge the cyber and the molecular in the requirements

engineering of safety-critical molecular programs. We provide

an illustrative example of its use in Section IV. In RE4DNA

we aim to provide a customization and extension of existing

RE tools and techniques to handle the particular needs of

molecular programming, specifically, its stochasticity, inherent

in its physical implementation and operation in a molecular

environment; its scalability to very large numbers of concur-

rently executing devices; and its transdisciplinary communi-

cation needs. Although each of these needs is not unique

to molecular programming, the combination creates some

particular difficulties in requirements discovery, specification

and verification for these systems. Additionally, RE4DNA

provides the building blocks and traceability needed toward

early, incremental safety arguments.

RE4DNA uses an underlying Traceability Information

Model (TIM), shown in Figure 1, that defines the artifact types,

permitted trace types, and the traceability paths. Such a TIM

is fairly standard in the development of safety-critical systems

[7], [22], [27] and especially useful for multi-disciplinary

teams of developers, as occurs with molecular programs.

A. Requirements discovery.

Intent discovery. The system-to-be and its purpose are

initially described informally in this step, often in multiple

cross-disciplinary discussions. We have found that cross-

trained students with knowledge of both molecular chemistry

and computer science are valuable assets in facilitating these

discussions and providing needed contextual information.

Goal modeling. Goal modeling is used in RE4DNA as an

effective technique to refine, represent and jointly review the

requirements for a new molecular program [30]. A molecular
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program’s probabilistic behavior both enables and constrains

its computation. An advantage of goal modeling is that it

supports capture of the domain properties and environmental

assumptions simultaneously with the goals. Determination of

which failures are feasible in a molecular environment and

what their effects will be is strongly rooted in the domain

properties (e.g., that there is a finite amount of each of

the molecules used) and of environmental assumptions (e.g.,

that the solution is well-mixed, and that a signal requires

a threshold number of signal molecules to be present). The

safety requirements that will need to be shown to be satisfied in

the planned system are then specified in Continuous Stochastic

Logic (CSL) in RE4DNA to enable their subsequent formal

verification.

Safety analysis. Early analysis of risks at the goal level,

based on the Identify/Assess/Control approach in [5], [30],

helps discover which obstacles to achievement of goals can

occur in the molecular environment. For safety-critical molec-

ular programs [21], our framework employs fault tree analysis

to identify, assess, and mitigate risks to achieving safety

requirements. Use of fault tree analysis helps communication

as well. We have found that molecular biologists are familiar

with fault trees because they use similar diagnostic reasoning

in their lab notebooks.

B. Requirements specification.

The operationalized behavioral requirements for the molec-

ular program are specified by assigning the goals to the spe-

cific molecular agents (the abstract DNA strands) responsible

for them [30]. We express these program requirements as

a chemical reaction network (CRN), a widely used model

for molecular programming described in Section II. A CRN

defines the rules of interaction for the molecular agents.

CRN specification of the requirements serves as an ef-

fective communication bridge across the disciplines involved

in molecular programming. We have found CRNs useful for

both communicating and reviewing the behavioral require-

ments. Requirements review by stakeholders representing the

diversity of fields from software engineers to the laboratory

scientists who will implement the requirements creates more

robust molecular programs and finds problems earlier. Find-

ing requirements errors, omissions and physical infeasibilities

early will reduce the design-and-test cycles in the laboratory

[28]. Moreover, specification of the requirements as a CRN

enables automated verification and compilation into concrete

DNA strands for implementation.

C. Requirements verification.

Requirements verification of molecular programs faces chal-

lenges of scalability. With requirements verification we seek

evidence that we have “gotten the requirements right” in the

specification. However, there are usually very many devices

(copies of the system) operating in parallel in the solution.

To claim that the safety requirements hold across a range of

molecular population counts, diversity of evidence is needed

[20]. Use of CSL to specify the safety requirements supports

probabilistic model checking in the PRISM tool [18], [19]

for small populations (in the hundreds) and simulation using

Ordinary Differential Equations in MatLab’s SimBiology tool

for very large populations.

D. Requirements evolution.

Due to the complexities of probabilistic behavior at scale

(i.e., the need for safe and robust behavior from inherently

unreliable molecular devices), and the fact that this is an

emerging field, changes to requirements, assumptions, and

domain properties occur frequently. Many changes result from

new domain knowledge in theoretical (e.g., improved model-

ing of energy wells) or experimental (e.g., more automated

microfluidic laboratory equipment) advances. Many changes

also are perfective, i.e., new opportunities for improved per-

formance (e.g., reduced molecular leaks). These changes also

can cause emergent risks that need to be discovered and

mitigated by new or modified requirements. Additionally,

argument structures and their building blocks must be updated

accordingly [2]. RE4DNA is designed to support the incremen-

tal, evolving requirements engineering needed for molecular

programs; however, much work remains, especially in terms

of automated traceability and safe reuse of requirements, risk

and argument patterns.

E. Traceability to safety argument building blocks

Safety cases should be built incrementally as development

progresses [22], [32]. RE4DNA assists by identifying building

blocks that contribute to a preliminary safety argument that

the safety requirements, together with the specified domain

properties and environmental assumptions, are satisfied by

the CRN specification. The argument thus documents the

reasoning about safety. This safety-aware focus in RE4DNA

responds to the need for better integration of safety arguments

into the development of safety-critical molecular programs.

The TIM in Figure 1 shows the trace links available in

RE4DNA for achieving this safety-focused traceability from

its artifacts to the safety argument building blocks and rela-

tions. The elements shown in square brackets in the artifacts in

Fig. 1 correspond to the partial safety argument composed in

the illustrative example in Fig. 4. The safety argument uses the

core Goal Structuring Notation (GSN) v.3 [23] and its six core

safety argument building blocks. These are: Goal (safety claim,

expressed as a proposition), Context (operating environment),

Assumption (made in the argument), Strategy (how a higher-

level goal is inferred from lower-level goals), Justification

(rationale), and Solution (composition of evidence) [17]. We

maintain consistency with the description of preliminary safety

arguments in [12] to facilitate potential future use of their

AdVoCATE assurance case toolset.

IV. APPLICATION

RE4DNA is a framework that will provide a clear and

coherent structuring of the requirements engineering process

that others can use to develop their own, new molecular

programs. This paper shows how the RE4DNA framework can
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Fig. 1. The Traceability Information Model (TIM) for the artifacts and
associations created and used in the RE4DNA framework are displayed in
the figure. The annotations in square brackets trace forward to the safety-
argument building blocks derived from each artifact type, and map to the
example molecular program whose development is described in Section IV.

be used to systematize and promote more fully what needs

to be done during RE to justifiably rely on a safety-critical

molecular program.

We illustrate RE4DNA by describing its use on an example

molecular system. In prior work we developed a molecular

oscillator [13], and we use it here as our illustrative exam-

ple. Oscillators have been used in molecular programming

as benchmarks [6], [26], in part due to their ubiquity in

both natural (e.g., gene regulatory networks) and synthetic

(molecular programming) biology. In many cases oscillators

are safety-critical.

Some artifacts used by RE4DNA in our example appear

in [13], including formal requirements, and CRN simulation

and model checking results. The RE4DNA framework is

imposed retrospectively on those artifacts toward evaluating its

feasibility. Other artifacts used by RE4DNA in our example are

newly created for this paper, including the TIM and the safety

argument. These new artifacts add traceability and formally tie

the safety requirements to the safety case. While prior work

did not integrate these fully into the RE process, RE4DNA

incorporates an updated and improved understanding of their

essential roles.

A. Requirements discovery

Intent discovery. The intent of our molecular system-to-

be was initially described informally in discussions among

multi-disciplinary stakeholders. We proposed to develop a

programmed molecular component to self-monitor and report

its health status. Our innovation in [13] was to add an output

capability to a standard oscillator such that it regularly sends

Fig. 2. Incremental Goal Model software artifact developed for the molecular
oscillator during requirements discovery [13], [30]. The solid lines represent
the original goal model. The dashed lines represent an additional, molecular
domain-specific goal subsequently identified during safety analysis.

an “I’m OK” signal to adjacent systems if it is healthy. How-

ever, if the oscillator fails, the signal must stop. The absence

of a signal for a period of time indicates to adjacent systems

that the oscillator has failed. It is safety-critical because other

adjacent molecular components, some of which are safety-

critical, will depend on it.

Goal modeling. Figure 2 shows part of the Goal Model

for the self-monitoring molecular oscillator. The top-level

goal is that the presence or absence of an “I’m OK” health

signal reflect its actual health status. As shown in Fig. 2,

the top-level goal is then initially refined into the AND of

two subgoals: ACHIEVE [Produce signal while healthy] and

AVOID [Produce signal while unhealthy]. These subgoals are

subsequently formalized as safety requirements in Continuous

Stochastic Logic (CSL) for use in formal reasoning. For

example, the first subgoal above is formalized in CSL as

P≥1[�(healthy =⇒ P≥1−δ1 [♦≤t1((sigHigh ∨ ¬healthy)])].
Safety analysis. Following the Identify/Assess/Control ob-

stacle analysis steps, in the Identify step RE4DNA uses fault-

tree analysis [21] to identify two scenarios that cause the

oscillator to fail. In the first safety scenario, the oscillator

fails because the component runs out of one of the three

molecules that drive its phased oscillations. In the second

safety scenario, the oscillator fails because the count of each of

the three molecules converges toward equilibrium, disrupting

the oscillations. In the Assessment step these are both found

to be feasible and likely obstacles to achieving the goals

represented in the Goal Model. In the Control step, the needed

mitigation adds a newly discovered safety subgoal to the Goal

Model. This captures the molecular reality that stopping a

molecular signal requires not only stopping the production

of signal molecules but also actively removing (consuming)

them. This new goal is represented in Fig. 2 as the subgoal

Achieve [Signal abates] in the dashed box.

B. Requirements specification

Specification of the behavioral requirements as a chemi-

cal reaction network (CRN) model is used by RE4DNA to
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operationalize them and to enable their automated verifica-

tion. Operationalization assigns the goals and environmental

assumptions to specific molecular agents responsible for them.

The CRN below specifies the three phases of the oscillator

and its "I’m OK" signal, S. The initial condition is that the

count of only one of the three molecules, X, is high (i.e., it

starts in Phase X), and the count of Y and Z are similar and

low. Thus, the first and third reactions are equally likely to

occur. When either occurs, it increases the rate of the first

reaction and decreases the rate of the third reaction. This goes

on until the count of Y is highest (i.e., it enters Phase Y).

Similarly, the oscillator continues on to Phase Z. The count

of S molecules increases in the first reaction, and decreases

(abates) in the last two reactions.

X + Y
k−→ 2Y + S

Y + Z
k−→ 2Z

Z +X
k−→ 2X

Z + S
k2−→ Z

S
k2−→ ∅

C. Requirements verification

As noted in Sect. II, CRNs are an increasingly common

lingua franca in which to specify a molecular program’s

requirements. In RE4DNA the CRN serves as our chosen way

to communicate the molecular requirements specifications, via

a shared, transdisciplinary model. This also enables the CRN

to be input to existing requirements verification tools, includ-

ing simulation, model checking, proof assistants, and model

testing. To analyze and verify the oscillator’s requirements

we used two of these toolsets. The first was MATLAB’s

SimBiology package. Figure 3 shows some simulation results

that were part of our verification that the CRN specification

for the oscillator satisfies the subgoal ACHIEVE [Produce

signal while healthy]. The second was the probabilistic model

checker, PRISM [18], [19]. PRISM checked that the CRN

specification satisfied the formal CSL safety requirements.

D. Requirements evolution.

We have described the RE4DNA framework in a sequential

manner. However, the activities were often performed itera-

tively and incrementally. For example, simulation was done re-

peatedly as the goal model and CRN specification evolved both

to correct errors and to improve the oscillator. Requirements

engineering was complicated by the fact that the oscillator is

a molecular system. For example, the “OK" signal itself is

molecular, meaning that the oscillator must verifiably produce

a sufficient count of signal molecules while it is healthy.

Similarly, although the signal molecules will never entirely

disappear, their count must verifiably abate over time when the

oscillator has failed. The probabilistic molecular environment

often defeated intuition or enforced de-idealizations. This

complexity, even for a seemingly simple system such as

the oscillator, encouraged us to continue integrating formal

Fig. 3. Simulation with MATLAB’s SimBiology is used by RE4DNA to
verify that the requirements specification for the oscillator meets its goals.
Purple peaks in bold font show the regular issuance of the "OK" signal when
the oscillator is healthy. The other three colors show the count of X, Y
and Z molecules, respectively, in the oscillator’s three phases. The X axis
is simulation time in seconds; the Y axis is total molecular count [13].

requirements verification into RE4DNA. Formal reasoning to

detect when goals were infeasible and what environmental

assumptions were missing from the specification was very

useful in getting the requirements right.

E. Traceability to safety argument building blocks.

Figure 4 shows how the artifacts created by the RE4DNA

activities can form part of the safety argument that the top-

level goal Achieve [Output reflects system’s health status] is

satisfied. The unique IDs on the node labels provide trace-

ability between the building blocks in the argument and the

artifacts in the TIM in Figure 1. The mapping here was done

manually but can be automated in the future, perhaps using

[12]. Additionally, tooling might support broader potential use

of RE4DNA’s approach for non-molecular, highly distributed

networks with probabilistic behavior that are safety-critical.

F. Discussion

This RE@Next! paper reports early results in our ongoing

investigation of three research questions:

RQ1: What current RE techniques support requirements en-

gineering for a safety-critical molecular programmed system?

We have shown that goal modeling, safety analysis (specifi-

cally, fault tree analysis, which is familiar to lab scientists), and

formal specification using chemical reaction network modeling

as a standard bridge to a variety of automated requirements

verification tools (model checking, simulation) can assist in

addressing the challenges of probabilistic behavior, scalability

and transdisciplinary stakeholders.

RQ2: What extensions and domain-specific specializations of

current RE techniques assist that effort? We have described

the primacy of accurate domain properties and environmental

assumptions in creating safe and robust molecular programs,

suggested the need for additional domain-specific obstacle

patterns to address the particularities of the molecular envi-

ronment (specifically, signal abatement and signal leakage,

as well as the certainty that at this very large scale some

molecular components will fail), and noted that rigorous

requirements analysis can reduce costly design-and-test cycles

in the laboratory.
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Fig. 4. A portion of the safety argument for the self-monitoring oscillator,
showing the goals, strategies, solutions, and associated building blocks gen-
erated as RE4DNA artifacts. The unique labels on the nodes trace to the TIM
in Figure 1 .

RQ3: What RE4DNA artifacts serve as building blocks for

a preliminary safety argument? We have proposed a TIM for

RE4DNA and traced artifacts from the RE4DNA activities to

the structural elements and relations needed for a preliminary

safety argument.

V. DIRECTIONS FOR FUTURE WORK AND CONCLUSION

This paper has proposed a framework for the requirements

engineering of safety-critical molecular programs that incor-

porates best-practice RE techniques and tools while addressing

some particular challenges of the cyber-molecular domain.

Additionally, our framework uses the artifacts produced by its

requirements engineering activities to identify building blocks

for safety arguments toward a preliminary safety case.

The long-term objective of our work is to provide a re-

quirements engineering structure and guide that is useful and

used by both molecular programming research and industrial

groups when developing new molecular programmed systems.

We are especially concerned with providing support for safety-

critical applications, such as DNA drug-delivery capsules and

biosensors. There is much future work to do toward this. Next

steps, many of which offer opportunities for new collaborative

work, include identifying how best to specify the domain

properties and assumptions for ease of comprehension by all

stakeholders (software engineers to lab scientists); offering

domain-tailored display options; creating additional obstacle

patterns from recurring molecular program difficulties; incor-

porating rationales into the safety argument; and automating

the composition and update of safety arguments as RE artifacts

evolve.
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