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that sequentially optimizing a building’s massing and glazing place
ment, and then its floorplan for that set geometry, and finally the façade 
construction will lead to the best overall result, since geometry, pro
gram, and materials all affect one another. 

Overall, these divergences necessitate a platform to explore complex 
building geometries and emerging dynamic building envelope materials 
taking both optical and thermal properties into account. In response, this 
paper first quantifies simulated energy saving across different 
optimization-based building design procedures for dynamic glazing 
materials via two office building case studies in separate climates. A 
comparison between approaches can evaluate the current sequential 
design process as it applies to dynamic materials and reveal the 
importance of design decisions related to dynamic materials on energy 
savings. Only glazing was modeled as dynamic rather than other opaque 
façade elements, due to the proliferation of highly glazed contemporary 
office buildings and the current outlook of advanced glazing technolo
gies. Following these analyses, this paper proposes a new building 
design process to determine the optimal material-geometric 
configuration. 

In summary, this study presents three unique contributions:  

1) it establishes a new optimization-driven framework with parametric 
modeling and simulation methods at the early design stage for taking 
both geometry and dynamic material (thermal and optical) proper
ties into account.  

2) it increases understanding of the relationship between these two 
categories (geometry and material) of design variables towards 
building energy performance, especially in the context of intrinsic 
dynamic material limitations, while establishing the potential ben
efits of joint exploration; and 

3) it quantitively illustrates the architectural and performance impli
cations of using such an approach in early design. It does this for a 
suburban commercial case study in a heating-dominated climate and 
an urban commercial case study in a cooling-dominated climate, 
providing new information for two building types most likely to be 
designed using computational tools. 

2. Literature review 

2.1. Simulation in early design 

Computational tools are currently a vital part of building design, 
helping to visualize or automate many intricate tasks. They are utilized 
in all phases of design, from design ideation to construction documen
tation. In the AEC industry, one important computational area for early 
design is parametric design, which allows for the generation of 
numerous design iterations without significant manual effort [16–18]. 
Parametric design is often implemented through visual coding platforms 
such as Grasshopper [19] or Dynamo [20] in which users develop dy
namic design variables to explore combinations of these variables and 
ultimately investigate interrelated design goals. During early design, 
designers also make assumptions about building systems and occupant 
behavior to simulate and predict how a constructed building will 
perform. 

Creating combinations of the variables forms a “design space”, and 
mapping these designs to metrics that describe their performance, 
whether related to structure, energy, or daylighting, generates an 
“objective space” [21]. The goal is often to explore the design space with 
reference to the objective space in an effective and systematic manner. It 
has been shown that utilizing design space exploration methods allows 
designers to develop and select high performance design concepts for 
gradual refinement throughout later stages [18,22,23]. Since simulation 
engines across multiple domains are now accessible within a shared 
environment, research towards dynamic façade systems in buildings has 
taken advantage of these software environments used by designers 
today. However, there is limited existing literature that applies 

parametric design for both geometrically and materially flexible design 
decisions to understand the energy implications of designing with dy
namic building materials. 

2.2. Quantifying potential dynamic façade energy savings 

Many researchers claim dynamic façades are necessary to achieve 
nearly net zero buildings (nNEB) [24]. Dynamic façades alter their form 
or function repeatedly and reversibly over time in response to envi
ronmental conditions or human controls [25]. Dynamic façade tech
nologies refer to both micro-scale properties of façade materials, 
including thermochromic glazing [26], memory shape polymers [27], 
and phase-change materials [10,11,28,29], and physical-scale elements 
such as kinetic shading devices [30,31]. While a variety of technologies 
are possible, this paper focuses on the micro-scale, specifically adaptive 
glazing technologies. Existing studies have demonstrated whole build
ing energy savings of using dynamic façade technologies range from 8 to 
46% [32–34], even compared with static high-performance envelopes. 
While electrochromic glazing is perhaps the most mature and widely 
implemented example, material scientists are working in coordination 
with architectural engineers to improve the thermal and optical capa
bilities of dynamic glazing [32]. Existing electrochromic glazing oper
ates from state-to-state, where there is a strict tradeoff between visible 
transmittance (VT) and solar heat gain coefficient (SHGC). Adaptive 
U-value may be achieved through switchable insulation elements [35], 
thermochromic technologies that change emissivity [36], or other future 
technologies. However, several researchers have explored the optimi
zation of adaptive glazing properties to justify further development of 
the technology. 

Several previous studies have investigated dynamic glazing tech
nologies across multiple climates, on different resolutions (e.g., 
monthly, daily, hourly), and with various control strategies. Wang et al. 
[34] used EnergyPlus EMS to alternate both opaque assemblies and 
window construction and achieved an average of 46% energy savings 
across multiple climate zones. Favoino [26] investigated an inverse 
performance-oriented approach to optimize visible transmittance (VT), 
g-value, and U-value to minimize primary building energy. Using an 
office reference room with 40% window-to-wall ratio (WWR) and four 
cardinal orientations tested in multiple climates, the study showed high 
energy savings are achievable by adapting the transparent part of the 
building envelope alone, the largest factor being cooling energy de
mand. Since dynamic façade systems respond to outdoor climatic con
ditions, results varied per orientation and location, with the highest 
achievable savings 55% for an east-facing zone in Rome, Italy. Similarly, 
Tavares [37] recommended electrochromic glazing for 
cooling-dominated climates and found the largest savings on the east 
and west façades, rather than the south. As mentioned previously, these 
findings suggest dynamic façade materials are highly sensitive to their 
immediate environment, which is dictated by the geometry of the 
building. This notion introduces the possibility of early design inter
vention, which is explored throughout this study. 

While many researchers have focused on simulating existing or 
theoretical dynamic envelope materials, others have focused on the 
control algorithms themselves, which have a large influence over per
formance [38]. Hoon Lee [6] investigated various control parameters, 
including outdoor air temperature, room air temperature, solar radia
tion incident on windows, and global horizontal irradiance to develop 
an algorithm for optimal electrochromic performance. Using ASHRAE 
90.1 prototype for a medium office building as a reference, the size of 
the cooling equipment was reduced by up to 20%. It was acknowledged 
additional savings could be achieved by integrating controls with air 
handling units, lighting controls, and shading systems; most impor
tantly, the study concluded that future studies should utilize real 
building data. In additional efforts to develop a control strategy, Wang 
et al. [39] performed a multiple regression analysis of window factors 
based on a large database of existing windows and incorporated the 
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model into an EnergyPlus simulation-based optimization study. Though 
this model was developed to optimize on an annual basis (static), it 
could be used to investigate optimization on a daily or monthly reso
lution, and it is indeed incorporated into the methodology of this paper. 
As in previous studies, the ASHRAE prototype model was assumed and 
used as a reference in comparing energy savings. Although this model 
acts as the standard, it does not capture the potentially complex geom
etries of contemporary office building architecture. 

2.3. Building geometry optimization 

In early design stages, there are opportunities to conduct optimiza
tion on building form and fenestration configuration [40]. For most 
climates, the ratio between the external surface of a building and its 
volume most strongly correlates to energy demand, meaning that 
simplified models can be adequate [41]. However, some researchers 
have demonstrated exceptions. For example, Granaderio et al. [42] used 
a case study in Lisbon, Portugal to show that the surface area to volume 
building shape coefficient was not strongly correlated to energy de
mand. Similarly, while Depecker et al. [43] found a strong correlation 
between shape coefficient and energy consumption for a case study in 
Paris, France, there was no clear correlation for the case study in Car
pentras, France. Further, building geometry optimization results differ 
depending on the formulation of the design space. Fang [44] performed 
multi-objective optimization on nine geometric variables for a small 
single-story building, reducing Energy Use Index (EUI) by up to 20% 
while increasing Useful Daylight Index (UDI) by 39%. Jin and Jeong 
[45] used a genetic algorithm to optimize a free-form building shape, 
including geometric parameters such as top polygon type, top length, 
and tilt angle, and were able to reduce annual heat gain/loss by up 
60.4% in certain climates. While these case studies exist in specific cli
mates and design spaces, they demonstrate that geometric consider
ations can affect building energy consumption, often in complex ways. 

Other researchers have approached this problem by determining the 
most influential geometric characteristics for predicting energy. 
Samuelson et al. [46] conducted a sensitivity analysis on various early 
design building characteristics, including WWR, glass type (static), 
building rotation, shading, and shape, and determined that, across three 
major cities, WWR was the most sensitive variable, followed by glass 
type and rotation. There have been several additional studies exploring 
the relationship between building geometry and building energy con
sumption, but the few that have [41] included dynamic characteristics 
investigated prototypical building types, not potentially self-shading or 
otherwise complex geometry. Thus, it is difficult to estimate the effects 
of dynamic façades, both in terms of energy savings and effects on the 
building design process. 

Upon reviewing the sensitivity analysis literature above, there is a 
further opportunity to implement optimization techniques instead of 
exhaustive search methods, since optimization can more quickly find the 
best possible designs within a space and present those for consideration 
to the designer. However, to fully address the relationship between 
geometric changes under the direction of an architect and potential 
dynamic façade properties, realistic case studies must be developed, 
along with constraints that avoid architecturally infeasible solutions. If 
incorporating dynamic variables and using non-reference building ge
ometry, an optimization procedure can begin to quantify the potential 
savings limits of modifying different variable types. 

3. Methodology 

The methodology investigates optimization-driven, rapid parametric 
modeling approaches for early building design in practice. As such, it 
required the creation of parametric models with realistic design vari
ables, constraints, and model resolution that would be considered at this 
stage of design. Two case studies with different contexts and climates 
were modeled and analyzed to compare the effects of modifying 

building geometry and dynamic façade materials on building energy 
consumption, in sequences and combinations allowed by current 
simulation-integrated design tools. The procedure for testing the case 
studies included developing a parametric design space in Grasshopper, 
establishing an analytical daylighting constraint, simulating energy 
performance using EnergyPlus [47] through ClimateStudio [48], using a 
local derivative-free constrained optimization algorithm to find the best 
performing designs for different sequences, and analyzing the data 
against multiple baselines (Fig. 1). This section first describes the opti
mization sequences before detailing the case studies themselves. 

Rather than a design space exploration or “catalog” approach, which 
generates options and presents them for consideration, this paper uses 
optimization to drive towards the best energy performing designs. 
Obtaining optimization results establishes limits for how much energy 
could potentially be saved using parametric methods, even if designers 
might use data generated during optimization only to inform decisions 
rather than fully automate them. The data in this paper were generated 
through eight constrained optimization runs and subsequent combina
tions of variable settings, described in Table 1. For each case study, this 
includes an optimization of geometric variables (Geo) and dependent 
dynamic glazing variables based on typical behavior (DG-E). The dy
namic existing runs (DG-E) relied on a regression relationship between 
material properties U-value, SHGC, and VT based on current material 
databases [39], representing a realistic configuration possible with 
current technologies. 

The optimal settings for each optimization (geometric and glazing) 
are then combined, replicating a sequential process in which the 
designer first optimizes one category and then optimizes the other 
category (Geo → DG-E and DG-E → Geo). Finally, to estimate the 
importance of each variable type for energy savings directly and 
compare with the overall optimization procedures, a random forest 
regression model was built to calculate feature importance. Fig. 2 
summarizes relationships between the different optimization runs and 
combinations, listing run numbers for case study 1; the same sequence is 
repeated for case study 2. 

It was hypothesized that such a sequential process may not reach the 
full savings potential, and that simultaneous optimization of both vari
able types is the most effective strategy. However, limitations in current 
design and simulation tools contain barriers to simultaneous optimiza
tion of dynamic properties at high resolution—platforms that enable 
fully flexible modeling of geometry and platforms that enable fully 
flexible modeling of dynamic properties (as opposed to existing tech
nologies) are not fully integrated. While future possibilities for simul
taneous optimization with full flexibility are discussed in Section 5, this 
paper makes contributions by first considering both geometry and dy
namic properties using available design methods and corresponding 
sequences and timescales. 

3.1. Case study selection 

This study focuses on commercial buildings, which are frequently 
designed with computational approaches. Two case study sites were 
selected to represent common office building typologies (Fig. 3). Com
monalities between archetype characterization methods in building 
energy modeling include climate, population classification (urban, 
suburban, rural), fenestration specifications, and building height [49]. 
Given the density of large office buildings, this paper considers urban 
and suburban cases. Case study 1 was inspired by Lake Trust Credit 
Union Headquarters in central Michigan [50], which is a mid-rise sub
urban office building with ribbon windows. This building features a 
curved north façade, providing ample opportunity for geometric 
exploration including glazing placement as well as overall orientation 
and shape in plan. Case study 2 was inspired by 1603 Broadway in San 
Antonio, Texas [51]. This building is a high-rise with a curtain wall 
construction and a more compact footprint for an urban setting, which 
limits some potential geometric interventions. Dimensions, layouts, and 

L.E. Hinkle et al.                                                                                                                                                                                                                                



→ 

→ 

→ 

→ 



’

’

=
SHGC=0.023+0.44∗VT +1.88∗E+0.002∗U−2.38∗E2 +0.28∗VT ∗E

min f (x)=
∑n

i=1

(
COP×Qcooling,i

)+(
PF1 ×Qheating,i

)+(
PF2 ×Qlighting,i

)
GSF

s.t.g(x)=

(
0.88•DF

VT
•90◦

θ

)
−WWR

(
0.88•DF

VT
•90◦

θ

) < 0 or

(
0.88•DF

WWR
•90◦

θ

)
−VTavg(

0.88•DF
WWR

•90◦

θ

) < 0



+

’

θ 90◦

WWR >
0.088 • DF

VT
• 90◦

θ
(

0.088•DF
VT • 90◦

θ

)− WWR(
0.88•DF

VT • 90◦
θ

) < 0

(
0.088•DF

WWR • 90◦
θ

)− VTavg(
0.88•DF

WWR • 90◦
θ

) < 0

– 
◦

– 
◦

◦
◦

=



–

–



“ ” 



=

“ ” 



—

◦
–

– 

– 



Building and Environment 221 (2022) 109265

11

editing, Writing – original draft, Methodology. Nathan C. Brown: 
Writing – review & editing, Writing – original draft, Supervision, Project 
administration, Methodology, Conceptualization. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

References 

[1] IEA, UNEP, Global Status Report 2018: towards a zero-emission, efficient and 
resilient buildings and construction sector, Glob. Status Rep. 325 (2018). 

[2] C.T. Mueller, J.A. Ochsendorf, Combining structural performance and designer 
preferences in evolutionary design space exploration, Autom. ConStruct. 52 (Apr. 
2015) 70–82, https://doi.org/10.1016/j.autcon.2015.02.011. 

[3] M. Turrin, P. Von Buelow, R. Stouffs, Design explorations of performance driven 
geometry in architectural design using parametric modeling and genetic 
algorithms, Adv. Eng. Inf. 25 (4) (Oct. 2011) 656–675, https://doi.org/10.1016/j. 
aei.2011.07.009. 

[4] R. Evins, A review of computational optimisation methods applied to sustainable 
building design, Renew. Sustain. Energy Rev. 22 (Jun. 01, 2013) 230–245, https:// 
doi.org/10.1016/j.rser.2013.02.004. Pergamon. 

[5] A. Piccolo, C. Marino, A. Nucara, M. Pietrafesa, Energy performance of an 
electrochromic switchable glazing: experimental and computational assessments, 
Energy Build. 165 (Apr. 2018) 390–398, https://doi.org/10.1016/j. 
enbuild.2017.12.049. 

[6] J. Hoon Lee, J. Jeong, Y. Tae Chae, Optimal control parameter for electrochromic 
glazing operation in commercial buildings under different climatic conditions, 
Appl. Energy 260 (Feb. 2020), 114338, https://doi.org/10.1016/j. 
apenergy.2019.114338. 
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[33] C. Kasinalis, R.C.G.M. Loonen, D. Cóstola, J.L.M. Hensen, Framework for assessing 
the performance potential of seasonally adaptable facades using multi-objective 
optimization, Energy Build. 79 (Aug. 2014) 106–113, https://doi.org/10.1016/j. 
enbuild.2014.04.045. 

[34] J.J. Wang, L. Beltran, Energy Performance of Future Dynamic Building Envelopes, 
2016. 
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