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Вдохновленные применениями в нейровизуализации, мы рассмат-
риваем проблему установления глобальной минимаксной нижней
границы в модели тензора высокого порядка. В частности, описыва-
емая нами методология позволяет получить глобальную минимакс-
ную границу для оценок интегральных кривых, предложенных в ра-
боте О. Кармайкла и второго автора 2015 г., при полупараметриче-
ской постановке задачи. Теоретические результаты настоящей рабо-
ты гарантируют, что оценки, используемые для отслеживания слож-
ной структуры волокон внутри живого человеческого мозга и постро-
енные по данным, полученным из диффузионной тензорной МРТ
с высоким угловым разрешением (HARDI), оптимальны не только
локально, но и глобально. Таким образом, глобальная минимаксная
граница асимптотического риска оценок предоставит квантифика-
цию неопределенности для метода оценки во всей области изобра-
жения. В дополнение к теоретическим результатам проводится по-
дробное эмпирическое исследование с целью определить оптималь-
ное число градиентных направлений для протоколов нейровизуали-
зации, которые мы далее иллюстрируем анализом сканирования моз-
га живого человека по реальным данным.

Ключевые слова и фразы: глобальная минимаксная нижняя гра-
ница, полупараметрическая оценка, диффузионная тензорная МРТ
с высоким угловым разрешением.
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1. Introduction.
1.1. Formulation of the problem and results. Given a fixed N ×JM

design matrix B and a set of (random) points X1, . . . , Xn in a bounded open
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convex subset G of Rd, one observes

Yi = BD(Xi) + Σ1/2(Xi)ξi, (1)

where Yi, ξi ∈ RN and Σ(Xi) is an N×N symmetric positive definite matrix.
Here D is a vector of JM = (M + 1)(M + 2)/2 unique components derived
from a supersymmetric tensor D ∈ RdM of rank R and even order M , which
we will describe later. Finally, ξi are i.i.d. zero-mean unit-variance random
variables.

The main objects of interest are the integral curves x(r)(t) for t ∈ [0, T ],
r = 1, . . . , R, which are the solutions of the ordinary differential equa-
tions (ODEs)

dx(r)(t)

dt
= v(r)

(
x(r)(t)

)
, t ∈ [0, T ], x(r)(0) = a∗, (2)

where a∗ ∈ G is the initial point and v(r), r = 1, . . . , R, are the so-called
pseudo-eigenvectors of tensor D, which would be described in detail in sec-
tion 2. For M = 2, they are ordinary eigenvectors of the matrix D.

For y(t) = (y1(t), . . . , yd(t)), t ∈ [0, T ], let us introduce the integrated
Lp-norms given by

∥y∥p,T :=

(∫ T

0

d∑
i=1

|yi(t)|p dt
)1/p

, 1 ⩽ p <∞,

∥y∥∞,T := sup
t∈[0,T ]

max
1⩽k⩽d

|yk(t)|.
(3)

In this paper we derive the lower bounds of the form

lim inf
n→∞

inf
X̂

(1)
n ,X̂

(2)
n ,...,X̂

(R)
n ∈En(a∗,T )

sup
D∈D2(a∗,G,T )

Ew
(
n2/(d+3)

(
∥X̂(1)

n − x(1)∥p,T ,

∥X̂(2)
n − x(2)∥p,T , . . . , ∥X̂(R)

n − x(R)∥p,T
))
> 0

for any number T > 0, any point a∗ ∈ G, any loss function w ∈ W in
a certain class of functions using the integrated Lp-norms. Here En(a∗, T )
denotes the class of all possible estimators of the integral curves based on the
dataset {(Xi, Yi), i = 1, . . . , n} starting at a∗ and traced for t ∈ [0, T ]. Mean-
while, D2(a∗, G, T ) describes the class of supersymmetric twice continuously
differentiable tensors that are nondegenerate in a certain sense explained in
section 2. These bounds guarantee that no estimator of the integral curve
can converge to the true integral curve faster than the rate n−2/(d+3) in the
whole imaging domain G globally.

Recently, Carmichael and Sakhanenko proposed a class of integral estima-
tors for x(r), r = 1, . . . , R, for the model (1). In [2, Theorem 3] we show
that these estimators (from now on referred to as CS estimators) enjoy the
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global minimax optimal rate of convergence n−2/(d+3). This work is distinct
from our earlier work [1], where we provide regularity conditions needed
for pointwise minimax optimal rate. The analysis of the minimax rates in
terms of integrated Lp-norms is more delicate than the analysis of the point-
wise case. It leverages results from differential geometry with a version of
Fano’s lemma [26] as opposed to implementation of Hájek’s lemma for locally
asymptotically normal families of distributions in [1].

The considered model (1) comes from neuroimaging. Thus, as a practical
application we propose and carry out a novel approach to compare different
imaging protocols (designs of imaging studies) based on their empirical val-
ues of the lower bounds that we derive in Theorem 1 and Corollary 1 (see
section 3). The intuition behind this approach is that by using minimax
optimal estimators one can control the uncertainty up to a constant in the
lower bound. Thus, protocols can be compared based on the empirical values
of this constant. The protocols with the smallest values of this lower bound
under other conditions being fixed would be more practical, since they would
have a tighter control on the estimation error. See section 4 for details.

1.2. Neuroimaging motivation. The model (1) is used in the so-called
high angular resolution diffusion imaging (HARDI), which is a popular brain
imaging approach in a class of diffusion tensor imaging (DTI) techniques.
Below we explain some scientific background for it to give motivation for
this model.

In magnetic resonance imaging (MRI), under a strong magnetic field, the
self-spinning of protons is perturbed with a radio frequency pulse. The signal
from the spin dynamics after the perturbation is used to generate MR images.
Since MRI contains no radiation, the potential harm to a human body is
negligible. Diffusion of water molecules in the presence of magnetic field
gradients leads to a MRI signal loss. This is the main mechanism behind
diffusion weighted imaging.

In particular, a DT-MRI scanner records log-losses of signal for a fixed
magnetic field gradient g ∈ Rd, ∥g∥2 = 1, which are modeled according to

ln

(
S(x, g)

S0(x)

)
= −c

3∑
i1=1

3∑
i2=1

Di1i2(x)gi1gi2 + σ(x, g)ξg,

where S(x, g) is the relative amount of water diffusion at voxel x along spatial
direction g, and S0(x) is amount of water diffusion without any magnetic field
gradient. From now on gi, i = 1, . . . , d, are the components of the gradient
direction, and the matrix components Di1i2 , i1, i2 = 1, . . . , d, represent the
amount of diffusion at voxel x. Note that the log-losses of imaging signal
are described by a symmetric positive definite matrix D. The zero-mean
measurement error is given by ξg, while σ(x, g) > 0 is a scaling function, and
c is a constant that depends on several physical parameters of the imaging
procedure.
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The diffusion weighted imaging data are most commonly used in DTI,
where diffusivity values and principal diffusion orientation can be estimated
at each voxel. The healthy axons contain intact myelin sheaths that tend to
align in organized orientations, and water diffusivity in voxel generally follows
these directions of the axonal bundles. Neural fiber tracing is normally done
by exploring the orientation of diffusion tensor at neighboring voxels. The
successful application of this method can be found in [17], [28], where authors
have explored the structural connectivity of the different brain regions. Other
applications involve exploring brain maturation in young children (see [5]),
axonal degeneration in Alzheimer’s disease (see [29]).

Koltchinskii et al. [16] first proposed a nonparametric integral curve esti-
mation method to trace neural fiber using the leading eigenvector of Dt in
the presence of additive measurement errors. Using this method the authors
successfully traced a thick neural fiber along with optimal confidence ellip-
soids. Then Carmichael and Sakhanenko [4] considered the matrix model
and constructed asymptotically normal fiber estimators with confidence el-
lipsoids.

However, in case of neural fibers which cross each other, branch, converge
or diverge, models using just eigenvectors or symmetric positive definite ma-
trices are not enough, and a more sophisticated modeling has to be consid-
ered. To this end, Özarslan and Hareci [20] proposed HARDI to model these
phenomena of fibers:

ln

(
S(x, g)

S0(x)

)
= −c

3∑
i1=1

· · ·
3∑

iM=1

Di1...iM (x)gi1 · · · giM + σ(x, g)ξg, (4)

where the tensor components Di1...iM represent the amount of diffusion along
the gradient combination (gi1 , . . . , giM ) at voxel x. In equation (4), the
log-losses of signal are described by a supersymmetric tensor D of even or-
der M . We remark that odd orders would not allow positive definiteness of
the diffusion tensor. The noise is described via a zero-mean measurement
errors ξg and a scaling function σ(x, g) > 0.

Under this model Carmichael and Sakhanenko [3] proposed a nonparamet-
ric integral curve estimation method to trace fiber tracts and assess the un-
certainty. For classical DTI the fiber tracks are followed in small steps along
the leading eigenvector of the tensor field D, which indicates the primary
direction of the water diffusion. For HARDI these tracks follow the so-called
pseudo-eigenvectors, which generalize eigen-structures for matrices (M = 2)
to high-order tensors (M > 2). Traditionally for neuroimaging studies the
order of tensor is taken to be even numbers such as M = 4, 6, 8, etc. Heuris-
tically speaking, the diffusion tensor form should be positive definite which is
equivalent to homogeneous polynomial of degree M . For odd M there exists
no positive definite supersymmetric tensor, therefore only even M are used.
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A supersymmetric tensor D has only JM = (M + 1)(M + 2)/2 unique
components that can be stacked into a vector D ∈ RJM . A DT-MRI scanner
collects the data on a set of N different gradient directions g. The log-losses
of the imaging signal are then stacked into the observed vectors Yi ∈ RN for
different locations Xi in a brain. This reformulation yields the model (1),
where the known design matrix B is a complicated functional of N different
gradients gk, k = 1, . . . , N .

Mathematically, the fiber tracks are modeled as the solutions of ODEs
(2) driven by the pseudo-eigenvectors v(r), so they are the integral curves.
Based on (4) and some regularity conditions the authors of [3] proposed
a four step estimation method (CS estimator) to estimate integral curves
(x(1)(t), . . . , x(R)(t)), t ∈ [0, T ], which will be described later. In this paper
we will show that CS estimators are minimax optimal in a global sense.

Overall, this work places integral curve estimation into nonparametric lit-
erature parallel to that for density and regression functions. Indeed, minimax
principle is an important inferential tool based on linear ordering principle
which is often used to find optimal estimators (see [9]). It has rich his-
tory. In nonparametric framework Stone [25] established global minimax
optimal rates for the estimators in a simple nonparametric regression set-
ting. Mammen and van de Geer [18] proposed a locally adaptive regression
spline estimator, which they proved minimax optimal both locally and glob-
ally. Some more recent works include [21], where the authors have established
global minimax optimal rates for sparse additive models over a reproducing
kernel Hilbert space (RKHS) in a L1-type convex optimization framework.
Guntuboyina–Sen [10] and Kim–Samworth [15] established global rate of con-
vergence in univariate convex regression and log-concave density estimation,
respectively.

In the same spirit of these works, the theorems in this paper would estab-
lish that under some mild regularity conditions the ensemble of integral curve
estimators x̂(r)n (t), t ∈ [0, T ], r = 1, . . . , R, will have the minimax optimal
convergence rate in the entire domain of the trace [0, T ], under the inte-
grated Lp-norm in (3). Theorem 1 and the corresponding corollary establish
that the integrated Lp-norm of the error in estimation for all the integral
curves when considered under the loss function w(u), u ∈ RR, converges to
a nonzero finite constant with the asymptotic rate n2/(d+3) within the class
of permissible estimators and within the class of permissible estimators for
which the tensor field is twice continuously differentiable, respectively. The-
orem 2 would establish that CS estimators x̂(r)n (t), t ∈ [0, T ], r = 1, . . . , R,
in [3] have the supremum risk based on the integrated Lp-norm in (3) con-
verging to a positive finite constant with the asymptotic rate n2/(d+3). The
results we proposed here are quite similar to those in [22], where the author
has established global minimax bounds for the asymptotic risk of the integral
curve estimators as solution of differential equation involving a simple vec-
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tor field perturbed by an additive noise. However in this work we use of
tensor field perturbed with noise which involves additional layer of compli-
cation. Thereby the theorems and proofs in this paper are quite distinct and
extend the results of [22] to a different general framework.

Finally, we illustrate the implications of the theorems in the neuroimaging
context. We consider the simulation example following the setup of [24].
We simulate integral curves depicting “Y” pattern fiber distribution based
on signal-to-noise ratio (SNR) and thickness of fibers, which are commonly
present in live brains.

Fig. 1. (a) 3-dimensional trace of the “Y” pattern; (b) 3-dimensional
trace of the “Y” pattern with 95% confidence ellipsoids. We trace the
integral curve using the method of [3] creating the “Y” pattern. Here
sample size n is 603, SNR = 2, thickness of the fiber ε equals 0.04,
step size δ equals 2, and the constant β is 10−7.

The 3D plot in Fig. 1 represents an estimated integral curve with 95% con-
fidence ellipsoid around it computed using the method proposed in [3]. The
“Y” pattern essentially has two branches; therefore, if we take a loss function
w : [0,∞)2 → [0,∞) as w(u) =

∑2
r=1 u

2
r and consider an integrated L2-norm

for the individual integral curves for the argument of w, then the empirical
risk can be computed by obtaining some summary measure based on Monte
Carlo simulation of the lower bound value κ = w

(
n1/3(∥X̂(1) − x(1)∥2,T ,

∥X̂(2) − x(2)∥2,T )
)
. On the basis of our results, the confidence ellipsoids col-

ored in red around the estimated curve in Fig. 1 have the optimal width at
any given point of the trace. Given this interpretation, we understand that
no other estimator can guarantee a tighter ellipsoid around the estimated
curve at any point of the trace, since it is minimax optimal.

The rest of the paper is organized as follows. In section 2 we introduce
some notation, describe the statistical model, and provide a brief overview of
the estimation and the basic underlying assumptions needed for the modeling
and inference. In section 3 we state three main results. In section 4 we
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describe the physical phenomenon behind the DT-MRI and also describe
our simulation study, and results from a real data analysis. Additionally,
in this section we provide a lower bound based choice of the protocol that
gives the lowest global lower bound on the asymptotic risk of the estimators.
Sketches of the proofs with necessary lemmas and propositions are provided
in section 5; the detailed proofs can be found in [2]. Some remarks and
conclusion are given in section 6.

2. Model.
2.1. Pseudo-eigen structure. Throughout the paper ∥ · ∥1, ∥ · ∥2, and

∥ · ∥∞ will represent the L1-, L2-, and L∞-norms in the Euclidean space Rd,
and the notation ∥ · ∥ would be used generally for any Lp-norm, 1 ⩽ p ⩽ ∞.

A supersymmetric tensor D of rank R and (even) order M can be de-
composed as D =

∑R
r=1 vr ⊗ · · · ⊗ vr for some v1, . . . , vR ∈ Rd, where the

notation u⊗w means the outer product of vectors u,w ∈ Rd, which is simply
a 2D tensor with the components (u ⊗ w)ij = uiwj for i, j = 1, . . . , d. Also
we will use

v⊗M = v ⊗ · · · ⊗ v︸ ︷︷ ︸
M

, v ∈ Rd,

as an abbreviated notation for tensor products. For each r = 1, . . . , R, the
pair λ(r) ∈ R, v(r) ∈ Rd, ∥v(r)∥2 = 1, is referred to as pseudo-eigenvalue and
pseudo-eigenvector, respectively, and the pair minimizes the Frobenius norm
defined as

d∑
i1=1

· · ·
d∑

iM=1

(
D

(r)
i1...iM

− λvi1 · · · viM
)2
,

D(r) = D(r−1) − λ(r−1)(v(r−1))⊗M , D(1) = D.

(5)

See [7], [19], and [27] for additional details.
2.2. Carmichael and Sakhanenko (CS) estimator. The estimation

algorithm described in [3] is as follows. In the first step, D(Xi) is estimated
from (1) using least square estimator D̃i or weighted least square estimator at
each of the locations X1, . . . , Xn ∈ G. In the second step, a kernel smoothing
estimator is used over these estimates to get an estimator D̂n at all locations
x ∈ G as

D̂n(x) =
1

nhdn

n∑
i=1

K

(
Xi − x

hn

)
D̃i,

where K is a kernel function and hn is a bandwidth. In the third step,
the tensor D̂n is decomposed in its pseudo-eigenpairs

(
λ̂
(r)
n , v̂

(r)
n (x)

)
, x ∈ G,

r = 1, . . . , R, using (5). In the final step, the integral curve estimators X̂(r)
n (t)

for t ∈ [0, T ], r = 1, . . . , R, are obtained as the solutions of the ODEs

dx̂
(r)
n (t)

dt
= v̂(r)n

(
x̂(r)n (t)

)
, t ∈ [0, T ], x̂(r)n (0) = a. (6)
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The details of this estimation algorithm can be found in [3]. In our earlier
work [1] we established the pointwise minimax optimal rate of convergence
of the integral curve estimators

{
X̂

(r)
n , r = 1, . . . , R

}
using locally asymp-

totically normal families of distributions and famous Hájek’s lemma.
In this paper we will obtain the lower bound for accuracy of estimation in

terms of the norms defined in (3). To find global bounds for the asymptotic
risk, we will confine ourselves to the tensors that belong to a certain class
D2(a∗, G, T ), since it plays a key role in the nonparametric estimation process
described in [3]. This class D2(a∗, G, T ) contains tensors which satisfy the
following condition (A1). Additionally each of the R pseudo-eigenvectors
obtained from a tensor D ∈ D2(a∗, G, T ) are used in the equation (2), with
a = a∗ ∈ Rd. Besides (A1) we will also require assumptions (A2)–(A8) in [3],
which we describe below.

(A1) Let G be a bounded open set in Rd with Lebesgue measure 1. It
contains the support of the twice continuously differentiable everywhere su-
persymmetric tensor field D : RdM → Rd2 of an even order M > 2 and a rank
1 ⩽ R ⩽ (M + 2)/2.

For a vector v and tensor D define the matrix-valued function T : Rd ×
RdM → Rd2 as follows:

T (v,D)km = (M − 1)
d∑

i3=1

· · ·
d∑

iM=1

Dkmi3...iM vi3 · · · viM , k,m = 1, . . . , d.

Then assume that Ker(T (v(r), D(r))−λ(r)I) = 0 everywhere in the support
ofD for r = 1, . . . , R, where Ker(T ) stands for the kernel of the linear map T ,
i.e., the space of all vectors that are zero under T .

(A2) The initial point a lies inside the support of D( · ).
(A3) There exists a number T > 0 such that for all t1, t2 ∈ (0, T ) with

t1 ̸= t2, we have x(r)(t1) ̸= x(r)(t2) for all r = 1, . . . , R.
(A4) Locations {Xj , j ⩾ 1} are independent and uniformly distributed

random variables in G.
(A5) The observed data {(Xj , Yj), j = 1, . . . , n} obey the model (1) with

a fixed nonrandom known real-valued N × JM matrix B, an unknown con-
tinuous on G symmetric positive definite N ×N tensor field Σ: Rd → RN2

on G, and an unobservable random N -component vector Ξj , j = 1, . . . , n.
Recall that N ⩾ JM ; this condition is commonly met by real diffusion MRI
data. Additionally, it is assumed that B⊤B is invertible and EΣ4

kl(X1) <∞,
1 ⩽ k, l ⩽ N .

(A6) The random vectors Ξj , j ⩾ 1, are i.i.d. and independent of locations.
Also, EΞ1 = 0 and EΞ1,kΞ1,l = δkl for all 1 ⩽ k, l ⩽ N .

(A7) The kernel K is nonnegative and twice continuously differentiable on
its bounded support. Moreover,

∫
Rd K(x) dx = 1,

∫
Rd xK(x) dx = 0.

(A8) The bandwidth hn satisfies the condition nhd+3
n → β > 0 as n→ ∞,

where β is a known fixed number.
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With these assumptions the following convergence of stochastic processes
is established in [3]: for all r = 1, . . . , R, as n→ ∞√

nhd−1
n

(
X̂(r)

n (t)− x(r)(t)
) d−→ ν(t), t ∈ [0, T ],

where ν(t) is a Gaussian process whose mean and covariance depend on D,
K, x(r), and β. Notice that (A1) is a technical assumption that arises in the
CS estimation method, to ensure that implicit derivative ∂v(r)/∂D exists for
all x ∈ G (see [3] for details).

In addition to (A5) and (A6), we assume the following on the density f of
the noise variable ξ.

(A5′) Noise variables {ξi : i = 1, 2, . . . } are i.i.d. with a common density f
such that all the second order partial derivatives of the function

g(u) := −
∫
RN

ln

(
1 +

f(z + u)− f(z)

f(z)

)
f(z) dz, u ∈ RN ,

are continuous at 0.
The class of densities that is described by condition (A5′) is fairly large.

In particular, normal densities satisfy (A5′). Moreover, let f be “regular” as
defined in [12], meaning that f is continuous with respect to some additive
parameter u ∈ RN , has finite Fisher information with respect to the same
parameter u, and the derivative of

√
f with respect to u is continuous in RN .

Then the second order partial derivatives of g can be written as

g′′ij(u) =

∫
f ′i(y)f

′
j(y − u)

f(y)
dy =

∫
f ′j(y)f

′
i(y − u)

f(y)
dy, i, j = 1, . . . , N,

where f ′i , g
′′
ij denotes the i-th first order partial derivative of f and the ij-th

second order partial derivative of g, respectively. The assertion of (A5′) can
be understood by following Lemma 7.1 in [12]. Under assumption (A5′) it
can be observed that the Fisher information components

Iii =

∫
(f ′i(z))

2

f(z)
dz, i = 1, . . . , N,

of the densities fi, i = 1, . . . , N , are finite, and the continuity condition for fi,
i = 1, . . . , N , holds:∫

(f ′i(y + h)− f ′i(h))
2

f(y)
dy ⩽ C|h|2, i = 1, . . . , N,

for 0 < |h| ⩽ ε and for some constant C > 0.
We would like to end this section by shedding light on some of the techni-

cal assumptions. Indeed, (A1) and (A3) together ensure that the tensor D
achieves rank R for any x ∈ G, and all ODEs governing the integral curves
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have unique solutions. Assumption (A3) in particular ensures that x(r)(t),
t ∈ [0, T ], for any r = 1, . . . , R, does not create a loop in the trace. The
assumption (A7) specifies a rather standard class of kernel functions for CS
estimation, while (A8) highlights the dependence of bandwidth hn on the
sample size n in the CS estimating technique. This bandwidth rate matches
the optimal rates for kernel regression and density estimators in a sense that
if gn estimates a density g in Rd, then

∫
R gn estimates another density

∫
R g

in Rd−1.

3. Main results. In this section we present the main theorems along
with some motivation to establish global optimal bounds for integral curves
estimators. We also present the parametric subclass of tensors and their
construction. Furthermore, we describe in Lemma 1 (see section 3.3), why
the constructed parametric subclass satisfies the assumption (A1), which
is the centerpiece of the proof.

3.1. Theorems. Let En(a∗, T ) denote the class of all possible estimators
of the curve x(r)(t), t ∈ [0, T ], r = 1, . . . , R, obtained by solving the ODE (2)
governed by pseudo-eigenvectors v(r), r = 1, . . . , R, based on (Xi, Yi), i =
1, . . . , n, and starting at a∗.

Denote by W the class of functions w : [0,∞)R → [0,∞) such that w(0)= 0,
w(x) > 0 for x ̸= 0, x ∈ [0,∞)R, and w(x1) > w(x2) for ∥x1∥ > ∥x2∥, where
x1 ̸= x2, x1, x2 ∈ [0,∞)R. Now using the integrated Lp-norm defined in (3)
we state the main results of this work.

Theorem 1. Assume conditions (A1)–(A6) and (A5′) hold and 1 ⩽ R ⩽
(M + 2)/2. For c, k > 0, define

Dc,k = {D ∈ D2(a∗, G, T ) : ∥D−D0∥∞ ⩽ cn−2/(d+3) and ∥D′′−D′′
0∥∞ ⩽ k}.

Then for any numbers c > 0, T > 0, any point a∗ ∈ G, any D ∈ Dc,k , any
function w ∈ W , any 1 ⩽ p ⩽ ∞, and some k > 0, we have

lim inf
n→∞

inf
X̂

(1)
n ,X̂

(2)
n ,...,X̂

(R)
n ∈En(a∗,T )

sup
D∈Dc,k

Ew
(
n2/(d+3)

(
∥X̂(1)

n − x(1)∥p,T ,

∥X̂(2)
n − x(2)∥p,T , . . . , ∥X̂(R)

n − x(R)∥p,T
))
> 0.

Theorem 1 establishes that no ensemble of integral curve estimators X̂(r)
n (t),

r = 1, . . . , R, t ∈ [0, T ], would converge to the true ensemble of integral
curves faster than n−2/(d+3) for tensors inside the special class Dc,k under
the integrated norm with the appropriate loss function w. Since Dc,k ⊂
D2(a∗, G, T ), as a result of Theorem 1, we state the following corollary.

Corollary 1. Assume conditions (A1)–(A6) and (A5′) hold and 1 ⩽ R ⩽
(M + 2)/2. Then for any number T > 0, any point a∗ ∈ G, any function
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w ∈ W , we have

lim inf
n→∞

inf
X̂

(1)
n ,X̂

(2)
n ,...,X̂

(R)
n ∈En(a∗,T )

sup
D∈D2(a∗,G,T )

Ew
(
n2/(d+3)

(
∥X̂(1)

n − x(1)∥p,T ,

∥X̂(2)
n − x(2)∥p,T , . . . , ∥X̂(R)

n − x(R)∥p,T
))
> 0.

With Corollary 1 we establish the minimax lower bound for the integral
curve estimators X̂(r)

n (t), r = 1, . . . , R, t ∈ [0, T ], based on the class of
tensors D2(a∗, G, T ), globally. Further, we show that these optimal rates are
attained by the CS estimators.

Theorem 2. Assume conditions (A1)–(A8) and (A5′) hold. Let {X̂(r)
n ,

r = 1, . . . , R} from equation (6) be the CS estimators.
1. If we additionally assume E∥ξi∥qq < ∞ for some q ⩾ 4, then for each

r = 1, . . . , R, any number T > 0, any point a∗ ∈ G, and any 2 ⩽ p ⩽ q , we
have

sup
n

sup
D∈D2(a∗,G,T )

E
∥∥n2/(d+3)

(
X̂(r)

n − x(r)
)∥∥

p,T
<∞.

2. For each r = 1, . . . , R, any number T > 0, and any point a∗ ∈ G, we
have

sup
n

sup
D∈D2(a∗,G,T )

E
∥∥n2/(d+3)

(
X̂(r)

n − x(r)
)∥∥

∞,T
<∞.

We remark that we only require the additional moment assumption on
the noise variables ξi for Theorem 2. Meanwhile, Theorem 1 and Corollary 1
would still hold under this assumption. These two theorems and the corollary
together provide the global bounds for the asymptotic risk of the CS integral
curve estimator and show that it is minimax optimal.

3.2. Parametric subclass of tensors. In order to establish lower bounds
for the asymptotic risk of integral curve estimators for a large nonparamet-
ric class of tensors, we start by constructing of a parametric subclass in
D2(a∗, G, T ). We begin with perturbing the curves, which will perturb the
resulting vector-field, ultimately translating the perturbation onto the tensor
field in D2(a∗, G, T ).

For each r = 1, . . . , R, let x(r)0 (t, a∗), t ∈ [0, T ], denote the integral curve
starting at a∗, driven by the vectors v(r)0 (x

(r)
0 (t, a∗)), where x(r)0 (0, a∗)= a∗.

Here we assume that for any x ∈ G, we have 0 < ∥v(r)0 (x)∥ < ∞. Addition-
ally, for a small ϵ > 0, consider Aϵ, an ϵ-neighborhood of a∗ (in Euclidean
norm) in a (d − 1)-dimensional hyperspace transversal to the flow at a∗.
Suppose the volume swept by Aϵ, under the flow v

(r)
0 , is denoted by

G
(r)
ϵ,T =

{
x(r) = x

(r)
0 (t, a) : t ∈ [0, T ], a ∈ Aϵ

}
⊂ G, r = 1, . . . , R.

Then G(r)
ϵ,T defines a neighborhood of the integral curve x(r)0 (t, a∗), t ∈ [0, T ],

as we vary the initial point a. Suppose α > 0 and γ > 0 (we will show
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later that the best choice is α = 2/(d + 3) and γ = α/2); similarly to the
perturbation defined in [22] we can define

x
(r)
b (t, a) = x

(r)
0

(
t+ n−αφ

(r)
b (t)ψ(r)(nγ |a− a∗|), a

)
,

where φ
(r)
b (t), t ∈ [0, T ], is a family of twice continuously differentiable

functions indexed by b ∈ {0, 1}P . Suppose that φ(r)
b (t) ̸≡ 0, φ(r)

b (0) = 0,
φ
(r)
b (T ) = 0, −1 < φ

′(r)
b (t) ⩽ 1 for r = 1, . . . , R. Additionally assume

ψ(r)(z), z > 0, is a three times continuously differentiable function such that

0 < ψ(r)(z) <
c

∥v(r)0 ∥∞
, ψ′(r)(0) = ψ′′(r)(0) = 0,

ψ′(r)(z) ⩽ 0 for z > 0, ψ(r)(z) = 0 for z > ϵ.

Note that the perturbation in the parameter t is small enough and for all
r = 1, . . . , R, the perturbation vanishes far enough from x

(r)
0 (t, a∗), t ∈ [0, T ].

Then the corresponding perturbation in the vector field can be found as

d

dt
x
(r)
b (t, a) = v

(r)
b

(
x
(r)
b (t, a)

)
=

d

dt
x
(r)
0

(
t+ n−αφ

(r)
b (t)ψ(r)(nγ |a− a∗|), a

)
= v

(r)
0

(
x
(r)
b (t, a)

)(
1 + n−αφ

′(r)
b (t)ψ(r)(nγ |a− a∗|)

)
. (7)

By the flow box theorem (see [6, Lemma 1.120]) for x(r) ∈ G
(r)
ϵ,T , there are

uniquely defined twice continuously differentiable functions t(r)b (x) ∈ [0, T ]
and ab(x) ∈ Aϵ such that there is a b-perturbed integral curve starting in Aϵ,
which goes through x(r), and

x
(r)
b

(
t
(r)
b (x(r)), ab(x

(r))
)
= x for r = 1, . . . , R,

since v(r)0 (x) ̸= 0 for all x ∈ G
(r)
ϵ,T . So the expression on the right-hand side

of (7) can be written as

v
(r)
b,n(x) = v

(r)
0 (x)

(
1 + n−αφ

′(r)
b (t

(r)
b (x))ψ(r)(nγ |ab(x)− a∗|)

)
. (8)

Now for a fixed b ∈ {0, 1}P , and using v(r)b,n, r = 1, . . . , R, we construct the
perturbed tensor by

Db(x) = λ1v
(1)
b,n(x)

⊗M + λ2v
(2)
b,n(x)

⊗M + · · ·+ λRv
(R)
b,n (x)⊗M . (9)

3.3. A special lemma and ideas of the proofs. We need to verify
that the proposed parametric class of tensors satisfies (A1). Consider the
tensor corresponding to vectors v(r)0 (x), r = 1, . . . , R, named D0:

D0(x) = λ1v
(1)
0 (x)⊗M + λ2v

(2)
0 (x)⊗M + · · ·+ λRv

(R)
0 (x)⊗M , (10)
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where pseudo-eigenvalues and eigenvectors λr, v
(r)
0 , r = 1, . . . , R, respec-

tively, are chosen in such a way that D0 belongs to the class Dc,k in Theo-
rem 1, meaning in particular, that it satisfies (A1). Let us introduce some
additional notation: for p = 1, . . . , R,

D
(p)
0 (x) =

R∑
r=p

λrv
(r)
0 (x)⊗M , D

(p)
b (x) =

R∑
r=p

λrv
(r)
b,n(x)

⊗M . (11)

Also we assume that
∥∥v(r)0 (x)

∥∥ = 1 and denote
∥∥v(r)b,n(x)

∥∥2 =: c
(r)
b,n. Hence, it

is easy to note that c(r)b,n → 1 as n→ ∞.

Lemma 1. For r = 1, . . . , R, for all x ∈ G
(r)
ϵ,T , the tensors D(r)

b satisfy

Ker
(
T
(
v
(r)
b,n(x), D

(r)
b (x)

)
− λrI

)
= 0.

The proof of this lemma is quite technical and is provided in [2].
To prove the lower bounds we first establish a multivariate Fano’s lemma

that lower-bounds the supremum risk over Dc,k by a supremum over a finite
parametric subclass of tensors that are close in the Kullback–Leibler diver-
gence, which is subsequently bounded by infimum of Shannon’s information
over δ(r)2 -separated net of integral curves. Secondly, we prove that the finite
collections of densities of (X,Y ) corresponding to tensors in Dc,k consist of
members that are close in the Kullback–Leibler divergence while the corre-
sponding integral curves are 2δ(r)2 -separated in ∥ · ∥p,T . Thirdly, we check that
the elements of the finite collection belong to Dc,k. Finally, we check that
the corresponding integral curves are Cn−α−δ-separated in ∥ · ∥p,T , where α,
δ are chosen to balance the resulting bound.

To prove the upper bounds for CS estimators we carefully bound moments
of the deviation process between CS estimators and the true integral curves.
The details are deferred to [2].

4. Simulation study and data analysis.
4.1. Simulation study. In this section using the setup of [24] and consid-

ering d = 3 again, we simulate the “Y” pattern using several sample sizes from
303 to 1003. For each curve, we computed the estimated constant in the lower
bound in Theorem 1, which is κ = w

(
n1/3(∥X̂(1)−x(1)∥2,T , ∥X̂(2)−x(2)∥2,T )

)
.

Since our method is minimax globally with respect to the asymptotic risk
of the estimators, we can compare these κ values for different scenarios to
choose the best one. Below we provide the 25th percentile, the median, and
the 75th percentile for the empirical κ values that are simulated over 100
times for each of the eight different sample sizes.

As we can see from Fig. 2, the median of the κ values tends to stabilize
when we use n0 = 60. Therefore, next we will investigate the robustness
of the values for κ when we vary SNR and thickness of the fibers with the
sample size n = 603. In Table 1 we provide the results.
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Fig. 2. The solid, dashed, and dotted lines show the 25th, 50th, and
75th percentiles of the κ values across all the sample sizes n = n30,
n0 = 30, 40, 50, 60, 70, 80, 90, 100 repeated 100 times. Here we have
used step size δ = 0.02 and β = 10−7 for each of the iterations.

Table 1. The 25th percentile, median, and 75th percentile of the
empirical κ values are ordered in top to bottom in each line for different
combinations of SNR and thickness of fibers; the sample size is n = 603

SNR Thickness=0.02 0.04 0.06 0.08 0.1

2 2.14× 10−4 9.82× 10−5 7.27× 10−5 7.6× 10−5 8.19× 10−5

3.25× 10−3 2.88× 10−4 2.05× 10−4 1.95× 10−4 2.6× 10−4

2.63× 10−2 2.39× 10−3 1.22× 10−3 8.3× 10−4 1.13× 10−3

4 2.04× 10−7 1.14× 10−7 1.05× 10−7 1.07× 10−7 9.4× 10−8

1.17× 10−5 2.39× 10−7 2.34× 10−7 2.55× 10−7 2.35× 10−7

7.38× 10−4 1.49× 10−6 5.74× 10−7 8.09× 10−7 6.1× 10−7

6 1.78× 10−8 3.49× 10−9 2.42× 10−9 3.05× 10−9 2.99× 10−9

4.16× 10−7 8.82× 10−9 4.86× 10−9 6.3× 10−9 5.55× 10−9

5.3× 10−5 2.93× 10−8 1.85× 10−8 2.18× 10−8 1.35× 10−8

8 5.25× 10−10 1.86× 10−10 2.17× 10−10 2.11× 10−10 2.03× 10−10

4.31× 10−8 4.02× 10−10 3.7× 10−10 4.02× 10−10 3.93× 10−10

1.87× 10−6 1.13× 10−9 1.53× 10−9 8.12× 10−10 7.28× 10−10

10 1.05× 10−10 2.58× 10−11 3× 10−11 2.67× 10−11 2.78× 10−11

6.1× 10−9 5.21× 10−11 5.97× 10−11 5.28× 10−11 5.05× 10−11

9.07× 10−8 1.07× 10−10 1.34× 10−10 1.02× 10−10 1.53× 10−10

From Table 1 it is evident that if we increase the SNR, then the κ value
decreases, indicating that as the signal gets stronger, the traced curve es-
timates the true curve more accurately, and hence the asymptotic risk de-
creases. However, the thickness of the curves does not affect the value of κ
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in a significant way. Overall, the smallest thickness seems to have the worst
performance, while the best value of κ is obtained more often when the thick-
ness is close to 0.06 indicating that if the thickness of the curves is extremely
high or low, then the uncertainty in estimation is higher.

4.2. Neuroimaging example. Several diffusion weighted imaging data-
sets were collected from a 28-year-old healthy male brain on a GE 3T Signa
HDx MR scanner (GE Healthcare, Waukesha, WI) with an 8-channel head
coil. The subject signed the consent form approved by the Michigan State
University Institutional Review Board. Diffusion weighted images were ac-
quired with a spin-echo echo-planar imaging (EPI) sequence for several min-
utes per session using the following protocols with the following parame-
ters summarized in Table 2. All protocols had 48 contiguous 2.4-mm axial
slices in an interleaved order and matrix size is 128× 128, echo time (TE) is
72.3ms, repetition time (TR) is 7.5 s, b = 1000 s/mm2, field-of-view (FOV)
is 22 cm× 22 cm, parallel imaging acceleration factor is 2, and the number of
excitations (NEX) varied between 1 and 2.

Table 2. Protocols for HARDI. Note that the second protocol has
a total of six b0 images after two repetitions of three b0 images

Protocol scan time slice size NEX # of slices TR # of b0 images
30 directions 6.5mins 2.4mm 1 48 11.5 s 3

30 directions, 2 reps 12.9mins 2.4mm 2 48 11.5 s 3

60 directions 12.9 mins 2.4mm 1 48 11.5 s 6

90 directions 19.2mins 2.4mm 1 48 11.5 s 9

150 directions 20mins 2.4mm 1 32 7.5 s 9

We traced axonal fibers in the anterior part of the corpus callosum which
connect the right and left frontal lobes. The general anatomical locations of
these axonal fibers are well established. These fibers can be used to evaluate
new techniques in fiber tractography. Several initial points were chosen in
the region of interest (ROI) based on anatomical considerations. Under each
protocol, starting with each seed point, we used the estimation technique
in [3] to trace a fiber until it ran into water. Fig. 3 provides the reference
images done for protocol with 60 directions.

For each curve we computed the estimated constant in the lower bound
in Theorem 1, which is κ = w

(
n1/3∥X̂n − x∥2,T

)
. We used the loss function

w(u) = u2/T . Since the estimation method has the rate optimality property
(with respect to n), the only thing left to be optimized is the constant. It
can be used to compare different rate-optimal estimators. In this study the
estimators differ according to the underlying protocols used to obtain the
data. The smaller constant κ would indicate a more successful estimator.
Table 3 summarizes our findings.



316 Banerjee C., Sakhanenko L. A., Zhu D. C.

Fig. 3. A neuronal fiber bundle across the genu of corpus callosum
is created based on the CS method in [3]. In (a) one particular seed
point was used. The confidence ellipsoids along the fiber have 95%
confidence. In (b) several seed points were used to create several esti-
mated fibers. Two different branches are shown in two colors.

Table 3. Comparison of κ values for tracing of anterior fibers based
on imaging datasets obtained via different scanning protocols. Here
δ = 0.003, β = 10−7

Protocol # of voxels ROI size 25th Median 75th
30 directions 128× 128× 48 120 0.1156 0.3630 1.6954

30 directions, 2 reps 128× 128× 48 122 0.0915 0.2851 0.8066

60 directions 128× 128× 48 119 0.0417 0.1211 0.3596

90 directions 128× 128× 48 119 0.0481 0.1955 1.1941

150 directions 128× 128× 32 171 0.1869 0.5762 1.4582

The protocol with 60 directions has the lowest κ, while protocol with 90
directions comes in with the second smallest κ value. For each protocol
the empirical distribution of κ values with respect to the initial point is
skewed right, which is expected since the uncertainty increases along the
fibers. It is quite interesting that the design with 60 different directions gives
lower κ in comparison with the block design when 30 directions are indepen-
dently repeated twice. Usually, block designs yield smaller variances for the
estimated fibers locally, so one might argue that block designs have advantage
locally (see [23]). However, here the block design performs worse in a global
sense. We speculate that this is due to noise behavior along the whole fiber.
Finally, we remark that the κ value depends on D, a∗, and T . Thus, this
value would be different for different fibers (different a∗) for the same sub-
ject and different for different subjects (different D). A large comprehensive
comparison study is underway to assess this comparison method.

5. Sketch of the proofs. The proof of Theorem 1 is based on the follow-
ing lemmas and it follows the spirit of the construction given in [12] and [11].
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We additionally extend Fano’s lemma in the multidimensional parameter
space, which we apply in Lemma 3 tailored to fit our problem. It is similar
to Theorem 5.7 in [8]. Lemma 2 provides a bound for the function g defined
in section 2 (see assumption (A5)). In Lemma 4 we prove the smoothness
condition on the perturbed class of tensor fields Dc,k. Finally, Lemmas 5
and 6 provide a construction for the tensor fields and integral curves which
we will make use in the proof of Theorem 1.

Lemma 2. Let f satisfy condition (A5′). Then there exists a δ1 > 0 such
that for any vector u satisfying |u| ⩽ δ1 we have

g(u) ⩽ C(f, δ1)|u|2

with a positive constant C(f, δ1).
Proposition 1. Let X be a random variable whose density fθ depends on

a parameter θ = (θ(1), . . . , θ(R)) from a multidimensional discrete parameter
space {1 ⩽ θ(r) ⩽ lr + 1, r = 1, . . . , R, lr ∈ N}. Suppose for η > 0, the
Kullback–Leibler divergence between fθ and fθ′ is K(fθ, fθ′) ⩽ η . Then for
an estimator Ψ(X) =

(
Ψ(1)(X), . . . ,Ψ(R)(X)

)
of the unknown parameter θ

we have
sup
i

Pi

(
Ψ(X) ̸= i

)
⩾ 1− η + ln 2

ln(L − 1)
,

where i = (i1, . . . , iR), 1 ⩽ ir ⩽ lr + 1, r = 1, . . . , R, L =
∏R

r=1(1 + lr) and
Pi is the probability induced by fi .

Proposition 2. Let fi be the density of (X,BD i(X) + Σ1/2(X)ξ), i =
(i1, . . . , iR). Then for any two indices i ̸= j , 1 ⩽ ir , jr ⩽ lr+1, r = 1, . . . , R,
we have

∥D i −D j∥2G ⩽ η =⇒ K(fi, fj) ⩽ C(f, δ1)CΣ,Bη,

where C(f, δ1) is a constant introduced in Lemma 2 and CΣ,B is a constant
depending on Σ and B only.

Lemma 3. Let DL be a class of L tensor fields Dθ , θ = (θ(1), . . . , θ(R))

inside the parametric subclass of Dc,k , such that for any θ ̸= θ̃ and positive
constants η and δ(r)2 , r = 1, . . . , R,

∥D θ −D
θ̃
∥2G ⩽ δ1, ∥D θ −D

θ̃
∥2G ⩽ η, and

∥∥x(r)θ − x
(r)

θ̃

∥∥
1,T

⩾ 2δ
(r)
2 ,

where for each r = 1, . . . , R and θ , we denote by x(r)θ ∈ Rd the integral curve
corresponding to v(r)θ starting at a∗ . In addition, let f satisfy condition (A5′).
Then for any w ∈ W , we have

sup
D∈DL

Ew
(∥∥X̂(1)

n − x(1)
∥∥
1,T
, . . . ,

∥∥X̂(R)
n − x(R)

∥∥
1,T

)
⩾ inf

|x(r)|⩾δ
(r)
2 : r=1,...,R

w
(
|x(1)|, . . . , |x(R)|

)(
1−

nCΣ,BC(f, δ1)η + ln 2

ln(L − 1)

)
.
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Let B be a P/4-separated net in L1-norm in {0, 1}P .
Lemma 4. For all b ∈ B , we have Db ∈ Dc,k.

Lemma 5. For any b, b̃ ∈ B such that b ̸= b̃ and for any large enough n,
we have

∥D b(x)−D
b̃
(x)∥2G ⩽ Cn−(d−1)γ+2α,

where C > 0 is a constant.
Lemma 6. For each r = 1, . . . , R, for any b, b̃ ∈ B such that b ̸= b̃, and

for any large enough n, we have∥∥x(r)b − x
(r)

b̃

∥∥
1,T

⩾ Cn−α−δ

with some C > 0 depending on r .
Using all these lemmas, the expression in Theorem 1 is bounded from

below by

inf
X̂

(1)
n ,X̂

(2)
n ,...,X̂

(R)
n ∈En(a∗,T )

sup
D∈Dc,k

Ew
(
n2/(d+3)

(∥∥X̂(1)
n − x(1)

∥∥
p,T
,∥∥X̂(2)

n − x(2)
∥∥
p,T
, . . . ,

∥∥X̂(R)
n − x(R)

∥∥
p,T

))
⩾ inf

X̂
(1)
n ,X̂

(2)
n ,...,X̂

(R)
n ∈En(a∗,T )

sup
D∈DL

Ew
(
n2/(d+3)

(∥∥X̂(1)
n − x(1)

∥∥
p,T
,∥∥X̂(2)

n − x(2)
∥∥
p,T
, . . . ,

∥∥X̂(R)
n − x(R)

∥∥
p,T

))
⩾ inf

|x(r)|⩾δ
(r)
2 : r=1,...,R

wn

(
|x(1)|, . . . , |x(R)|

)(
1−

nCΣ,BC(f, δ1)η + ln 2

ln(L − 1)

)
.

(12)

We substitute CΣ,BC(f, δ1) = C > 0 as a generic constant and choose η =

Cn1−2α−(d−1)γ , δ(r)2 = Cn−α−δ/2. Also it can be shown that L ⩾ exp(P/2),
see [13], [14], hence by an algebraic manipulation we get ln(L −1) ⩾ P/2−1.
Therefore, we can rewrite (12) as

inf
X̂

(1)
n ,X̂

(2)
n ,...,X̂

(R)
n ∈En(a∗,T )

sup
D∈Dc,k

Ew
(
n2/(d+3)

(∥∥X̂(1)
n − x(1)

∥∥
p,T
,∥∥X̂(2)

n − x(2)
∥∥
p,T
, . . . ,

∥∥X̂(R)
n − x(R)

∥∥
p,T

))
= inf

|x(r)|⩾Cn−α−δ/2: r=1,...,R
wn

(
|x(1)|, |x(2)|, . . . , |x(R)|

)
×
(
1− n1−2α−(d−1)γC2 + ln 2

P/2− 1

)
> 0.5 inf

|x(r)|⩾0.5Ch : r=1,...,R
w
(
|x(1)|, |x(2)|, . . . , |x(R)|

)
> 0, (13)

where wn

(
|x(1)|, . . . , |x(R)|

)
= w

(
n2/(d+3)

(
|x(1)|, . . . , |x(R)|

))
. Note that while

obtaining (13) we have chosen α = 2/(d + 3), γ = α/2, and δ = 0. Also
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we can choose P1 such that C2 < (P1 − 2)/4 − ln 2, where P = P1n
δ was

introduced before, and this completes the proof of Theorem 1.
Proof of Theorem 2 relies on the decomposition of the deviation process

X̂(r)
n (s)− x(r)(s) = Z(r)

n (s) + δ(r)n (s), r = 1, . . . , R,

where the process Z(r)
n satisfies a nice PDE and has an explicit representation

via help of Green’s function, while the remainder process δ(r)n (s) is shown
to be negligible. Subsequently, we carefully bound the moments of both
processes and obtain the desired results.

For the detailed proofs see [2].
6. Remarks and conclusion. In summary, we would like to comment

that in this work we have proved the minimax optimality of the asymptotic
risk of the nonparametric integral curve estimators described in [3] in the
whole domain of the imaging field G. Therefore, we have established the
global minimax optimality of the estimation method. Although the asymp-
totic rates that we proposed are minimax optimal in the global sense, one
can further optimize the constant κ involved in the risk function to get sharp
results. In our data analysis we have provided a comparative study of the
different imaging protocols with respect to this constant, and we have found
the protocol that provides the lowest value to the global asymptotic risk. The
analysis was performed on a single subject (human brain). We have similar
results for another subject. This can be further studied with more differ-
ent subjects to understand if the optimal protocol for scanning procedure
remains the same across subjects. However, it is beyond the scope of this
work and could be explored as a nice applied direction for future research on
this topic. On the theoretical side, one can explore the sharp lower bounds
and obtain theoretical results on the constant.
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