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A Completely Blind Video Quality Evaluator
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Abstract—Automatic video quality assessment of user-generated
content (UGC) has gained increased interest recently, due to the
ubiquity of shared video clips uploaded and circulated on social
media platforms across the globe. Most existing video quality mod-
els developed for this vast content are trained on large numbers
of samples labeled during large-scale subjective studies, which
are often fail to exhibit adequate generalization abilities on un-
seen data, Thus, it is also desirable to develop opinion-unaware,
‘“completely blind” video quality models, that are free of training,
yet can compete with existing learning-based models. Here we
propose such a model called VIQE (VIdeo Quality Evaluator),
which we designed based on a comprehensive analysis of patch-
and frame-wise video statistics, as well as of space-time statistical
regularities of videos. The statistical features desired from the
analysis capture complementary predictive aspects of perceptual
quality, which are aggregated to obtain final video quality scores.
Extensive experiments on recent large-scale video quality databases
demonstrate that VIQE is even competitive with state-of-the-art
opinion-aware models. The source code is being made available at
https://github.com/uniqzheng/ VIQE,

Index Terms—Completely blind, video quality assessment, user-
generated content, natural scene statistics, linear model.

I. INTRODUCTION

IVEN the pervasiveness of social media platforms like
G YouTube, Facebook, Instagram, and TikTok, it has be-
come quite important that these providers be able to monitor, an-
alyze, and control the perceptual quality of the massive amount
of user-generated content (UGC) videos that are now shared
and streamed across the globe. Moreover, UGC videos often
suffer from wide ranges of types and severities of mixtures of
in-capture and/or post-capture distortions, which if unaddressed,
can greatly detract from viewers’ quality of experience (QoE).
Objective video quality assessment tools are already widely used
to automatically monitor and evaluate video codecs, communi-
cation systems, and quality enhancement algorithms. Reference
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video quality assessment (R-VQA) models measure the percep-
tual difference between high-quality original reference videos
and their distorted counterparts. In many practical scenarios,
however, ‘pristine’ reference signals are unavailable. In fact,
this is generally the case when designing VQA models for UGC
videos [1]. In such circumstances, only blind (no-reference or
NR) VQA models can be used to predict the perceptual quality
of videos, since there is no possible access to the presumed
‘pristine’ videos.

Recently, data-driving methods such as deep neural networks
have been shown to deliver superior performance on numerous
computer vision tasks [2], [31, [4], [5], [6], [7], [8], [9], [10],
[11]. Likewise, the majority of existing blind video quality
assessment (BVQA) methods belong to the “opinion aware”
(learning-based) category, wherein a learned regression model,
either deep or shallow, is trained on databases of distorted videos
that have been human-labeled in the form of mean opinion
scores (MOS) [1], [12], [13], [14], [15], [16], {17], [18], [19],
[20]. However, real-world user-generated videos often suffer
from multiple commingled, unpredictable distortions that can
interact to create new distortions, and that are impossible to
model and difficult to populate in video quality databases. This
makes these kinds of opinion-aware (OA) BIQA/BVQA models
often suffer from unsatisfactory generalization capability in
practical commercial scenarios. Therefore, itis important to also
study “opinion-unaware” (OU) or “completely blind” models
that do not rely on training on human-labeled videos. High-
performing OU models instead predict perceptual video quality
by measuring statistical shifts between naturalistic and distorted
versions of them. In this regard, OU BVQA models are distortion
agnostic, and hence are potentially more generalizable to new,
unseen distortions, and mixtures of systems often encountered
in UGC video streaming and sharing.

There has been previous work done on opinion-unaware (OU)
BIQA/BVQA models [21], [22], [23], [24], [25], [26], [27].
Among them, NIQE [21] and IL-NIQE [22] were designed
using perception-inspired statistical features that have been
empirically observed to reliably follow natural scene statistics
(NSS) models. Quality predictions are computed by measuring
statistical distances between the distributions of distorted images
and those of high-quality, natural images. Following the design
framework of NIQE [21], NPQI [26] explores NSS features from
a local binary map and the locally normalized coefficients of
images, while SNP-NIQE [27] measures structural variations as
well as naturalness deviations. VIIDEO [23] models the tem-
poral regularities of natural videos, using them to assess video
quality. SLEEQ [24] is another OU video quality predictor based
on ‘self-referenced’ features, and was specifically designed for
compression and scaling artifacts. A more recent completely
blind BVQA models targeting UGC videos, called STEM [25],
quantifies losses of “perceptual straightness” [28] to measure
temporal quality.
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These previous completely blind OU algorithms are designed
either targeting quality perception of limited distortion types, or
by modeling only a few specific statistical regularities. There-
fore, none of them have been able to deliver accurate predictions
of human judgments (MOS) of video quality on the most recent
large-scale UGC video datasets [29], [30], [31]. Towards ad-
vancing progress on this problem, we have developed an effec-
tive and efficient, opinion-unaware, ‘completely blind’ BVQA
model that we call VIQE, that integrates complementary video
quality factors expressive of multiple of perception, including
multi-scale perceptual straightening of statistical regularities,
enhanced self-referencing features, and NSS features. Our ex-
periments show that VIQE significantly outperforms previous
state-of-the-art (SOTA) OU BVQA models on recent UGC
datasets.

The rest of the paper is organized as follows. Section II details
the proposed VIQE model. Experimental results are presented
in Section III, and Section IV concludes the paper.

II. PROPOSED METHOD

Fig. 1 illustrates the overall modular processing flow of
VIQE. It comprises four sub-modules. One model measures
the temporal quality of the video using two features derived
from a multi-scale temporal straightening model (TSM). An-
other measures spatial quality using NIQE [21] in a computa-
tionally efficient way. Inspired by the self-referencing strategy
in [24], we compute two sets of robust statistical features, which
we refer to as SRF-I and SRF-II, which we use to compute
self-referencing scores (SLEEQ [24] and Enhanced SLEEQ, or
E-SLEEQ). Finally, we aggregate these perceptually-inspired
quality indicators by fusing them into a single predictor of the
overall quality of the video.

A. Natural Scene Statistics Feature Extractor

The study of natural scene statistics (NSS) [32], and how
they are altered by distortion, has inspired a number of pop-
ular BIQA/BVQA models [13], [14], [15], [20], [23], [33].
NSS-derived statistical features have been defined that deliver
strong quality prediction performance on diverse image spaces,
such as bandpass luminance [23], bandpass chroma [15], spatial
gradients [13] and laplacians [13], [15], and temporal bandpass
responses [34]. Similar to [20], we devise a module that com-
putes strong, well-grounded NSS features on multiple visual
domains. A summary of the 34 features that are extracted by

Illustration of the overall processing flow of the VIQE model.

TABLEI
SUMMARY OF THE 34-DIM NSS FEATURE EXTRACTOR

Index Description Computation Procedure
fi—rf2 (o, 0 Fit GGD to MSCN coefficients
fa—fa (¢o) po Compute statistics on ’sigma’ map

s — f8 V,1),01,0r Fit AGGD to H pairwise products
Jo — f12 v,1,01,0r Fit AGGD to V pairwise products
f13 — fie V,n,01,0r Fit AGGD to D1 pairwise products

17 — f20 v,1,0},0r Fit AGGD to D2 pairwise products

21 — fo2 a, 0 Fit GGD to D1 pairwise log-derivative
f23 — fada a,0) Fit GGD to D2 pairwise log-derivative
fas — fa6 a,0) Fit GGD to D3 pairwise log-derivative
far — fa8 a,0)  Fit GGD to D4 pairwise log-derivative
fa9 — fao a,0) Fit GGD to D5 pairwise log-derivative
fa1 — fa2 a,0) Fit GGD to D6 pairwise log-derivative

33 — f34 a,o Fit GGD to D7 pairwise log-derivative

the module, which we will refer to as NSS-34, is presented in
Table I. We also identify three submodules: NSS-2 (f1 — f2),
NSS-18 (f1 — fg, f5 - fzo) and NSS-34 (f1 — f34), which are
used to capture different and complementary aspects of video
quality, as explained in the following.

B. Multi-Scale Perceptual Straightening

Henaff et al. [28] hypothesized that the visual system trans-
forms incoming streams of visual input, ‘making them more
predictable by a process of “perceptual straightening”. In this
model, a cascade of retinal [35] and cortical representations
are computed and used to straighten the temporal trajectories of
the video, enabling prediction via linear extrapolation. In other
words, for a high-quality video, the perceptual representation
of a present frame can be linearly extrapolated from those of
previous frames.

We map each input video onto two types of perceptual repre-
sentations to achieve better predictability: 1) a bandpass “LGN”
model (model of lateral geniculate nucleus) [25], [28], and 2)
NSS-inspired statistical models [20]. Fig. 2 depicts the process-
ing of the LGN model, which performs spatial bandpass filtering
(gray boxes) followed by nonlinear luminance and contrast gain
control [28]. The input image is decomposed into six scales of
bandpass difference of Gaussian (DoG) filters. The features from
the sixth scale are used, as in [25], [35].

To understand the straightening process, consider a video
having N frames denoted by X = [X;, Xs, X3, ...Xn]. Both
the LGN model and NSS-34 are computed on all the video
frames, yielding sets of frame-wise features that we denote as
fron and Fyss.as, respectively. Then project fign into Fign,
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Fig. 2.

Processing flow of the LGN model [28].

a lower dimensional space, using principal component analy-
sis (PCA). Then train a linear extrapolation model to predict
the straightened trajectories at every fifth frame, to conserve
computation. A third-order extrapolator [28] is fitted to Fign
and Fyss.3¢ over two temporal scales (one original, the other
downsampled by two) to model multi-scale straightening:

Ai+3 ¢ t+1 42
rona = Bo + BiFigy + Bakign + Bstign
St4+6 t t-+2 t--4
Fiénn = Bo + BiFigy + B2FL68 + BsFigns
P43 ¢ t+1 t+2
Nss1 = Bo + PrFNssas + B2bNss s + OaFNssas

B8y = Bo+ BiFiss.as + BoFiidas + BsFidsay, ()

where the perceptual features at previous timestamps
Ft i+l Ft+2 are fed into the model, which uses them to
predict the current feature FtH3 . The two scales, indexed I
and 11, are arrived at by first gaussian low-pass filtering, then
downsampling by factor two, exactly as in BRISQUE [12] but
in the 1D time direction. The weights 3;|:=3 are estimated using
multiple least-squares regression. The distances between the
ground truth and predicted features are expressed by the root
mean squared error (RMSE), averaged over the entire video:

R
Qron = log ;ZDI{GN-I .
=0
1<
GQrona = log EZD{GN—II ;
=0
1
Cnss-1 = log EZDtJ\JSSM-I :
—
1o
Qnss-n = log ;ZDJNSSBAHI ! @)
—

where D7 is the prediction error at timestamp j, representing
deviations from the temporal straightening hypothesis, which
are powerful temporal quality indicators.

C. Enhanced Self-Reference Quality

Self-referenced video quality models have been shown to
effectively capture inter-dependencies between the features of
original videos and their blurry variants [24], but without re-
liance on any reference signals. This idea is highly relevant to
the UGC-VQA problem, where the underlying content may be

IEEE SIGNAL PROCESSING LETTERS, VOL. 29, 2022

distorted by combinations of any number of unknown distor-
tions. Hence, another module computes feature-enriched self-
referenced quality scores, which we will refer to as enhanced
SLEEQ, or E-SLEEQ, since it builds on the model in [24].

Given an input frame f with its frame-difference d (relative
to the previous frame), apply a 2-D Gaussian smoothing filter
to obtain blur versions f” and d'. Following SLEEQ [24], then
divide the four frames (including before and after blur) into
patches, then apply NSS-2 and NSS-18 on these patches, respec-
tively. Thus, two sets of NSS features are then extracted from
each patch: (Snssa, Snss-18) and (Syss.2, Shss-1s) are spatial
features extracted from f and f’, while (Tnss-2, Tnss-1s) and
(Tiss.2> Tiiss.1g) are temporal features computed from d and
d'. Then, the absolute differences of the spatial and temporal
features are computed:

ASyss2 = |Snss2 — Syssal s

ASss-18 = |Snss-18 — Sss-isl »

ATxssa = [Tiss2 — Tigsal »

ATwss-18 = [Tiss18 — Tiss sl - (3)

To account for temporal masking effects arising from large
motions [36], the self-reference-based spatial and temporal
scores of each patch location P are further weighted:

(P)
SREI — (1 -

Q:(SIRDIZ‘-II = (1 - m(P)> - ASnss1g + mEF) - ATnsss, (@)

m(P)> - ASnss2 +mF) - Alyss,

where m(P) is the normalized average frame difference of patch
location P. Given that the version system is highly sensitive to
spatial change, only those patches where the standard deviation
AT, lies within the gt" percentile overall patches in the video are
chosen, where g = 90 — 5 [ 5] [ (H, W: width, height).
Then, the final quality scores (Jsgps and Qsgen are found
by average-pooling [37] the Q{zr; and Qg scores over all
patches of the video.

D. Spatial Naturalness Quality

Toenhance the spatial quality estimation, we employ the pow-
erful and popular completely blind IQA algorithm NIQE {21],
using its responses as spatial quality features. We have observed
that applying NIQE on only a single frame each second perfor-
mance delivers the same performance, but with greatly reduced
cost. A spatial quality feature Qnige is attained by averaging
NIQE across all the sampled frames.

E. Score Fusion

All the models described above are capable of capturing
certain aspect of perceptual quality, either mostly spatial or
temporal; but we have observed that none of these models is able
to generalize well on unseen databases, especially challenging
UGC video datasets [1]. UGC videos often contain complex
combinations of spatial-time distortions, which are beyond the
prediction capabilities of existing completely-blind quality mod-
els. Here, we deploy a simple model fusion approach [38] to
combine multiple aspects of video quality. Similar approaches
have been shown to deliver promising results on other video
quality tasks [39], [40], [41], [42]. Specifically, we employ a
simple weighted sum of all seven quality indices to define the
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TABLEII
PERFORMANCE COMPARISON OF EVALUATED MODELS ON THREE PUBLICLY AVAILABLE DATASETS

DATASET KoNViD-1k [20] LIVE-VQC [19] YouTube-UGC [21}
MobpEL \ MeTRIC SRCC  PLCC RMSE SRCC PLCC RMSE SRCC PLCC RMSE
VBLIINDS [6] 05720  0.5650  0.5260 0.6916 07150  11.8693 0.5327 0.5290  0.5451
TLVQM [9] 0.7687 07652 04125 0.7870  0.7913 10.3543 0.6738 0.6648  0.4799
PaQ-2-PiQ {26] 0.6130  0.6014 0.5148 0.6436 0.6683  12.6190 02658 02935 0.6153
NIQE [11] 0.5456  0.5625  0.5291 0.5912  0.6327 13.0796 02217 02745 0.6174
IL-NIQE [13] 0.5120 0.5303  0.5423 04842  0.5316 14.2884 02910 03234  0.6071
NPQI [16] 04519 04755 0.5628 0.5425 0.5787 13.7750 0.3567 0.3887 0.5916
SNP-NIQE [17] 0.5472 05648  0.5281 0.6254  0.6647 12.6230 0.2677 03210 0.6077
VIIDEO [13] 0.2988 03002 0.6101 0.0332 0.2146  16.6540 0.0580 0.1534  0.6339
STEM [15] 0.6193 0.6266  0.4985 0.5938  0.6292  13.1397 0.2840 0.3180 0.6359
VIQE 0.6284  0.6380  0.4924 0.6598  0.6943  12.1517 0.5130 04769 0.5616
The boldfaced entries indicate the top performer among the opinion-unaware (completely blind) models. The italicized entries indicate
supervised models.
final VIQE model: TABLE I
AVERAGE RUNTIME COMPARISON OF 1080p VIDEOS
N
Qvige = Z wi -+ Qi ) MODEL TIME IN SEC
i=1 TLVQOM [9] 256.5
. i . . VBLIINDS [6} 1968.8
where 7 indexes the quality models in PaQ-2-PiQ (6] 279.32
[LGN-I, LGN-II, NSS-I, NSS-II, SRF-1, SRF-II, NIQE], and NIQE [11] 2149
w represents the learned weight for each aspect of quality %g}%flgm 2970152-26
followed by SLEEQ [24]. SNP-NIQE [13] 56341
VIIDEO [13] 674.8
11l EXPERIMENTAL RESULTS STEM [15] 231.3
. . VIQE 200.6
We conducted extensive experiments to compare the perfor-
mances of VIQE against other opinion-unaware (OU) BVQA TABLE [V

models on the three existing UGC video datasets: LIVE-
VQC [29], KoNViD-1k [30] and YouTube-UGC [31]. We
evaluated six OU BIQA/BVQA algorithms: NIQE [21], IL-
NIQE [23], NPQI [21], SNP-NIQE [23], VIIDEO [23], and
STEM [25]. We also included three leading opinion-aware (OA)
blind IQA/VQA models, two handcrafted models TLVQM [19]
and VBLIINDS [16], and a deep learning model PaQ-2-PiQ [16].

The performance metrics we employed are the Spearman’s
rank-order correlation coefficient (SROCC), Pearson’s linear
correlation coefficient (PL.CC), and the root mean squared er-
ror (RMSE). Following convention, we randomly divided the
database into training and test sets comprising approximately
80% and 20% of the data 50 times, and report the median
evaluation results on the test partitions. Since the data distri-
butions of the three evaluated UGC datasets vary significantly,
we conducted a grid-search on the ensemble weights to select
the best performing model on each dataset.

The performances of all the compared models are shown in
Table II. As may be seen, VIQE significantly improves SROCC
upon the best performances of state-of-the-art OU BIQA/BVQA
(completely blind) models by 76.3%, 5.5%, and 1.5% on the
YouTube-UGC, LIVE-VQC, and KoNViD-1 k datasets, respec-
tively. It is also worth mentioning that VIQE delivered perfor-
mance comparable to that of OA BIQA/BVQA models (trained
on MOS labels) on the LIVE-VQC[29] and YouTube-UGC [31],
and even surpassed some leading learning-based models on
KoNViD-1k [30]. Since VIQE does not require training (hence
is not subject to dataset bias), VIQE may be able to better
generalize to future, unseen data.

We also studied the computational complexity of VIQE in
terms of CPU processing time on an AMD Ryzen 7 4800 U
equipped with a Radeon Graphics@1.80 GHz processor and
16 G RAM. As may be observed in Table III, VIQE is much

CONTRIBUTION ANALYSIS ON LIVE-VQC [29]

SCORE SROCC RUNTIME
SRF 0.3863 339
SRF+NIQE 0.5892 419
SRF+NIQE+LGN 0.6307 84.0
SRF+NIQE+LGN+NSS 0.6598 200.6

faster than the OU STEM model and the state-of-the-art OA
deep learning based PaQ-2-PiQ model, while delivering better
prediction accuracy. To further understand the contributions
of the individual components of VIQE, we also conducted an
ablation study of VIQE feature importance on LIVE-VQC [29].
Table IV tabulates the SROCC performance of each of the
VIQE feature subsets against processing time when sequentially
adding features starting from the empty set. It may be observed
that all of the features contribute to the overall performance of
VIQE, while the overall fused VIQE yields the best results at
only a moderate computational cost.

1V. CONCLUSION

We have described an opinion-unaware, “completely blind”
video quality model called VIQE that significantly outper-
forms all previous such models on the challenging UGC video
quality prediction task. VIQE employs several well-defined,
perceptually-inspired quality-aware features that analyze the
patich-wise, frame-wise, and space-time statistics of potentially
distorted videos. Extensive experiments have shown that VIQE
delivers superior performance on large-scale UGC datasets, and
is comparable to learning-based models but with better compute
efficiency.
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