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Parametric design and optimization studies have demonstrated high energy savings for dynamic building en-
velope materials compared to static high-performance envelopes. However, most parametric studies about dy-
namic buildings were conducted on prototypical buildings with a focus on either optimal geometric settings or
idealized material property characteristics, neglecting the potential collective effects of geometric and material
design decisions on energy performance. This study investigates the implications of an automated sequential
optimization process while designing with dynamic envelope materials. Two case studies were used to quantify
energy savings across different optimization-based design procedures and identify the relative importance of
various decision categories. When considering realistic design constraints and intrinsic material limitations,
geometric optimization alone yielded only 2% energy savings, while dynamic material optimization savings
reached up to 19%. Significantly, a sequential design process in which the geometry is configured first before the
facade is optimized and vice versa can lead to around 5% missed energy savings. These findings encourage
changes to traditional design guidelines and simulation-based building design approaches when working with

dynamic facades.

1. Introduction

Buildings consume around 40% of primary energy around the world
[11, which creates both a challenge and a set of opportunities for de-
signers. With the introduction of parametric design and rapid simula-
tion, computational tools are increasingly leveraged during early design
to iteratively explore features or configurations that can mitigate or
offset building energy loads. Researchers have experimented with
design approaches ranging from optioneering to automated optimiza-
tion to produce low-energy buildings. While optimization can be
implemented with varying degrees of user input [2-4], it can quickly
direct designers towards high-performance solutions within a design
space. Within the emerging research field surrounding dynamic building
envelope materials, including thermochromic- and
electrochromic-based glazing [5-8] and PCMs [9-11], optimization has
been used to maximize energy savings. Dynamic building facade char-
acteristics open the possibility of variation at high-resolution time in-
tervals for external stimuli such as solar radiation, wind availability, and
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heatwaves, as well as long-term changes such as an evolving climate or
new buildings constructed nearby that can occur years or decades into
the lifetime of a building. Existing studies show the performance of
dynamic facade materials is highly sensitive to orientation, self-shading,
and radiant heat exchange in relation to building shape. However, the
dynamic material properties are often determined after the early-stage
architectural design is established.

Due to limitations in simulation tools and the novelty of many dy-
namic technologies, the interplay of geometric and material design de-
cisions and their joint effects on energy performance have not been
extensively explored using computational tools. Additionally, the steps
of the traditional building design are often sequential, which can limit
opportunity for early integration [12-14]. The traditional building
design process for commercial buildings first establishes a building form,
and then develops the floorplan and facade construction, which can
separate decisions about geometry and materials [15]. Yet the facade
plays a key role in regulating the indoor thermal environment, and
materials selection heavily influences energy performance. It is unlikely
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that sequentially optimizing a building’s massing and glazing place-
ment, and then its floorplan for that set geometry, and finally the facade
construction will lead to the best overall result, since geometry, pro-
gram, and materials all affect one another.

Overall, these divergences necessitate a platform to explore complex
building geometries and emerging dynamic building envelope materials
taking both optical and thermal properties into account. In response, this
paper first quantifies simulated energy saving across different
optimization-based building design procedures for dynamic glazing
materials via two office building case studies in separate climates. A
comparison between approaches can evaluate the current sequential
design process as it applies to dynamic materials and reveal the
importance of design decisions related to dynamic materials on energy
savings. Only glazing was modeled as dynamic rather than other opaque
facade elements, due to the proliferation of highly glazed contemporary
office buildings and the current outlook of advanced glazing technolo-
gies. Following these analyses, this paper proposes a new building
design process to determine the optimal material-geometric
configuration.

In summary, this study presents three unique contributions:

1) it establishes a new optimization-driven framework with parametric
modeling and simulation methods at the early design stage for taking
both geometry and dynamic material (thermal and optical) proper-
ties into account.

2) it increases understanding of the relationship between these two
categories (geometry and material) of design variables towards
building energy performance, especially in the context of intrinsic
dynamic material limitations, while establishing the potential ben-
efits of joint exploration; and

3) it quantitively illustrates the architectural and performance impli-
cations of using such an approach in early design. It does this for a
suburban commercial case study in a heating-dominated climate and
an urban commercial case study in a cooling-dominated climate,
providing new information for two building types most likely to be
designed using computational tools.

2. Literature review
2.1. Simulation in early design

Computational tools are currently a vital part of building design,
helping to visualize or automate many intricate tasks. They are utilized
in all phases of design, from design ideation to construction documen-
tation. In the AEC industry, one important computational area for early
design is parametric design, which allows for the generation of
numerous design iterations without significant manual effort [16-18].
Parametric design is often implemented through visual coding platforms
such as Grasshopper [19] or Dynamo [20] in which users develop dy-
namic design variables to explore combinations of these variables and
ultimately investigate interrelated design goals. During early design,
designers also make assumptions about building systems and occupant
behavior to simulate and predict how a constructed building will
perform.

Creating combinations of the variables forms a “design space”, and
mapping these designs to metrics that describe their performance,
whether related to structure, energy, or daylighting, generates an
“objective space” [21]. The goal is often to explore the design space with
reference to the objective space in an effective and systematic manner. It
has been shown that utilizing design space exploration methods allows
designers to develop and select high performance design concepts for
gradual refinement throughout later stages [18,22,23]. Since simulation
engines across multiple domains are now accessible within a shared
environment, research towards dynamic facade systems in buildings has
taken advantage of these software environments used by designers
today. However, there is limited existing literature that applies
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parametric design for both geometrically and materially flexible design
decisions to understand the energy implications of designing with dy-
namic building materials.

2.2. Quantifying potential dynamic fagade energy savings

Many researchers claim dynamic facades are necessary to achieve
nearly net zero buildings (nNEB) [24]. Dynamic facades alter their form
or function repeatedly and reversibly over time in response to envi-
ronmental conditions or human controls [25]. Dynamic facade tech-
nologies refer to both micro-scale properties of facade materials,
including thermochromic glazing [26], memory shape polymers [27],
and phase-change materials [10,11,28,29], and physical-scale elements
such as kinetic shading devices [30,31]. While a variety of technologies
are possible, this paper focuses on the micro-scale, specifically adaptive
glazing technologies. Existing studies have demonstrated whole build-
ing energy savings of using dynamic facade technologies range from 8 to
46% [32-34], even compared with static high-performance envelopes.
While electrochromic glazing is perhaps the most mature and widely
implemented example, material scientists are working in coordination
with architectural engineers to improve the thermal and optical capa-
bilities of dynamic glazing [32]. Existing electrochromic glazing oper-
ates from state-to-state, where there is a strict tradeoff between visible
transmittance (VT) and solar heat gain coefficient (SHGC). Adaptive
U-value may be achieved through switchable insulation elements [35],
thermochromic technologies that change emissivity [36], or other future
technologies. However, several researchers have explored the optimi-
zation of adaptive glazing properties to justify further development of
the technology.

Several previous studies have investigated dynamic glazing tech-
nologies across multiple climates, on different resolutions (e.g.,
monthly, daily, hourly), and with various control strategies. Wang et al.
[34] used EnergyPlus EMS to alternate both opaque assemblies and
window construction and achieved an average of 46% energy savings
across multiple climate zones. Favoino [26] investigated an inverse
performance-oriented approach to optimize visible transmittance (VT),
g-value, and U-value to minimize primary building energy. Using an
office reference room with 40% window-to-wall ratio (WWR) and four
cardinal orientations tested in multiple climates, the study showed high
energy savings are achievable by adapting the transparent part of the
building envelope alone, the largest factor being cooling energy de-
mand. Since dynamic facade systems respond to outdoor climatic con-
ditions, results varied per orientation and location, with the highest
achievable savings 55% for an east-facing zone in Rome, Italy. Similarly,
Tavares [37] recommended electrochromic glazing for
cooling-dominated climates and found the largest savings on the east
and west facades, rather than the south. As mentioned previously, these
findings suggest dynamic facade materials are highly sensitive to their
immediate environment, which is dictated by the geometry of the
building. This notion introduces the possibility of early design inter-
vention, which is explored throughout this study.

While many researchers have focused on simulating existing or
theoretical dynamic envelope materials, others have focused on the
control algorithms themselves, which have a large influence over per-
formance [38]. Hoon Lee [6] investigated various control parameters,
including outdoor air temperature, room air temperature, solar radia-
tion incident on windows, and global horizontal irradiance to develop
an algorithm for optimal electrochromic performance. Using ASHRAE
90.1 prototype for a medium office building as a reference, the size of
the cooling equipment was reduced by up to 20%. It was acknowledged
additional savings could be achieved by integrating controls with air
handling units, lighting controls, and shading systems; most impor-
tantly, the study concluded that future studies should utilize real
building data. In additional efforts to develop a control strategy, Wang
et al. [39] performed a multiple regression analysis of window factors
based on a large database of existing windows and incorporated the
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model into an EnergyPlus simulation-based optimization study. Though
this model was developed to optimize on an annual basis (static), it
could be used to investigate optimization on a daily or monthly reso-
lution, and it is indeed incorporated into the methodology of this paper.
As in previous studies, the ASHRAE prototype model was assumed and
used as a reference in comparing energy savings. Although this model
acts as the standard, it does not capture the potentially complex geom-
etries of contemporary office building architecture.

2.3. Building geometry optimization

In early design stages, there are opportunities to conduct optimiza-
tion on building form and fenestration configuration [40]. For most
climates, the ratio between the external surface of a building and its
volume most strongly correlates to energy demand, meaning that
simplified models can be adequate [41]. However, some researchers
have demonstrated exceptions. For example, Granaderio et al. [42] used
a case study in Lisbon, Portugal to show that the surface area to volume
building shape coefficient was not strongly correlated to energy de-
mand. Similarly, while Depecker et al. [43] found a strong correlation
between shape coefficient and energy consumption for a case study in
Paris, France, there was no clear correlation for the case study in Car-
pentras, France. Further, building geometry optimization results differ
depending on the formulation of the design space. Fang [44] performed
multi-objective optimization on nine geometric variables for a small
single-story building, reducing Energy Use Index (EUI) by up to 20%
while increasing Useful Daylight Index (UDI) by 39%. Jin and Jeong
[45] used a genetic algorithm to optimize a free-form building shape,
including geometric parameters such as top polygon type, top length,
and tilt angle, and were able to reduce annual heat gain/loss by up
60.4% in certain climates. While these case studies exist in specific cli-
mates and design spaces, they demonstrate that geometric consider-
ations can affect building energy consumption, often in complex ways.

Other researchers have approached this problem by determining the
most influential geometric characteristics for predicting energy.
Samuelson et al. [46] conducted a sensitivity analysis on various early
design building characteristics, including WWR, glass type (static),
building rotation, shading, and shape, and determined that, across three
major cities, WWR was the most sensitive variable, followed by glass
type and rotation. There have been several additional studies exploring
the relationship between building geometry and building energy con-
sumption, but the few that have [41] included dynamic characteristics
investigated prototypical building types, not potentially self-shading or
otherwise complex geometry. Thus, it is difficult to estimate the effects
of dynamic facades, both in terms of energy savings and effects on the
building design process.

Upon reviewing the sensitivity analysis literature above, there is a
further opportunity to implement optimization techniques instead of
exhaustive search methods, since optimization can more quickly find the
best possible designs within a space and present those for consideration
to the designer. However, to fully address the relationship between
geometric changes under the direction of an architect and potential
dynamic facade properties, realistic case studies must be developed,
along with constraints that avoid architecturally infeasible solutions. If
incorporating dynamic variables and using non-reference building ge-
ometry, an optimization procedure can begin to quantify the potential
savings limits of modifying different variable types.

3. Methodology

The methodology investigates optimization-driven, rapid parametric
modeling approaches for early building design in practice. As such, it
required the creation of parametric models with realistic design vari-
ables, constraints, and model resolution that would be considered at this
stage of design. Two case studies with different contexts and climates
were modeled and analyzed to compare the effects of modifying
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building geometry and dynamic facade materials on building energy
consumption, in sequences and combinations allowed by current
simulation-integrated design tools. The procedure for testing the case
studies included developing a parametric design space in Grasshopper,
establishing an analytical daylighting constraint, simulating energy
performance using EnergyPlus [47] through ClimateStudio [48], using a
local derivative-free constrained optimization algorithm to find the best
performing designs for different sequences, and analyzing the data
against multiple baselines (Fig. 1). This section first describes the opti-
mization sequences before detailing the case studies themselves.

Rather than a design space exploration or “catalog” approach, which
generates options and presents them for consideration, this paper uses
optimization to drive towards the best energy performing designs.
Obtaining optimization results establishes limits for how much energy
could potentially be saved using parametric methods, even if designers
might use data generated during optimization only to inform decisions
rather than fully automate them. The data in this paper were generated
through eight constrained optimization runs and subsequent combina-
tions of variable settings, described in Table 1. For each case study, this
includes an optimization of geometric variables (Geo) and dependent
dynamic glazing variables based on typical behavior (DG-E). The dy-
namic existing runs (DG-E) relied on a regression relationship between
material properties U-value, SHGC, and VT based on current material
databases [39], representing a realistic configuration possible with
current technologies.

The optimal settings for each optimization (geometric and glazing)
are then combined, replicating a sequential process in which the
designer first optimizes one category and then optimizes the other
category (Geo — DG-E and DG-E — Geo). Finally, to estimate the
importance of each variable type for energy savings directly and
compare with the overall optimization procedures, a random forest
regression model was built to calculate feature importance. Fig. 2
summarizes relationships between the different optimization runs and
combinations, listing run numbers for case study 1; the same sequence is
repeated for case study 2.

It was hypothesized that such a sequential process may not reach the
full savings potential, and that simultaneous optimization of both vari-
able types is the most effective strategy. However, limitations in current
design and simulation tools contain barriers to simultaneous optimiza-
tion of dynamic properties at high resolution—platforms that enable
fully flexible modeling of geometry and platforms that enable fully
flexible modeling of dynamic properties (as opposed to existing tech-
nologies) are not fully integrated. While future possibilities for simul-
taneous optimization with full flexibility are discussed in Section 5, this
paper makes contributions by first considering both geometry and dy-
namic properties using available design methods and corresponding
sequences and timescales.

3.1. Case study selection

This study focuses on commercial buildings, which are frequently
designed with computational approaches. Two case study sites were
selected to represent common office building typologies (Fig. 3). Com-
monalities between archetype characterization methods in building
energy modeling include climate, population classification (urban,
suburban, rural), fenestration specifications, and building height [49].
Given the density of large office buildings, this paper considers urban
and suburban cases. Case study 1 was inspired by Lake Trust Credit
Union Headquarters in central Michigan [50], which is a mid-rise sub-
urban office building with ribbon windows. This building features a
curved north facade, providing ample opportunity for geometric
exploration including glazing placement as well as overall orientation
and shape in plan. Case study 2 was inspired by 1603 Broadway in San
Antonio, Texas [51]. This building is a high-rise with a curtain wall
construction and a more compact footprint for an urban setting, which
limits some potential geometric interventions. Dimensions, layouts, and
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Constrained Optimization Data Analysis

I SR

Fig. 1. General framework for optimization procedures.

Table 1
Optimization run specifications.
Run  Description Case Dynamic glazing Geometry
study optimization optimization
1 2
1 Geo X X
2 DG-E X X
3 Geo - DG-E  x X
4 DG-E — Geo X X
5 Geo X X
6 DG-E X X
7 Geo — DG-E X X
8 DG-E — Geo X X

Design Space Formulation

l

Dynamic Glazing Dynamic Glazing

Geometryo —> Existing9 Existing e_. Geometrye’

constrained

RF + Variable Importance optimization

Fig. 2. Flowchart explaining the constrained optimization runs where the run
numbers correspond to Table 1.

model settings were approximated using Grasshopper plug-in Elk [52].
Additional information about each case study is provided in Table 2.

3.2. Design space formulation

In contrast to previous studies using static benchmark geometry, a
design space was established containing flexible form, orientation, and

Case Study 1 - Brighton, Ml

fenestration to accurately represent early design, in which alternatives
are considered but some affinity to an original design concept is main-
tained. This was done to quantify the energy savings potential of
architect-designed office buildings and understand the gaps in the
traditional design process that may prevent widespread implementation
of dynamic facade materials. Parametric variables are described in Ta-
bles 3 and 4 and visualized in Fig. 4. In each design, three fenestration
variables were extrapolated: sill height, head height, and the percentage
of opaque panels. The facades were panelized into linear sections, and
the percentage of opaque panels dictated how many panels were
assigned opaque construction versus glazing. Case study 1 also included
three control points along the curved facade, building rotation, and a
variable that transitions between a linear and L-shaped form (vg). Case
study 2 allows for variation of floor area distribution between the tower
and podium building volumes, adjustments in length-width aspect ra-
tios, and tower location. Additionally, because Case study 2 is located in
an urban setting with surrounding obstructions, the entire building can
move around on the site (v4, vs). By incorporating the unique aspects of
each building geometry, such as the curvature and the tower/podium
relationship, this study attempts to capture the design implications of
optimizing contemporary office building architecture.

Additional variables were established for the dynamic properties of

Table 2
General case study assumptions.

Case study 1 Case study 2

Lake Trust Credit Union
Headquarters

Inspiration building 1603 Broadway

Location Brighton, Michigan San Antonio,
Texas

Gross building area (m?) 9290 58530

ASHRAE climate zone 5 2

Population classification suburban urban

Window-to-wall ratio 0.4 0.4

Number of floors 3 15

Floor-to-floor height (m) 4.6 4.6

Case Study 2 - San Antonio, TX

\

Fig. 3. Case study 1 (left) and 2 (right) location and site.
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Table 3
Case study 1 geometric variables.
Variable Minimum  Maximum  Range Original
Design
vy Curve control point 1 0.50 0.75 0.25 0.65
(m)
vy  Curve control point 2 0.50 1.75 1.25 1.15
(m)
vs  Curve control point 3°  0.01 0.49 0.48 0.25
(m)
V4 Site rotation (deg) 0.00 360.00 360.00 0.00
vs  Window fraction 0.01 0.98 0.97 0.15
Ve  Window head height 2.00 4.37 2.37 3.00
(m)
v;  Windowsill height 0.20 1.00 0.80 0.65
(m)
vg  L-shape (deg) 0.00 25.00 25.00 0.00

@ Moves control point with respect to the start of the defined facade curve.

Table 4
Case study 2 geometric variables.
Variable Minimum Maximum Range Original
Design
V1 Tower: base building 0.20 0.60 0.40 0.40
volume fraction
\2) Base length-width 0.50 2.00 1.50 0.85
aspect ratio
V3 Tower length-width 0.50 2.00 1.50 0.75
aspect ratio
V4 Site location x 0.00 1.00 1.00 0.50
Vs Site location y 0.00 1.00 1.00 0.50
Ve Tower location x 0.25 0.75 0.50 0.50
vy Tower location y 0.25 0.75 0.50 0.35
Vg Windowsill height (m) 0.20 1.00 0.80 0.60
Vo Window fraction 0.01 0.98 0.97 0.3
vip  Window head height 2.00 4.37 2.37 3.5

(m)

both facades. Glazing properties were accessed through ClimateStudio’s
window component in Grasshopper. This component wraps the simple
window component from EnergyPlus, which allows users to create
custom glazing by specifying VT, SHGC, and U-value. The bounds of the
glazing variables were established by surveying existing window prod-
ucts in the LBNL glazing database within Climate Studio’s glazing
component. The bounds for each glazing variable are provided in
Table 5.

Window products that are commercially available abide by physical
restrictions between VT and SHGC. In general, to decrease SHGC, VT
must also decrease, which creates a tradeoff between building energy
and daylight. Wang et al. [39] built multiple regression models to relate
four main glazing properties: solar heat gain coefficient (SHGC), visible

opaque:
transparent

V7 window sill
V6 + head heights

V4 building rotation
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transmittance (VT), U-value (U), and emissivity (E). Using a database of
existing window products, Equation (1) was identified as the most ac-
curate model. As current glazing technologies largely follow this rela-
tionship, the dynamic glazing optimization included only U-value and
VT as variables, and SHGC was calculated using Equation (1). Emissivity
was held constant at E = 0.84 per typical window construction [39].

SHGC=0.02340.44+ VT +1.88% E+0.002+ U — 2.38+ E* +0.28 x VT +E
Equation 1

3.3. Performance evaluation

Energy model simulations were performed in Grasshopper using the
energy components of ClimateStudio. ClimateStudio links geometry in
Rhinoceros to the EnergyPlus simulation engine. The formal optimiza-
tion objective was to minimize the site energy consumption due to
heating, cooling, and lighting requirements, which represent the aspects
of operational energy which are affected by geometry and the facade
(Equation (2)). The objective function was subject to the daylighting
constraint, which depended on whether the run included geometric
optimization (left) or dynamic glazing optimization (right) (Equation
(2)). The daylighting constraint is described in Section 3.4. The envelope
assumptions were determined based on ASHRAE 90.1 2019 in the
respective climate zones. Consistent with the DOE prototype for large
office buildings, the case study models were mechanically zoned to have
four perimeter zones with 4.57 m zone depth and a core zone on each
level. All other model settings were also based on ASHRAE 2019 stan-
dards and are provided in Table 6.

Z:.l:l (COP X Qcoaling,[) + (PFI X Qhealing,[) + (PFZ X Qlighfing.i)

minf(x) = CSF
(0.88.DF.9_0°) e (0.88.DF.9_0°) v
VI o WWR 0 s
180 == sgenE 90N U T /usseDF 90
( % '7) ( WWR '7)
Equation 2

where i is the load condition at a particular hour and n is the number of
hours

Table 5
Glazing variable bounds.
Variable Minimum  Maximum  Range  Original
Design
vo/viy  U-value (W/m%-  0.67 5.82 5.15 See Table 6
K)
vio/ vT 0.05 0.91 0.86 See Table 6
Via
opaque:
transparent g Window sill + head height
I
' tower length:width
tower location x, y
. .
by =
»V§ "~~._--"V2 base length:width

site location x.y v1 tower:base building volume

Fig. 4. Variables used to generate the design space, case study 1 (left) and 2 (right).
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Table 6
EnergyPlus settings accessed via Climate Studio.
Case study 1 Case study 2 Units
Roof R-value® 5.28 4.40 K-m?*/W
Exterior Wall R-value® 2.01 1.00 K-m%*/W
Floor R-value® 2.57 1.11 K-m%*/W
Window SHGC" 0.38 0.25
Window U-value® 2.04 2.55 W/K-m?
Window VT® 0.60 0.60
Schedule” Typical office occupancy,
equipment, and lighting
Occupancy” 0.05 p/m?
Equipment” 8.07 W/m?
Lighting power density”  6.89 W/m?
Daylighting” Continuous dimming, 500 lux
Heating set point® 21 (constant setpoint — all on) °C
Cooling set point® 24 (constant setpoint — all on) °C
Mechanical ventilation” 2.5 L/s/person
0.3 L/s/zone area m?
Heat recovery® Sensible, 60% recovery
effectiveness
Infiltration” 0.5 ACH
Peak flow! 0.12 L/h/person
Supply temperature® 60 °C
Mains temperature* 10 °C
2 ASHRAE 90.1.
> ASHRAE 62.1.

¢ Industry standard.
4 LEED spreadsheet.

The ClimateStudio components output the idealized heating, cool-
ing, and lighting energy in Joules (J). The idealized loads were con-
verted to site energy requirements assuming the system efficiencies
listed in Table 7. To make direct comparisons as building geometry
changed, building energy consumption was normalized by the gross
building area (GSF).

3.4. Optimization method

To find the best possible results for each case study and sequence,
local derivative-free constrained optimization was performed on the
building geometry and glazing properties. Specifically, COBYLA (Con-
strained Optimization BY Linear Approximations) was implemented
through the Grasshopper component Radical, available with the Design
Space Exploration (DSE) plug-in [21]. This algorithm models the
objective and constraint functions by linear interpolation [54]. A local
derivative-free optimization approach led to shorter run times compared
to evolutionary algorithms, since it constructs successive linear ap-
proximations of the objective function and constraints via a simplex of
n+1 points (in n dimensions) and optimizes these approximations in a
trust region at each step, leading to fewer evaluations [55]. For a starting
point, all variables were set to the middle point. The convergence cri-
terion was a 0.01 change in objective function.

While building geometry was optimized on an annual basis as a static
characteristic, glazing properties were optimized on a monthly resolu-
tion. Previous electrochromic glazing studies identified monthly simu-
lations as a sufficient starting point to estimate energy savings [26].

Table 7
Secondary energy conversion assumptions. Values from [53].
Load Assumption
PF; Heating 85% site efficient

CoP Cooling
PF, Lighting

COP = 3
100% site efficient
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Once the optimal properties for each month were determined, the
monthly building energy values were summed to represent annual
building energy. Because the beginning of each monthly simulation
begins a new environment in EnergyPlus, there is a small discrepancy
between summing monthly values and the result of a single annual
simulation. The authors determined this error was less than 1% for the
case study models.

Reviewing previous related optimization studies revealed a tendency
to reduce the glazing area and lower visible transmittance well below
industry-accepted values. As the main arguments of this paper are based
on the typical building design process at the conceptual design phase, it
seemed inappropriate to deem the optimal solution as one with small
windows with low visible transmittance. However, accurate daylighting
simulations are computationally expensive. To counter the algorithm’s
tendency to minimize glazing area, a daylighting proxy constraint was
implemented on window-to-wall ratio (WWR) and VT. The minimum
WWR required to meet daylighting requirements was calculated using a
rule of thumb-based design sequence for sidelit spaces by Reinhart and
LoVerso [56].

This basic calculation, intended for early design, is given in Equation
(3), which was used to formulate the constraints (Equations (4) and (5)).
The daylight factor (DF) was set to 2% according to recommendations in
the IES Handbook [57]. It was assumed there were no obstructions in
case study 1, therefore the obstruction angle 6 was set to 90°. The
obstruction angle in case study 2 was dynamically calculated as an
output of the parametric model (Fig. 5). During geometric optimization,
the relative error between the calculated WWR ratio (Equation (4)) and
that of the actual design was entered as a formal constraint. Similarly,
the relative error between the calculated VT and average VT among all
orientations (Equation (5)) was adopted as a formal constraint. Note that
Equation (2) is an approximation and accounts only for diffuse daylight
contribution. Further analysis would be required for glare consider-
ations in later design, but these constraints help ensure realistic glazing
requirements as determined by the architecture [56].

0.088 e DF R 970(’

WWR > Equation 3
VT 0 q
(2252 o) — WWR |
T @mxLmy <0 Equation 4
vr 0

(().X&DF A )
WWR 0

Fig. 5. Case study 2 obstruction angle diagram.



L.E. Hinkle et al.

4. Results

In this section, the results of each constrained optimization run are
first presented and analyzed to compare potential energy savings from
manipulating different variable types. Then, sequentially designing with
dynamic facades is evaluated. Finally, relative variable contributions are
assessed directly.

4.1. Optimal geometry

The results of the simulated potential energy savings due to geo-
metric optimization only are provided in Fig. 6, offering very little
savings (1-2%). The design space was formulated to preserve original
design intent, which may have limited savings slightly. However, this
result confirms previous evidence that building form itself is not a good
indicator of energy consumption [46]. Yet in some cases, 1-2% savings
may still be desirable, and the designer must weigh architectural im-
plications while deciding if altering the building geometry is worth it.
Despite the small savings, both cases apparently responded to climate
and context. Case study 1, located in a suburban setting, took advantage
of its ability to fully rotate and oriented the facade with the greatest
glazing area toward the south. It is likely that this geometric alteration,
in addition to reducing glazing area within the daylight constraint, had
the largest contribution to the energy savings. Case study 2 was more
geometrically limited to account for the challenges of designing in an
urban setting. While case study 1 leveraged solar gains to reduce the
heating load, case study 2 attempted to block them. More square footage
was distributed to the podium, rather than the tower since the podium
receives shade from context. However, during optimization, the model
moved away from adjacent buildings to satisfy the daylighting
constraint.

4.2. Optimal dynamic glazing properties

Results for optimization of the dynamic properties are shown in
Fig. 7. A single dotted line follows the changing monthly setting for a
glazing property on one side of the building. Overall savings for each
constrained optimization run are provided at the bottom of each
column.

4.2.1. SHGC and VT

The existing constrained optimization results account for the rela-
tionship between SHGC, VT, and U-value, which was previously estab-
lished using existing window product data [39]. Case study 1

Original Building Geometry

Optimized Building Geometry

212
0 Energy Savings 100

Fig. 6. Original vs. optimized building geometry for case study 1 (top) and case
study 2 (bottom).
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optimization selected a higher SHGC in the winter months to accept
solar gains and decrease the heating load and selected a lower SHGC in
the summer months to block solar gains and decrease the cooling load.
The case study 2 optimization instead opted for a lower SHGC the ma-
jority of the year. The optimal SHGC results are appropriate given case
study 1 is located in ASHRAE climate zone 5 (heating-dominated), and
case study 2 is located in ASHRAE climate zone 2 (cooling-dominated).
For case study 1, the south facade is dominated by the SHGC so it must
be varied, whereas the north facade is constrained by the VT variation,
which will be discussed in the next section. On the other hand, the east
and west facades are varied more for case study 2 due to increased
surface area. The north facade maintains a high VT, since it can afford a
higher SHGC, with limited solar radiation.

Overall, the shapes of the existing SHGC graphs for both case studies
mimic their respective existing VT graph. This clearly demonstrates the
tradeoff between SHGC and VT in existing window products: in order to
decrease SHGC, VT must also decrease. Due to this tradeoff, case study 1
was not able to achieve high SHGC values in the winter months. To the
same effect, case study 2 only selected low SHGC in the summer for key
facade orientations.

Additional investigation following these results present notable
features in VT variations. With future technologies, it might be possible
to slightly push the bounds towards products with both higher VT and
SHGC than in the statistical models used above [39]. We experimented
with giving VT more freedom in the simulation, and we expected that
the maximum and constant VT would be most beneficial to the energy
savings. However, window VT can influence heating and cooling loads
as well due to the heat gains generated by the electrical lights. Even with
standard-compliant lighting power density (LPD) in the simulations, the
high lighting needs in commercial buildings may still enlarge the heat
gain effects of electrical lights, which has been reported in other studies
[58]. Future studies can test this relationship more rigorously.

In this work, in hot climates (case study 2), such heat gains are not
beneficial to save heating and cooling energy, so the VT value was kept
at or near the upper bound (~90%) on the south and north facades.
Increasing the VT increased daylight levels and consequently reduced
the electric lighting load. However, VT was not at 100% in the optimal
scenario in heating seasons (case study 1), which is mainly constrained
by the low U-value in the winter. To achieve a higher insulating ability
of windows, low-e coatings and/or additional window panes are
required, which typically reduce the VT value. As mentioned previously,
VT is sacrificed in both existing runs to achieve desirable SHGC values.
This allows for a high light-to-solar gain (LSG) ratio, thus demonstrating
the effectiveness of the algorithm.

4.2.2. U-value

It is widely known that highly insulating windows reduce heating
and cooling loads consumption, and the results of the dynamic glazing
optimization runs generally agree. For case study 1 and case study 2, the
optimal U-value was the lower bound for nine and seven of twelve
months, respectively. However, a higher U-value was selected for the
summer months in climate zone 5 and shoulder months in climate zone
2. During these mild weather periods, strong solar heat gains may
significantly enhance the building cooling loads. Such increased heat
gains can be offset by the high U-value of the building window systems
because the outdoor temperature conditions at most times are desirable
or beneficial to the heat release from the interior. For window orienta-
tions with higher solar heat gains, a higher U-value was selected.
Further, if the simulations were conducted on an hourly resolution, a
lower U-value would be selected during the day, and a higher U-value
would be selected during the night. While additional studies can
investigate these phenomena in more detail, the optimization still
largely gives intuitive results that would be helpful at the early stages of
design.

Although U-value is not strongly correlated to SHGC and VT [39],
there are still losses to address by manipulating this glazing property: to
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Fig. 7. Optimal glazing properties on a monthly resolution.

increase the thermal insulating ability of glazing systems, VT and SHGC
will be somewhat reduced due to the addition of glazing layers or low-e
coatings.

Since most months optimized to the lower bound, it was difficult to
understand if modulating the U-value contributed to energy savings. To
answer this question, a “high-performance” static baseline model was
used to quantify the savings due to the dynamic aspect alone. The high-
performance glazing adopted the lower bound of the U-value from the
optimization and maintained the ASHRAE recommended SHGC value.
The high-performance static model performed better than the baseline,
but the dynamic model exceeded it by 5% and 3% respectively for case
study 1 and case study 2. This suggests adopting dynamic glazing is a
viable step in reducing building energy consumption. Energy savings
comparisons are discussed further in the next section.

4.3. Comparing sequential optimization results

After determining potential savings from each category separately
(runs 1, 2, 5, and 6), existing dynamic glazing properties were optimized
using the optimal geometric configuration (runs 3 and 7) and an addi-
tional constrained optimization was conducted on the building geome-
try with the existing dynamic glazing optimal settings (runs 4 and 8).

Fig. 8 shows the results of these two design procedures. Case study 1
achieved 1% reduction in heating, cooling, and lighting load energy
from the geometric optimization and up to 19% reduction from the
dynamic glazing optimization. Similarly, case study 2 achieved 2%
reduction in heating, cooling, and lighting load energy from the geo-
metric optimization and up to 13% reduction from the dynamic glazing
optimization.

Designers might assume that combining the optimal variable settings
from each constrained optimization run would yield the highest energy
savings. However, because the geometric optimization altered the
building orientation and form, thus altering many aspects of the fenes-
tration, the combination did not lead to greater savings (runs 3 and 7).
Compared to the existing dynamic glazing optimization, the energy
savings values differed by 3% for case study 1. The relationship between
dynamic glazing and building geometry is also demonstrated by the
additional sequential optimization run (runs 4 and 8). For these runs, the
optimal existing dynamic glazing settings were set, and the building
geometry was optimized. For case study 1, optimizing the building ge-
ometry with the optimal existing glazing settings resulted in a loss of
about 5% savings compared to the dynamic glazing optimization alone.
This suggests the performance of dynamic glazing is not only dependent
on the climate zone, but also the effects of window orientation, self-



L.E. Hinkle et al.
!
1% 14%
Geo DG-E - Geo
]
2% 8%

Fig. 8. Combining optimal settings for sequential optimization. Run numbers
correspond with Table 1.

shading, and radiant heat exchange in relation the building shape. A
direct comparison of the energy use reduction for each procedure is
provided in Fig. 9.

The results show that making geometric adjustments warrants a new
set of optimal dynamic glazing settings, and vice versa. Therefore, to
truly understand the full potential of dynamic glazing in architect-
designed buildings with atypical geometries, an additional optimiza-
tion run would need to be conducted with all 16 variables and 18 var-
iables for case studies 1 and 2, respectively. We predict that building
geometry and dynamic facade materials must be considered simulta-
neously to achieve the optimal geometric-material combination for
minimal energy consumption. Unfortunately, limitations in existing
engineering software prevent exploration of complex geometry, and
limitations in parametric environments prevent the full customization of
dynamic materials. This suggests an avenue for extensive tool develop-
ment and future research, towards a future in which designers use
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simulation to specify dynamic materials that can adapt to necessary
conditions, along with building geometries that afford the most flexi-
bility for achieving future energy savings through dynamic properties.

4.4. Considering variable importance directly

To analyze which individual variables were most influential in pre-
dicting building energy usage, a random forest regression model was
built to first predict energy consumption and then calculate feature
importance. This secondary analysis complements the findings of the
overall optimization procedure by attempting to understand variables at
a more granular level. To create this data model, case study 1 and case
study 2 design spaces were sampled at a rate of n = 1000 using the Latin
Hypercube Sampling method. The dependent variable was the combined
annual heating, cooling, and lighting load (converted to secondary en-
ergy) divided by the gross square footage. The training and validation
data were split at a ratio of 0.6. The random forest module from scikit
learn [59] was implemented and tuned before calculating feature
importance, reaching an 87.2% accuracy on the case study 1 test set and
an 83.6% accuracy on the test set for case study 2. Fig. 10 shows the
collective influence of the four main categories of variables: percentage
of opaque panels variable, other window geometry variables (sill height
and head height), and window performance (SHGC, VT, and U-value).
Both case study 1 and case study 2 identified the single most important
variable as the percentage of opaque panels, which most strongly in-
fluences WWR. Note that there were three variables affecting fenestra-
tion size: percentage of opaque panels, sill height, and head height. The
collective influence of the three variables that together dictate WWR
was the most important category in predicting building energy usage,
followed by window performance.

It is noteworthy that control points from case study 1 (vy, vo, v3) are
not important features based on this model, reinforcing the notion that
energy is not frequently “form-giving” for design. Likewise, the length:
width aspect ratios in case study 2 (vo and vs) were also deemed un-
important. However, because dynamic glazing does not yet outperform
opaque construction, the amount and configuration of glazing matters
most. This furthers the importance of exploring building geometry and
facade materials in early design, as many geometric decisions are still
relevant.

5. Discussion

The results demonstrate that a sequential design process is not
necessarily fit for dynamic facade technologies. Because dynamic fa-
cades are sensitive to orientation, self-shading, and radiant heat ex-
change in relation to the building shape, simply applying the optimal
values for the climate zone can lead to potential missed savings.

, High Performance Static Design
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Fig. 9. Energy savings comparison.
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Fig. 10. Random forest variable importance.

Dynamic facade technologies introduce a unique opportunity to explore
building geometry and envelope materials in early design to find the
optimal geometric-material combination. However, it is currently
difficult in conceptual design to structure an optimization problem with
different resolutions using current design tools—building geometry is
optimized on an annual basis, and dynamic facades are optimized on a
monthly or hourly resolution. At minimum, we conclude that to maxi-
mize the potential savings of dynamic glazing or dynamic building en-
velope materials in general, it is important to consider building
geometry and orientation while developing proper control algorithms.
Further, the design lessons learned here suggest fundamental changes in
the early design process when working with dynamic facades and
encourage further computational tool development. Given the cutting-
edge and often open-source nature of digital design tools, it is likely
that further modifications to existing software could make simultaneous
optimization of geometry and facades increasingly accessible to de-
signers in practice.

Furthermore, many previous studies on building energy optimization
use rectangular buildings or prototypical models. This study provides an
example of geometry optimization for more expressive architectural
designs. While it is possible to achieve 2% energy savings in these ex-
amples, drastic geometric changes often influence performance in other
engineering domains or substantially alter the original design intent. For
example, the optimal geometric configuration for case study 1 required
the building to rotate 117° clockwise. While this is a simple parametric
adjustment, it would have huge implications for how the massing relates
to the site. In case study 2, the shifting of the tower on the podium would
likewise have considerable influence on the structural performance.
Because decisions related to building geometry require consensus be-
tween architects and other engineering disciplines, implementing these
changes may or may not be beneficial to the whole project. On the other
hand, assuming dynamic envelope materials become more commer-
cially available, the high energy savings potential from dynamic glazing
creates a compelling argument for their importance in design.

There are several notable limitations to this study. Although a
monthly resolution was sufficient to demonstrate the geometric-
material relationship, future studies at a higher resolution (daily or
hourly) across multiple climate zones would provide a more robust
understanding of dynamic facade performance in various design set-
tings. As advanced simulation tools and advanced geometry tools are
futher integrated, it will likely be possible in the future to conduct this
framework in another platform and increase the resolution. Further, a
simulation-based daylighting constraint could offer a more thorough
treatment of daylight compared to the analytical constraint applied in
this study. Nevertheless, the case studies were modeled with current,
appropriate design variables and simulation resolution for early design,
which reveals significant implications for both architecture and building
performance.

10

6. Conclusion

In this study, we investigated the implications of automated
sequential optimization while designing with dynamic glazing mate-
rials. While geometric optimization alone achieved only 2% energy
savings, dynamic material optimization savings reached up to 19%.
However, when combined in sequence, around 5% potential energy
savings are lost. The paper also determines the relative importance of
different decision categories in early design. The results are in accor-
dance with previous findings or assumptions about the building design
process established by studying these properties separately, such as the
limits of geometric optimization on savings compared to facade mate-
rials [46] and the relative importance of WWR [60]. However, by using
repeated constrained optimization runs that consider geometry, facades,
and realistic design constraints altogether, the data in this paper pro-
vides a comprehensive analysis of these interrelated building features
and how they are manipulated during design.

This study leaves several areas for further research. More extensive
simulation of modern building geometries and types requires increasing
access for designers and allowing for customization of dynamic com-
ponents in parametric environments. Other issues to address include
increasing the resolution of the simulation and allowing for continuous
transitions, rather than state-to-state. Additionally, there are opportu-
nities for multi-disciplinary optimization (MDO) [61-63] and further
studies with multi-objective methodologies, as opposed to constrained
optimization. Such studies could provide new insight into early design
strategies for balancing adjacent objectives in conjunction with opera-
tional energy use. As daylighting simulations become less computa-
tionally expensive, including a daylight objective such as spatial
daylight autonomy (sDA) or a glare metric will also provide more
detailed information. Finally, a more extensive treatment of simulta-
neous optimization for flexible geometric variables and facade charac-
teristics should be conducted for geometries outside the typical
rectilinear prototypes, once tools are developed to make this accessible
within design software.

While dynamic facades show considerable promise for improving the
sustainability of future buildings, several barriers remain to their
frequent adoption in architecture, making them a topic of ongoing
research. As the fundamental material and technological questions
surrounding dynamic facades are being answered, it is critical that
digital design approaches develop to make these technologies accessible
for design practitioners. This paper hopes to stimulate further investi-
gation into how dynamic facade considerations can be better incorpo-
rated into advanced design approaches, including parametric design and
optimization.
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