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ABSTRACT

Skin acts as a mechanical barrier between the body and its surrounding environment and plays an
important role in resistance to pathogens. However, we still know little regarding skin responses to
physiological changes, particularly with regard to responses against potential pathogens. We herein
executed RNA-seq on the wing of the Rhinolophus ferrumequinum to assess gene-expression
variations at four physiological stages: pre-hibernation, hibernation (early-hibernation and late-
hibernation), and post-hibernation, as well as the gene-expression patterns of infected and unin-
fected bats with the Pseudogymnoascus destructans (Pd). Our results showed that a greater number
of differentially expressed genes between the more disparate physiological stages. Functional
enrichment analysis showed that the down-regulated response pathways in hibernating bats
included phosphorus metabolism and immune response, indicating metabolic suppression and
decreased whole immune function. We also found up-regulated genes in post-hibernating bats that
included C-type lectin receptor signalling, Toll-like receptor signalling pathway, and cell adhesion,
suggesting that the immune response and skin integrity of the wing were improved after bats
emerged from their hibernation and that this facilitated clearing Pd from the integument.
Additionally, we found that the genes involved in cytokine or chemokine activity were up-
regulated in late-hibernation compared to early-hibernation and that FOSB regulation of immune
cell activation was differentially expressed in bats infected with Pd during late-hibernation, implying
that the host’s innate immune function was enhanced during late-hibernation so as to resist
pathogenic infection. Our findings highlight the concept that maintenance of intrinsic immunity
provides protection against pathogenic infections in highly resistant bats.
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Introduction
pathogens. An abundance of evidence now suggests

Hibernation is a seasonal physiological adaptation that
allows some mammals to survive in harsh winter cir-
cumstances with limited food availability [1]. During
hibernation, much of this time is spent in torpor,
a physiological stage characterized by inactivity, attenu-
ated body temperature, reduction in heart and meta-
bolic rates, and immune suppression [2-4]. While the
molecular and genetic bases of hibernation physiology
in mammals have been partially evaluated by analysing
the differential gene expression in some species such as
bears, ground squirrels, primates, and bats [5-8], the
majority of extant studies focused on determining the
differentially expressed genes in the brain, heart, and
liver — organs involved in carbohydrate and lipid meta-
bolism, detoxification, and molecular transport [9-11].

Animal skin, which is the tissue that serves as
a portal between the body and external environment,
acts as a mechanical barrier in protecting against

that the skin is actually an active immune organ [12-
15]. Additionally, due to its direct contact with the
external surroundings, skin is continuously exposed to
large numbers of pathogenic. Thus, animal skin may
undergo marked physiological changes that cause
alterations in gene expression to combat potential
pathogens, such as local inflammation response and
the production of cytokines, especially during hiberna-
tion when the host’s systemic immune function is
inhibited. Therefore, exploring gene expression in skin
during hibernation is essential to understand how the
host copes with potential pathogens and also contri-
butes to understanding the skin’s adaptation to envir-
onmental changes. However, little is known regarding
changes in skin gene expression during hibernation in
mammals, particularly with respect to bat species that
are at risk of population extinction due to
Pseudogymnoascus destructans (Pd) infection.
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The emerging infectious disease known as white-nose
syndrome (WNS) (also called white-nose disease [WND])
is caused by Pd (previously referred to as Geomyces destruc-
tans), and WNS has precipitated a catastrophic decline in
the bat fauna of North America [16-18]. Pd invades the
wing tissues, forming characteristic cup-shaped erosions
and ulcerations [19]. Bats awaking from hibernation may
also undergo an inflammatory immune-reconstitution
syndrome and an acute inflammatory response to cope
with Pd infection, potentially leading to their mortality
[20]. Intriguingly, bat species are seemingly unequally
affected by Pd [21-23]. For example, many North
American bats have been severely affected, while Chinese
bats were also infected with Pd without any mortality.
Variations in skin responses to Pd may play a role in the
inherently different susceptibilities to Pd between North
American and Chinese bat faunas. This variety of responses
is similar to that reflected in some previous studies on
amphibians where those resistant to Batrachochytrium
dendrobatidis exhibited up-regulated genes involved in
pathways associated with maintaining structural integrity
of skin (e.g. cell adhesion and epidermis development),
whereas susceptible amphibians did not [24,25].
Although limited data on skin responses to Pd infection
[26-30] as well as on differences in the chemical composi-
tion of bat epidermis [31] in susceptible and tolerant bat
species have been reported, there are no extant studies on
bats that manifest high resistance to Pd in endemic regions.
We posit that studying the mechanisms by which highly
resistant bats cope with Pd infection would facilitate reveal-
ing the adaptive evolutionary processes associated with the
occurrence or reduction of fungal infectious-disease sever-
ity. This is critical to our understanding of pathogen viru-
lence and bat survival in natural immune states.

In the present study, we used next-generation RNA
sequencing on wing tissues from wild greater horseshoe
bats (Rhinolophus ferrumequinum) that exhibit high resis-
tance to Pd infection so as to provide a more complete
picture of the changes in wing gene expression in hibernat-
ing and active bats. We assume that R. ferrumequinum is
resistant rather than tolerant due to the fact that resistance
refers to host defences that reduce pathogen growth,
whereas tolerance refers to host defences that reduce
damage experienced by the host without reducing pathogen
growth [32]. A previous study showed that although
Chinese R. ferrumequinum was similar in colony size and
temperatures in hibernation to North American bats, it
manifested very low infection intensity and Pd load in
China, suggesting host resistance to pathogen [21].
Herein, our aims were to 1) to explore the temporal changes
in the bat wing transcriptome and to seek critical responses
for coping with potential pathogens, and 2) to compare skin
responses to Pd infection during late-hibernation.

Materials and Methods
Sample collection

We collected 30 R. ferrumequinum adults over
a longitudinal time-course that spanned four physiolo-
gical stages between October of 2020 and May of 2021
from a hibernaculum in Jilin Province of Northeast
China where we had detected Pd in previous studies
[22,33]. The four physiological stages were pre-
hibernation (five individuals in October), early-
hibernation (five individuals in December), Ilate-
hibernation (12 individuals in April), and post-
hibernation (eight individuals in May). We captured
active bats with a net (8 m x 3 m) when they flew out
of the cave at night, and removed them from the net
using sterile latex gloves. After 2h, we untangled the
nets and brought them back to the laboratory to pre-
vent interfering with bat predation. Since only
R. ferrumequinum lives in this cave, no other bat spe-
cies were caught during sampling. We captured hiber-
nating bats from their roosting locations. We swabbed
each individual bat five times along its forearm and
muzzle using sterile polyester swabs for Pd detection
and punched 5-mm biopsy samples from areas of the
right and left plagiopatagium (the membranous area
between the last digit and the hindlimbs) of the wing.
We then stored the samples in RNase-free tubes con-
taining 500 uL of RNAlater (TTANGEN, Beijing, China)
and flash-froze the tubes in liquid nitrogen for RNA
extraction. Weights were measured and recorded to
estimate the relative physical condition of each indivi-
dual [34], and bats were then released immediately after
sampling.

Pseudogymnoascus destructans test

We extracted DNA from each fungal sample according
to DNeasy blood and tissue extraction kits (Qiagen,
Hilden, Germany) using the manufacturer’s standard
extraction protocol [22,33]. We then employed qPCR
to determine the presence of Pd [35]. Fungal load was
calculated according to the following formula: fungal
load =log (10~ ((Ct —22.04942)/-3.34789)) [36].

RNA extraction and transcriptome sequencing

We extracted RNA from each punch biopsy sample of
bat tissue based on the TRIzol method (TIANGEN,
Beijing, China). We quantified and assessed RNA integ-
rity using the Bioanalyzer 2100 System (Agilent
Technologies, CA, USA). RIN values greater than 8.0
were confirmed for all samples in this study. RNA



sequencing was subsequently executed on the Illumina
HiSeq 4000 platform with paired-end 150-bp nucleo-
tides by the Beijing Allwegene Technology Co. Ltd,
China.

Mapping analysis and quantification of
gene-expression levels

After obtaining raw data, quality control was performed
using Trimmomatic v 0.33 according to the following
criteria: 1) removing reads with adapter sequences; 2)
filtering out reads with uncertain bases (N) greater than
10%; 3) filtering out reads with low quality bases (Q <
20) greater than 50% [37]. We then mapped the clean
reads to the reference genome of R. ferrumequinum
from Ensembl 100 using STAR v 2.5.2b [38]. Only
reads with a perfect match or with one mismatch
were further analysed and annotated based on the bat
reference genome. We exploited HTSeq v 0.5.4 p3 to
count the read numbers mapped to each gene [39] and
calculated the values for fragments per kilobase of
transcript, per million mapped reads (FPKM) using
RSEM v1.3.1 to estimate gene-expression levels [40,41].

Differential expression analysis

DESeq2 v1.32.0 was employed to detect differentially
expressed genes (DEGs) for each sample pair [42], and
resulted in six sets of DEGs, ie. early- vs. pre-
hibernation, late- vs. early-hibernation, post- vs. late-
hibernation, late- vs. pre-hibernation, post- vs. pre-
hibernation, and post- vs. early-hibernation. To explore
whether gene expression differed between wing tissues
of infected and uninfected Pd bats, we used DESeq 2 to
screen for DEGs between the two groups during late-
hibernation, and P values were corrected based on the
Benjamini and Hochberg method [43]. In this study,
genes with an adjusted P value <0.05 and |log2 fold-
change|] > 1 were considered to be differentially
expressed. In each pairwise comparison, we defined
specific up- and down-regulated genes, with up-
regulated genes designating expression at higher levels
in the former physiological stage than in the latter,
while down-regulated genes reflected attenuated
expression in the former physiological stage relative to
the latter.

To visualize gene-expression patterns across all 30
samples of uninfected bats and bats infected with Pd,
PCA and hierarchical clustering with Pearson’s correla-
tion were performed within R v. 4.1.0 using dudi.pca()
and hclust() functions [44]. ANOSIM (Analysis of
Similarity) based on Euclidean distance was implemen-
ted using the anosim() function in the vegan package to
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assess differences between groups. To determine the
biological function of DEGs identified in each compar-
ison, functional annotation was carried out by GO and
KEGG pathway analyses using the OmicShare tool
(https://www.omicshare.com) [45,46]. We achieved
multiple-test  correction using the Benjamini-
Hochberg approach and determined significance with
an adjusted P value of <0.05.

Results
Pd-infection status of R. ferrumequinum

While we detected no Pd infection in the bats collected
from pre-, early-, and post-hibernation groups, for bats
collected during late-hibernation, we detected six bats
infected with Pd, with an average fungal load was
—5.38, ranging from —6.24 to —4.58 per individual (Ct
values ranged from 37.38 to 42.94). We also ascertained
that infected and uninfected Pd bats possessed a similar
weight, suggesting their similar physical condition (t=
0.81, P=0.24).

Transcriptomic sequencing and mapping

We obtained 1,378.52 million raw reads from the 30
samples, with an average of 45.95 million (range,
39.11-54.39 million/sample) raw reads per sample
(Table S1). After quality control, we obtained a total
of 1,355.03 million clean reads, with approximately
43.70, 49.51, 43.62, and 45.69 million clean reads
retrieved from pre-, early-, late-, and post-hibernation
groups, respectively. Of these, 38.34, 43.74, 38.35, and
39.59 million clean reads were mapped to the
R. ferrumequinum reference genome, with average
alignments of clean reads to the reference genome of
87.73%, 88.35%, 87.82%, and 86.65%, respectively.

Differential expression at four physiological
stages

We conducted six pairwise comparisons for the differ-
ential gene-expression analyses across the four physio-
logical stages and identified a total of 8778 DEGs. Our
principal component analysis (PCA) based on all DEGs
showed four distinct groups, with each corresponding
to a distinct physiological stage, and PC1 and PC2
explained 64.15% and 10.24% of the variation, respec-
tively, indicating sizable differences in gene expression
among groups (ANOSIM: R=0.53, P=0.001;
Figure 1a). We discerned similar results from the hier-
archical clustering (Figure 1b).
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When we statistically analysed the number of DEGs, we GO and KEGG pathway enrichment analyses

uncovered 913, 876, 4790, 2361, 5379, and 5682 DEGs in

the six groups of pairwise comparisons, respectively, and GO enrichment analysis showed that a total of 261 GO
the total number of DEGs or specific DEGs was the highest ~ terms were significantly enriched for the six pairwise
in the four groups of comparisons (two post-hibernation ~ comparisons of DEGs, of which up- and down-
vs. hibernation, post- vs. pre-hibernation, and late- vs. pre- regulated genes were significantly enriched for 180
hibernation groups). This reflected the largest differences ~ and 81 GO entries, respectively. We realized that
in physiological stages, while the number of up-regulated ~ humerous GO terms were enriched by DEGs from the
genes was also greater than the number of down-regulated post-hibernation group relative to the other stages and
genes (Figure 1c and 1d). Furthermore, the total number of that the up-regulated genes were enriched with more
DEGs was also smaller in the comparison between the two ~ GO terms than were the down-regulated genes.

groups, with smaller differences in other physiological However, fewer terms were significantly enriched for
the two hibernation stages vs. pre-hibernation and late-

stages.
(@) Principal component analysis of all differentially expressed genes (b) Heatmap of all differentially expressed genes
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Figure 1. Differential gene-expression analyses in the wing tissues of R. ferrumequinum at different physiological stages. (a) Principal
component analysis of all DEGs. Percentages of variance explained by PC1 and PC2 are provided, accounting for 64.15% and 10.24%,
respectively. P-value was obtained by analysis of similarities (ANOSIM). (b) Heatmaps based on all DEGs from six pairwise
comparisons of the four physiological stages. Different colours indicate relative expression levels. (c) Number of DEGs identified
in each pairwise comparison. The numbers of up- and down-regulated genes are labelled alongside the bar. (d) Upper plot shows
the number of DEGs shared between each pairwise comparison.



hibernation  vs.
(Table 1).

The DEGs in the hibernating bats relative to the pre-
hibernating bats that were down-regulated in early-
hibernation were involved in metabolism (Figure 2a),
with many of the most enriched categories involving
phosphorus metabolism (e.g. GO: 0006796, phosphate-
containing compound metabolic process, Padj = 1.87 x
10-5). In addition, down-regulated DEGs in late-
hibernation were not only enriched in some similar
GO terms but were also included in immune response
(e.g. antigen processing and presentation), adhesion
response (e.g. biological adhesion and wound healing),
and transport process (Figure 2b).

The functional categories of genes in post-
hibernation relative to the hibernation groups were
enriched in GO terms that included three main cate-
gories: immune response, adhesion process, and devel-
opment process (Figure 3). Specifically, compared to
the two stages of hibernation, the up-regulated genes in
the post-hibernation group were not only significantly
enriched for similar terms (e.g. the three top GO terms
with the smallest Padj values were immune response,
immune system process, and regulation of immune
response) but were also significantly enriched for
other disparate terms (Table S2). Compared with late-
hibernation, the up-regulated genes in the post-
hibernation group were significantly enriched for
developmentally related terms such as epidermis devel-
opment and system development, which were not
found in the comparison with the early-hibernation
group. However, the up-regulated genes in post-
hibernation relative to early-hibernation groups were
significantly enriched in T-cell related terms such as
T-helper 17 type immune response and T cell differ-
entiation, which were not found in the comparison
with the late-hibernation group. More importantly, for
the late-hibernation vs. early-hibernation comparison,

early-hibernation =~ comparisons

Table 1. Number of GO terms significantly enriched for DEGs in
six pairwise comparisons.

GO terms number

Biological Molecular Cellular
process function component
Up/Down Up/Down Up/Down
Early — vs. Pre- 0/5 3/9 171
hibernation
Late- vs. Early- 0/0 5/5 01
hibernation
Post- vs. Late- 26/0 38/1 10/0
hibernation
Late- vs. Pre- 0/17 3/29 0/15
hibernation
Post- vs. Pre- 18/15 52/2 3/0
hibernation
Post- vs. Early- 74/0 65/3 4/0
hibernation
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we also discovered that many of the DEGs were
involved in cytokine and chemokine activities
(Table S3).

The results of KEGG enrichment analysis revealed
that a total of 99 KEGG pathways were significantly
enriched in the six pairwise comparisons of DEGs, of
which up- and down-regulated genes were significantly
enriched for 59 and 40 KEGG pathways, respectively.
When we focused on the pathways that were signifi-
cantly enriched for DEGs during hibernation and post-
hibernation (Figure 4), we demonstrated that compared
with pre-hibernation, down-regulated genes in the
hibernation group were significantly enriched in endo-
crine system, signal transduction, and immune system
pathways. In addition, down-regulated genes were sig-
nificantly enriched in metabolic pathways between late-
vs. pre-hibernation groups, including fatty acid meta-
bolism, biosynthesis of unsaturated fatty acids, and cell
adhesion-related pathways, while these pathways were
not significantly enriched in the early-hibernation
group (Table S4).

When we compared them between the two stages of
hibernation, the up-regulated genes in the post-
hibernation group were significantly enriched in path-
ways related to the immune system, signal transduc-
tion, and infection diseases. A further analysis of
immune system pathways revealed that up-regulated
genes were also significantly enriched in the Toll-like
receptor signalling pathway, the C-type lectin receptor
signalling pathway, and the cytokine signalling pathway
(Table 2). In addition, two digestion-related pathways
(protein digestion and absorption, and vitamin diges-
tion and absorption) were significantly enriched for up-
regulated genes during post-hibernation (Table S5).

Comparison between uninfected bats and bats
infected with Pd in late hibernation

To determine the host response mounted by
R. ferrumequinum to Pd during hibernation, we first
compared host gene-expression patterns between
infected and uninfected bats. Using PCA, we observed
that the first two principal components accounted for
approximately 66% of the variation among samples
(Figure 5a) and that the gene-expression patterns were
similar between the two groups (ANOSIM: R=0.07, P
=0.18). Hierarchical clustering also consistently
showed that infected and uninfected samples were
mixed together (Figure 5b). Furthermore, compared
with uninfected bats, bats infected with Pd showed
lower fold-changes in gene expression (Figure 5c).
Using DESeq2, we only noted three up-regulated
DEGs in Pd-infected bats (Figure 5d); of these, the
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Figure 2. Biological process terms that are significantly enriched for differentially expressed down-regulated genes during hiberna-

tion. (a) Early- vs. pre-hibernation and (b) late- vs. pre-hibernation.

FOSB gene (an AP-1 transcription factor) was able to
regulate immune-cell activation.

Discussion

In the present study, we used the RNA-seq approach to
examine the bat wing transcriptome based on changes
in gene expression in R. ferrumequinum that exhibited
high resistance to Pd. Our data highlighted the dynamic
nature of the wing transcriptome, which varied tempo-
rally throughout the physiological stages from active to
hibernation to active stages. Hibernation is a survival
strategy in which animals exhibit reduced body

temperature and metabolic rate and experience
immune suppression to conserve energy. The reduced
metabolic rate of animals during hibernation may lead
to changes at the molecular level through regulation of
gene expression, just as our results revealed that the
genes down-regulated during hibernation compared to
pre-hibernation were principally involved in metabolic
pathways (Figure 2). Analogous to our findings, the
expression of genes involved in oxidoreductase and
glycolytic processes (which are also critical to energy
metabolism) was shown to be down-regulated in the
liver and brain tissues of R. ferrumequinum during
hibernation [7,47], suggesting a generalized inhibition
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Treemap of biological process categories in up-regulated differentially expressed genes

Figure 3. Treemap showing the biological process terms significantly enriched for differentially expressed up-regulated genes in the
comparisons of post- vs. early-hibernation (a) and late-hibernation (b). Biological process terms were reduced using Revigo to

remove semantic redundancies.

of metabolism in different tissues of bats during this
physiological process.

While DEGs were not enriched for immune-related
GO entries during early-hibernation compared to pre-
hibernation groups in our study, down-regulated genes
in late-hibernation were involved in the immune

response, implying a gradual and global down-
regulation of host immune system function with
increasing hibernation time. It is worth noting, how-
ever, that some up-regulated genes in late-hibernation
relative to early-hibernation were enriched in GO terms
such as chemokine or cytokine activity (Table S3),
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Figure 4. KEGG pathways significantly enriched for DEGs during early-hibernation (a) and late-hibernation (b) vs. pre-hibernation
and post-hibernation vs. early-hibernation (c) and late-hibernation (d). (a) and (b) are differentially expressed down-regulated genes,

and (c) and (d) are differentially expressed up-regulated genes.

including CSF3, CCL19, and CCL20. Actually, although
hibernation affects host immune system function, the
effects of hibernation on intrinsic and specific immune
functions during hibernation are divergent due to the
exposure of the host to potentially pathogenic infec-
tions. Our results therefore provide a new perspective
for the study of changes in immune function during
hibernation in mammals. On the basis of our results, it
is likely that part of the intrinsic immune function may
be increased during late-hibernation of the
R. ferrumequinum, and we speculate that this may be
due to cope with potential pathogenic infections.
Among these pathogenic infections, an example that
is particularly profound for bats is Pd, which exhibits
seasonal transmission dynamics. Just as we likewise did
not detect Pd infection in bats during pre-hibernation,
but rather detected it during late-hibernation. Fritze
et al [48]. similarly found that the whole immune
function of highly tolerant Myotis Myotis was

suppressed during hibernation, but that host innate
immunity was enhanced. Thus, the appearance of
enhanced intrinsic immune function in the wing tissues
of the R. ferrumequinum during late-hibernation may
be the result of host-pathogen interaction in which bats
try to resist Pd.

R.ferrumequinum also appears to activate an
immune reaction to remove a pathogenic infection
after bats emerge from hibernation and resume normal
activity, with subsequent restoration of all components
of the immune system. We demonstrated that up-
regulated genes in the post-hibernation group that
were involved in C-type lectin receptor signalling path-
way and Toll-like receptor signalling pathway included
CLEC7A and TLR4 (Table 2) and that these genes were
also up-regulated at both the local and systemic levels
in response to Pd in M. lucifugus [26,27]. We thus
suggest that after bats emerge from hibernation,
responses to pathogenic infection (such as Pd) within



Table 2. KEGG pathways associated with the immune system of
differentially expressed up-regulated genes during post-
hibernation compared to hibernation.

Pathway Gene
ID Pathway Numbers Pad;

Post- vs. Early-hibernation

ko04062 Chemokine signalling pathway 42 3.38E-08

ko04640 Hematopoietic cell lineage 21 2.12E-05

ko04672 Intestinal immune network for 14 9.12E-04
IgA production

ko04657 IL-17 signalling pathway 17 1.54E-03

ko04620 Toll-like receptor signalling 17 5.22E-03
pathway

ko04662 B cell receptor signalling 16 5.90E-03
pathway

ko04610 Complement and coagulation 16 8.50E-03
cascades

ko04659 Th17 cell differentiation 19 1.12E-02

ko04650 Natural killer cell mediated 17 1.12E-02
cytotoxicity

ko04621 NOD-like receptor signalling 23 1.24E-02
pathway

ko04666 Fc gamma R-mediated 17 2.64E-02
phagocytosis

ko04623  Cytosolic DNA-sensing 12 4.05E-02
pathway

ko04625 C-type lectin receptor 17 4.34E-02
signalling pathway

Post- vs. Late-hibernation

ko04062 Chemokine signalling pathway 39 6.18E-09

ko04640 Hematopoietic cell lineage 22 2.10E-07

ko04672 Intestinal immune network for 13 7.84E-04
IgA production

ko04610 Complement and coagulation 15 5.56E-03
cascades

ko04650 Natural killer cell mediated 16 7.38E-03
cytotoxicity

ko04625 C-type lectin receptor 17 1.36E-02
signalling pathway

ko04666 Fc gamma R-mediated 15 3.69E-02
phagocytosis

ko04620 Toll-like receptor signalling 13 4.10E-02
pathway

their bat wing tissue may be mediated by the innate
immune system. We also uncovered genes encoding for
pro-inflammatory mediators that characterize the
innate immune response (including CSF, IL-23A, and
IL-6), with increased transcript levels in post-
hibernation that potentially mediate the recruitment
of monocytes and neutrophils to initiate an adaptive
Th17 response and thus provide protection [49]. As
a low-level infection is usually contained by an innate
immune response, we posit that pathogen clearance
may not trigger a robust acute inflammatory response,
thus avoiding pathological inflammation.

Although our sampling protocol under native con-
ditions could not eliminate the host’s immune response
to other pathogens (including bacteria and viruses), our
results clearly demonstrated that these host actions
were beneficial in their response to Pd infection. We
first found that some genes up-regulated in the post-
hibernation group relative to the hibernation group

VIRULENCE (&) 9

were enriched in GO terms associated with skin struc-
tural integrity, including cell adhesion, response to
stimulus, biological adhesion and animal organ devel-
opment (Table S2). More importantly, compared with
late-hibernating animals with Pd infection, the up-
regulated genes in the post-hibernation group were
also enriched in some GO terms, that play important
functions in skin structural re-modelling, such as epi-
dermis development and system development. And this
was not observed in the post-hibernation group relative
to the early-hibernation group without Pd infection.
Additionally, KEGG pathway enrichment analysis
showed that many up-regulated genes in the post-
hibernation group were significantly enriched in the
cell adhesion molecules (CAMs) pathway. In fact, the
disruption of skin function is considered to be
a significant cause of host mortality due to Pd infection
[50]. Therefore, the increasing expression of genes
related to skin structure is significant in host physiolo-
gical homeostasis and in coping with Pd infection after
host emergence from hibernation. This is similar to
what has been observed in amphibians, where the
genes involved in skin structural integrity and re-
modelling (e.g. cell-matrix adhesion gene set) were up-
regulated in resistant species and down-regulated in
susceptible species [24,25,51]. Additionally, Pd-
produced vitamin B2 and some proteases are the poten-
tial virulence factors that erode bat wings, resulting in
death [52-54]. Our results also showed that differen-
tially expressed up-regulated genes were associated with
vitamin digestion and absorption pathway and protein
digestion and absorption pathway, which could poten-
tially facilitate the absorption and digestion of vitamin
B2 and of proteases produced by Pd. Thus, it may be
important for resistant-bat survival to avoid Pd-
induced damage to wings during hibernation.

The comparison of gene expression between Pd-
infected and uninfected R. ferrumequinum in late-
hibernation may have revealed potential physiological
tolerance as a host-defence mechanism against patho-
gens. Previous studies have found a range of DEGs
associated with immune responses or other responses
in susceptible bats following exposure to Pd infection
[26,27]. Our results showed that R. ferrumequinum
appeared to be relatively unresponsive to Pd infection,
which is different from those susceptible bats hibernat-
ing in similar ecological conditions [21]. This result
suggests that R. ferrumeuqinum exhibits specific pat-
terns that inhibit Pd growth. For example, our recent
study showed that the skin microbiota of
R. ferrumeuginum was enriched in particular taxa
with antifungal abilities [33]. Additionally, the bats
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Figure 5. Variation in gene expression between R. ferrumequinum specimens that were infected and those that were uninfected with Pd in
late-hibernation. (a) Principal component analysis showing gene-expression patterns for samples from Pd-infected and Pd-uninfected bats.
The percentages of variance as explained by PC1 and PC2 were 45.65% and 20.08%, respectively. We obtained a P-value by ANOSIM. (b)
Heatmap of gene expression based on hierarchical clustering analysis using Pearson’s correlation. (c) MA plot showing differential
expression between Pd-infected bats and Pd-uninfected bats. Red points indicate DEGs with a g-value <0.05 and |log; fold-change| > 1 as
determined by DESeq_2. (d) Bar plot showing the expression levels for three DEGs in infected and uninfected Pd bats.

could eradicate the fungus based on different hibernat-
ing behaviours, including different arousing times and
hibernating length, which should be tested by beha-
vioural experiments and pathological analysis in future
study. Despite this, we reported three genes as exhibit-
ing significantly differential expression in infection
with Pd (Figure 5). However (and intriguingly), the
FOSB transcript levels among the three DEGs were
also augmented in M. lucifugus infected with Pd during
both torpor and arousal [27]. Investigators reported in
a previous study that FOSB knockdown significantly
reduced the mRNA and protein levels of immune-
related chemokines [55], suggesting that bats with
high resistance to Pd underwent a transformation so
as to produce a trade-off between immune response
and energy conservation during hibernation, and this
then was able to adjust interleukin-17 signalling to

prevent tissue damage [56]. Pd strains in Asia have
coexisted longer with bats than those in North
America and Europe, and Pd-infected bats during late-
hibernation showing an approximately 1000-fold lower
fungal load than North American species [57]; this
therefore lowers risk following the establishment of
equilibrium in host-pathogen interaction [23]. Thus,
we hypothesize that this balancing mechanism under-
lying pathogenic resistance in hibernation may have
long been selected by Pd pressure, and that it has
ultimately been retained throughout co-evolutionary
adaptation [58].

Conclusion

Hibernation allows bats to survive in resource-scarce
environments by decreasing their metabolism and



immune function, but this also makes them vulnerable
to psychrophilic pathogens that include Pd. However,
we found that a highly resistant species,
R. ferrumequinum, actually exhibited increased expres-
sion of genes related to intrinsic immune responses and
avoids acute inflammatory responses during late-
hibernation, thus potentially tempering the effects of
Pd infections. Our data also suggest that improvements
in genes related to immune response and skin integrity
will facilitate the clearance of Pd after the bats emerge
from hibernation. The genes identified in the present
study may provide inspiration for designing effective
interventions in susceptible bats. It also provides a basis
for elucidating the mechanisms involved in disease
susceptibility, tolerance and resistance to other emer-
ging infectious diseases.
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