Collusion Resistant Copy-Protection for Watermarkable
Functionalities

Jiahui Liu® Qipeng Liu' Luowen Qiant Mark Zhandry$

Abstract

Copy-protection is the task of encoding a program into a quantum state to prevent illegal
duplications. A line of recent works studied copy-protection schemes under “1 — 2 attacks”:
the adversary receiving one program copy cannot produce two valid copies. However, under
most circumstances, vendors need to sell more than one copy of a program and still ensure
that no duplicates can be generated. In this work, we initiate the study of collusion resistant
copy-protection in the plain model. Our results are twofold:

¢ The feasibility of copy-protecting all watermarkable functionalities is an open question
raised by Aaronson et al. (CRYPTO’ 21) In the literature, watermarking decryption, digi-
tal signature schemes and PRFs have been extensively studied.
For the first time, we show that digital signature schemes can be copy-protected. To-
gether with the previous work on copy-protection of decryption and PRFs by Coladan-
gelo et al. (CRYPTO' 21), it suggests that many watermarkable functionalities can be copy-
protected, partially answering the above open question by Aaronson et al.

¢ We make all the above schemes (copy-protection of decryption, digital signatures and
PRFs) k bounded collusion resistant for any polynomial &, giving the first bounded col-
lusion resistant copy-protection for various functionalities in the plain model.

1 Introduction

The idea of exploiting the quantum no-cloning principle for building cryptography was pioneered
by Wiesner. In his seminal work [Wie83], he proposed the notion of quantum banknotes that can-
not be counterfeited due to the unclonability of quantum information. This idea has profoundly
influenced quantum cryptography, for example, inspiring the famous work on secure quantum
key exchange [BB84]. Since all classical information is inherently clonable, unclonable cryptogra-
phy is only achievable through the power of quantum information.

Aaronson [Aar09] further leveraged the capability of no-cloning to achieve copy-protection.
The idea of copy-protection is the following. A software vendor wants to sell a piece of software,
abstracted as a classical function f. It prepares a quantum state p; so that anyone with a copy
of py can evaluate f on a polynomial number of inputs. However, no efficient pirate receiving a
single copy of ps, could produce two programs that compute f correctly.

“University of Texas at Austin. Email: jiahui@cs.utexas.edu

*Simons Institute for the Theory of Computing. Email: gipengliu0@gmail.com
Boston University. Email: luowenq@bu. edu

SPrinceton University & NTT Research. Email: mzhandry@gmail . com

mailto:jiahui@cs.utexas.edu
mailto:qipengliu0@gmail.com
mailto:luowenq@bu.edu
mailto:mzhandry@gmail.com

The notion above intuitively captures the security of a copy-protection scheme under what we
call an “1 — 2 attack”: the adversary receives 1 program copy, and attempts to produce 2 copies
with the correct functionality. A recent line of works [ALL*21, CLLZ21, CMP20, AKL*22] achieve
secure copy-protection for various functionalities under 1 — 2 attacks.

However, such a security notion is extremely limiting: in most circumstances, we cannot ex-
pect the software vendor to issue only one copy of the program. When the vendor gives out
multiple copies, all users can collude and generate pirate copies together. Therefore, a useful
copy-protection scheme should be secure against any “,4 — k + 1 attack” for any polynomial &.
Such security is usually referred to as collusion resistance in the literature.

Prior Works on Copy-Protection We first recall on a high level how most existing copy-protection
schemes work: a copy-protection program consists of a quantum state as an “unclonable token”,
and a classical part containing an obfuscated program (either as an oracle or the output coming
out of some obfuscation functionality). The obfuscated program takes in a token and an input one
requests to evaluate on; it verifies the validity of the token and if the verification passes, it outputs
the evaluation on the requested input.!

Until now, collusion resistant copy-protection has essentially been wide open. The only work
that considers issuing more than a single program is Aaronson’s original work [Aar09], which is
proven to be secure in the k& — k + r setting for r > k in some structured quantum oracle model.
This is undesirable in two ways: (a) it is unclear whether the scheme allows an adversary to double
the copies of programs (Aaronson leaves improving r as a challenging open question), which is not
a complete break but still potentially devastating to applications; but more importantly, (b) unlike
a classical oracle which could be heuristically instantiated using indistinguishability obfuscation,
we do not even know how to heuristically instantiate a quantum oracle. Moreover, we believe that
any extension of Aaronson’s scheme would very likely still require some obfuscation of quantum
circuits, since we have evidence that Haar random states, which is the core of Aaronson’s scheme,
lack the structure that can be verified by a classical circuit [Kre21].

If we turn to the other works constructing copy-protection without using quantum oracles,
one naive idea is to take any such scheme that is 1 — 2 secure, and simply generate and hand out
multiple copies of p;. It turns out that while this satisfies correctness, they are all trivially broken
once two copies are given. This is because they are all based on quantum states that are unclonable
for one copy, but trivially clonable as soon as two copies are given.

To get around this issue, another idea is to instead employ a quantum state that already bears
a “(k — k + 1)-unclonable” property. However, the only known such states are Haar random
states and its computationally (or statistically) close neighbors, such as pseudorandom states (or
t-designs), which leads us back to the verification issue without a quantum oracle from before.

Therefore, we raise the natural question: Is collusion resistant copy-protection feasible, either resist-
ing k — k + 1 attacks, or without using a quantum oracle? (Ideally both?)

Copy-Protection in the Plain Model In this work, we restrict our attention to investigate the
question above in the plain model, i.e. we want provably secure protocols without any oracle
or heuristics. Unfortunately, it has been known that copy-protection in the plain model even

The general functionality copy protection schemes in [Aar09, ALL*21] and the schemes in [CLLZ21, AP21] all satisfy
this format. The copy-protection schemes for point/compute-and-compare functions in [Aar09, CMP20, AKL*22, BJL*21]
are not necessarily of such a format.

for unlearnable functions is impossible in general [AP21], and thus we have to further restrict
ourselves to construct copy-protection for specific classes of functions that evade the impossibility.

Secure software leasing (SSL) [AP21] is a weakened notion for copy-protection: in (infinite-
term) SSL, the malicious pirate may attempt to make pirate copies as it wants. However, the
freeloaders are restricted to running a fixed public quantum circuit on some quantum state pro-
duced by the pirate. On the other hand, in copy-protection, the freeloaders are free to execute
any quantum circuit that the pirate asks them to. Despite facing the same impossibility as copy-
protection, secure software leasing has also been built for various functionalities [AP21, CMP20,
BJL*21, ALL*21, KNY21]. 2

Especially, [ALL*21, KNY21] showed that secure software leasing for watermarkable functions
could be obtained from watermarking and public key quantum money in a black-box way. Water-
marking [BGI*01] is a primitive that embeds a watermark into a program so that any attempt to
remove the watermark would destroy the program’s functionality. Observing this, Aaronson et al.
[ALL*21] raised the following open question: Can all watermarkable functions also be copy-protected
in the plain model?

In this work, we will use the word “major watermarkable functions” to denote (decrypt-
ing) public key encryption, (signing) signatures, and (evaluating) PRFs and only focus on copy-
protecting those functionalities. Starting from the work by Cohen et al. [CHN*18], a line of works
[KW17, GKM*19, KW19, YAL*19, YAYX20] focuses on watermarking these three functionalities.
Copy-protecting these cryptographic functionalities also has a natural and strong motivation: the
ability to evaluate these functions is supposedly private in many circumstances. If owners of a
decryption key, signing key, or PRF key can share their key with others, it will trigger severe secu-
rity concerns. Furthermore, copy-protecting a cryptographic function can lead to copy-protecting
a software entity of which this cryptographic function is a component.

We observe that collusion resistant secure software leasing for watermarkable functions can be
achieved as long as the underlying watermarking scheme and quantum money scheme are both
collusion resistant, by looking into the construction in [ALL*21, KNY21]. (Bounded) collusion
resistant watermarking for PRFs, public-key encryptions, etc. are constructed in the plain model
[GKM*19, YAL*19, YAYX20, ...] and quantum money can be made collusion resistant with a
digital signature on its serial number [AC13]. This observation seems to suggest that collusion
resistant copy-protection could be a much more challenging goal.

1.1 Owur Results

In this work, we partially answer all of the questions above. In particular, we show how, in the
plain model, to construct collusion resistant copy-protection for (decrypting) public-key encryp-
tion, (signing) signatures, and (evaluating) PRFs. Our results, together with the prior work on
copy-protection of decryption and PRFs (Coladangelo et al. [CLLZ21]), show that major water-
markable cryptographic functionalities can be copy-protected against even colluding adversaries,
in the plain model. We now explain this in more detail.

Collusion Resistant Unclonable Decryption Our first result is collusion resistant copy-protection
for decryption keys in a public-key encryption scheme. We refer to such copy-protection scheme

2The formal security definitions for SSL in [AP21, CMP20, BJL*21, ALL*21, KNY21] vary slightly from one to an-
other. We will discuss them in 1.2.

as unclonable decryption by convention, as first proposed by Georgiou and Zhandry [GZ20].

Theorem 1.1. Assuming post-quantum subexponentially secure indistinguishability obfuscation and subex-
ponentially secure LWE, there exists k-bounded collusion resistant unclonable decryption for any polyno-
mial k.

Our collusion resistant unclonable decryption scheme is based on the construction from the
prior work of Coladangelo et al. [CLLZ21] that achieves the same except with only 1 — 2 se-
curity. Note that while we require subexponential security, these assumptions match those al-
ready required in the prior work. In particular, here, we invoke subexponential security only for a
compute-and-compare obfuscation scheme with certain properties as our building block. All the
reductions in this work are polynomial.

While we do achieve k — k + 1 security, a caveat is that we only achieve “k-bounded collusion
resistance”, by which we mean that we need a preset number of users k to generate the public
key. Still, we consider all users as potentially malicious and colluding. We note that this is similar
to watermarking decryption circuits of public-key encryption schemes, where to the best of our
knowledge, unbounded collusion resistance is also unknown [YAL*19, GKM*19]. Furthermore, it
is foreseeable that bounded collusion resistance suffices in certain enterprise use cases where the
number of (partially) authorized parties is a priori known and fixed; furthermore, such tokens can
be transferred to a new employee irrevocably.

The main challenges are in the anti-piracy security proof. The prior proof idea for 1 — 2 anti-
piracy does not translate to the £ — k + 1 setting. We present a new view on security reductions to
handle a polynomial number of possibly entangled quantum adversaries, which we will elaborate
in the technical overview.

Copy-Protecting Watermarkable Functionalities We complement the previous theorem regard-
ing public-key encryption, with the following result on collusion resistant copy-protection for
signatures and PRFs:

Theorem 1.2. Assuming post-quantum subexponentially secure indistinguishability obfuscation and subex-
ponentially secure LWE, there exists k-bounded collusion resistant copy-protection for digital signatures
and PRFs, for any polynomial k.

We base our construction on the signature token scheme and unclonable PRF in the plain
model built in [CLLZ21] (with 1 — 2 anti-piracy). However, our signature scheme is significantly
different in two aspects: (a) the signing key in [CLLZ21] will be consumed after one use whereas
our scheme is reusable, and (b) unforgeability breaks down when multiple signature queries can
be issued, whereas ours satisfies standard existential unforgeability.

1.2 Related Works

[Aar09] first built copy-protection for all unlearnable functions based on a quantum oracle, with
weak collusion resistance. Besides [CLLZ21] which we have discussed, [ALL*21] showed a con-
struction for all unlearnable functions based on a classical oracle. [CMP20, AKL*22] constructed
copy-protection for point functions and compute-and-compare functions in QROM, the latter im-
proving the security of the former. 2

3 All constructions discussed in this section are not proved under collusion resistant security unless otherwise spec-
ified.

Regarding the negative results: [AP21] demonstrated that it is impossible to have a copy-
protection scheme for all unlearnable circuits in the plain model, assuming LWE and quantum
FHE. [AK22] extended this impossibility result to the setting where we allow approximate correct-
ess of the copy-protection program and working in the classical-accessible random oracle model.

[AP21] put forward secure software leasing (SSL). In the finite-term case, a software vendor
would lease a quantum state as the software to a user; later, the user needs to return a part of a
bipartite state to the vendor, and the vendor will use its own secret key to verify if this returned
state is the one issued in the authentic program. The security guarantees that while passing the
above verification, the user should not be able to evaluate the functionality correctly using the
other part of its bipartite state executed under a public, fixed quantum circuit eval (specified by
the vendor). In the infinite-term case, the user does not need to return the state to the vendor;
the security guarantees that it should not produce two states that can both evaluate the function
correctly when executed under eval. [AP21] also built an (infinite-term) SSL scheme for searchable
compute-and-compare circuits under iO and LWE.

[ALL*21] observed that under a definition essentially equivalent to infinite-term SSL, namely
copy-detection, one could obtain a black-box construction for infinite-term SSL from watermark-
ing and public-key quantum money. [KNY21] constructed finite-term SSL for PRFs and compute-
and-compare functions from (subexponential) LWE, with similar observations.

[BJL*21, CMP20] constructed secure software leasing for point functions and compute-and-
compare functions; [BJL*21] is information-theoretically secure and [CMP20] is secure under QROM.
They both used a stronger version of finite-term SSL security: while the vendor will honestly check
the returned state from the adversary, the adversary can execute the leftover half of its bipartite
state maliciously, i.e., not following the instructions in eval. SSL security of this stronger finite-term
variant is only known for point/compute-and-compare functions up till now.

1.3 Technical Overview

We start by showing how to overcome the aforementioned barriers and construct Collusion Resis-
tant Unclonable Decryption (CRUD). As briefly discussed in the introduction, there are challenges
to constructing collusion resistant copy-protection based on the so-called “k — (k + 1) no-cloning
theorem”. Instead, we take a different approach by constructing collusion resistant unclonable
decryption CRUD from unclonable decryption UD whose security only holds for “1 — 2 attacks”.
The construction uses UD in a black-box manner:

e Forevery i € [k], sample (|sk;) , pk;) < UD.KeyGen; |sk;) will be the i-th copy of the quantum
unclonable decryption key; the public key will be pk = (pky, - - - , pky).

¢ The encryption algorithm takes a single bit message m and outputs a classical ciphertext ct
that consists of £ copies of ciphertext, among which the i-th copy ct; is the ciphertext of m
under pk;.

e To decryptct = (cty,- -, cty) with [sk;), one can decrypt the i-th ciphertext ct;.

Intuitively in the above encryption scheme, one can decrypt only if it knows the decryption key
for at least one of the public keys. Note that our k£ decryption keys are sampled independently at
random and each state satisfies 1 — 2 unclonability. To establish anti-piracy, we want to prove a
security reduction from a k¥ — k + 1 quantum pirate decryptors to the 1 — 2 unclonability of one
of the decryption keys.

Unfortunately, we do not know how to prove the security of this scheme generically. As we
will elaborate in Section 1.4, we need to open up the construction of the underlying unclonable
encryption in order to establish the security.

More importantly, in the following section, we demonstrate that even if we open up the con-
struction and the proof, the proof technique in [CLLZ21] seems not sufficient for CRUD and we
thereby work on a new technique that subsumes that in [CLLZ21] to complete the proof. We start
by recalling the definition of regular UD and the proof in [CLLZ21].

Regular Unclonable Decryption. Let UD be a regular (1 — 2) unclonable decryption scheme.
For the sake of convenience, we assume the message space is {0,1}. A pair of a classical public
key pk and a quantum unclonable secret key |sk) is generated by KeyGen.

The anti-piracy security guarantees that no efficient adversary with |sk) can produce two
“working” keys by a CPA indistinguishability standard: if one estimates the success probabili-
ties of both decryption keys on distinguishing a ciphertext of 0 from a ciphertext of 1, their suc-
cess probabilities cannot be simultaneously significantly greater than 1/2, except with negligible
probability. This security notion has been previously studied by Aaronson et al. [ALL*21] and
Coladangelo et al. [CLLZ21]

Before we delve into the security proof, it is enlightening to see how this security guarantee is
efficiently “falsifiable”. Estimating the success probability of a classical decryptor is easy. One can
generate a ciphertext for a random message using the public key and check whether the classical
decryptor is correct on that ciphertext; then, a simple counting estimates its success probability
within any inverse polynomial error. Unfortunately, this method does not naturally work in the
quantum setting since a single execution of the decryption key (produced by the adversary) may
disturb the state and prevent further execution of the same key.

Nevertheless, Zhandry [Zha20] shows that such estimation can be done analogous to the clas-
sical setting, inspired by the famous work of Marriot and Watrous [MWO05] for witness-preserving
error reduction for quantum Arthur-Merlin game. Informally, the work of Zhandry utilizes a
measurement procedure called “projective implementation” (abbreviated as Pl)* to estimate the
success probability of a quantum adversary (see Figure 1).

1. Let D be a ciphertext distribution we define the procedure with respect to.

2. For any quantum decryptor o with success probability p over D, running Plp on the decryp-
tor produces a probability p’ and o collapses to o’;

o’ as a decryptor, has success probability p’ over D;

Applying Plp on o’ always produces p’ and ¢’ remains intact;

5. The expectation of p/ is p.

Ll

(o,p) —|Plp|— (o',p') —|Plp|— (0’,p)

Figure 1: Pl: measure success probability of a decryptor.

*For simplicity, we only use the inefficient estimation procedure. The same argument in the technical overview
holds using an efficient and approximated version. Similarly for TI.

Put shortly, this measurement procedure will output an estimation of the success probability
p for a quantum decryptor o. After the measurement, the decryptor collapsed to another decryp-
tor o', whose success probability is still p’. We will intuitively call Pl as “probability estimation’
instead of its original name in the scope of the overview.

In the anti-piracy security definition, we care about whether both decryptors have the success
probability significantly greater than 1/2. [CLLZ21] defines the following “threshold measure-
ment” or “goodness measurement” Tlp . for deciding if a quantum decryptor o is good, for some
inverse-polynomial e:

1. Let D be a ciphertext distribution we define the procedure with respect to.

2. Run Plp coherently on o and measure if the outcome register (containing the resulting prob-
ability p') is greater than 1/2 + ¢, which produces a single bit outcome b. The quantum
decryptor collapses to o”.

3. If b =1, ¢’ lies in the span of good decryptors, whose success probability is at least 1/2 + ¢;
otherwise, ¢’ is in the subspace with the basis being quantum decryptors whose winning
probability is strictly less than 1/2 + e.

o —— TID,e — (a/, b)

Figure 2: TI: measure goodness of a decryptor.

We note that Tlp . is a projection, which says if ¢’ is the collapsed decryptor for outcome b, apply-
ing Tlp . will always produce b and ¢’ does not change.

We are now ready to formally define the anti-piracy security in [CLLZ21]. Let D be the cipher-
text distribution for honestly generated ciphertext, which encodes a uniformly random message.
No efficient adversary can turn [sk) into a possibly entangled decryptors o over two registers,
such that applying the threshold measurement Tlp . on both decryptors o[1], o[2] will produce
two outcomes 1s with non-negligible probability. To put it another way, no efficient adversary can
produce two decryptors such that they jointly have non-negligible weight on good decryptors.

Security Proof for “1 — 2 Attacks”. Before scoping the proof of our collusion resistant unclon-
able decryption, we recall the security proof in [CLLZ21] for “1 — 2 unclonability”. In this follow-
ing section, we will highlight the difficulties of applying the same ideas to CRUD and introduce a
new approach to resolve this issue.

The proof works as follows:

* A reduction applies Tlp . on both decryptors o[1], o[2]. With some non-negligible probabil-
ity, it will produce two outcomes 1s and the two decryptors become ¢'[1], o/[2].

e Extraction on the first register. Let D’ be the ciphertext distribution for “junk” ciphertext

which only encrypts an empty symbol L. Applying Tlp . on o’[1] always result in outcome
0, whereas the outcome of applying Tlp on ¢'[1] is always 1.
We can thereby conclude that o/[1] must contain some secret information about the secret
key |sk). In fact, we can use an extraction algorithm to extract the classical information about
the secret key. Note that the algorithm may be destructive that, for example, may measure
o’'[1] completely.

e Extraction on the second register. Conditioned on the successful extraction on ¢'[1], we
want to argue that a similar extraction on the second register works. If so, we can simulta-
neously extract secret information about |sk) from two non-communicating parties. This will
violate the underlying quantum information guarantee®.

The remaining is to show such an extraction is feasible on the second decryptor, even conditioned
on the successful extraction on ¢’[1]. This is because Tlp . is a projection, conditioned on the
outcome being 1, o'[2] will be in the span of good decryptors (see bullet (3) of the description of
Tl). Regardless of what event is conditioned on ¢’[1], the second decryptor is still in the span of
good decryptors. Thus, an extraction algorithm would extract the classical information about the
secret key from ¢’[2] with non-negligible probability. This concludes the proof idea in [CLLZ21].

To conclude, the core idea in the proof is that, a “1 — 2 attack” produces two quantum registers
that

1. they have a non-negligible probability w; = v on both registers being good decryptors on D
(with success probabilities at least 1/2 + ¢);
2. they have a negligible probability wy on both being good decryptors on D'.

If both 1 and 2 are satisfied, a simultaneous extraction succeeds with a non-negligible probability.

In the next few paragraphs, we still denote w; as the joint probability of both decryptors being
good on distribution D; w, as the joint probability of both decryptors being good on distribution
D'

In the above proof for 1 — 2 attack, we crucially require w; is non-negligible and w» is negligi-
ble or zero, in order to argue that extraction would succeed even after conditioned on successful
extraction on one side.

We can also observe that for the 1 — 2 proof, wy is automatically zero. As D’ does not
encode a real message, no quantum decryptor can achieve any advantage over random guess-
ing. But this is not always the case when it turns to our CRUD security proof: for which, D =
(cti,---,ctj,ctjrg,---) has the first (j — 1) ciphertexts being junk and the rest being real; whereas
D' = (cty, - ,cty,ctjq1,---) has the first j ciphertexts being junk.

As we will see in the following section, for CRUD, the condition “w; — ws is non-negligible”
is the best we can hope for. Therefore, we attempted to see if a proof similar to the above exists,
when we can only condition on "w; — w2 is non-negligible". Unfortunately, the answer to this
attempt is negative, as we will provide some intuition in the immediate next paragraph. We
thereby conclude that the proof technique in [CLLZ21] cannot extend to collusion resistant anti-
piracy security proof in a generic way.

To see why the condition “w; — w3 is non-negligible” does not necessarily give a simultaneous
extraction, we consider the time when a successful extraction has already been done on the first
decryptor o'[1]. If ws is negligible, the leftover state of the second decryptor ¢’[2] has at most w2 /¢
weight lying in the span of bad decryptors. Here (is the probability of a successful extraction
on the first decryptor and conditioned on this extraction, the weight wy will be amplied by at
most 1/¢. Since wy/(is still negligible, this allows an extraction from ¢’[2] happens with a non-
negligible chance. However, if wy is not negligible but only satisfies w; —wy is non-negligible, o’[2]

°In the actual proof, two non-communicating parties will extract two vectors, one in the primal coset and the other
in the dual coset of a coset state. This will violate the strong computational monogamy-of-entanglement property of
coset states.

can lie in the span of bad decryptors: the extreme case will be the event of successful extraction
on ¢’[1] has “positive correlation” with ¢'[2] being bad; in this case, the weight can be as large as
w9 / C ~ 1.

Obstacles for Extraction from Quantum Decryptors. The high-level intuition for why such a

construction would satisfy £ — k+1 is comprehensible. Assume an adversary uses [ski) ,-- -, [skg)
to produce (k + 1) (possibly entangled) malicious decryptors o. Let o[i] denote the i-th pirate de-
cryptor. Since each o[i] is a “working” pirate decryptor, it should at least decrypt one of cty, - - - , cty,

(say ct;). Applying pigeonhole principle, there are two decryptors that decrypts the same cipher-
text slot, which would violate 1 — 2 unclonability. However, such an intuition is nontrivial to
formalize since a quantum adversary could distribute these secret keys in multiple ways in super-
position.

A straightforward idea is to extract secret information for the j-th private key |sk;) from o[i].

Let D’ be the ciphertext distribution (ct,ct; , - -, ct)) containing all junk ciphertext. Clearly, if we
apply Tlp/ . on any quantum decryptor, the result is always 0 (meaning “bad”). If we can find an
index j such that D; is the distribution (cty,ct ,--- ,ctj, -+ ,cty) and applying Tlp, . on o[i] gives

1 with non-negligible chance, we can extract secrets for |sk;) from o[i]. If one can extract from every
o[i], by the pigeonhole principle, it breaks the underlying quantum information guarantee for one
of the unclonable decryption keys. Unfortunately, this idea does not go through, considering the
following bad situation.

Even if o[i] has success probability 1, such j may not exist. Consider a quantum program that
knows all the decryption keys |[ski), - - -, |ski) but only decrypts ct if and only if every |sk;)
can successfully decrypt ct;; if any decryption fails to decrypt, it outputs a random guess.
Feeding (--- ,ct ,ctj,cty, - ,) to the decryptor will always result in a random guessing.

Note that this is not only an issue for quantum decryptors but also presents if decryptors are
classical. A natural fix of the above idea is to consider the following hybrid distributions. We
define D; for every j € {0,1,--- , k}:

® Dj:=(cty, -+ ,cty,ctj,ctjyr---). In other words, only the last k — j ciphertexts encode the
same random message m € {0, 1}, the first j ciphertexts are junk ciphertexts .
® Tlj := Tlp, : the goodness estimation with respect to the ciphertext distribution D; and

threshold 1/2 + .

That is, each D; will replace the first non-junk ciphertext from D;_; with a junk ciphertext. Note
that D := Dy. By the definition of ¢[i] is a working decryptor, applying Tly on o[i] will produce 1
with a non-negligible probability. On the flip side, applying Tl; on o[i] will always produce 0.

We denote w; as the probability of applying Tlp, . on the decryptor o[i] and getting outcome
1. By a standard hybrid argument, we can conclude that there must exist an index j € [k] such
that,

w;_1 — wj is non-negligible.

The gap allows extraction on o[i]. However, as we discussed in the last section, it does not
satisfy the condition “w;_; is non-negligible and w; is negligible”, which can not guarantee a
simultaneous extraction when we consider two decryptors.

A bad example looks like the following: wy = ~y for some inverse polynomial v and w; = ~/27
for all j # k and w, = 0. There does not exists a j such that w;_; is non-negligible but w; is
negligible.

We now elaborate on our approaches to resolve these obstacles. Our approach directly takes
advantage of the probability measure Pl instead of TI. This also gives an alternative security proof
for the construction in [CLLZ21].

Extract a Single Decryption Key: Detect a Large Jump in Success Probability Let us start with
attempts to extract from a single “working” decryptor o, using the probability estimation PI. Re-
call that by the definition of “working”, we mean applying Plp on o yields some probability p
significantly larger than the trivial guessing probability 1/2.

We first recall the following ciphertext distributions D; and define probability estimation pro-
cedure Pl; for every j € {0,1,--- ,k}:

® Dj:=(cty, - ,cty,ctj,ctjpg---).
* Pl; := Plp,: the probability estimation with respect to the ciphertext distribution D;.

Now we give the following attempted extraction, which almost works but has one caveat. We
call this extraction procedure a “repeated probability estimation/measurement”:

1. We first apply Plj to o and obtain py and a collapsed decryption key oy.
2. We then apply Pl; to the collapsed o to obtain p; and 0.

Now if p; — py is at least “2, we perform an extraction procedure to extract secrets for |ski)
from o). Intuitively, since we observe a noticeable probability decrease when ct; is replaced
with junk ciphertext, there must be some part of ¢[i] that uses ct; to recover the original
plaintext. We then abort the procedure.
3. Otherwise, pp and p; should be negligibly close. We again apply Pl on ¢; and obtain p», o2.
1

If po — pq is at least p0;§ , we perform extraction on o1 and abort.

4. We continue this process for all j = 3, ..., k.

We claim that the above repeated measurement procedure will always terminate at some
J € [k]. To see this, think of p1, ..., p; as a sequence of random variables, whose values are only ob-
served when the corresponding measurement is applied. Note that p;, = 1/2 always, because the
underlying ciphertext distribution Dj encodes all junk ciphertexts, so no adversary can achieve
better advantage than guessing. Therefore, the claim follows from triangle inequality.

PI PI PI Ply_
(00,p0) —= (01,p1) — (09, p2) —> -+ ——5 (0%, i)

The above extraction procedure almost works. But it is actually not physically executable:
we need 0;_1 in order to perform extraction as that is the state with a “working” component for
ciphertext ct;, but by the time that we decide to extract, we already get to state o; because we
have to obtain measurement outcome p; to claim a jump in probability happens. It is generally
infeasible to rewind a quantum state, in this case from o; to o;_1.

®The probability estimation Pl; will preserve the success probability of the state but nothing else. Applying P, will
likely change o;_1.

10

Fortunately, it is plausible for a single decryptor: we guess j (denoting the first index having
a probability jump) and stop the procedure when we have done Ply, - - -, Pl;_;. With probability
at least 1/k, we can extract for |sk;) from the current decryptor o;_;. We will get to why this
procedure avoids the rewinding issue and preserves our success probability, when it comes to the
(k + 1) decryptors case in the next paragraph.

Extending to (k+1) decryptors. Finally, we show how to generalize the above extraction strategy
to extracting secrets from the same key |sk;).

We apply the repeated measurement individually to every decryptor: that is, for the i-th de-
cryptor, we apply Plg, Ply,-- -, Pl;, one upon another. The procedure will yield p; o, p;.1, -, pik-
Since p; o is always greater than 1/2 +~ and p; ;, = 1/2, there must exist a large probability gap be-
tween p; j,—1 and p; j, for some j; € [k]. By the pigeonhole principle, for some z # y, j := j, = Jjy.
We hope to stop at the z-th and y-th decryptors before applying Pl; and simultaneously turn them
into two keys for ct;.

Since there will always be two decryptors having large probability gaps for the same index,
the chance of having such gaps for randomly guessed x,y and j is at least ﬁ > 1/k3. But the
success probability of this guess is not immediately guaranteed, because we need to stop before
the j-th probability estimation for states o[z], o[y] otherwise we can’t rewind to this state needed
for extraction. We are still two unpredictable measurements away from the event we guess for.
Fortunately, guessing and stopping before the j-th Pl will indeed work with probability at least
1/(2k3), through a trick for randomized algorithms.

Now we can apply repeated measurement and stop before applying Pl; on any of these two
decryptors. Let the leftover decryptors be o*[z, y] and the last probability outcomes be p, ;1 and
py.j—1. With probability at least 1/(2k3), (¢*[x, y], Px.j—1, Py.j—1) satisfy the following conditions (*)
and (**):

(*) Applying Pl;_; on both o*[z] and ¢*[y| always produces p, ;1 and py ;1.
(**) Applying Pl; on both o*[z] and o*[y|, with probability at least 1/(2k%), produces large prob-
abilities gaps for both p, ;1 and p, j_1.

It seems that we have come to the right “spot” for extraction. However, we still face a chal-
lenge. How do we guarantee that we can simultaneously extract from two possibly entangled
states? A possible malicious behavior is that measuring one decryptor’s key will collapse the
other decryptor to a “not working” state.

We can clearly extract secrets for |sk;) from either o*[z] or o*[y]: since there is a probability
gap, it must mean o*[z| (or o*[y]) use ct; for decryption at some point. From the probability point
of view, we then argue why simultaneous extraction is feasible.

Define E, (E,, here E stands for “(E)xtraction”) be the event of a successful extraction on the
z-th decryptor (or on the y-th decryptor respectively). Define G, (G, here G stands for “(G)ap”)
be the event that applying Pl; on the z-th decryptor (or on the y-th decryptor respectively) yields
a large probability gap. We will prove Pr[E, A E, | is non-negligible by contradiction.

It is clear that Pr[E,| is non-negligible. To show Pr[E,|E,| is non-negligible, it is sufficient to
show that Pr[G,|E,] is non-negligible, since a large gap implies a large chance of extraction.

We can intuitively think of Pr[E,] = 0.1Pr[G,] and Pr[E,] = 0.1Pr[G,]”. We may expect

"The choice of 0.1 is arbitrary here. Indeed, they are polynomially related. For the sake of simplicity, we assume
they are linearly related.

11

that Pr(E, A E)] = 0.1Pr[G, A Gy}, which would conclude the proof. However, this does not
follow immediately from above as it could be the case that G, A G, occurs with non-negligible
probability, but E, A E, never occurs. The main insight here is that we can instead show that
Pr[E;|G,] = 0.1 Pr[G;|G,], as finding the gap for y does not impact the extraction for z. Invoking
Bayes’ rule, this shows that Pr|G,|E,| = Pr[E;|G,] Pr[G,]/ Pr[E,] is non-negligible as well. As a
consequence, Pr[E,|E;| and thus Pr[E, A E,] (simultaneous extraction) are both large.

Collusion Resistant Copy-Protection for Signatures and PRFs Now with the building block of
collusion resistant unclonable decryption, we come to copy-protect more cryptographic functions.

As briefly discussed in the introduction, even though [CLLZ21] presented the first unclonable
signature scheme without oracles, its scheme is a signature token that will be consumed after one
use. One-time signature is a security notion interesting under many circumstances [BS16, GZ20],
but it’s crucial that we investigate the possibility of copy-protecting a standard digital signature.
Moreover, once achieved, this construction helps us get closer to the goal of copy-protecting all
watermarkable functionalities.

The [CLLZ21] signature token is one-time because when signing a message, the signer simply
measures the quantum key and the measurement outcome is a signature. It is not existentially un-
forgeable for the same reason: if an adversary gets a few random measurement results of quantum
keys, he is granted the power to sign, without the need of an intact quantum key.

To resolve the problem, we resort to the classic picture of generic copy-protection: the signing
program first verifies if a quantum key is a valid “token” and then outputs a signature (computed
independently of the quantum key) as well as the almost unharmed key. In particular, we observe
that the unclonable decryption scheme in [CLLZ21] will pave the way for such a construction.
Their scheme can be extended to a copy-protection for evaluating puncturable PRFs with the “
hidden trigger” technique from [SW21]. Meanwhile, such PRF evaluation functionality can be
used as a signing program after obfuscation.

We thereby give a copy-protection for existentially unforgeable, publicly-verifiable signature
scheme, based on the above ideas. Along the way, we deal with a few subtleties that emerge be-
cause we need public verification and generalization to collusion resistance. More specifically, we
present a k-party version of the [SW21] hidden trigger technique to obtain both collusion resistant
copy-protection for signatures and for PRFs.

1.4 Discussions and Open Problems

Comparisons to [CLLZ21]. An informed reader may claim that one main obstacle (namely si-
multaneous extraction) for proving anti-piracy security in this paper resembles the obstacle in
the 1 — 2 anti-piracy schemes of [ALL*21, CLLZ21]. We emphasize that while this issue may
be bumped into in all quantum copy-protection proofs, our approach of resolving the issue is
different from previous works, especially to identify gaps in a repeated probability estimation
procedure (see more details in the technical overview). In particular, our approach can be used
to prove security for the schemes in [ALL*21] and [CLLZ21], but as we have discussed in the
technical overview, their techniques will not work for the £k — k + 1 setting 8

8The approach for simultaneous extraction when showing 1 — 2 anti-piracy in [ALL*21] bears a high-level similar-
ity with [CLLZ21]. We have discussed [CLLZ21] in the overview since we focus on unclonable decryption.

12

On Non-Black-Box Reduction. In the technical overview, we describe a black-box way of reduc-
ing “k — (k + 1) security” to “1 — 2 security”. As mentioned earlier, we cheat in the technical
overview and the approach is not entirely black-box.

A high-level summary for the reason is: a black-box reduction algorithm (i.e. an adversary
for a1 — 2 unclonable decryption scheme) is not able to generate the correct distribution for the
ciphertext to feed to the £ collusion resistant adversary. Elaborated as follows:

First, recall that in a £ collusion resistant scheme, an encryption for a message m is an ensemble
of ciphertexts ct = (cty, ..., cty) where ct; = Enc(pk;, m) for all i € [k].

In the reduction, we want to apply Plp, on a malicious decryptor to extract secrets from |sk;)
for some j € [k]:

Dj: the first j ciphertexts (that is, cty,--- up to ct;) are simulated ciphertexts, the rest of them
encrypt the same message.

The problem is the following: the reduction only gets a single ciphertext ct;;1, whereas the
malicious decryptor takes input of the form in D;. The reduction needs to generate other cipher-
text on its own: including those simulated and those encrypting the same message as c;1. Since
the reduction does not know which message is encrypted in ct;;; (otherwise, the reduction itself
already breaks the security of the underlying 1 — 2 unclonable decryption), it cannot generate a
valid ciphertext ct = (cty, - - - , cty) from the distribution D;.

Therefore, we need to open this proof up in a non-black-box way: it’s based on the security of
coset states. When we break the security of coset states, the message (encrypted in ct; 1) is known
by the reduction. In fact, it is even sampled by the reduction R.

Open Problems. The main limitation of our constructions is that the number of collusions is
bounded to a polynomial specified during setup, and the parameters grow with the collusion
bound. Because of this collusion bound, our results are technically incomparable to [Aar(09],
which, despite having a much weaker copy-protection guarantee and using a strong oracle, re-
quired no prefixed user number. We leave achieving unbounded k£ — & + 1 collusion resistance as
an interesting open question.

1.5 Organization

The rest of the paper is organized as follows. In Section 2, we recall the definitions and properties
of coset states and how to measure success probabilities of quantum adversaries. In Section 3,
we present the definition, construction, and security proof of collusion resistant unclonable de-
cryption. We then present the construction and definitons for the copy-protection for signatures
in 4. The constructions and security proofs for (collusion resistant) copy-protection for signature
schemes and PRFs are covered in the appendix.

Acknowledgements

J.L. is supported by supported by the NSF and Scott Aaronson’s Simons Investigator award. Q.L.
is supported in part by the Simons Institute for the Theory of Computing, through a Quantum
Postdoctoral Fellowship, by DARPA under Agreement No. HR00112020023 and by the NSF QLCI
program through grant number OMA-2016245. Any opinions, findings and conclusions or recom-
mendations expressed in this material are those of the author(s) and do not necessarily reflect the

13

views of the United States Government or DARPA. L.Q. is supported by DARPA under Agree-
ment No. HR00112020023. M.Z. is supported in part by NSE.

2 Preliminaries

In this paper, A denotes the security parameter. poly(:) denotes a polynomial function. We say
a function f(-) : N — R=Y is negligible if for all constant ¢ > 0, f(n) < - for all sufficiently
large n. negl(-) denotes a negligible function. Similarly, we say a function f(-) : N — R=0 is
sub-exponential if there exists a constant ¢ < 1, such that f(n) < 2" for all sufficiently large n.
subexp(-) denotes a sub-exponential function. For an integer k, We denote {1,2,--- ,k} by [k]. We
denote I3 to be the binary field.

We refer the reader to [NC10] for a reference of basic quantum information and computation
concepts.

2.1 Indistinguishability Obfuscation

Definition 2.1 (Indistinguishability Obfuscator (iO) [BGI*01, GGH*16, SW21]). A uniform PPT
machine iO is an indistinguishability obfuscator for P /poly if the following conditions are satisfied:

e Forall \, all |C| < A, all inputs x, we have
Pr[é(x) = C(z) : C +i0(1",0)] =1.

e (Post-quantum security): For all (not necessarily uniform) QPT adversaries (Samp, D), the following
holds: if Pr[Vx, Co(z) = Ci(z) A |Co| = |Cy| : (Co,C1,0) < Samp(1M)] > 1 — () for some
negligible function o, then there exists a negligible function (such that:

‘Pr[D(a,iO(l)‘,C'o)) = 1} —Pr [D(a, i0(1%,01)) = 1” < B0V,

where (Cy, Cy,0) < Samp(1?4).

The notion sub-exponentially secure iO denotes an indistinguishability obfuscator, for which no
QPT adversary can achieve advantage better than 1/subexp for some sub-exponential function
subexp.

2.2 Coset States

We recall the notion of coset states, introduced by [VZ21] and later studied by [CLLZ21] in the
setting of quantum copy-protection. We then present a property of coset states: a strong computa-
tional monogamy-of-entanglement (MOE) property. This property is used to obtain an unclonable
decryption scheme and other copy-protection of watermarkable cryptographic primitives in this
work. Some part of this section is taken verbatim from [CLLZ21].

14

2.2.1 Definitions

For any subspace A, its complement is A+ = {b € F}|(a,b) = 0, Va € A}. It satisfies dim(A) +
dim(A1) = n. We also let |A| = 29™(4) denote the number of elements in the subspace A.

Definition 2.2 (Coset States). For any subspace A C FY and vectors s, s’ € FY, the coset state |Ag o) is
defined as:

|Ago) =)5 g+ s)
\/IA Z

acA

By applying H®" (Hadamard on every qubit) on the state |4 ¢), one obtains exactly |AZ).
Given A, s and s/, there is an efficient quantum algorithm that generates | A; »/), by [CLLZ21]. 7

For a subspace A and vectors s, s’, we define cosets A + s = {v + s : v € A}, and Al + ¢ =
{v+ 5" :v € At} Itis also convenient for later sections to define a canonical representative, with
respect to subspace A, of the coset A + s.

Definition 2.3 (Canonical Representative of a Coset). For a subspace A, we define the function Can 4(-)
such that Can(s) is the lexicographically smallest vector contained in A + s (we call this the canonical
representative of coset A + s).

[CLLZ21] showed that, Can4 and Can 4. are efficiently computable given the classical descrip-
tion of A.

When it is clear from the context, we will write A + s to denote the program that checks mem-
bership in A + s. The following equivalences, which follow straightforwardly from the security of
iO, will be useful in our security proofs later on.

Proposition 2.4. For any subspace A C F},i0(A+s) ~. iO(CC[Can 4, Can4(s)]). Recall that CC[Can 4, Can(s)]
refers to the compute-and-compare program which on input x outputs 1 if and only if Can o(x) = Cana(s).

This is due to the fact that A + s has the same functionality as CC[Can 4, Can4(s)]. The lemma
then follows the security of iO.

2.2.2 Strong Monogamy-of-Entanglement Property
Consider a game between a challenger and an adversary (Ag, A, A):

¢ The challenger picks a uniformly random subspace A C F3 of dimension %, and two uni-
formly random elements s, s € F5. It sends |A; o), iO(A + 5), and iO(A+ + 5') to Ay.

* Ay creates a bipartite state on registers B and C. Then, A sends register B to A;, and C to
As.

¢ The classical description of A is then sent to both A, A>.

¢ A; and Aj return respectively s; and ss.

Ao, A1, Ay) wins ifand only if s; € A+ sand sy € AL + ¢.
(Ao, A, y

Let CompStrongMonogamy((.Ag, A1, .A2), n) be a random variable which takes the value 1 if the
game above is won by adversary (Ao, A;, Az), and takes the value 0 otherwise.

15

Theorem 2.5. Assuming the existence of sub-exponentially secure post-quantum iO and one-way func-
tions, then for any QPT adversary (Ao, A1, Az),

Pr[CompStrongMonogamy((Ayp, A1, A2),n) = 1] < 1/subexp(n) .

[CV21] proved an information-theoretic version of the strong monogamy property (without
giving out the iO programs to the adversary). [CLLZ21] showed that one can obtain the computa-
tional statement by lifting the information-theoretic statement.

2.3 Measure Success Probabilities of Quantum Adversaries: Projective/Threshold Im-
plementation

In this section, we include several definitions and results about estimating success probabilities
or estimating whether the probability is above a threshold. Part of this section is taken verbatim
from [ALL*21, CLLZ21]. In this section, we will mainly talk about how to measure probability
in an inefficient way. The proofs in the main body of the proof use this inefficient measuring
procedure as subroutines. All these proofs can be translated easily using the efficient version of
such measuring procedures. We will cover those in the appendix.

Estimating success probabilities of adversaries is essential in many settings, especially for a
reduction to know whether the adversary is good or if an extraction on the adversary can succeed
with high probability. Classically it is easy. Let D be a testing input distribution and C be a
classical program for which we want to estimate probability. We can keep running C' on uniformly
fresh inputs sampled from D to estimate the probability up to any inverse polynomial error. Such
procedure is infeasible for quantum adversaries, since a single execution of a quantum program
may completely collapse the program, leading to failure for future executions.

Projective Implementation Zhandry [Zha20] formalizes the following probability measurement
procedure for a quantum program p under some test distribution D.

Consider the following procedure as a binary POVM Pp = (Pp, @p) acting on a quantum
program p (whose success probability is equal to p): sample an input = from D, evaluates the
quantum program p on z, and checks if the output is correct. Let Pp denote the operator for
output being correct and QQp be the quantum operator for the output being incorrect.

Zhandry proposed a procedure that applies an appropriate projective measurement which
measures the success probability of p on input <+ D, and outputs the probability p’. Condi-
tioned on the outcome is some probability p’, the quantum program collapsed to p’ whose success
probability is exactly p’. Furthermore, the expectation of p’ equals to p.

Theorem 2.6 (Projective Implementation). Let D be a distribution of inputs. Let Pp = (Pp,Qp)
be a binary outcome POVM described above with respect to the distribution D. There exists a projective
measurement P(Pp) such that for any quantum program p with success probability p on D:

(i) Applying PI(Pp) on p yields p',p'.
(ii) p' has success probability p’ with respect to D. Furthermore, applying PI(Pp) on p’ always produces
P
(iii) The expectation of p' equals to p.
We say the above measurement procedure is a projective implementation of Pp. When the distribution is
clear from the context, we sometimes ignore the subscript D in both Pp and PI(Pp).

16

Threshold Implementation The concept of threshold implementation [ALL*21] is similar to
projective implementation, except it now outputs a binary outcome indicating whether the prob-
ability is above or below some threshold.

Theorem 2.7 (Threshold Implementation). Let D be a distribution of inputs. Let Pp = (Pp,Qp) be a
binary outcome POVM described above with respect to the distribution D. For any 0 < ~ < 1, there exists
a projective measurement Tl (Pp) such that for any quantum program p:

(i) Applying Tl (Pp) on p yields a binary outcome b" and a collapsed program p'.
(ii) Ifb' =1, p’ has success probability at least y with respect to D. Furthermore, applying Tl (Pp) on
p' always produces 1.
(iii) Ifb' = 0, p’ has success probability less than ~ with respect to D. Furthermore, applying T\, (Pp) on
p’ always produces 0.

We say the above measurement procedure is a threshold implementation of Pp with threshold ~y. When the
distribution is clear from the context, we sometimes ignore the subscript D in TI(Pp).

Moreover, TI(Pp) can be implemented by first applying P1(Pp) to get a outcome p and outputting 1 if
p > v or O otherwise.

For simplicity, we denote by Tr[Tl,(Pp) p] the probability that the threshold implementation
applied to p outputs 1. Thus, whenever Tl,(Pp) appears inside a trace Tr, we treat Tl (Pp) as a
projection onto the 1 outcome.

The approximate and efficient versions of both Pl and Tl will be covered in the Appendix A.2.

3 Collusion Resistant Unclonable Decryption

In this section, we give the formal definition of collusion resistant unclonable decryption. We will
then show the construction for achieving bounded collusion resistance for any k¥ — polynomial
number of parties. Finally, we prove the construction satisfies correctness, semantic security and
anti-piracy against colluding adversaries. Our scheme has security against bounded number of
parties. It requires to know the parameter £ in the setup phase and only k copies of keys can be
generated later. Furthermore, the public key, secret key and ciphertext have length linear in the
number of parties k. Note that our scheme is secure even if an adversary takes control of all copies
of decryption keys; the adversary still can not produce any additional functioning key.

3.1 Definitions

Definition 3.1 (Bounded Collusion Resistant Unclonable Decryption Scheme). A bounded collusion
resistant unclonable decryption scheme CRUD for a message space M consists of the following efficient
algorithms:

e Setup(1*, k) — (sk, pk) : a (classical) probabilistic polynomial-time (in X, k) algorithm that takes as
input an upper bound k on the number of users and a security parameter \ and outputs a classical
secret key sk and a classical public key pk.

* QKeyGen(sk) — psk1 @ psk2 @ -+ - @ psk i : @ quantum algorithm that takes as input a secret key sk
and outputs k copies of quantum secret keys.

17

® Enc(pk,m) — ct : a (classical) probabilistic algorithm that takes as input a public key pk, a message
m and outputs a classical ciphertext ct.

® Dec(psk,ct) — m/L : a quantum algorithm that takes as input a quantum secret key psx and a
classical ciphertext ct, and outputs a message m or a decryption failure symbol L.

Here ‘bounded’ refers to the restriction that the Setup procedure requires to know the maximal
number of keys distributed in the QKeyGen.
A bounded collusion resistant unclonable decryption scheme should satisfy the following:

Correctness: For every polynomial k(-), there exists a negligible function negl(-), for all A € N, let
k:=k(\), forallm € M, alli € [k],

(sk, pk) + Setup(1*, k),
Pr | Dec(psk,i,ct) =m Psk,1 @ -+ @ psk i — QKeyGen(sk), | > 1 — negl())
ct < Enc(pk,m)

In other words, correctness says the i-th quantum decryption key will always decrypt cor-
rectly (except with negligible probability). By the gentle measurement lemma [Aar(05], each
decryption key can function correctly polynomially many times for honestly generated en-
cryptions.

CPA Security: This is the regular semantic security for an encryption scheme. An adversary
without getting any decryption key (neither sk nor these quantum keys) can not distinguish
ciphertexts of chosen plaintexts.

Formally, for every (stateful) QPT adversary A, for every polynomial k(-), there exists a
negligible function negl(-) such that for all A € N, the following holds:

(sk, pk) « Setup(1*, k)
Pr |A(ct) =b: ((mg,m1) € M?) «+ A(1*,pk) | <
b« {0,1};ct < Enc(pk,myp)

+ negl(\),

N | =

Anti-Piracy Security Finally, we define anti-piracy against colluding adversaries. Anti-piracy
intuitively says there is no adversary who gets all copies of the decryption keys can successfully
produce one additional “working” key.

We will follow the two different definitions of “working” proposed in [CLLZ21] and give two
definitions for anti-piracy. The first definition allows a pirate to announce two messages (g, m1),
much like the semantic security. A decryption key is good if an adversary can distinguish encryp-
tions of my and m; by using the decryption key. The second definition of a “working” decryption
key is basing on whether it decrypts correctly with high probability on uniformly random inputs.

Before describing the security games, we first recall the concept of a quantum decryptor (or
a quantum decryption key) [CLLZ21] with respect to a collusion resistant unclonable decryption
scheme.

Definition 3.2 (Quantum Decryptor). A quantum decryptor p for ciphertexts of length m, is an (-
qubit state for some polynomial £. For a ciphertext c of length m, we say that we run the quantum decryptor
p on ciphertext c to mean that we execute a universal quantum circuit U on inputs |c) and p, and measure
the output registers.

18

We are now ready to describe the CPA-style anti-piracy game as well as the random challenge
anti-piracy game. We first introduce the notion of good decryptors with respect to two messages
(mo, mq) .

Definition 3.3 ((3 + 7)-good Test with respect to (mqg, m1)). Let v € [0,1/2]. Let pk be a public key,
and (mg, m1) be a pair of messages. We refer to the following procedure as a test for a y-good quantum
decryptor with respect to pk and (mg, my):

* The procedure takes as input a quantum decryptor p.
e Let P = (P,I — P) be the following POVM acting on some quantum state p':

— Sample a uniform b < {0, 1} and random coins r. Compute c <— Enc(pk, my;r).
— Run the quantum decryptor on input c. Check whether the outcome is my. If so, output 1;
otherwise output 0.

o Let (Tly a4y, I =Tl 24,) be the threshold implementation of P with threshold value 5+, as defined
in Theorem 2.7. Run the threshold implementation on p, and output the outcome. If the output is 1,
we say that the test passed, otherwise the test failed.

Definition 3.4 (k-Strong-Anti-Piracy Game, CPA-style). Let A\, k € NT. The CPA-style strong anti-
piracy game for a collusion resistant unclonable decryption scheme is the following game between a chal-
lenger and an adversary A.

1. Setup Phase: The challenger samples keys (sk, pk) < Setup(1*, k).

2. Quantum Key Generation Phase: The challenger sends A the classical public key pk and all k
copies of quantum decryption keys p = ps1 ® - - - psk i < KeyGen(sk).

3. Output Phase: A outputs a pair of distinct messages (mo, m1). It also outputs a (possibly mixed
and entangled) state o over k + 1 registers Ry, Ra,--- , Riy1. We interpret o as k + 1 (possibly
entangled) quantum decryptors o[Ry], - - - , o[Rp+1).

4. Challenge Phase: Let Ty 5., be the (% +~)-good test with respect to (mg, m1). The challenger ap-
plies Tl jo, to each of these decryptors. The challenger outputs 1 if and only if all the measurements
output 1.

We denote by StrongAntiPiracyCPA(1*,1/2 + ~, k, A) a random variable for the output of the game.

Definition 3.5 (Strong Anti-Piracy-Security). Let v : Nt — [0,1]. An unclonable decryption scheme
satisfies strong y-anti-piracy security, if for any polynomial k(-), for any QPT adversary A, there exists a
negligible function negl(-) such that the following holds for all A € N:

Pr [b = 1,b < StrongAntiPiracyCPA(1*,1/2 + v(\), k(\), A)| < negl(\) (1)

Note that the above strong anti-piracy security is defined by the threshold implementation TI.
By [CLLZ21], this definition implies a weaker notion called regular CPA-style anti-piracy security,
which says the probability of all £+ 1 malicious parties simultaneously distinguish encryptions of
mg or my (mg and m; are chosen independently for each malicious parties) is at most negligibly
greater than 1/2.

We can similarly define regular anti-piracy security with random message challenges: the prob-
ability of all £ + 1 malicious parties simultaneously recover ciphertext of independent random
messages is at most negligibly greater than 1/2", where n is the message length.

19

3.2 Construction

We now give the construction of our collusion resistant unclonable decryption. Let UD be the
unclonable decryption scheme based on coset states [CLLZ21]. Our CRUD takes £ as input and
outputs k pairs of freshly generated keys for UD. A message is encrypted under each public key.
Decryption works if a decryptor can decrypt any ciphertext. The construction of CRUD follows
from the construction of UD. The security of our CRUD requires a non-black-box analysis for the
last step.

CRUD.Setup(1?, k) :

e Fori € [k], (ski, pk;) < UD.Setup(1%).
* Letsk = (sky,--- ,skg) and pk = (pky, - - -, pk;). Output (sk, pk).

CRUD.QKeyGen(sk) :

e Parse sk = (sky,- - ,skg). Let p; < UD.QKeyGen(sk;).
* Let ps ;i be p; padded with a classical index i, i.e., psk; = p; ® |7) (i].
* Output psk1 ® -+ & psk k-

CRUD.Enc(pk,m) :

e Parse pk = (pky, -, pkg). Let ct; < UD.Enc(pk;, m).
* Outputcty, -, ctg.

CRUD.Dec(psk, ct) :

e Parse ct = (cty,- -+ ,cty). Parse pg as p and i.
e Output UD.Dec(p, ct;).

Figure 3: Collusion Resistant Unclonable Decryption.

We recall the unclonable decrytion scheme in [CLLZ21] (see Figure 4).

There is one additional function Sim which takes a parameter n (message length) and outputs
a junk ciphertext, which will be crucial for our anti-piracy proof. Intuitively, if one can distinguish
from a honestly generated ciphertext with a simulated ciphertext, they can extract secrets for the
underlying coset states.

The efficiency, correctness and CPA security of our CRUD scheme follows easily from those of
UD. We are focusing on the proof of its anti-piracy in the next section.

3.3 Proof of Anti-Piracy

In this section, we prove that our construction satisfies anti-piracy. Although the proof requires to
open up the structure of UD, this only happens for the last step: for arguing we can extract secrets
for the underlying coset states using the properties of compute-and-compare obfuscation. There-
fore, we will present the main idea of the proof here, leaving the proof of successful extraction (see
Claim 3.11) in the appendix.

Theorem 3.6. The construction in Section 3.2 has strong y-anti-piracy for any inverse polynomial ~ (as
defined in Definition 3.5).

20

UD.Setup(1*) — (sk, pk) :

e Sample ¢ random ()\/2)-dimensional subspaces A; C F3 fori = 1,2,--- ¢,
where ¢ := /()) is a polynomial in A.
e For each i € [¢], choose two uniformly random vectors s;, s; € 5.
* Prepare the programs iO(A; +s;) and iO(A;- + s!) (where we assume that the
programs A; + s; and A;" + s} are padded to some appropriate length).
® Output sk = {Ai, Si, Sg}iém, pk = {IO(AZ aF 5@')7 IO(AZJ‘ aF 3;)}16[@
UD.KeyGen(sk) — psk : on input sk = {A;, s;, 5 }ic[g, output the “quantum secret key”
Psk = {|Ai,si,s;>}i€[f]-
UD.Enc(pk,m) — ct : on input a public key pk = {iO(A; + s;),i0O(A; + s;) }ieg and
message m:

¢ Sample a uniformly random string 7 < {0, 1}*.

* Let 7; be the i-th bit of r. Define R = iO(A; + s;) and R} = iO(A;" + s}). Let
Pm,r be the following program Figure 5.

o Let FA’mm = iO(Pm,). Output ciphertext ct = (If’mm, T).

UD.Dec(psk, ct) — m/L : oninput psk = {[A4;,, «/) biejg and ct = (Prnr, 7):
e Foreachi € [{],if r; = 1, apply H®" to the i-th state ‘Ai,si,s;);if r; = 0, leave
the i-th state |4, ;) unchanged. Denote the resulting state by pg,.
e Evaluate the program P,, . on input p%, in superposition; measure the evalu-
ation register and denote the outcome by m/. Output m’.
¢ Rewind by applying the operations in the first step again.

UD.Sim(n) — ct : on input a message length n, ct + iO(Sim(1*, P.param)) where Sim
denotes the simulator for compute-and-compare obfuscator, P.param consists of
all program parameters in P, , as in UD.Enc for any m of length n.

Figure 4: Unclonable Decryption in [CLLZ21].

Proof. We prove by contradiction. There exist inverse polynomials (-), v(-), k(-) and an adversary
A such that for infinitely many A € N, A outputs a pair of distinct messages (mo, m1) and a state
o over k + 1 registers (which are k + 1 decryptors) such that

TI' [(T|1/2+W®TI1/2+7® "'®T|1/2+,y) O'} Z V. (2)

Let o* be the leftover state (over the k + 1 registers), conditioned on all T, /5, outputting 1. With
Equation (2), we can get to ¢* with probability at least v.

Next we will prove the theorem assuming we have perfect projective implementation (see
below). Therefore, the resulting reduction is inefficient. At the end of the section, we will show the
proof translates easily when we replace every projective implementation with its approximated
and efficient version. This replacement will give us an efficient reduction and only incur a small
loss.

21

On input u = uy||ugl| - - - ||u¢ (Where each u; € F5):

1. Ifforalli € [¢], R} (u;) = 1:
Output m

2. Else:
Output L

Figure 5: Program P, ,

Defining Probability Measurement Pl. We start by defining the following measurements PI;
for each i € [k]. Pl; stands for the projective implementation where the underlying ciphertext
distribution is: the first i ciphertexts are “fake”, without encoding any information about the
plaintext; the rest are generated honestly. pk are (pky,--- ,pk;) as defined in our construction
Section 3.2; similarly for sk;.

e LetP; = (P, I — P;) be the following POVM acting on a quantum decryptor:

— Sample a uniform b < {0,1} and random coins (which will be used to generated ci-

phertexts cty, - - - , cty).

— Foreachj € {1,---,7 — 1}, compute ct; <- UD.Sim(n) where n is the length of m(and
mi.

- Foreach j € {i, -+ ,k}, compute ct; < UD.Enc(pk;, my).

- Letct = (cty, -+, cty).

Run the quantum decryptor on input ct. Check whether the outcome is m,,. If so, output
1; otherwise, output 0.

¢ Let Pl; be the projective implementation of P;.

It is easy to see that when a quantum decryptor is in the subspace defined by Tl, /5, ., applying
Plp on the state will always produce a real number 5 > 1/2 + v. This is a simple observation
following Theorem 2.7: Tl; /5, is implemented by first applying Ply and comparing the outcome
with 1/2 + .

Let the outcome of applying Plj on the i-th quantum decryptor of ¢* be a random variable b; o.
We have:

1
PriViek+1.bio> 5 +7| =1 3)

Repeated Probability Measure and Its Properties. We then define repeated projective imple-
mentation. For the first quantum decryptor o*[1], we apply Pl to obtain a outcome b; o. Then we
apply the next projective implementation Pl; on the leftover state to obtain a outcome b; ;. So on
and so forth, until we stop after applying Pl;. The outcomes of all measurements are denoted by
random variables by o, - , by .

Claim 3.7. There always exists j € [k] such that by j_1 — b1 j > v/k.

Proof. For any quantum decryptor, if we apply Pl; on it, the outcome will always be 1/2. This
is because the ciphertext in Pl is always generated without any information about mg or m;.
Therefore, every decryptor’s behavior is random guessing: b; j is always 1/2.

22

From Equation (3), we know that b; o > 1/2 + . By triangle inequality, the claim holds. O

We use a random variable j; for the first index such that by j, —1 — b1 5, > v/k.

We similarly define the above repeated projective implementation for every quantum decryp-
tor o*[i]. Since the repeated measurement on the i-th decryptor commutes with the repeated
measurement on the i’-th (i # 7) decryptor, we can safely assume they are done in any order. Let
(big,- -+ ,bij,- - ,bi1) be the outcome of the repeated projective implementation the i-th decryp-
tor. Similarly, Claim 3.7 holds for every decryptor:

Claim 3.8. For every i € [k + 1], there always exists j € [k] such that b; j_1 — b; j > v/k.

Let j; be the first index such that b; j,—1 — b;;, > 7/k. We next show that there always exist
x # y such that j, = j,.
Claim 3.9. Pr[3z # v, j» = j,] = L.

Proof. This is simply because for every i € [k + 1], j; € [k]. The claim follows from the pigeonhole
principle. O

Guessing z,y and j,. We describe the first half of our reduction algorithm. The algorithm takes
as input o* (postselecting on all Tl; /5, output 1, and aborting if it fails). Below, we show the first
part of the algorithm. In the second part of the reduction algorithm, it will extract a pair of secrets

On input the k£ + 1 quantum decryptors o*:

1. Randomly sample 1 <z <y <k+1landj € [k,

2. Apply repeated projective measurement Pl to Pl;_; to o*[z]. Let b, j_1 be the last
outcome.

3. Apply repeated projective measurement Pl to Pl;_; to o*[y]. Let b, j_1 be the last
outcome.

4. Output (z,y, j, by j—1,by j—1) and both the z-th and y-th decryptors, denoted by
o™z, y].

Figure 6: Reduction Algorithm Part 1
for the same coset states from o**[z, y|, which we will elaborate on shortly after.
We prove the following claim for the above algorithm.

Claim 3.10. With probability at least 1/(2k3), the above procedure produces (x,y, j, bz j—1,by j—1) and
o** [z, y| satisfy:

1. Applying Plf.zf1 jointly on o*[x, y| produces by j_1, by j—1 with probability 1.
2. Applying PI;@2 jointly on o*[x, y] produces by ;, by ;, such that:

~ 1
Pr |byj1 — by j > A A byt = by 2 k] = 2k3°

23

Proof for Claim 3.10. By Claim 3.8, there is always a pair of indices + < y and an integer j € [k]
such that b, ;1 — bz j > F and b, ;1 — b, ; > 7} simultaneously. As a consequence, suppose that
we guess z,y and j uniformly at random after applying the repeated projective implementation
Plo, - - -, Pl on every quantum decryptor, then

1 1
Pr by -1 —bsj > % N byj—1—by; > %} > m > 3 4)
2
where the last inequality follows by £ > 1.

Since the repeated projective implementations on disjoint quantum decryptors commute (with
themselves as well as the final test projection), the same probability can be achieved if we only
apply the repeated measurements on the z-th and y-th decryptors, skipping the other (k — 1) ones
(see Figure 7).

On input the k& + 1 quantum decryptors o*:

1. Randomly sample 1 <z <y <k+1landj € [k];

2. Apply repeated projective measurement Plg to Pl; to o*[z]. Let b, j_1, b, j be
the last two outcomes.

3. Apply repeated projective measurement Pl to Pl; to o*[y]. Let b, j_1, b, j be
the last two outcomes.

4. Output (QZ, y,j, bx’jfl, bx,j’ byvjfl, by,j)-

Figure 7: Algorithm RandomMeasure(c*)
We have

gl RS
P byic1—bp;i > = ANbyi1—by;>—|>—. 5
RandomMegsure(a*) wg=1 T = Vi1 VI =kl = k3 ®)

Equation (4) and Equation (5) differ on how b, j_1,b; j, by j—1, by j is sampled.

We can view our reduction algorithm (Figure 6) as the first step of RandomMeasure (Figure 7).
More formally, RandomMeasure first runs the reduction algorithm to get (z, v, j, bz j—1,by,;—1) and
o**[x,y]; it then applies Pl; on both registers to obtain b, ; and b, ;.

If the claim we want to prove does not hold, then with probability < 1/(2k%), the outcome
(,9,7,bzj—1,by j—1) and c**[z, y] satisfy condition (2) in Claim 3.10. Therefore, the probability in
Equation (5) is strictly smaller than 1/(2k®) + 1/(2k3). This is a contradiction, as again the test
projector commutes with the rest of RandomMeasure. O

Extracting Secrets from o** [z, y]. We describe the second half of our reduction algorithm. Given
(,9,7,bz -1, by j—1) and o** [z, y| that satisfy both conditions in Claim 3.10, we can extract secrets
for both coset states. This violates the strong computational monogamy-of-entanglement property
of coset states, thus finishes the proof.

Recall the underlying ciphertext distribution of Pl;_; and Pl;:

1. The first j — 1 ciphertexts cty, - - - , ctj_; are generated by Sim(n).

24

2. The last k — j ciphertexts ctj 1, - ,ct; are generated honestly, using their corresponding
public key.

3. The j-th ciphertext is either generated honestly using the j-th public key pk; (in Pl;_1), or
by Sim(n) (in Pl;). pk;, sk; is generated by UD.Setup in Figure 4. Let the underlying cosets be

{A;+ s1, A + s}y

pk; = {iO(A; + 51), 10(Af" +) hieqe)
skj = {Au, 51, 51 e

The following claim says that if applying P;_; or P; on a quantum decryptor produce dif-
ferent values (with difference more than ~/k), then we can extract ¢ vectors vy, --- , vy each v; is
uniformly in either A; + s; or Af + 5.

Claim 3.11. For any k = poly()), let (sk, pk) + CRUD.Setup(1*, k) where sk = (skq,--- ,skg) and
pk = (pky,---,pky). Let ps be the unclonable decryption key. For any j € [k], let Pl;_y and Pl; be
defined at the beginning of the proof. Let pk; = {iO(A; + 1), 10(Af" + 57) hiejgs skj = { A, 51, 5 ieqq-

If there exist inverse polynomials o1 (-), o (+) and an quantum algorithm 1B that takes (psk, pk) outputs
p such that with probability at least oy, p satisfies the following:

1. There exists bj_ € (0, 1], applying Pl;_1 on p always produces bj_;.
2. Let the outcome of applying Pl; on p be b;. Then Pr[bj_1 — b; > v/k] > .

Then there exists another inverse polynomial 5(-) and an efficient quantum algorithm C that takes all the
descriptions of { Aj}¢_, (denoted by A), p and € random coins ry,- -+ ,r; € {0,1} such that:

A+ s if?“l =0
sk7p1k3,£sk,r [Vl € [f,v € {Af L i1 (v, yup) < C(A, p,7)| > B.
p<B(psk;pk)

The proof of this is similar to the extraction technique in [CLLZ21] using compute-and-compare
obfuscation. We refer interested readers to Appendix B.

By setting a; = as := 1/(2k?), B be the reduction algorithm in Figure 6 and p := o**[z], we
conclude that there exists another algorithm that takes o**[z], random coins 71, - - - , ¢ and outputs
(v1, -+ ,vg) in the corresponding cosets (depending on each r;).

Next, we show that after a successful extraction on the 0**[z], the other decryptor still satisfy
the conditions (1) (2) for Claim 3.11. Therefore, we can extract another random set of vectors from
the other decryptor, with non-negligible probability, even conditioned on a successful extraction
on o**x].

Assume conditioned on a successful extraction on the o**[z], the other decryptor becomes o’[y]
and it does not satisfy the conditions in Claim 3.11.

First, applying Pl;_; on ¢’[y] always produces b, j_i. This is because the extraction on the
o**[z] register does not change the support of o'[y]. Thus, condition (2) in Claim 3.11 can not hold.
Let E; denote a successful (E)xtraction on 0**[z] and G be a indicator that applying Pl; on o**|y]
to get b, ; and by ; < b, ;1 — 75 (a big (G)ap). We know that in this case, Pr[E; A Go] is negligibly
small.

However, this can not be true. We can imagine Pl; is implemented first. We know that Pr[G]
is non-negligible by the condition (2) in Claim 3.10. Conditioned on Gy, let the z-th decryptor

25

become o’[z]. We know that ¢’/[z] must satisfy both conditions in Claim 3.11. Otherwise, condition
(2) in Claim 3.10 can not hold. Thus, Pr[G2|E;] must be non-negligible. This contradicts with the
assumption that Pr(E; A Go] is negligibly small.

Thus, the reduction algorithm, with non-negligible probability, can extract (vi,--- ,v¢) and
(v}, -+ ,v)) with respect to random r1, - - - ,rpand 1/, - - - ,). With probability at least 1 —27, there
exist [€ [{] such that r; # 7. Thus, v; and v; will be two vectors in each of the cosets A; + s;
and A] + s). By guessing this [, this breaks the computational strong monogamy-of-entanglement
game (Theorem 2.5). O

4 Collusion Resistant Copy-Protection for Signature Schemes

In this section, we present security definiton and the construction for copy-protecting signatures
and PRFs.

4.1 Copy-Protection for Signatures: Definitions

Definition 4.1 (Bounded Collusion Resistant Copy-Protection Scheme of Signature Scheme). A
bounded collusion resistant copy-protection Scheme for a signature scheme consists of the following algo-
rithms:

Setup(1*, k): takes in security parameter 1* and upper bound k; outputs classical secret key sk and
classical verification key vk;
QKeyGen(sk): takes in a classical secret key sk; outputs k quantum signing keys psk = psk,1 @ psk,2 &

R

Sign(psk, x): takes a quantum signing key pr and an input x € [N]; outputs a classical signature sig €
[M].

Verify(vk, z, sig): takes in verification key vk, message x and claimed signature sig. It outputs 1 (accept)
or 0 (reject).

A copy-protection for signatures scheme should satisfy the following properties:

Correctness For every polynomial k(-), there exists a negligible function negl(-), such that for all
A, all messages z, all i € [k]:

(sk,vk) < Setup(1*, k),
Pr | Verify(vk, x,sig) = 1 Psk1 @ -+ @ psk i < QKeyGen(sk), | > 1 — negl())
sig < Sign(psk,q, T)

Multi-time Correctness/Reusability To ensure that the quantum signing key is reusable (i.e.,
satisfying the above correctness condition) for polynomially many times, we require the following
property for our scheme:

26

¢ Pseudo-deterministic Signing Procedure: For all polynomial k(-), there is a negligible func-
tion negl(-) for all \, for all messages =z, for all (sk, vk) in the support of Setup(1*, k) and all
i € [k], there exists a signature sig* such that the following holds:

Psk1 @ -+ @ psk i < QKeyGen(sk),

>1_
sig + Sign(puc, 7) = 1= negl(3)

Pr [sig = sig”

Therefore, the quantum signing key can be used for polynomially many times, by the gentle
measurement lemma [Aar05].

Remark 4.2. The construction for the signature scheme in this work consists of a deterministic signing
procedure and hence satisfies reusability.

An alternative requirement for reusability is to allow non-deterministic signatures, but require correct-
ness for any polynomial length sequence of messages. We will not elaborate on this direction.

Existential Unforgeability This is the standard (selective) existential unforgeability under cho-
sen message attack game for signature schemes. The adversary is not given any copy of the signing
key, but only oracle access to the signing function.

1. The adversary gives the challenger the message x*.

2. The challenger samples (sk, vk) < Setup(1*, k). It gives vk to A4;

3. The adversary queries the signing oracle for a polynomial number of times on messages

4. The adversary provides a signature sig* for message =*. The challenger accepts if and only
if Verify(vk, z*,sig*) = 1.

For any QPT adversary A, there exists a negligible function negl(-) such that for all \, z, the prob-
ability that A wins the above game is negl(\).

Remark 4.3. In the above game, we only allow the adversary to query the signing oracle classically. Classi-
cal query access is a more reasonable assumption in the security game for signatures since the signing oracle
is in the hands of the challenger, who can choose to interact with the adversary through a classical channel
(unlike other settings, for example in case of a random oracle, the hash function modeled as the oracle is in
the hands of the adversary and can then be queried in superposition).

Anti-Piracy Security for k-bounded collusion resistance Let A\ € NT. Consider the following
game between a challenger and an adversary A:

1. The challenger samples (sk, vk) < Setup(1*, k) and pg = Psk,1®Psk 2@+ - psk s — QKeyGen(sk).
It gives pek and vk to A;

2. A returns to the challenger a (possibly mixed and entangled) state o on registers R, Ra,
-+, Rp41. Weinterpret o as k+1 (possibly entangled) quantum programs o [R1], - - - , o[Rp1].

3. The challenger samples uniformly random 1, - - - , 441 < [N]. Then runs a universal circuit
on input (¢[R;], z;) to obtain sig} for each i € [k + 1]. The outcome of the game is 1 if and
only if Verify(vk, z;,sigi) = 1 for all i € [k + 1].

27

Denote by CPSignatureGame(1*, A) a random variable for the output of the game. We say the
scheme has anti-piracy security if for every polynomial-time quantum algorithm .4, there exists a
negligible function negl(-), for all A € N7,

Pr [CPSignatureGame(l)‘, A) = 1} = negl(\) .

4.2 Construction

In this section, we describe a construction of a copy-protection scheme for signatures. Our con-
struction is based on the copy-protection scheme for PRFs in [CLLZ21] and the short signature
scheme in [SW21].

Let A be the security parameter. Our copy-protection construction for a signature will make
use of the following building blocks. We refer the readers to Appendix A.3 for details on the PRF
building blocks we use.

1. A puncturable Fj : [K)] x [Ny] — [My], where N = 2" and M = 2™®), for some polyno-
mials n(A) and m()), satisfying n(\) > m(X) +2X+4. For convenience, we will omit writing
the dependence on A, when it is clear from the context.

F} is also an extracting PRF with error 2-*~! for min-entropy k(\) = n(}) (i.e., a uniform
distribution over all possible inputs). By Theorem A.14, such PRFs exist assuming post-
quantum one-way functions.

2. A puncturable statistically injective PRF F with failure probability 2~ that accepts inputs
of length /5 and outputs strings of length ¢;. By Theorem A.13, such a PRF exists assuming
one-way functions exist, and as long as ¢1 > 2/, + A.

3. A puncturable PRF F3 that accepts inputs of length ¢; and outputs strings of length /5. By
Lemma C.4 in [SW21], assuming one-way functions exist, F3 is a puncturable PRF.

4. A one-way function OWF : [M)] — [M,].

In our construction, we will parse the input x to PRF F (K7, -) as three substrings zg||x1||x2,
where each z; is of length ¢; for i € {0,1,2} and n = ¢y + {1 + l3. {2 — ¢y should also be large
enough (we will specify later how large).

Next, we describe a copy-protection scheme for a signing key, using the above building blocks.
The description is contained in Figures 8, 9 and 10.

Signing Program The program CPSign, described in Figure 9, takes as input x and ¢y vectors
v1,- -+, vz, and has two modes. If z is not in the sparse hidden trigger set (not passing the ‘if’
check in the first line), the program is in the normal mode: it outputs the PRF evaluation of F; (K1, x)
if and only if every v; is in the appropriate coset. Otherwise, the program is in the hidden trigger
mode: in this mode, a classical circuit description @’ is computed from the input z; the program
then outputs Q' (v1, -+ ,vy,).

On almost all inputs except a sparse set of hidden triggers, the program runs in its normal
mode. For i € [lo], define the programs RY = iO(4; + s;) and R} = iO(A;" + s) (where the inputs
to i0 should be appropriately padded).

Note that in the normal mode, the signature for a message = output by the program CPSign is
the PRF evaluation Fi (K7, z).

28

Setup(1*) — (sk, vk):

C SamplePRerys Ky, Ko, K3 for ", Fy, Fs.
* Let VK be the program in Figure 10. Prepare obfuscated program iO(VK).
C Output sk = (Kl,KQ,Kg),Vk: IO(VK)

QKeyGen(sk) — psk:

e Sample {A;, si, 8] }icjq: uniformly random subspaces A; of dimension \/2
and vectors s;, s, fori = 1,2,--- , {o.

e Let CPSign be the program described in Figure 9. Prepare iO(CPSign).

* Output the quantum key po = ({|A; 5, «:) }ieleo], 10(CPSign)),

1,54,S
Sign(psk, ©) — sig:
* Let ps = ({4, ;) Yieo), IO(CPSign)). Parse x as © = zo||x1]|z2 where z is
of length /.
e Foralli € [(), if z,; is 1, apply H®" to |A; s,.5). Otherwise, leave the state
unchanged. '
* We obtain state o from the above procedure (which can be seen as a super-
position over tuples of Iy vectors). Run iO(CPSign) coherently on input and
o, and measure the final output register to obtain sig.

Verify(vk, z, sig) — 0/1:

* Parse vk as program iO(VK).
* Run iO(VK) on input (z, sig) to obtain output 0/1.

Figure 8: Quantum copy-protection scheme for digital signature.

29

Hardcoded: Keys K1, Ko, K3, R?, R} for all i € [{y).
On input © = z¢||z1||z2 and vectors vy, - - - , vy,

1. If F3(K3,.1‘1) D xo = x{)HQ' and xg = 1'6 and z1 = FQ(KQ,$6"Q/>:
Hidden Trigger Mode: Treat)’ as a (classical) circuit and output
Q' (mode = eval, vy, -+, vg,).
2. Otherwise, check if the following holds: for all i € [¢o], Rfo’i (v;) = 1 (where zg; is
the i-th bit of xg).
Normal Mode: If so, output Fi (K7, z). Otherwise, output L.

Figure 9: Program CPSign

Hardcoded: Keys K, K», K3.
On input z = zg||z1]|z2 and sig:

1. If F3(K3,21) ® 22 = 2p]|Q" and z¢ = z{, and z1 = Fy(K2, z(||Q’):
Hidden Trigger Mode: Treat Q' as a (classical) circuit and output Q'(mode =
check, sig||0%A=™), where sig is padded with 0’s to the length of /g - \.
2. Otherwise:
Normal Mode: Check if OWF(sig) = OWF(F; (K5, z)). If so, output 1. Other-
wise, output 0.

Figure 10: Program VK

Verification Program The program used for verification of signatures, VK, also has two modes
similar to CPSign. VK’s differences from CPSign are highlighted in blue. It takes a message = and
a claimed signature sig as inputs.

In the Hidden Trigger Mode, we compute a circuit Q' from the input 2 same as we do in CPSign,
but we input a mode indicator check into circuit Q" as well as the claimed signature sig padded to
the same length as vy, - - - ,vy,. In the normal mode, we check if the one-way function evaluation
OWEF (sig) = OWF(F} (K7, z)). Both modes will eventually outputa 0 or 1.

Note that the circuit ' used in the hidden trigger mode also has two modes(eval mode and
check mode) inside itself. We will specify what they are in the security proof (Appendix C.1 and
Figure 12).

Theorem 4.4. The construction in Figure 8 satisfies selective existential unforgeability and anti-piracy
security for 1-bounded collusion resistance as defined in Section 4.1.

We give a proof for the above theorem in Appendix C.

4.3 Collusion Resistant Copy-Protection for Signatures and PRFs

The k-bounded collusion resistant copy-protection for signatures can be generalized naturally
from the above 1-bounded collusion resistant one. However, the construction is not completely

30

a black-box one that simply runs the single-copy scheme for £ times. We will elaborate the algo-
rithms and proofs in Appendix E.

The collusion resistant copy-protection for PRFs bears a lot of similarity with the signature
construction. We will describe the construction and proofs in Appendix G.

References

[Aar05]

[Aar09]

[AC13]

[AK22]

[AKL*22]

[ALL*21]

[AP21]

[BB84]

[BGI*01]

Scott Aaronson. “Limitations of Quantum Advice and One-Way Communication”.
In: Theory of Computing 1.1 (2005), pp. 1-28. DOI: 10.4086/toc.2005.v001a001 (cit.
on pp. 18, 27, 58).

Scott Aaronson. “Quantum Copy-Protection and Quantum Money”. In: Proceedings
of the 24th Annual IEEE Conference on Computational Complexity, CCC 2009, Paris,
France, 15-18 July 2009. 2009, pp. 229-242. DOI: 10.1109/CCC. 2009 .42 (cit. on pp. 1,
2,4,13).

Scott Aaronson and Paul Christiano. “Quantum Money from Hidden Subspaces”.
In: Theory of Computing 9.9 (2013), pp. 349-401. DOI: 10.4086/toc.2013.v009a009
(cit. on p. 3).

Prabhanjan Ananth and Fatih Kaleoglu. A Note on Copy-Protection from Random Ora-
cles. 2022. DOI: 10.48550/ARXIV.2208.12884. URL: https://arxiv.org/abs/2208.
12884 (cit. on p. 5).

Prabhanjan Ananth, Fatih Kaleoglu, Xingjian Li, Qipeng Liu, and Mark Zhandry.
“On the Feasibility of Unclonable Encryption, and More”. In: Advances in Cryptology
- CRYPTO 2022 - 42st Annual International Cryptology Conference, CRYPTO 2022, Santa
Barbara, CA, USA, August 15-18, 2022, Proceedings. Vol. 13507. 2022 (cit. on pp. 2, 4).

Scott Aaronson, Jiahui Liu, Qipeng Liu, Mark Zhandry, and Ruizhe Zhang. “New
Approaches for Quantum Copy-Protection”. In: Advances in Cryptology - CRYPTO
2021 - 41st Annual International Cryptology Conference, CRYPTO 2021, Virtual Event,
August 16-20, 2021, Proceedings, Part I. Vol. 12825. 2021, pp. 526-555. DOI: 10. 1007/
978-3-030-84242-0_19 (cit. on pp. 2-6, 12, 16, 17, 36).

Prabhanjan Ananth and Rolando L. La Placa. “Secure Software Leasing”. In: Ad-
vances in Cryptology - EUROCRYPT 2021 - 40th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21,
2021, Proceedings, Part II. Vol. 12697. 2021, pp. 501-530. DOI: 10.1007/978-3-030-
77886-6_17 (cit. on pp. 2, 3, 5).

Charles H. Bennett and Gilles Brassard. “Quantum cryptography: Public key dis-
tribution and coin tossing”. In: Proceedings of International Conference on Computers,
Systems & Signal Processing, Dec. 9-12, 1984, Bangalore, India. 1984, pp. 175-179. arXiv:
2003.06557 (cit. on p. 1).

Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil
P. Vadhan, and Ke Yang. “On the (Im)possibility of Obfuscating Programs”. In: Ad-
vances in Cryptology - CRYPTO 2001, 21st Annual International Cryptology Conference,
Santa Barbara, California, USA, August 19-23, 2001, Proceedings. Vol. 2139. 2001, pp. 1-
18. DOI: 10.1007/3-540-44647-8_1 (cit. on pp. 3, 14).

31

https://doi.org/10.4086/toc.2005.v001a001
https://doi.org/10.1109/CCC.2009.42
https://doi.org/10.4086/toc.2013.v009a009
https://doi.org/10.48550/ARXIV.2208.12884
https://arxiv.org/abs/2208.12884
https://arxiv.org/abs/2208.12884
https://doi.org/10.1007/978-3-030-84242-0_19
https://doi.org/10.1007/978-3-030-84242-0_19
https://doi.org/10.1007/978-3-030-77886-6_17
https://doi.org/10.1007/978-3-030-77886-6_17
https://arxiv.org/abs/2003.06557
https://doi.org/10.1007/3-540-44647-8_1

[BJL*21]

[BS16]

[CGLQ20]

[CHN*18]

[CLLZ21]

[CMP20]

[CV21]

[GGH"16]

[GGMS6]

[GKM*19]

[GKW17]

Anne Broadbent, Stacey Jeffery, Sébastien Lord, Supartha Podder, and Aarthi Sun-
daram. “Secure Software Leasing Without Assumptions”. In: Theory of Cryptography
- 19th International Conference, TCC 2021, Raleigh, NC, USA, November 8-11, 2021, Pro-
ceedings, Part 1. Vol. 13042. 2021, pp. 90-120. DOI: 10.1007/978-3-030-90459-3_4
(cit. on pp. 2, 3, 5).

Shalev Ben-David and Or Sattath. Quantum Tokens for Digital Signatures. 2016. arXiv:
1609.09047 (cit. on p. 12).

Kai-Min Chung, Siyao Guo, Qipeng Liu, and Luowen Qian. “Tight quantum time-
space tradeoffs for function inversion”. In: 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS). IEEE. 2020, pp. 673-684 (cit. on p. 39).

Aloni Cohen, Justin Holmgren, Ryo Nishimaki, Vinod Vaikuntanathan, and Daniel
Wichs. “Watermarking cryptographic capabilities”. In: SIAM Journal on Computing
47.6 (2018), pp- 2157-2202 (cit. on p. 3).

Andrea Coladangelo, Jiahui Liu, Qipeng Liu, and Mark Zhandry. “Hidden Cosets
and Applications to Unclonable Cryptography”. In: Advances in Cryptology - CRYPTO
2021 - 41st Annual International Cryptology Conference, CRYPTO 2021, Virtual Event,
August 16-20, 2021, Proceedings, Part I. Vol. 12825. 2021, pp. 556-584. DOI: 10.1007/
978-3-030-84242-0_20 (cit. on pp. 24, 6-8, 10, 12, 14-16, 18-21, 25, 28, 34, 35, 42,
44-46, 49, 59, 60).

Andrea Coladangelo, Christian Majenz, and Alexander Poremba. Quantum copy-
protection of compute-and-compare programs in the quantum random oracle model. 2020.
URL: https://arxiv.org/abs/2009.13865 (cit. on pp. 2-5).

Eric Culf and Thomas Vidick. A monogamy-of-entanglement game for subspace coset
states. 2021. arXiv: 2107 .13324 (cit. on p. 16).

Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. “Candidate Indistinguishability Obfuscation and Functional Encryption for
All Circuits”. In: SIAM Journal on Computing 45.3 (2016), pp. 882-929. DOI: 10.1137/
14095772X (cit. on p. 14).

Oded Goldreich, Shafi Goldwasser, and Silvio Micali. “How to Construct Random
Functions”. In: J. ACM 33.4 (1986), pp. 792-807. DOI: 10 . 1145/6490 . 6503 (cit. on
p- 37).

Rishab Goyal, Sam Kim, Nathan Manohar, Brent Waters, and David J. Wu. “Water-
marking Public-Key Cryptographic Primitives”. In: Advances in Cryptology - CRYPTO
2019 - 39th Annual International Cryptology Conference, Santa Barbara, CA, USA, August
18-22, 2019, Proceedings, Part I11. Vol. 11694. 2019, pp. 367-398. DOI: 10.1007/978-3-
030-26954-8_12 (cit. on pp. 3, 4).

Rishab Goyal, Venkata Koppula, and Brent Waters. “Lockable Obfuscation”. In: 58th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA,
USA, October 15-17, 2017. 2017, pp. 612-621. DOI: 10.1109/F0CS . 2017 . 62 (cit. on
p- 35).

32

https://doi.org/10.1007/978-3-030-90459-3_4
https://arxiv.org/abs/1609.09047
https://doi.org/10.1007/978-3-030-84242-0_20
https://doi.org/10.1007/978-3-030-84242-0_20
https://arxiv.org/abs/2009.13865
https://arxiv.org/abs/2107.13324
https://doi.org/10.1137/14095772X
https://doi.org/10.1137/14095772X
https://doi.org/10.1145/6490.6503
https://doi.org/10.1007/978-3-030-26954-8_12
https://doi.org/10.1007/978-3-030-26954-8_12
https://doi.org/10.1109/FOCS.2017.62

[GKWW21] Rishab Goyal, Sam Kim, Brent Waters, and David J. Wu. “Beyond Software Water-
marking: Traitor-Tracing for Pseudorandom Functions”. In: Advances in Cryptology -
ASIACRYPT 2021 - 27th International Conference on the Theory and Application of Cryp-
tology and Information Security, Singapore, December 6-10, 2021, Proceedings, Part III.
Vol. 13092. 2021, pp. 250-280. DOI: 10.1007/978-3-030-92078-4_9 (cit. on p. 59).

[GZ20] Marios Georgiou and Mark Zhandry. Unclonable Decryption Keys. 2020. Cryptology
ePrint Archive: 2020/877. URL: https://eprint.iacr.org/2020/877 (cit. on pp. 4,
12).

[KNY21] Fuyuki Kitagawa, Ryo Nishimaki, and Takashi Yamakawa. “Secure Software Leas-
ing from Standard Assumptions”. In: Theory of Cryptography - 19th International Con-
ference, TCC 2021, Raleigh, NC, USA, November 8-11, 2021, Proceedings, Part I. Vol. 13042.
2021, pp. 31-61. DOI: 10.1007/978-3-030-90459-3_2 (cit. on pp- 3, 5).

[Kre21] William Kretschmer. “Quantum Pseudorandomness and Classical Complexity”. In:
16th Conference on the Theory of Quantum Computation, Communication and Cryptog-
raphy, TQC 2021, July 5-8, 2021, Virtual Conference. Vol. 197. 2021, 2:1-2:20. DOI: 10.
4230/LIPIcs.TQC.2021.2 (cit. on p. 2).

[KW17] Sam Kim and David] Wu. “Watermarking cryptographic functionalities from stan-
dard lattice assumptions”. In: Annual International Cryptology Conference. Springer.
2017, pp. 503-536 (cit. on p. 3).

[KW19] Sam Kim and David] Wu. “Watermarking PRFs from lattices: stronger security
via extractable PRFs”. In: Annual International Cryptology Conference. Springer. 2019,
pp. 335-366 (cit. on p. 3).

[MWO05] Chris Marriott and John Watrous. “Quantum Arthur-Merlin games”. In: computa-
tional complexity 14.2 (2005), pp. 122-152. DOI: 10.1007/s00037-005-0194-x (cit. on
pp- 6, 35).

[NC10] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Infor-

mation: 10th Anniversary Edition. Cambridge University Press, 2010. DOI: 10. 1017/
CB09780511976667 (cit. on p. 14).

[SW21] Amit Sahai and Brent Waters. “How to Use Indistinguishability Obfuscation: Deni-
able Encryption, and More”. In: SIAM Journal on Computing 50.3 (2021), pp. 857-908.
DOI: 10.1137/15M1030108 (cit. on pp. 12, 14, 28, 37, 40, 42, 53).

[VZ21] Thomas Vidick and Tina Zhang. “Classical Proofs of Quantum Knowledge”. In: Ad-
vances in Cryptology - EUROCRYPT 2021 - 40th Annual International Conference on
the Theory and Applications of Cryptographic Techniques, Zagreb, Croatia, October 17-21,
2021, Proceedings, Part II. Vol. 12697. 2021, pp. 630-660. DOI: 10.1007/978-3-030-
77886-6_22 (cit. on p. 14).

[Wie83] Stephen Wiesner. “Conjugate coding”. In: SIGACT News 15.1 (1983), pp. 78-88. DOI:
10.1145/1008908.1008920 (cit. on p. 1).

[WZ17] Daniel Wichs and Giorgos Zirdelis. “Obfuscating Compute-and-Compare Programs
under LWE”. In: 58th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2017, Berkeley, CA, USA, October 15-17, 2017. 2017, pp. 600-611. DOI: 10.1109/
FOCS.2017.61 (cit. on p. 35).

33

https://doi.org/10.1007/978-3-030-92078-4_9
https://ia.cr/2020/877
https://eprint.iacr.org/2020/877
https://doi.org/10.1007/978-3-030-90459-3_2
https://doi.org/10.4230/LIPIcs.TQC.2021.2
https://doi.org/10.4230/LIPIcs.TQC.2021.2
https://doi.org/10.1007/s00037-005-0194-x
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1137/15M1030108
https://doi.org/10.1007/978-3-030-77886-6_22
https://doi.org/10.1007/978-3-030-77886-6_22
https://doi.org/10.1145/1008908.1008920
https://doi.org/10.1109/FOCS.2017.61
https://doi.org/10.1109/FOCS.2017.61

[YAL*19] Rupeng Yang, Man Ho Au, Junzuo Lai, Qiuliang Xu, and Zuoxia Yu. “Collusion Re-
sistant Watermarking Schemes for Cryptographic Functionalities”. In: Advances in
Cryptology - ASIACRYPT 2019 - 25th International Conference on the Theory and Appli-
cation of Cryptology and Information Security, Kobe, Japan, December 8-12, 2019, Proceed-
ings, Part 1. Vol. 11921. 2019, pp. 371-398. DOI: 10.1007/978-3-030-34578-5_14
(cit. on pp. 3, 4).

[YAYX20] Rupeng Yang, Man Ho Au, Zuoxia Yu, and Qiuliang Xu. “Collusion Resistant Water-
markable PRFs from Standard Assumptions”. In: Advances in Cryptology - CRYPTO
2020 - 40th Annual International Cryptology Conference, CRYPTO 2020, Santa Barbara,
CA, USA, August 17-21, 2020, Proceedings, Part I. Vol. 12170. 2020, pp. 590-620. DOI:
10.1007/978-3-030-56784-2_20 (cit. on p. 3).

[Zhal9] Mark Zhandry. “The Magic of ELFs”. In: Journal of Cryptology 32.3 (2019), pp. 825-
866. DOI: 10.1007/s00145-018-9289-9 (cit. on p. 35).

[Zha20] Mark Zhandry. “Schrodinger’s Pirate: How to Trace a Quantum Decoder”. In: The-
ory of Cryptography - 18th International Conference, TCC 2020, Durham, NC, USA, Novem-
ber 16-19, 2020, Proceedings, Part I1I. Vol. 12552. 2020, pp. 61-91. DOI: 10.1007/978-
3-030-64381-2_3 (cit. on pp. 6, 16, 35, 36).

[Zha21] Mark Zhandry. “How to Construct Quantum Random Functions”. In: J. ACM 68.5
(2021). DOIL: 10.1145/3450745 (cit. on p. 37).

A Additonal Prelimanaries

A1 Compute-and-Compare Obfuscation with Quantum Auxiliary Input

In this section, we recall the definition of compute-and-compare obfuscation with quantum auxil-
iary input for unpredictable distributions, first discussed in [CLLZ21].

Definition A.1 (Compute-and-Compare Program). Given a function f : {0,1}% — {0, 1} along
with a target value y € {0, 1}« and a message z € {0, 1}z, we define the compute-and-compare pro-
gram:

z iff@)=y
CClf,y, = .
-9, 7]() {J_ otherwise
We define the following class of unpredictable distributions over pairs of the form (CC[f, y, 2|, aux),
where aux is auxiliary quantum information. These distributions are such that y is computation-
ally unpredictable given f, z and aux.

Definition A.2 (Unpredictable Distributions). We say that a family of distributions D = {D)} where
D, is a distribution over pairs of the form (CC[f,y, z], aux) where aux is a quantum state, belongs to the
class of unpredictable distributions if the following holds. There exists a negligible function negl such
that, for all QPT algorithms A,

Pr A(1%, f,z,aux) = y| < negl(A).
(CC[f,y,2],aux)<—Dy (f) Y g()

34

https://doi.org/10.1007/978-3-030-34578-5_14
https://doi.org/10.1007/978-3-030-56784-2_20
https://doi.org/10.1007/s00145-018-9289-9
https://doi.org/10.1007/978-3-030-64381-2_3
https://doi.org/10.1007/978-3-030-64381-2_3
https://doi.org/10.1145/3450745

We further define the class of sub-exponentially unpredictable distributions, where we require the
guessing probability to be inverse sub-exponential in the security parameter.

Definition A.3 (Sub-Exponentially Unpredictable Distributions). We say that a family of distribu-
tions D = { Dy} where D) is a distribution over pairs of the form (CC[f, y, z|, aux) where aux is a quantum
state, belongs to the class of sub-exponentially unpredictable distributions if the following holds. There
exists a sub-exponential function subexp such that, for all QPT algorithms A,

Pr A1, f, 2, aux) = y| < 1/subexp(\).
(Cc[fvy,Z],aux)eD)\[s f) y} / p(A)

Each program P has an associated set of parameters P.param (e.g input size, output size, circuit
size), which is revealed to everyone.

Definition A.4 (Compute-and-Compare Obfuscation). A PPT algorithm CC.Obf is an obfuscator for
the class of unpredictable distributions (or sub-exponentially unpredictable distributions) if for any family
of distributions D = { Dy} belonging to the class, the following holds:

* Functionality Preserving: there exists a negligible function negl such that for all \, every program P
inD s

Pr[Vz, P(z) = P(z), P + CC.Obf(1*, P)] > 1 — negl(}\)
* Distributional Virtual-Black-Box: there exists an efficient simulator Sim such that:
(CC.0bf(1*, P), aux) =, (Sim(1*, P.param), aux)
where (P, aux) < D,.

Combining the results of [WZ17, GKW17] with those of [Zha19], Coladangelo et al. [CLLZ21]
showed the following theorem.

Theorem A.5. Assuming the existence of post-quantum iO and the sub-exponential quantum hardness of
LWE, there exist obfuscators for sub-exponentially unpredictable distributions, as in Definition A.4.

A.2 Measure Success Probabilities of Quantum Adversaries, Efficiently

Approximating Threshold Implementation Projective and threshold implementations of POVMs

are unfortunately not efficiently computable in general. Fortunately, they can be approximated, as

shown by Zhandry [Zha20], using a technique first introduced by Marriott and Watrous [MWO05].
We start with an efficient version of Pl:

Theorem A.6 (Approximated Projective Implementation, Theorem 6.2 in [Zha20]). Let D be a dis-
tribution of inputs. Let Pp = (Pp, Qp) be a binary outcome POVM described above with respect to the
distribution D. For any §,¢ > 0, there exists an efficient procedure AP1° (Pp) such that:

(i) If API%°(Pp) on some quantum program outputs (p, p), applying PI(Pp) on p yields (o, p') satis-
fying p' > p — € with probability at least 1 — 4.

(ii) If PI(Pp) on some quantum program outputs (p,p), applying API°(Pp) on p yields (p',p') satis-
fying p' > p — e with probability at least 1 — 6.

35

(iii) The running time of AP1°(Pp) is polynomial in the time complexity of sampling D, the time com-
plexity of running p, 1/e and log(1/6).

When the distribution is clear from the context, we sometimes ignore the subscript D in API“°(Pp).
We will make use of the following lemma from a subsequent work of Aaronson et al. [ALL*21].

Theorem A.7 (Approximated Threshold Implementation, Corollary 1 in [ALL*21]). Let D be a
distribution of inputs. Let Pp = (Pp, Qp) be a binary outcome POVM described above with respect to the
distribution D. For any 0, > 0 and -y, there exists an efficient procedure ATI,EY"S(PD) such that:

(i) IfATI;"s(Pp) on some quantum program outputs (p,b = 1), applying Tly_(Pp) on p yields (o', V')
satisfying b’ = 1 with probability at least 1 — 6.
(i) If Tly—(Pp) on some quantum program outputs (p,b = 1), applying ATIS?(Pp) on p yields (o', V')
satisfying b’ = 1 with probability at least 1 — 6.
(iii) The running time of ATI;"S(PD) is polynomial in the time complexity of sampling D, the time com-
plexity of running p, 1/e and log(1/9) (independent of ~y).

When the distribution is clear from the context, we sometimes ignore the subscript D in ATIfY"S(PD).

The following lemma will be important in our proofs. Let Dy and D; be two computationally
indistinguishable distributions. Let v,4" > 0 be inverse-polynomially close. Then for any (effi-
ciently constructible) state p, the probabilities of obtaining outcome 1 upon measuring Tl (Pp,)
and Tl (Pp,) respectively are negligibly close.

Theorem A.8 (Theorem 6.5 in [Zha20]). Let v > 0. Let p be an efficiently constructible mixed state,
and let Dy, Dy be two efficiently sampleable and computationally indistinguishable distributions. For any
inverse polynomial €, there exists a negligible function § such that

Tr[Tly—c(Pp,)pl = Tx[T(Pp,)p] — 6.

A.3 Preliminaries: Puncturable PRFs and related notions

A puncturable PRF is a PRF equipped with an additional algorithm that “punctures” a PRF key
K at a set of points S, so that the adversary with the punctured key can evaluate the PRF at all
points except the points in S. Even given the punctured key, an adversary cannot distinguish
between a uniformly random value and the evaluation of the PRF at a point .S using the original
unpunctured key. Formally:

Definition A.9 ((Post-quantum) Puncturable PRF). A PRF family F : {0,1}"™) — {0,1}™WN with
key generation procedure KeyGeny. is said to be puncturable if there exists an algorithm Puncturer, satis-
fying the following conditions:

e Functionality preserved under puncturing: Let S C {0,1}"™. For all z € {0,1}"™ where
x ¢ S, we have that:

Pr[F(K,z) = F(Kg,z) : K + KeyGen(1}), Kg < Puncturep (K, S)] = 1.

36

® Pseudorandom at punctured points: For every QQPT adversary (A1, Az), there exists a negligible
function neg| such that the following holds. Consider an experiment where K <+ KeyGeny(1%),
(S,0) + A1(1"), and Kg < Puncturer (K, S). Then, forall x € S,

Pr[Ay(o, K, S, F(K,2))=1]— Pr [Ay(0,Kg,S,7) = 1]| < negl()).
r+{0,1}m()

Definition A.10. A statistically injective (puncturable) PRF family with (negligible) failure probability
€(+) is a (puncturable) PRF family F such that with probability 1 — e(\) over the random choice of key
K + KeyGenp(1*), we have that F(K, -) is injective.

We will also utilize extracting PRFs: these are PRFs that are strong extractors on their inputs.

Definition A.11 (Extracting PRF). An extracting (puncturable) PRF with error €(-) for min-entropy
k() is a (puncturable) PRF F mapping n(\) bits to m(\) bits such that for all X, if X is any distribution
over n(\) bits with min-entropy greater than k(X), then the statistical distance between (K, F (K, X)) and
(K,r + {0,1}™XN) is at most €(-), where K + KeyGen(1*).

Puncturable PRFs can be obtained by modifying the famous [GGMS86] construction, which
uses only one-way functions. [SW21] showed that puncturable statistically injective PRFs and
extracting puncturable PRFs with the required input-output size can be built from one-way func-
tions as well.

Note that these constructions above can all be made post-quantum [Zha21]. The following
theorems from [SW21] thereby hold also against bounded quantum adversaries.

Theorem A.12 ([SW21] Theorem 1, [GGMS86]). If post-quantum one-way functions exist, then for all
efficiently computable functions n(X\) and m(X), there exists a post-quantum puncturable PRF family that
maps n(\) bits to m(\) bits.

Theorem A.13 ([SW21] Theorem 2). If post-quantum one-way functions exist, then for all efficiently
computable functions n(\), m(X), and e(X\) such that m(\) > 2n(\) + e(X), there exists a post-quantum
puncturable statistically injective PRF family with failure probability 2~ that maps n(\) bits to m(\)
bits.

Theorem A.14 ([SW21] Theorem 3). If post-quantum one-way functions exist, then for all efficiently
computable functions n(X\), m(X), k(X), and e(X) such that n(X\) > k(X) > m(X) + 2e(X) + 2, there exists
a post-quantum extracting puncturable PRF family that maps n(\) bits to m(\) bits with error 2=¢X) for
min-entropy k(X).

B Missing Details for the Proof of Anti-Piracy

Here we first prove Claim 3.11, then explain that the proof still holds by replacing Pl and Tl with
ATI and TI? for some €, 8.

Proof for Claim 3.11. We consider the following distributions D) (as in Definition A.3):

e Let (sk,pk) < CRUD.Setup(1*, k) where sk = (sky,--- ,skz) and pk = (pky,--- , pk;). Let pg
be the unclonable decryption key. We specify pk; = {iO(4; + s), iO(Af + 1) biejes sk =
{A1, 51,81 e

37

* Let p be the output of B.

e Sample b + {0,1} and r < {0, 1}*.

® Let Can;(-) = Cangy, () and Can;1(-) = Can 4. (-) where Cangy,(-), Can 41 (+) are the functions
defined in Definition 2.3. Z Z

¢ Define function f as follows:

fluy, -+ up) = Canypy (ur)l] - - - ||Cang,p, (ug).

Let s; o = s; and s; 1 = s,. Let the “lock value” y be the following;:

y = Cany (510 [|Cangr, (50,0,)-

Let Cy,, » be the compute-and-compare program CC[f, y, m).

* Run the obfuscation algorithm CC.Obf on C,,,, » and obtain the obfuscated program CC,,, , =
CC.Obf(Cyp,). Letct; = CCpyr = i0(CCpp,). Note this is the ciphertext by encrypting
using a public key pk; on my.

¢ Generate other ciphertext cty,--- ,ctj_1,ctjy1,- -+, cty using other public keys.

¢ Let the distribution be

(CC[f, Y, mb]v aux),

where aux is p, pk and other ciphertext cty,--- ,ctj_1,ctjpq,-- -, cty.

Consider another distribution D), where it is identical to the above distribution, except CC[f, y, my]

is replaced with a simulated program.

By Theorem A.8 and condition (2), if one can notice probability gap with non-negligible prob-
ability, D) and D) must be distinguishable. Thus, by the security of compute-and-compare obfus-
cation, there must exist an efficient quantum algorithm that given f,y, aux recovers every vector
in Can;,, with non-negligible probability. O

Discussing on Using Efficient APl and ATI. We first notice that in the proof, to make the first
part of argument work, we need to show that with APl and ATI, Claim 3.9 still holds. By setting
€ = /4 and ¢ is an exponentially small function, Claim 3.9 still holds with probability at least
1 — O(kd): by applying API (with all honest generated ciphertexts) on every decryptors, with
probability at least 1 — k6, every outcome is greater than £ + 2; for any quantum program, by
applying API (with all junk ciphertexts) on every decryptors, with probability at least 1 — kd, every
outcome is small than § + 1v. Thus, we can simply try to identify if there is a probability gap more
than /(2k) instead of /k. The rest of the proof goes in a similar way.

C Security Proof for Signature Copy-Protection

C.0.1 Proof of Correctness

It is easy to see that all algorithms in the construction are efficient. We then show that our con-
struction satisfies correctness as defined in Section 4.1.

Lemma C.1. The above construction satisfies correctness.

38

Proof. If for an input z, keys K», K, the step 1 check criterion in the program P is not satisfied,
then the program CPSign outputs F (K7,) with certainty. The verification will thus pass with
certainty as well.

Let us show that for any fixed input z* = z||x7]||z5, only negligible fraction of possible keys
Ky, K3 will let the step 1 check pass.

Suppose there exists an input z* = zjj||x}||z5 such that for some inverse polynomial fraction
of possible keys K3, K3, the step 1 check passes. Let us define z3 to be the first ¢y bits of x5 and
Fg(K 3,-) be the function that outputs the first ¢y bits of F3(Ks3,-). Fy is also a PRF because its
output is a truncation of another PRF F3’s output. To pass check the step 1, (2, 27, #3) should
satisfy the equation:

Fg(Kg,l’T) D 1'8 = ﬁ?;

By our assumption, for a non-negligible fraction of K3, the above equation holds. Then we
can build a non-uniform algorithm for breaking the security of F3 and consequentially, breaking
the security of F3: given oracle access to Fg(K 3,-) for a random K3, or a truly random function
f(-), the algorithm simply queries on 2 and checks if the output is z§ © 73; if yes, it outputs
1 (indicating the function is F3(K3,-)); otherwise, it outputs 0 (indicating the function is a truly
random funtion). Since the above equation holds for some inverse polynomial fraction of K3, our
non-uniform algorithm succeeds with non-negligible probability.

O

Remark C.2. Non-uniform security of PRFs can be based on non-uniform security of OWFs, the correct-
ness of our construction relies on the existence of non-uniform secure post-quantum OWFs. Such security
is provably achievable in the quantum random oracle model[CGLQ20] or should be achieved from non-
uniform security of post-quantum candidate assumptions such as LWE.

C.0.2 Existential Unforgeability
We prove the following theorem:

Theorem C.3. Assuming the existence of post-quantum secure indistinguishability, one-way functions
and puncturable PRFs, the above construction satisfies existential unforgeability.

Proof. We describe a sequence of hybrids to prove the theorem above.

Hybrid 0 This hybrid corresponds to the original security game.

¢ The adversary gives the challenger the message x*.

* The challenger samples (sk = ({|4; , s/) }ic[y), IO(CPSign)), vk = iO(VK)) «+ Setup(1, k). Tt
gives vk to A;

* The adversary queries the signing oracle for a polynomial number of times on messages

* The adversary provides a signature sig* for message m*. The challenger accepts if and only
if Verify(vk, z*,sig*) = 1

Note that the message z* is sent in before the challenger samples sk, vk. First, z* hits the hidden
trigger with exponentially small probability; even if it does, the challenger can just re-sample the
keys.

39

Hybrid 1 In this hybrid, after the adversary sends in the message z=*, the challenger computes
z* = OWF(F; (K7, z*)), and punctures the PRF key K; on z*:: K ;« = PRF.Puncture(K7, z*). Then
it generates vk = iO(VK') as in Figure 11.

Hardcoded: Keys K1 ,«, Ko, K3
On input x = z||z1||r2 and sig:

1. If Fg(Kg,.Tl) D xo = .CC{)HQ/ and Tog = 1‘6 and r1 = FQ(KQ,(I:E)HQ/):
Hidden Trigger Mode: Treat Q' as a (classical) circuit and output Q'(mode =
check, sig||0%A=™), where sig is padded with 0’s to the length of £, - \.
2. Normal Mode:

(@) If z = x*: check if OWF(sig) = z*. If so, output 1. Otherwise, output 0.
(b) Else check if OWF(sig) = OWF(F; (K 4+, x)). If so, output 1. Otherwise,
output 0.

Figure 11: Program VK’

Programs VK in Hybrid 0 and VK’ in Hybrid 1 have the exactly same functionality, by the
functionality preserving property of punctured PRE. We can therefore invoke the iO security to
argue their indistinguishability.

Hybrid2 In this hybrid, the challenger replaces z* = OWF(F} (K, z*)) with z* = OWF(y), where
y « {0,1}™.

Here we invoke puncturable PRF’s (selective) pseudorandomness at punctured points prop-
erty. The reduction gives the signature adversary’s z* to the challenger; receives the punctured
key K .+, a value that is either F (K, 2z*) or uniformly random y from the challenger; it then
prepares the verification program iO(VK’). If the adversary successfully forges, then the reduction
outputs guess 0 (for real evaluation K ,+), otherwise it outputs 1(for uniform random y).

In the end, we show that the adversary’s advantage in Hybrid 2 is negligible. Suppose its
advantage is non-negligible, then we can build an algorithm that breaks the security of one-way
functions. The reduction algorithm receives =* from the adversary; it also receives the OWF chal-
lenge ¢ from the challenger and sets z* in VK’ to be ¢. If the adversary forges a signature sig* on
x* that passes verification, then the reduction algorithm can output sig* as the answer to the OWF
challenge since OWF(sig*) = t.

O

C.1 Proof of Anti-Piracy Security

In this subsection, we prove the anti-piracy security, Theorem 4.4. As a first step, we give the
following lemma from [SW21].

Lemma C.4 (Lemma 1 in [SW21]). Except with negligible probability over the choice of the key K, the
following two statements hold:

40

1. For any fixed x1, there exists at most one pair (xo, x2) that will cause the step 1 check in Program P
to pass.
2. There are at most 22 values of x that can cause the step 1 check to pass.

Proof Overview One important component of the proof is leveraging the sparse hidden triggers
in the program CPSign and VK. Intuitively, sampling a unifromly random input is indistinguish-
able from sampling an element from the sparse hidden trigger set. After we move to a hybrid
where the challenge messages are sampled from the hidden trigger set, we will be able to find cor-
respondence between the signature anti-piracy game and the unclonable decryption anti-piracy
game. We can then reduce to the security of our unclonable decryption scheme.

Definition C.5 (Hidden Trigger Inputs). An input x is a hidden trigger input of the program P (defined
in Figure 9) if it makes the step 1 check in the program be satisfied.

We will prove a lemma says that no efficient algorithm, given the quantum key, can distinguish
between the following two cases: (i) sample two uniformly random inputs, and (ii) sample two
inputs in the hidden trigger set.

Before describing the lemma, we describe an efficient procedure which takes as input an in-
put/output pair for Fy, PRF keys K», K3, descriptions of cosets, and produces a hidden trigger
input.

Hardcoded: y; {Ai, si, 5 }ic[o]; To-
On input mode, v:

1. if mode = eval:
Parse v as vy, - - - ,vg,. Output y if and only if for every input v;, if z¢; = 0, then
v; is in A; + s; and otherwise it is in A;- + .
2. else if mode = check:
Parse v as sig||0‘*~™ where the first m bits form a string sig. Check if sig = y.
If so, output 1. Otherwise, output 0.

Figure 12: Program @

Definition C.6. as in The procedure GenTrigger takes as input o (of length ¢y), y (of length m, where m
is the length of the output of F), two PRF keys K2, K3 and hidden cosets { A, s;, 8} }ic[eo)*

1. Let Q be the program (padded to length {5 — {o) in figure 12
2. 13,1 — FQ(KQ,CC()HQ);
4. Output 2 = ||z} ||xb.

Note that for any zy,y, GenTrigger will produce an input 2’ such that it starts with = and the
evaluation of P on input 2’ and valid vectors vy, - -+ , vy, iS y.

The following lemma says that any efficient algorithm cannot distinguish if it gets two inputs
sampled uniformly at random, or two hidden trigger inputs (sampled according to Definition
C.6):

41

Lemma C.7. Assuming post-quantum iO and one-way functions, any efficient QPT algorithm A cannot
win the following game with non-negligible advantage:

A challenger samples (sk = (K1, K2, K3),vk = iO(VK)) < Setup(1?); then it prepares a quantum
program psx = ({|Ai s, s:) Yielto), IO(CPSign)).

The challenger samples a random input v <— [N]. Let y,, = Fi(Ki,u). Parse the input as v =
uo|[u ||us.

Let u' < GenTrigger(uo, yu, K2, K3, {Ai, 5, 5 }ic[eo])-

Similarly, it samples a random input w < [N]. Let y,, = F1(Ky,w). Parse the input as w =
wol|wi ||ws.

Let w' <+ GenTrigger(wo, yuw, K2, K3, {Ai, 5i, 5; ic[to))-

The challenger flips a coin b, and sends (px, u, w) or (px,u',w') to A, depending on the outcome. A
wins if it guesses b.

Note that the valid signature output by the signing program for message x is actually the PRF
evaluation Fi (K7, z). Therefore, for the simplicity of notations, we will let the challenger compute
the PRF evaluations on challenge messages u, w instead of running the copy-protected program.

The lemma above is similar to [CLLZ21] Lemma 7.17, but different in the sense that we addi-
tionally provide the adversary with a verification program iO(VK). We will present the proof to
this lemma in Appendix F.

Next, we show that if Lemma C.7 holds, then our construction satisfies anti-piracy security Ap-
pendix G.1. After this, to finish the proof, we will only need to prove Lemma C.7. The core of the
latter proof is the “hidden trigger” technique used in [SW21], which we will prove in Appendix F.

Proof for Theorem 4.4. We mark the changes between hybrids in red.

Hybrid 0. Hybrid 0 is the original anti-piracy security game.

1.

2.

3.

4.

The challenger samples (sk = (K71, K, K3),vk) « Setup(1*); then it prepares a quantum
program psk = ({|Ai,si,s§>}i€[€0}7 'O(CPSIgn))

A upon receiving pr, it runs and prepares a pair of (potentially entangled) quantum states
O‘[Rl], O‘[RQ].

The challenger also prepares two inputs u, w as follows:

¢ It samples u uniformly at random. Let y,, = F1 (K71, u).
e It samples w uniformly at random. Let y,, = F; (K7, w).

The outcome of the game is 1 if and only if both quantum programs successfully produce y,
and y,, respectively.

Hybrid 1 The difference between Hybrids 0 and 1 corresponds exactly to the two cases that the
adversary needs to distinguish between in the game of Lemma C.7.

1.

2.

The challenger samples (sk = (K71, K2, K3),vk) < Setup(1*); then it prepares a quantum

program ps = ({[Ai s, 1) Fieleo): IO(CPSign)).
A upon receiving pr, it runs and prepares a pair of (potentially entangled) quantum states
o[Ri1], o[Ra].

42

3. The challenger also prepares two inputs ', w’ as follows:

e It samples u = ug||u1||uz uniformly at random. Let y,, = F1 (K7, u).
Let v < GenTrigger(uo, yu, K2, K3, {Ai, 5i, 5 Yicie])-

e It samples w = wp||w; ||we uniformly at random. Let y,, = F1 (K7, w).
Let w’ < GenTrigger(wo, yw, K2, K3, {Ai, 5i, 5 Yicle])-

4. The outcome of the game is 1 if and only if both quantum programs successfully produce y,
and y,, respectively.

Assume that there exists an adversary that distinguishes Hybrid 0 and 1 with non-negligible
probability €()), then these exists an adversary that breaks the game in Lemma C.7 with probabil-
ity e(\) — negl(A).

The reduction algorithm receives pj, and u,w or v/, w’ from the challenger in Lemma C.7; it
computes ¥, Y, using iO(P) on the received inputs respectively and gives them to the quantum
decryptor states o[R;], o[R2]. If they both decrypt correctly, then the reduction outputs 0 (i.e. it
guess that sampling was uniform), otherwise it outputs 1 (i.e. it guesses that hidden trigger inputs
were sampled).

Hybrid 2. In this hybrid, the signatures for challenge messages, Fi(K;,u) and F;(K;,w), are
replaced with truly random strings.

1. The challenger samples (sk = ({A;, si, 8} }ic[e]> K1, K2, K3), Vk) < Setup(1*); then it prepares
a quantum program psk = ({|4; s, ¢ ticje,], I0(CPSign)).
Note that here CPSign hardcodes K1, K>, K3.

2. A upon receiving pey, it runs and prepares a pair of quantum states o[R1], o[Ra].

3. The challenger also prepares two inputs «’, w’ as follows:

¢ It samples ug uniformly at random. It then samples a uniformly random y,,.
Let v’ < GenTrigger(uo, yu, K2, K3, {Ai, si, 8} }ic[eo))-

¢ It samples wy uniformly at random. It then samples a uniformly random .
Let w' « GenTrigger(wo, yuw, K2, K3, {Ai, 5i, 5; ic[to))-

4. The outcome of the game is 1 if and only if both quantum programs successfully produce y,,
and y,, respectively.

Since ug # wo with overwhelming probability and both ug, wp have enough min-entropy ¢; +
Uy > m+2X+4 (as u; ||ug and wy ||wy are completely uniform and not given to the adversary) and
F} is an extracting puncturable PRF, both outcomes y,, y,, are statistically close to independently
random outcomes. Therefore, Hybrid 1 and Hybrid 2 are statistically indistinguishable.

Hybrid 3. In this hybrid, we only change the order of sampling.

1. The challenger first samples {4;, s;, s; }ic[,) and prepares the quantum states {|4; ,,) }ic[e,)-
It treats the the quantum states {|A; ;,) }icy,) as the quantum decryption key ps for our
unclonable decryption scheme and the secret key sk is {4;, s, 5] };cg,)- Similarly, let pk =
{RY, R}}ici,) where RY = i0O(A; + s;) and R} = i0(A4; + 5}).

2. It samples y,, ¥ uniformly at random. Let (ug, Qo) < UD.Enc(pk,y,) and (wg, Q1) <
UD.Enc(pk, y.,) where UD.Enc(pk, -) is the encryption algorithm of the unclonable decryp-
tion scheme.

43

@

The challenger sets px = ({|A; s, o) }iele,], I0(CPSign)) as well as verification key iO(VK).
A upon receiving pg, it runs and prepares a pair of quantum states o[R1], o[Ra].
5. The challenger also prepares two inputs v’, w’ as follows (as GenTrigger does):

e Let u’l — FQ(KQ,UQHQ()) and u’2 — F3(K3,u'1) D (UUHQQ) Letu = uoﬂu’lHu’z
e et w’l — FQ(KQ,w(]HQl) and wé — F3(K3,w/1) D (wOHQl). Let w' = wOHw’le’Q.

H~

6. The outcome of the game is 1 if and only if both quantum programs successfully produce y,,
and y,, respectively.

Note that the only differences of Hybrids 2 and 3 are the orders of executions. Therefore, A has
the same advantage as in Hybrid 2. We would like the highlighted components in the above game
to match the unclonable encryption scheme in Figure 4.

However, we would notice that the ciphertexts (uo, Qo) and (u1, Q1) prepared in Hybrid 3 are
in fact different from the ciphertexts in unclonable encryption scheme in the previous section’s
constructiion, Figure 4. What we need here is a ciphertext that has the same functionality of
program () in Figure 12.

We therefore turn to an unclonable decryption scheme UD’ with slightly stronger security: the
challenger provides the adversary with iO of the following program as an encryption of message

y:

Plaintext: y.
Hardcoded: {R?, R} }z‘e[eoﬁ Z0-
On input mode, v:

1. if mode = eval:
Parse v as vy, -+ ,vg,. Output y if and only if for every input v;, R;*" (v;) = 1,
where R) = i0(4; + s;) and R} = i0(A} + s)
2. else if mode = check:
Parse v as sig||0‘*~™ where the first m bits form a string sig. Check if sig = y.
If so, output 1. Otherwise, output 0.

Figure 13: Encryption of plaintext y in UD’, which is another form of program Q in fig. 12

Proposition C.8. The modified unclonable encryption scheme UD' satisfies the (1 collusion resistant) anti-
piracy security as defined in Definition 3.4.

The intuition behind the proposition is as follows: the ciphertext in fig. 13 can be seen as two
programs. The first one is the original ciphertext in the fig. 4 scheme; the second program is an
obfuscation for a point function that on input sig, checks if it equals y. The second program can be
seen as an additional auxiliary information provided to the adversary A in the anti-piracy game,
but can be eventually removed and be of no help to A.

The full proof is more involved, but naturally follows from the anti-piracy security proof in
[CLLZ21]. We will give a proof for the proposition above and point out its differences from
[CLLZ21] in Appendix D.

44

Reduction to Unclonable Decryption The next step is to show that if an algorithm A that wins
the game in Hybrid 3 with non-negligible probability (), we can build another algorithm 3 that
breaks the (regular) y-anti-piracy security with random challenge plaintexts of the underlying
unclonable decryption scheme .

* B plays as the challenger in the game of Hybrid 3.

* Breceives po = {|A;s, o) Yielo) and pk = {iO(A; + s:),i0(A;" + s7)}icpg,) in the anti-piracy
game of unclonable decryption.

* Bsamples PRF keys K, K3, K3 and a one-way function OWF. Let psx = ({[4; s, /) }ie[ro), IO(CPSign))
as well as vk = iO(VK). Here B can prepare the program CPSign and VK using R?, R} for
i € [k] provided by the unclonable decryption challenger.

* B gives ps to A, and A the produces a pair of quantum states o[R;], o[R2].

* Boutputs the decryptors (o[R1],P1) and (c[Rz2], P2) to the unclonable decryption challenger.
P1 and P are programs that correspond to first running GenTrigger procedures and then
evaluating the pirate programs on GenTrigger’s output values:

On input (p1,ct; = (up, Q1)) and (p2, cta = (wo, Q2)) respectively (where ct; and ct; repre-
sent encryptions of random messages y,, and v, chosen by the challenger), P; and P behave
as follows:

— Pi: Let u’l — FQ(KQ,U()HQ()) and u’2 — F3(K3,u’1) &) (UOHQO) Let v = uoHu/lHu/Q Run
(p1, U1) on v’

- P2: Let w’l — FQ(KQ,ZUQHQl) and wé — F3(K3, wll)@(onQl). Letw' = ZU(]H’LU/le/Q. Run
(p2,Uz) on w' respectively.

If A succeeds in the game of Hybrid 3, its pirate programs would output the "correct sig-
natures" y,, y,, for messages u’,w’. As we can see, they are also correct decryption outputs for
ciphertexts ct; and cts.

Therefore, the programs prepared by B will successfully decrypt the encryptions of uniformly
random plaintexts. Thus, B breaks y-anti-piracy security with random challenge plaintexts. [

D Proof for Proposition C.8

Proof. The proof follows from the arguments of anti-piracy security for unclonable decryption in

[CLLZ21] section 6.4, except providing the adversary with some additional auxiliary information.

We thereby omit some repetitive details and refer the reader to the full proof in the above paper.
More specifically, we can view the ciphertext in Figure 13 as two separate programs:

1. The eval mode program is iO of a program that hardcodes { R}, R} };c(s,), msg, . It does the
following:
Oninputv: Parsevas vy, - - ,vy,. Output msg if and only if for every input v;, R; > (v;) = 1,
where RY =i0(4; + s;) and R} =i0(A} + s)).
2. The check mode program is an iO of a point function:
on input v: Parse v as sig||0%*~™ where the first m bits form a string sig. Check if sig =
msg. If so, output 1. Otherwise, output 0.

To avoid confusion of notations, we denote the message y in the same programs in Section 4 as msg here.

45

The eval mode program is exactly the ciphertext generated in the original construction Figure 4.
The check program is an auxiliary information given to the adversary.

By the security definition definition 3.4, a successful adversary produces pirate programs
o[R1], 0[Ry] that satisfy Tr[(Tl; /24 (Pp) ® Tly /24 (Pp))o] > non-negl(A). The testing distribu-
tion D is a distribution for sampling a challenge ciphertext by preparing the two programs above,
for some uniformly random z.

We know by theorem 2.7 that now if we apply the measurements Tl /5, (Pp) again to the
states after measurements respectively, the probability that their outcomes are both 1 is (1 —
negl())) . Let us denote these states as o[R;1]’, o[R2]’.

Next, we switch to a different testing distribution D’ of sampling challenge ciphertexts:

* The eval mode program is prepared as follows:

— Let Can; o(-) = Cangy,(-) and Can; 1(-) = Can 41 (+). Cany,(-) denotes a function that com-
putes the lexicographically smallest vector contained in A; + s;. Likewise for Can 4. (-).
— Define function f as follows:

fut, -+ ug) = Cany gy (u1)]] - - - [|Cangr, (ur).

Let s;0 = s; and s;1 = s}. Let the “lock value” lock be the following:
lock = Cany gy (s1,001)[| - - [[Cangr, (st)-

Let Cinsg,»» be the compute-and-compare program CC|f, lock, msg].

— Run the obfuscation algorithm CC.Obf on Cpsg, and obtain the obfuscated program
CC.Obf,, , = CC.Obf(Cpmsg,z)- Let CACmsg,,, = i0(CC.Obfmsg).

— Let the ciphertext be (CACmsg,,n, x).

¢ the check mode program stays unchanged.

Since the eval mode programs prepared in D and D’ have exactly the same functionality, we can
see that distribution D’ is computationally indistinguishable from D by the post quantum security
of i0. Therefore, by Theorem A.8, states ¢’ will still pass the test of Tl /o, (Pp) @ Tly /91 (Ppr)
with (1 — negl(\)) probability.

Next, we switch the ciphertext from iO(CC.Obf g) to iO(Sim) where Sim is a simulated pro-
gram that always output L. Let us denote this distribution as D" and it is clear that no pirate
program can decrypt with success probability larger than 1/2 under distribution D”.

We then invoke the security of compute-and-compare obfuscation. The lock value lock should
be unpredictable even if given description of f and msg, as long as lock is chosen independent of
msg and f. Our f, msg and lock satisfy such a condition. In this case, the additional check mode
program is of no use to the compute-and-compare adversary: even if the point function inside the
program is given in the plain to him, he should not be able to distinguish D" and D'.

However, the pirate programs have a non-negligible difference in success probabilities when
running under D" and D’'. By the contrapositive of definition A.3, if there exists an adversary that
distinguishes between (D', aux = (f, msg,o0’)) and (D”,aux = (f, msg,c’)), then there exists an
extractor that predicts the lock value lock. The rest of the proof is a delicate argument on how to
extract the lock values, which should follow exactly from [CLLZ21] section 6.4.

Ul

46

E Bounded Collusion Resistant Copy-Protection for Signatures

Let us denote our underlying 1 collusion resistant signature scheme as SigCP. We give the follow-
ing construction for bounded collusion resistant copy-protection for signatures CRSigCP. Note
that the following construction is not a generic transformation from any signature copy-protection
scheme to a collusion resistant one, but takes use of certain structures specific to our scheme.

CRSigCP.Setup(1*, k) :
e Run (sk,vk) « SigCP.Setup(1*).
¢ Prepare a program CRVK that takes inputs (z,sig,) and outputs 0/1 as in
tig. 16.
e Let vk = iO(CRVK). Output (sk, vk).
CRSigCP.QKeyGen(sk) : Let us first slightly revise the underlying algorithm
SigCP.QKeyGen(sk) such that the program CPSign is generated as in fig. 15

e Fori € [k], pi < SigCP.QKeyGen(sk).
* Let ps ; be p; padded with a classical index i, i.e., psk; = p; ® |7) (i].
* The classical part of p; is iO of a program CPSign;.
Compile them into a program CRSign: on input (p;, z,%), CRSign will run
iO(CPSign;) on inputs (p;, z, i) according to index i.
* Output pek1 ® - - - ® psk , and iO(CRSign).
CRSigCP.Sign(psk, x) :
* Parse pq as p;, index i as well as program iO(CRVK).
* Output sig = (sig; < iO(CRSign)(pi, x,1),1).
CRSigCP.Verify(vk, x, sig) :

* Parse vk = iO(CRVK) and parse sig as a signature sig; and an index i.
* Output the result of running iO(CRVK) on input (z, sig;, ©).

Figure 14: Collusion Resistant Copy-Protection for Signature Scheme.

Correctness Note that according to the underlying algorithm SigCP.Setup and SigCP.QKeyGen,
in each copy CPSign; for i € [k]: the keys K1, K2, K3 are identical; but the subspace membership
functions {{R, R} e, }, cx correspond to £o - k number of i.i.d. generated shifted subspaces.
The correctness easily follows from the correctness of the single-copy scheme: each copy of
the secret key and corresponding verification key are generated independently; the signing and
verification algorithm will use the i-th signing key/verification key as instructed in the input.

Remark E.1. The above construction is an almost black-box translation from the 1- bounded collusion
scheme. We therefore give up some efficiency for the sake of clarity. To provide more efficiency, we can simply
generate CPSign, inside CRSigCP.QKeyGen on its own without running an underlying SigCP.QKeyGen,
so that we have less nested obfuscation.

47

Hardcoded: Keys K1, Ko, K3, R, Rj for all j € [(].
On input = = zg||z1||z2 and vectors vy, - - - , vy, and index i

1. If F3(K3,21) & 22 = 2p]|Q" and z¢ = z{, and z1 = Fy(K2, z(||Q’):
Hidden Trigger Mode: Treat)’ as a (classical) circuit and output
Q' (mode = eval, vy, -+ ,vg,,17).
2. Otherwise, check if the following holds: for all j € [f], R;* (v;) = 1 (where xq,;
is the j-th bit of z).
Normal Mode: If so, output F; (K7, z). Otherwise, output L.

Figure 15: Program CPSign Revised: the circuit ()’ now takes in additional input, index i. Note that we
change the indices for the subspaces to j € [{y] in order to distinguish from the index ¢ € [k], which
specifies the i-th copy of program.

Hardcoded: Keys K, K>, K3.
On input z = x¢||z1||z2, sig and :

1. If Fg(Kg,{Bl) D xo = x{)HQ’ and zg = 1'6 and z1 = FQ(KQ,.%‘6HQ’)Z
Hidden Trigger Mode: Treat Q' as a (classical) circuit and output)'(mode =
check, sig||0%A~™ i), where sig is padded with 0’s to the length of £ - A and i is an
index in [k].
2. Otherwise:
Normal Mode: Check if OWF(sig) = OWF(F1(K1,x)). If so, output 1. Other-
wise, output 0.

Figure 16: Program CRVK

48

Collusion Resistant Anti-Piracy Security Our security proof will follow the hybrids in the 1-
bounded collusion resistant setting: hybrid 0 is the original anti-piracy game; in hybrid 1, we
change the challenge messages z1, - - ,z) from uniformly random to outputs of a hidden trig-
ger algorithm; in hybrid 2, we change the PRF evaluations y; = Fi (K, z;) to uniformly random
values y for each i € [k]. In hybrid 3, we re-order the sampling procedures to match the secu-
rity game of unclonable decryption. Finally, we can formulate a reduction to the security of the
underlying k collusion resistant unclonable decryption scheme UD'.

One would observe that two things may prevent us from directly generalizing the 1-bounded
collusion proof: First, to argue indistinguishability of hybrid 0 and hybrid 1, we now rely on a
k-hidden trigger inputs version of Lemma C.7. As we will state and prove in lemma E.3, we can
obtain such a generalized lemma by exploiting the construction of our collusion resistant signature
copy-protection scheme.

Second, we need to argue that the underlying modified unclonable decryption UD’ satifies k&
collusion resistance. As we have seen, in the 1 collusion resistance case, UD" has the same struc-
ture and security proof (by leveraging the property of compute-and-compare obfuscation) as the
construction in fig. 4. Therefore, UD’ satisfies k collusion resistance with the general translation
proved in the main body of this paper.

F Proof for Lemma C.7 and k-Hidden Trigger Lemma

This lemma states that a QPT adversary can not distinguish a pair of uniformly inputs from a pair
of hidden trigger inputs.

For the clarity of presentation, we show the following lemma about the indistinguishability of
a single random input or a single hidden trigger input. Afterwards, we will discuss how the proof
for Lemma F.1 can translate to a proof for Lemma C.7 as well as a proof for the k-Hiden Trigger
lemma.

However, we can not get Lemma C.7 by simply applying Lemma F.1 twice (or likewise, k
times), we will elaborate the generalization of the proof.

Lemma FE.1. Assuming post-quantum iO and one-way functions, for every efficient QPT algorithm A, it
can not distinguish the following two cases with non-negligible advantage:

* A challenger samples (sk = (K1, Ko, K3),vk = iO(VK)) ¢ Setup(1*); then it prepares a quantum
program pgc = ({|A; s) }iefe), I0(CPSign)).

e [t samples a random input u <— [N]. Let y = Fy (K1, u). Parse the input as u = wug||u1]|us.

* Letu' < GenTrigger(uo,y, K2, K3, {4, si, 5; ic[eo))-

e [t flips a coin b and outputs (px,u) or (px,u’) depending on the coin.

Note that we will mark the changes between the current hybrid and the previous hybrid in
red.

Proof of Lemma F1 . The proof mostly follows from the proof for 7.17 in [CLLZ21], with differ-
ences in the programs we apply puncturing on.

Note that the program CPSign (fig. 9) and program VK(fig. 10) are highly similar in their struc-
tures and share all the hardcoded values. Therefore, for the simplicity of notations, we combine
these two programs into one in the following proof: in the eval mode, it functions as CPSign; in the

49

check mode, it functions as VK. It is easy to see that the overall functionalities will be exactly the
same as the original construction.

Hybrid 0. This is the original game where the input is sampled either uniformly at random or
sampled as a hidden triggers input.

1. It samples random subspaces A; of dimension \/2 and vectors s;, s, fori = 1,2,--- ,4y. It
then prepares programs R) = iO(A; + s;) and R} = i0(4; + s!) (padded to the length upper
bound ¢, — (o). It prepares the quantum state [1)) = @), [A; s, /)

2. It then samples keys K, Ky, K3 for Fy, Fy, F3.

3. It samples u = ugp||u; ||uz uniformly at random. Let y = F (K7, u).

4. Tt generates u’ < GenTrigger(uo, y, K2, K3,{As, 5i, 5} }icje])-

5. Generate the program P as in Figure 17. The adversary is given (|¢),iO(P)) and then u or
v’ depending on a random coin b.

Hardcoded: Keys K1, K, K3, R), R} for all i € [¢y].
On input z = zg||z1||z2, vectors vy, - - - , vy, and a string mode:

e [f mode = eval :

1. If F3(K3,21) ® 22 = 2p]|Q and z¢ = z{, and z1 = Fy(K2, z(||Q’):
Treat Q' as a circuit and outputs Q' (eval, vy, -+, vg,).

2. Otherwise, check if the following holds: for all i € [¢], R**(v;) = 1.
If they all hold, output Fi (K7, z). Otherwise, output L.

e If mode = check : Parse vectors vy, - - - , vy, as sig||0%A=™).

1. If F3(K3,21) & 22 = 2(]|Q and z¢ = z(, and 21 = Fy(K2, z(||Q’):
Treat Q' as a (classical) circuit and output ’'(mode = check, sig||0%A=™).
2. Otherwise: Check if OWF(sig) = OWF(F} (K1, x)). If so, output 1. Otherwise,
output 0.

Figure 17: Program CPSign and VK combined

50

Hybrid 1 In this hybrid, the key K in the program P is punctured at u, . The indistinguisha-
bility of Hybrid 0 and Hybrid 1 comes from the security of indistinguishability obfuscation.

1. It samples random subspaces A; of dimension \/2 and vectors s;, s, fori = 1,2,--- ,£y. It
then prepares programs R) = iO(A; + s;) and R} = iO(A} + s!) (padded to length 5 — (o).
It prepares the quantum state |¢) = &), [4; 5, «)-

2. It then samples keys K, Ky, K3 for F, F, Fg.l

. It samples u = wup||u1||ug uniformly at random. Let y = Fy (K1, u).

4. Tt samples u' < GenTrigger(uo, y, K2, K3, {Ai, 54, 5; }icje])- Let @ be the obfuscation program
during the execution of GenTrigger.

5. Generate the program as in Figure 18. The adversary is given (|¢) ,iO(P)) and then u or v’
depending on a random coin.

W

Hardcoded: Constants u, u’; Keys K \ {u,u'}, Ko, K3, RY, R} for all i € [¢g].
On input z = zg||z1||z2 and vectors vy, - - - , vy, and a string mode:

e [f mode = eval :

1. If z = wor v/, output Q(eval, vy, - - -, vg,).
2. If F5(K3,21) @ 2 = 2(||Q" and zp = x(, and 1 = F5(Ka, x5||Q'):
Treat @’ as a circuit and outputs Q' (eval, vy, - -+, vg,).

3. Otherwise, it checks if the following holds: for all i € [¢y], R**(v;) = 1.
If they all hold, output F; (K1, z). Otherwise, outputs L.

e If mode = check : Parse vectors vy, - - - , vy, as sig||00A~.

1. If = u or /, it outputs Q’(check, sig||0f0 ™).
2. If F5(K3,21) @ 2 = 2(||Q" and zp = x(y and 1 = Fa(Ka2, x5||Q'):
Treat ()’ as a (classical) circuit and output @’(check, sig||0%*=™).
3. Otherwise: Check if OWF(sig) = OWF(F; (K1, x)). If so, output 1. Otherwise,
output 0.

Figure 18: Program V K and CPSign combined for Hybrid 1
Note that starting from this hybrid, whenever we mention K, inside a program P, we mean

to use the punctured key K \ {u,v'}. Similar notations of punctured keys Kj, K3 inside other
programs will appear in the upcoming hybrids.

51

Hybrid 2. In this hybrid, the value of F (K7, u) is replaced with a uniformly random output. The
indistinguishability of Hybrid 1 and Hybrid 2 comes from the pseudorandomness at punctured
points of a puncturable PRF.

1.

W

It samples random subspaces A; of dimension A\/2 and vectors s;, s, for i = 1,2,--- 4. It
then prepares programs R) = iO(A; + s;) and R} = iO(A} + s!) (padded to length ¢5 — ().
It prepares the quantum state |¢) = &), [4; s, s)-

It then samples keys K1, Ko, K3 for Fy, Fb, Fg.l

It samples u = ug||u1||uz uniformly at random. Let y < [M].

It samples v’ < GenTrigger(uo,y, K2, K3, {4, si, 5} }ic[e,))- Let Q be the obfuscation program
during the execution of GenTrigger.

Generate the program P as in Figure 18. The adversary is given (|¢) ,iO(P)) and then u or
v’ depending on a random coin.

52

Hybrid 3. In this hybrid, the check on the second line will be skipped if z; is equal to u; or u}.
By Lemma 2 of [SW21], adding this check does not affect its functionality, except with negligible
probability.

The lemma says, to skip the check on the second line, z; will be equal to one of {u1, u} }. To see
why it does not change the functionality of the program, by Lemma C.4 and for all but negligible
fraction of all keys Ky, if x; = u), there is only one way to make the check satisfied and the input
is ug, uh. This input v’ = wug||u} ||} is already handled in the first line. Therefore, the functionality
does not change.

After this change, F5(K3,) will never be executed on those inputs. We can then puncture the
key K3 on them. The indistinguishability comes from the security of iO.

1. It samples random subspaces A; of dimension \/2 and vectors s;, s, fori = 1,2,--- ,{y. It
then prepares programs RY = iO(4; + s;) and R} = iO(A;i" + s!) (padded to length £5 — £p).
It prepares the quantum state |¢) = &), [4; 5, s)-

2. It then samples keys K, Ky, K3 for F, F, F3.Z

. It samples u = ug||u1||ug uniformly at random. Let y < [M].

4. It samples u' < GenTrigger(uo, y, K2, K3, { A, 5i, 8} }icje,])- Let Q be the obfuscation program
during the execution of GenTrigger.

5. Generate the program as in Figure 19. The adversary is given (|¢) ,iO(P)) and then u or v/
depending on a random coin.

@

Hardcoded: Constants u,u’; Keys K \ {u,u'}, Ko, K3\ {u1,u,}, R, R} for all i € [¢].

()

On input © = zg||z1||z2 and vectors vy, - - - , vy, and a string mode:

e [f mode = eval :

1. If z = wor v/, output Q(eval, vy, - -+, vg,).
2. If ;1 = u; or u}, skip this check. If F3(K3,z1) ® 22 = z;||Q’ and zg = z{ and
z1 = Fy(Ka, 2p||Q"):
Treat @’ as a circuit and outputs Q' (eval, vy, - -+, vg,).
3. Otherwise, it checks if the following holds: for all i € [¢y], R*(v;) = 1.
If they all hold, output F; (K, z). Otherwise, outputs L.

e If mode = check : Parse vectors vy, - - - , vy, as sig||0%0A~™.

1. If = u or o/, it outputs Q’(check, sig||0f0*=™).
2. If ;3 = uy or), skip this check. If F5(K3,z1) ® 22 = z;||Q" and zg = z{, and
z1 = Fy(K3, %] |Q"):
Treat Q' as a (classical) circuit and output @’ (check, sig||0%*=™).
3. Otherwise: Check if OWF(sig) = OWF(F; (K1, x)). If so, output 1. Otherwise,
output 0.

Figure 19: Program CPSign and VK combined in Hybrid 3

53

Hybrid 4. In this hybrid, before checking z1 = F»(K>, z;||Q’), it checks if z(||Q" # uo||Q. Because
if 2(||Q" = uo||Q and the last check z1 = F5(K>, z(||Q’) is also satisfied, we know that

11 = Fo (Ko, 2(||Q) = Fo(Ka,u0||Q) = v} (by the definition of GenTrigger).

Therefore the step 2 will be skipped (by the first check). Thus, we can puncture K at up||Q The
indistinguishability also comes from the security of iO.

1. It samples random subspaces A; of dimension \/2 and vectors s;, s, fori = 1,2,--- ,£y. It
then prepares programs RY = iO(4; + s;) and R} = iO(A;i" + s!) (padded to length £5 — £p).
It prepares the quantum state |¢) = &), [4; 5, s)-

2. It then samples keys K, K», K3 for F, Fh, F3.Z

. It samples u = ug||u1||ug uniformly at random. Let y < [M].

4. It samples u' < GenTrigger(uo, y, K2, K3, { A, 51, 8] }icje,])- Let Q be the obfuscation program
during the execution of GenTrigger.

5. Generate the program P as in Figure 20. The adversary is given (|¢),iO(P)) and then u or
u’ depending on a random coin.

W

Hardcoded: Constants u, u’; Keys K \ {u,u'}, Ko \ {ug||Q}, K3\ {u1,u}}, RY, R} for all
U E [50]
On input = = zg||z1||z2 and vectors vy, - - - , vy, and a string mode:

e If mode = eval :

1. If z = wor v/, it outputs Q(v1, - -+ ,vg,)-
2. If 1 = uy or u}, skip this check. If F3(K3,z1) ® o = 2(||Q’ and zo = x{, and
Q' 4 ul|Q, and 1 = Fo(Ko, ||Q'):
Treat @’ as a circuit and outputs Q' (eval, vy, -+, vg,).
3. Otherwise, it checks if the following holds: for all i € [¢y], R**#(v;) = 1.
If they all hold, outputs F; (K7, z). Otherwise, outputs L.

e If mode = check : Parse vectors vy, - - - , vy, as sig||0% A=,

1. If x = w or o/, it outputs Q’(check, sig||0f0*—™).
2. If x; = wy or u}, skip this check. If F3(K3,z1) ® 2 = z(||Q’ and o = x{, and
7hl|Q # uol|Q, and w1 — Fo(Ka, 2pl|Q'):
Treat Q' as a (classical) circuit and output @’(check, sig||0%*=™).
3. Otherwise: Check if OWF(sig) = OWF(F; (K1, x)). If so, output 1. Otherwise,
output 0.

Figure 20: Program CPSign and VK combined in Hybrid 4

54

Hybrid 5. In this hybrid, since the key K has been punctured at ug||@, we can replace the eval-
uation of Fy(K3>,-) at the input with a uniformly random value. The indistinguishability comes
from the pseudorandomness at punctured points of PRF F5.

We expand the GenTrigger procedure.

1.

W

It samples random subspaces A; of dimension A\/2 and vectors s;, s, for i = 1,2,--- 4. It
then prepares programs R) = iO(A; + s;) and R} = iO(A} + s!) (padded to length ¢5 — (o).
It prepares the quantum state |¢) = &), [4; 5, s)-

It then samples keys K1, Ko, K3 for Fy, Fy, Fg.l

It samples u = ug||u1||uz uniformly at random. Let y < [M].

It samples v’ < GenTrigger(uo, y, K2, K3, {Ai, 5, 5; }ic[s,]) as follows:

(a) Let @ be the obfuscation of the program (padded to length /> — /) that takes inputs
v1, -+, vy, and outputs y if and only if for every input v;, if ug; = 0, then v; is in A; + s;
and otherwise it is in A} + s/.

(b) u) « [2°] (since Fa(K2,uo||Q) has been replaced with a uniformly random value).

(c) uby + F3(Ks,u)) @ (uo]|@Q).

(d) It outputs u' = wol|u}||ub.

Generate the program as in Figure 20. The adversary is given (|¢) ,iO(P)) and then u or u’
depending on a random coin.

55

Hybrid 6. In this hybrid, since the key K3 has been punctured at), we can replace the evalu-
ation of F5(Ks3,-) at v} with a uniformly random value. The indistinguishability comes from the
pseudorandomness at punctured points of PRF F3.

1. It samples random subspaces A; of dimension A/2 and vectors s;, s, for i = 1,2,--- 4. It
then prepares programs RY = iO(4; + s;) and R} = iO(A;i" + s!) (padded to length ¢5 — /o).
It prepares the quantum state |¢) = &), [4; 5, s)-
2. It then samples keys K, K», K3 for F, F, F3.1
It samples u = ug||u1||up uniformly at random. Let y < [M].
4. It samples v’ as follows:
() uj + [2%];
(b) u, + [2%2].
(c) Tt outputs u’ = wug||u] ||uh.

@

5. Generate the program as in Figure 19. The adversary is given (|¢) ,iO(P)) and then u or v/
depending on a random coin.

In this hybrids, u, v’ are sampled independently, uniformly at random and they are symmetric
in the program. The distributions for b = 0 and b = 1 are identical and even unbounded adversary
can not distinguish these two cases. Therefore we finish the proof for Lemma F.1.

Remark F.2. The program P depends on Q. Although Q. is indexed by w, it only depends on wug. Thus,
the distributions for b = 0 and b = 1 are identical

O]

Proof for Lemma C.7. As we have briefly mentioned, one can not get Lemma C.7 by simply
applying Lemma F.1 twice, as one can not sample a random hidden trigger input by only given the
public information in the security game (GenTrigger requires knowing K, K3), which is essentially
required. But the translation is straightforward.

The only difference between Lemma C.7 and Lemma F.1 is the number of inputs sampled:
either a single input u (or «’) or a pair of independent inputs u, w (or «’, w’).

All hybrids for Lemma C.7 are the same for the corresponding hybrids for Lemma F.1, except
two inputs are sampled. Thus every time K, K3 or K3 are punctured according to u or «’ in the
proof of Lemma E.1, K3, K or K3 are punctured twice according to both u, v’ and w, v’ in the proof
of Lemma C.7.

k-Hidden Trigger Lemma and k-Bounded Collusion Resistant Copy-Protection for Signatures
The following lemma says that any efficient algorithm cannot distinguish if it gets k£ inputs sam-
pled uniformly at random, or k£ hidden trigger inputs (sampled according to Definition C.6), but
with a modified program Q) as in Figure 21.

This lemma would finish the proof for k-bounded collusion resistant copy-protection for sig-
natures in Appendix E.

Lemma E3. Assuming post-quantum iO and one-way functions, any efficient QPT algorithm A cannot
win the following game with non-negligible advantage:

56

e A challenger runs (sk = (K1, Ko, K3),vk = iO(CRVK)) < CRSigCP.Setup(1*); then it prepares a
quantum program psc = ({{|4;,s;,5) }jelto] Fiepn)» IO(CRSign)).

e Foric [k]:
the challenger samples a random input u; < [N]. Let y; = F1 (K7, u;). Parse u; = u; o|ui1||wi .
Let u} <— GenTrigger(u; 0, yi, K2, K3, {{Aj, s, S;}je[go] }z’e[k]’ i).
Note that the GenTrigger algorithm is the same as the algorithm in Definition C.6) except taking in
the index i and using the modified program Q) in fig. 21.

* The challenger flips a coin b, and sends (psk, {w:}icr)) 0F (psk, {1} }iclr)) to A, depending on the
outcome. A wins if it guesses b.

Hardcoded: y; {{Aj, S5, Sg}je[éo]}
On input mode, v, i:

iclk)’ Yo

1. if mode = eval:

* Choose the i-th set of {4}, s;, s’} je(eo)-
e Parse v as vy, - ,vg,. Output y if and only if for every input v;, if ug; = 0,
then v; isin A; + s; and otherwise it is in AjL + s%.

2. else if mode = check:
Parse v as sig||0‘*~™ where the first m bits form a string sig. Check if sig = y.
If so, output 1. Otherwise, output 0.

Figure 21: Program () in k-Hidden Trigger

Proof for Lemma E3. Similar to the two hidden trigger case of lemma C.7, we can translate the
proof for lemma F.1 to the k-wise case naturally. We will refer to each hybrid in the proof for
lemma F.1 and point out the differences we make.

We first combine the programs CRSign and CRVK the same way as we did in fig. 17. In hybrid
1, we puncture K7 on all uy,uf,-- - ,uy, u) and add the check in line 1 for all {u;, u;};c[), similar
to fig. 18. In hybrid 2, we switch all y,, from PRF evaluations F (K7, u;) to uniform random
values. In hybrid 3, we puncture K3 on all {u; 1, }icx) and add the skip of check for all u; 1
or u; ;. In hybrid 4, we puncture K3 on all {u;||Qu, }icr), Where Qy, is an iO of the program Q
generated in GenTrigger (ui o, yi, K2, K3, { {4}, 5}, 8} je(t] }Z.em,i). In hybrid 5, when running the
GenTrigger algorithm for u}, we replace the evaluations at punctured points u; | = F»(K2, u;0||Qu;)
with uniformly random value v; ,, for all i € [k]; then in hybrid 6, when running the GenTrigger
algorithm for v, we replace u; 2 = F3(K3,ui0) ® (u0||Qu;) uniformly random value u;72, for all
i€ [k].

57

G Collusion Resistant Copy-Protection for PRFs

G.1 Definitions

Bounded Collusion Resistant Copy-Protection Scheme of PRF A bounded collusion resistant
copy-protection Scheme for a PRF family with evaluation algorithm F', consists of the following
algorithms:

Setup(1*, k): takes in security parameter 1* and upper bound k; outputs classical secret key sk;

QKeyGen(sk): takes in a classical secret key sk; outputs k& quantum keys psx = psk,1 ® psk2 ® -+ ®
Psk,k

Eval(psk, x): takes a quantum signing key pg and an input « € [N]; outputs a classical result
y € [M].

A copy-protection for a PRF family with evaluation algorithm F'(-) should satisfy the following
properties:

Correctness For every polynomial k(-), there exists a negligible function negl(-), such that for all
A, all messages m, all i € [k]:

sk < Setup(1*, k),

Pr | F(sk = Eval ;
T (S ,l’) va (psk,za I’) Psk.1 R ® Psk.k i QKeyGen(sk),

> 1 — negl(\)
Note that the quantum key can be used for polynomially many times, by the gentle measure-
ment lemma [Aar05].

Anti-Piracy Security for k-bounded collusion resistance Let A € Nt and F be the evaluation
algorithm for a PRF family. Consider the following game between a challenger and an adversary
A:

1. The challenger samples sk < Setup(1*, k) and pg = Psk,1 @ Psk2 @ -+ psk s < QKeyGen(sk).
It gives pek to A;

2. A returns to the challenger a (possibly mixed and entangled) state o on registers R, Ra,
-+, Rj,. We interpret o as k + 1 (possibly entangled) quantum programs o[R1],- - - , o[Rp41].

3. The challenger samples uniformly random 1, - - - , 41 < [N]. Then runs a universal circuit
U on2 input (o[R;], ;) to obtain y, for each i € [k + 1]. The outcome of the game is 1 if and
only if F'(sk,z;) =y} forall i € [k + 1].

Denote by CPPRF(1*, A) a random variable for the output of the game.
We say the scheme has anti-piracy security if for every polynomial-time quantum algorithm
A, there exists a negligible function negl(-), for all A € N,

Pr[b=1,b CPPRF(1%,.4)] = negl()) .

58

Intisdinguishability Anti-Piracy Security for PRF The above security defintion is natural but
in fact not a meaningful security definition for copy-protecting PRFs considering its cryptographic
functionality. Similar definitional issues are discussed in [GKWW21]. We thus provide this stronger
definition:

In step 3 of the security game above, the challenger instead does the following;:

¢ It samples uniformly random z1, - - - , 2341 < [IN] as well as random coins by, - - - b, € [k]. If
b; = 0, then it sets y; = F'(sk, z;), else it sets y; < [M] to be uniformly random. It then runs a
universal circuit U on input (o[R;], y;) to obtain a guess b, for each i € [k + 1]. The outcome
of the game is 1 if and only if b, = b; for all 7 € [k + 1].

Other steps remain the same.

G.2 Construction

The construction for copy-protecting PRFs is the same as the one for signatures(after removing
the verification keys and verification programs), since our signing algorithm is essentially a PRF
evaluation algorithm.

We formally give the construction as follows. Note that this construction is the same as the one
in [CLLZ21], we present the scheme in order to show its extension to collusion resistance.

Setup(1*) — sk:

¢ Sample PRF keys K1, Ko, K3 for Fi, F», F3.
C Output sk = (Kl,KQ,K3)

QKeyGen(sk) — psk:

e Sample {A4;, si, 5} }ic[g: uniformly random subspaces A; of dimension \/2
and vectors s;, s, fori = 1,2, , {o.

* Let EVAL be the program described in Figure 23. Prepare iO(EVAL).

* Output the quantum key psx = ({|A; 5, 51) Fieje], IO(EVAL)),

Eval(psk,) — y:

* Let psk = ({[Ais, 1) Ficeo), IO(EVAL)). Parse z as © = xo||z1||z2 where 2o is of
length /.

* Foralli € [(], if 2o, is 1, apply H®" to |4, ,,). Otherwise, leave the state
unchanged. Z

* We obtain state o from the above procedure (which can be seen as a super-
position over tuples of [y vectors). Run iO(EVAL) coherently on input « and
o, and measure the final output register to obtain y.

Figure 22: Quantum copy-protection scheme for PRF key K, i.e. functionality F; (K7, -).

Correctness and Anti-Piracy Security The correctness and security proofs follow from the proofs
for signatures in Appendix C. More specifically, the security proof is simpler because we do not

59

Hardcoded: Keys K1, Ko, K3, R?, R} for all i € [{y).
On input © = z¢||z1||z2 and vectors vy, - - - , vy,

1. If F3(K3,.1‘1) D xo = ac{)HQ' and xg = 1'6 and z1 = FQ(KQ,:L'f)HQ/):
Hidden Trigger Mode: Treat)’ as a (classical) circuit and output
Q' (mode = eval, vy, -+, vg,).
2. Otherwise, check if the following holds: for all i € [¢o], Rfo’i (v;) = 1 (where zg; is
the i-th bit of xg).
Normal Mode: If so, output Fi (K7, z). Otherwise, output L.

Figure 23: Program EVAL

have a verification program anymore and can thus do reduction to a standard unclonable decryp-
tion scheme.

Moreover, the construction satisfies both anti-piracy security notions presented above(the nat-
ural definition and the indistinguishability definition), as proved in [CLLZ21] section E.

Remark G.1. One can observe from the functionality of EVAL that PRF key K is the function we copy-
protect. We merely use PRF keys Ko, K3 to assist with the security. However, we sample Ks, K3 together
with Ky in Setup, for the sake of simplicity. If they are sampled independently in each copy of the program,
we will result in more redundant notations in the proofs for signatures and hidden triggers, in the k collusion
resistant version.

Therefore, the above construction is the same as the single-copy PRF copy-protection scheme in [CLLZ21]
except sampling the auxiliary keys Ko, K3 in Setup, not in QKeyGen.

k-Bounded Collusion Resistant Copy-Protection for PRFs The construction is the same as col-
lusion resistant copy-protection for signature scheme in Figure 14. We simply remove the genera-
tion of verification key vk and refer the collusion resistant signing program CRSign as EVAL. The
correctness and security proofs are straightforward given the proof for the signature case, with
modifications to deal with the indistinguishability-based definition as shown in [CLLZ21] section
E.

60

	Introduction
	Our Results
	Related Works
	Technical Overview
	Discussions and Open Problems
	Organization

	Preliminaries
	Indistinguishability Obfuscation
	Coset States
	Definitions
	Strong Monogamy-of-Entanglement Property

	Measure Success Probabilities of Quantum Adversaries: Projective/Threshold Implementation

	Collusion Resistant Unclonable Decryption
	Definitions
	Construction
	Proof of Anti-Piracy

	Collusion Resistant Copy-Protection for Signature Schemes
	Copy-Protection for Signatures: Definitions
	Construction
	Collusion Resistant Copy-Protection for Signatures and PRFs

	Additonal Prelimanaries
	Compute-and-Compare Obfuscation with Quantum Auxiliary Input
	Measure Success Probabilities of Quantum Adversaries, Efficiently
	Preliminaries: Puncturable PRFs and related notions

	Missing Details for the Proof of Anti-Piracy
	Security Proof for Signature Copy-Protection
	Proof of Correctness
	Existential Unforgeability

	Proof of Anti-Piracy Security

	Proof for prop:modifiedud
	Bounded Collusion Resistant Copy-Protection for Signatures
	Proof for lem:hiddentrigger and k-Hidden Trigger Lemma
	Collusion Resistant Copy-Protection for PRFs
	Definitions
	Construction

