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Abstract

Insect wings are heterogeneous structures, with flexural rigidity varying one to two orders of

magnitude over the wing surface. This heterogeneity influences the deformation the flapping wing
experiences during flight. However, it is not well understood how this flexural rigidity gradient
affects wing performance. Here, we develop a simplified 2D model of a flapping wing as a pitching,
plunging airfoil using the assumed mode method and unsteady vortex lattice method to model the
structural and fluid dynamics, respectively. We conduct parameter studies to explore how variable

flexural rigidity affects mean lift production, power consumption and the forces required to flap
the wing. We find that there is an optimal flexural rigidity distribution that maximizes lift
production; this distribution generally corresponds to a 3:1 ratio between the wing’s flapping and
natural frequencies, though the ratio is sensitive to flapping kinematics. For hovering flight, the
optimized flexible wing produces 20% more lift and requires 15% less power compared to a rigid
wing but needs 20% higher forces to flap. Even when flapping kinematics deviate from those
observed during hover, the flexible wing outperforms the rigid wing in terms of aerodynamic force
generation and power across a wide range of flexural rigidity gradients. Peak force requirements
and power consumption are inversely proportional with respect to flexural rigidity gradient, which
may present a trade-off between insect muscle size and energy storage requirements. The model
developed in this work can be used to efficiently investigate other spatially variant morphological

or material wing features moving forward.

1. Introduction

Flapping insect wings are highly compliant structures
that deform under aerodynamic and inertial forces
[1]. Deformation is believed to play a fundamental
role in insect flight mechanics and has been shown
to enhance aerodynamic force generation [2—4] and
energetic efficiency [5-7]. Various structural features,
including venation and corrugation, influence wing
deformation under dynamic loading. These features
also govern how the wing’s mechanical properties
vary in space. Experimental studies have shown that
the flexural rigidity of the Hawkmoth Manduca sexta
forewing, for example, varies one to two orders of
magnitude over the wing’s chord length [8]. This
pronounced gradient may underpin wing responses
that are aerodynamically and energetically favorable.

However, it is not well understood how graded flexu-
ral rigidity influences flapping wing performance.
This is in part because models used to
predict wing fluid—structure interaction (FSI) are
computationally-intensive. They are consequently
challenged by parameter studies that consider
variable flexural rigidity or other morphological and
material properties. Flapping wing FSI models usually
rely on coupled finite element method (FEM) and
computational fluid dynamic solvers (CFD) [9-13].
Flapping wings pose unique challenges to both of
these numerical approaches. Given the finite, periodic
rotation of the wing, stiffness matrices within FEM
must be updated at each time interval of analysis,
which increases computation times considerably
[14]. CFD requires that the Navier—Stokes equations
be solved across a discretized fluid domain [15],
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which could result in upwards of hundreds of
thousands of equations to solve. Estimating wing
deformation via coupled CFD/FEM may therefore
span several hours per wingbeat in some cases.

Lower-order FSI models can decrease the com-
putational requirements considerably. Simplifications
in fluid and structural solvers, as well as converting
the 3D problem to a 2D idealization, have yielded
models that can be solved on the order of seconds.
Some of the most common flapping wing FSI mod-
els treat the wing as a 2D pitching, plunging air-
foil [2, 3, 7, 16, 17]. The airfoil represents a cross-
section running along the chord of the insect’s wing.
Plunge represents the primary flap rotation and pitch
represents the rotation the wing experiences about
its leading edge. The 2D pitch—plunge framework
neglects some of the physics that play a role in
true 3D flapping, such as spanwise bending [18],
spanwise flow [19] and wingtip effects [20]. Despite
lower quantitative accuracy relative to 3D models,
2D models can quickly identify solution trends and
thus can establish foundational knowledge that may
be subsequently extended to more computationally
intensive 3D modeling. For this purpose, they have
been widely utilized to investigate several aspects of
flapping wing mechanics. For example, Yin and Luo
used a pitch—plunge model to show that, when a
wing’s deformation was dominated by external flows
rather than inertia, it had better power efficiency [7].
Tian et al used this framework to understand how
asymmetry between the wing’s deformation during
upstroke and downstroke affected forward flight [17].
Vanella et al demonstrated that a super-harmonic
resonance may favorably influence the wing’s lift to
drag ratio at low Reynold’s numbers [2]. Mountcastle
and Daniel investigated how variable wing kinemat-
ics and structural properties affected the wing’s lift
generation [3].

Despite the contributions of these works and
others, the influence graded flexural rigidity has on
flapping wing aeromechanics remains understudied.
The objectives of the present research are to (1)
develop a reduced-order FSI model of a flapping,
flexible insect wing treated as a pitching plunging
airfoil, and (2) to use this model to understand
how chordwise graded flexural rigidity affects wing
dynamics. Specifically, we evaluate lift, power and
the forces required to drive the wing. We employ a
number of assumptions to simplify the wing structure
and flapping kinematics in this study. First, because
we treat the wing as a 2D pitching, plunging airfoil,
spanwise flow, spanwise bending and wingtip losses
associated with 3D motion are neglected. Second,
we neglect complex venation patterns, cross-sectional
curvature and spatially-variable material properties
that may affect the wing’s local flexural rigidity. We
instead assume that spatial variation of flexural rigid-
ity is driven by chordwise variations of wing thickness,
since vein thickness reduces dramatically along the
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chord in many insect wings [21]. Because of these
assumptions, the model developed in this work is not
suitable for high-fidelity fluid or structural calcula-
tions of real insect wings. It is instead intended to
isolate and study variable flexural rigidity in a simpler
setting.

The remainder of this manuscript is organized as
follows. First, we derive the FSI framework using the
assumed mode method (AMM) to model the struc-
ture and unsteady vortex lattice method (UVLM) to
model the fluid. Next, we apply the model to numer-
ically simulate the response of a wing with similar
properties to a Hawkmoth Manduxa sexta (M. sexta)
forewing. We explore the aerodynamics and energetic
requirements of the wing under hovering flapping
circumstances, and conduct a parameter study to
determine how these quantities are influenced by
variable kinematics. We conclude by discussing the
broader implications of this research on the study of
insect flight and insect-inspired robotics.

2. Theory

2.1. Structural model

In this section, we derive the equation of motion
governing the wing’s deformation via the Lagrangian
approach. We treat the wing as an Euler—Bernoulli
beam, where the leading edge is clamped and the
trailing edge is free to deflect. Wing deformation is
calculated using the AMM, where the total deflection
is a linear combination of the wing’s eigenfunctions.
This work expands upon the structural model derived
in [22].

First, we first define two reference frames; an
inertial X — Y — Z frame that is fixed in space, and a
body-fixed x — y — z frame that translates and rotates
with the wing’s rigid body motion (figure 1). Note
that the gravity would act in the 4+Y direction, and
thus the wing must produce lift in the —Y direction
in order for the insect to remain aloft. The origin O of
the x — y — z frame is located at the leading edge of
the wing. O is subject to prescribed plunging Z(t) and
the wing experiences prescribed pitching 6(t) about
O. The x — y — z frame has angular velocity

Q = fe, (1)

The position R of a differential mass element dm
relative to the body-fixed frame is the sum of three
component vectors (e.g., R = r; + r, + r3), where

r. = Z(t)e; = Z(t) sin te, + Z(t) cos fe,  (2)
r, = ye, (3)
r; = w(y, te, (4)

Above, r; describes the displacement associated with
the plunging motion, r, describes the position of dm
atalocation y along the wing’s chord, and r5 describes
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Figure 1. (A) Reference frames and pitch—plunge motion, (B) free-body diagram of forces acting on the wing and gravity vector
to show orientation. Cartesian grad applies to both panels. The black circle in both panels indicates where the wing would meet

an infinitesimal out-of-plane wing deflection w. In-
plane deflection is neglected. The velocity of dm is

R:[ZsinQ—wé]ey+[2cosﬁ+y9+w]ez

(5)
and the acceleration of dm is
R = [Z sin 9—2w9—wé—y92]ey
+[Z cos 9+w+y§—w92]ez (6)

While R is not required to derive the equation of
motion, it is necessary to calculate power consump-
tion and inertial forces and moments as detailed
later. We expand wing deflection w(y,f) in terms
of mass-normalized mode shapes ¢; and modal
responses ¢, as

wiy,t) =Y k() ai(). (7)

k=1

In practice, only a finite number of modes are used. In
this implementation, we include only the first mode
(see section 3). The wing’s total kinetic and poten-
tial energies are subsequently formulated. Applying
Lagrange’s equation, we arrive at the equation of
motion governing modal response g, as

Gk + 2wk gk + (w,f - éz)qk = —\Z cos 0 — ¢ké + Qx

(8)
where wy and (;, are the wing’s kth natural frequency
and damping ratio, respectively. Note that the viscous
damping term is not derived explicitly through the
energy formulation and is instead included as an
empirical correction term. Constants A\; and 1), are
obtained by integrating the mode shape over the
wing’s mass domain, or

Mz/mm 9

Y = /y¢k dm (10)

Equation (8) shows that the wing’s stiffness is time-
varying and dependent on the wing’s pitching rate

and stationary natural frequency. The first excitation
term to the right-hand side of equation (8) is a
plunge-dominated inertial term proportional to the
linear acceleration of the wing. The second excitation
term is a pitch-dominated inertial term modulated by
the wing’s angular acceleration. The non-conservative
generalized load Q; is obtained by integrating the
projection of an aerodynamic force distribution onto
the mode shape

Qk = /¢k(d-Faero : ez) d}’ (11)

where dFero is the aerodynamic force per unit length,
discussed the following section.

2.2. Fluid model

We use a modified UVLM approach to predict the
flow and estimate the force distribution over the wing.
Our method is based on that described in [23]. Only
a high-level description of the model is given here.
For additional detail on the mathematical derivation,
please refer to appendix A.

UVLM is based on potential flow theory. The flow
is assumed to be irrotational, except on the surface
of the wing and in the wake that is shed from the
trailing edge, and is incompressible throughout. By
modeling the wake, we account for unsteady effects
such as added mass. Viscous effects are not accounted
for. Using the maximum plunge rate and chord width
as the characteristic speed and length respectively, the
Reynolds number of the wing simulated in this work
under normal hovering conditions is about 5000 (see
section 3). This indicates that inertial aerodynamic
forces will far exceed viscous aerodynamic forces, and
hence we believe the inviscid assumption is reasonable
in this study.

The wing is discretized into N, panels, each of
length ds (figure 2). On each panel, a bound vortex
and control point are located 0.25 dsand 0.75 ds from
the leading edge of the panel, respectively. Addition-
ally, a wake vortex is shed from the trailing edge of the
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Figure 2. Wing discretization used by UVLM.

wing at each time step, with the wake being truncated
at N,, vortices. A bound vortex induces a flow velocity
around itself that diminishes with distance. The flow
velocity at any point in space that is induced by a vor-
tex is given by the Biot—Savart law. Then, according to
the Kelvin—Helmholtz theorem for an ideal fluid, the
total circulation around a closed contour must remain
constant. Since the initial state of the fluid flow is at
rest with zero vorticity throughout, this implies that
the total vorticity, found by summing the strengths of
the bound and wake vortices, is zero at each time step.
This condition is used to calculate the strength of the
wake vortices.

Flow may not travel through the solid surface of
the wing, meaning that the component of velocity
normal to the surface is zero. Because there are a
finite number of bound vortices, the non-penetration
condition cannot be satisfied across an entire panel,
so the control point is chosen as the location where
it must hold true. By simultaneously enforcing the
non-penetration condition at all control points on the
wing, as well as the Kelvin—Helmholtz condition, the
strengths of the bound vortices can be determined.
Advected wake vortices are placed a fixed distance
aft of the trailing edge. All existing wake vortices are
advected with the local flow. Finally, the aerodynamic
force on the wing is determined using the unsteady
Bernoulli equation.

2.3. Force, moments and power

Flight is the most energetically expensive mode of
locomotion per unit of time, and thus it is essential
to understand how the wing’s structural dynamics
underpin low energetic expenditures. In this section,
we derive expressions based on modal responses to
calculate flapping wing moments, forces and instan-
taneous power.

Total power consumption is broken into two com-
ponents: inertial power and aerodynamic power. Iner-
tial power is required to move the wing mass through
space—if the wing was operated in a vacuum, inertial
power would equal to total power. Inertial power of a
rotating, translating system is

Pinertia = Fo - ’.’l + Mo - Q (12)

where Fg is the inertial force at O and My is the iner-
tial moment about the leading edge. The inertial force
is the wing’s spatiotemporal acceleration integrated
over the wing’s mass, is

Fo= |mZsin 0 — 0°¢ =Y 2ah\ + qifNe) | e

k=1

+ |mZ cos 0 + G — Z (@f* M — G | e
k=1

(13)

where m is the mass of the wing and £ is a constant
defined by

€= /m ydm. (14)

The inertial moment about O is

Mo = Z{ cos 0+ [0 + Z (ék(ﬁk — qu)\k sin 6
k=1

+ 6qi + quqké) ey (15)

where I, is the wing’s mass-moment of inertia about
O. The aerodynamic power is the power required to
overcome the fluid forces acting against the wing,
given by

Paero = dFaero . R d}’ (16)

chord
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Trailing

edge

Figure 3. Wing discretization with exponential thickness
distribution. Nodes 2, .. ., N, 4+ 1 may experience vertical
displacement and rotation, while the leading-edge node is
clamped. Wing thickness is exaggerated.

where dF,, is the aerodynamic force at some point
on the wing as computed by the UVLM.

3. Numerical simulation

Here, we describe the numerical parameters used to
simulate the dynamic response of the wing. We use
the FEM to convert the wing from a continuous
domain to a discrete domain (see appendix B). The
finite element discretization is implemented using a
custom in-house MATLAB (Ver. 2020b) code. The
wing is discretized into N, beam elements each with
two degrees-of-freedom (vertical displacement and
rotation) at each node. We use spatially variable
wing thickness to modulate local flexural rigidity,
since wing flexural rigidity is affected by thickness
and Young’s modulus and the latter is kept constant
(figure 3). The wing thickness decays exponentially
from leading edge to trailing edge, with the thickness
t at chordwise location y described by

t(y) = tige °, (17)

where 15 is the leading edge thickness, ¢ is the chord
length and a is the decay rate. Values of a range from
0 to 1.6, which correspond to leading-to-trailing-edge
taper ratios frg/fig from 1.0 (uniform thickness) to
0.2 (highly tapered). The most tapered case results
in a two orders-of-magnitude decrease in flexural
stiffness over the chord, which encompasses the range
of chordwise-stiffness distributions reported in Man-
duca sexta [8]. Wing mass is maintained at 45 mg
across all taper ratios tested. Consequently, each wing
has an average thickness of 45 pm, but the leading
edge thickness trp varies with taper ratio. The max-
imum leading edge thickness considered is 90 sm for
the most tapered wing. We also simulate rigid wings
across all taper ratios to compare their performance
against flexible wings.

We use 40 panels, 40 finite elements, 100 wakes
and 200 time steps per wingbeat for all numeri-
cal studies. The convergence studies that informed
these parameters are detailed in appendix C. We

J Reade and M Jankauski

Table 1. Wing parameters.

Symbol Description Value  Units
E Young’s modulus 10 GPa
c Chord length 2 cm
b Span 5 cm
m Mass 45 mg
tavg Average thickness 45 pm
p Density 1000  kgm™?
¢ First modal damping ratio 0.05 —
Zy Plunge amplitude 2.62 cm
Bo Pitch amplitude 45 °
B, Pitch—plunge phase difference ~ —90 °

w Flapping frequency 25 Hz

neglect any modes associated with frequencies at
least ten times higher than the flapping frequency,
as the contribution of these modes is expected to
be small. The second natural frequency was 360 Hz
for a homogeneous wing, which is roughly 14 times
greater than the flapping frequency of 25 Hz. All other
stiffness distributions tested have a greater second
natural frequency. Therefore, only the first mode was
retained for simulations. We use the MATLAB (Ver.
2020b) explicit ode45 solver to simulate the response
of the wing. For all simulations, we calculate wing
deflection, forces at the leading edge and total power
required to flap the wing. We also calculate mean
lift-to-power as proxy for flight efficiency.

Wing morphology and flapping kinematics are
based approximately on the M. Sexta [8, 24, 25]
and are summarized in table 1. Flapping kinematics
assume hovering flight. Pitch and plunge are idealized
as purely harmonic with a frequency of 25 Hz and a
phase difference of —90°. The plunge amplitude was
approximated by the distance traveled by the semis-
pan (x = span/2) of a three-dimensional wing experi-
encing a flap amplitude of 60°. The Young’s modulus
and density were estimated from measurements on
insect cuticle [26, 27].

Prior to numerical simulations on tapered wings,
we performed a validation study on homogeneous
flexible wings to benchmark the accuracy of our
model (see appendix D). Lift coefficients generated
via our reduced-order model were compared to those
generated by a higher-fidelity model [7]. Note that
the flapping kinematics used in the validation study
vary modestly from those used in the hovering case
described in this paper. The lift coefficients predicted
for each model had similar magnitude, but were
modestly out of phase.

4. Results

In this section, we show how taper ratio influences
flexural rigidity and thus the dynamics of flapping
wings. First, we determine how taper affects the
wing’s first natural frequency and mode shape. Next,
we calculate wingtip deflection, lift, power consump-
tion and total forces acting at the wing’s leading edge
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right. Flapping frequency is assumed to be 25 Hz.

First Natural Frequency & Frequency Ratio
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Figure 4. First natural frequency (solid line) and frequency ratio (dashed line) as a function of chordwise wing taper.
Approximate airfoils indicating the taper are shown at the bottom of the figure, with taper ratios of 0.2, 0.6, and 1 from left to
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Figure5. The bending mode used to calculate wing deflection. Mode shapes presented in this plot are normalized by the
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for a wing flapping with hovering kinematics. We then
conduct a parameter study to examine how deviations
from hovering kinematics affect wing performance.

4.1. Natural frequencies & mode shapes

The wing’s natural frequency affects deflection mag-
nitude and consequently, the aerodynamic forces
that arise from flapping. Certain flapping-to-natural
frequency ratios have been shown to improve the
aerodynamic and energetic performance of flapping
wings [2, 5, 6]. Here, we explore how variable flexural
rigidity influences the wing’s natural frequency to
provide context to the dynamic studies described in
the following sections.

Over the range of taper ratios considered, the
wing’s natural frequency varies from about 57 to
115 Hz (figure 4). Assuming a flap frequency of 25 Hz,
this coincides to a flapping-to-natural frequency ratio
range from 0.21 to 0.44. Natural frequencies cor-
responding to the first torsional mode in M. sexta
forewings have been reported between 75-95 Hz
[25, 28], which are represented by taper ratios from
about 0.4 to 0.5. Note that the first mode in the
M. sexta forewing corresponds to a bending mode,
however since our 2D model does not account for

spanwise deformation, it is more appropriate to com-
pare our computed natural frequencies to torsional
modes where deformation varies predominately over
the wing chord. Though the bending mode in M. sexta
wings has a lower natural frequency (~60-70 Hz,
[25, 28]) than the twisting mode, this does not nec-
essarily imply the bending mode is more important.
The insect flaps at about 25 Hz, and previous stud-
ies have shown flapping excites frequencies at odd
multiples of the wingbeat frequency. Consequently,
twisting may be as significant as bending to wing
deformation.

As the taper ratio decreases from 1 to 0.2,
the wing’s local area moment of inertia and mass
increase near the leading edge and decrease towards
the trailing edge. As a result, the wing’s natural
frequency is inversely proportional to taper ratio
(figure 4). The most tapered wing has a natural
frequency nearly double that of the homogeneous
wing. Mode shapes associated with tapered wings
tend to bend more around the center of the chord,
while bending is localized towards the leading edge
in homogeneous wings (figure 5). This is consistent
with torsional mode shapes measured in M. sexta
forewings [25].
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Figure 6. Comparison of lift, power, leading edge force, and wing tip deflection for several taper ratios using kinematics in table 1.
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4.2. Flapping with hovering kinematics

We now examine the wing’s dynamic response assum-
ing the flapping kinematics described in table 1. Wing
deflection, lift, power and leading edge force are
shown for various taper ratios in figure 6. Quanti-
ties are reported as a function of wingbeat fraction
t/T, where ¢ is time and T is the wingbeat period.
All quantities are taken once the wing has achieved
steady-state. We use mean power as a proxy for
energy consumption. This assumes negative power
is elastically stored in the insect exoskeleton and
that this stored potential energy can be recycled to
offset positive power requirements. Then, we use the
Z component of total leading edge force Frxy, to
approximate the forces the insect flight muscle must
produce in order to flap the wing. Frxy, is defined
with respect to the inertial coordinate system and is
inclusive of both aerodynamic and inertial forces. The
Z component of Frxy; (simply leading edge force
hereafter) is a better proxy for muscle forces than total
moment Mr, since the literature suggests wing pitch-
ing arises passively from inertial and aerodynamic
forces [29].

Calculated deflections appear to be consistent
with reported values for M. sexta [24]. Previous stud-
ies reported the angle of rotation between the leading
edge and the trailing edge, which is an aggregate
quantity influenced both by the rigid body pitch angle
and trailing edge deflection. Angles of rotation were
typically around 45° for chords proximal to the insect
body and 65° for chords distal to the insect body. Our
model predicted angles of rotation of approximately
59° when for a taper ratio of 0.2 and 71° for a taper
ratio of 1. While the homogeneous wing resulted in
an angle of rotation greater than reported values,
the tapered wings matched fairly well. Aerodynamic
forces are also consistent with those produced by M.
sexta. Assuming the insect has a body mass of 2.0
grams [30], a wing pair produces sufficient lift to
hover when taper ratios are between about 0.27 and
0.65. This corresponds to a natural frequency range
of about 70 to 109 Hz.

As chordwise wing taper ratio increases, both
wingtip deflection amplitude and primary response
phase (taken with respect to plunge) decrease
(figure 6). The lower deflection is due to the tapered
wing being stiffer than the homogeneous wing,
evidenced by the higher natural frequency (figure 4).
Peak deflection moves away from the mid-stroke
(t/T = 0, 0.5) and towards the stroke reversals
(t/T = 0.25, 0.75) as wing flexibility increases. This
indicates that deflection in highly tapered wings is
more influenced by the plunging inertial force and
less by the aerodynamics, as plunging acceleration
Z is at a maximum while the aerodynamic force is
minimized at stroke reversal.

Chordwise wing taper has a large effect on lift
production. While the homogeneous wing generated
the highest peak lift, its time-averaged lift was 20
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Table 2. Peak deflection, mean lift, mean power and peak
leading edge force for various taper ratios assuming normal
flapping kinematics. Rigid wing is assumed to have uniform
thickness.

Taper ratio 1.0 0.6 0.2 Rigid
Peak deflection (mm) 14.6  10.4 5.6 0

Mean lift (mN) 7.19  10.1  9.47 8.89
Power (mW) 155 264 28.8 33.6

Peak leading edge force (mN) ~ 54.8 49.2  36.7  33.2

to 30 percent lower than that of the other wings
(table 2). This can be partially attributed to the large
troughs in lift occurring at t/T & 0.375, 0.875, when
the plunging motion of the wing reverses. These
troughs are not seen with the stiffer wings. The lowest
point in the trough roughly corresponds to the peak
deflection experienced by the wing. Separating lift
into steady and unsteady components, we see that
the negative lift is largely driven by the steady com-
ponent. When the wing undergoes large deflections,
it reduces the effective angle of attack and creates
an adverse camber that biases lift in the positive Y
direction. As the taper becomes more pronounced
and wing stiffness increases, the lift contribution from
the steady component increases while that of the
unsteady component is reduced.

Mean power is sensitive to taper ratio as well. The
primary effect of wing deformation is seen at the mid-
stroke (#/T = 0, 0.5), where peak power is lower for
the flexible wings compared to the rigid wing. At that
instant, the flexible wings are bent backwards due to
aerodynamic forces, and their angle of attack is lower
compared to that of the rigid wing. As a result, mean
power is lower for the flexible wing compared to the
rigid wing (table 2). While mean power reduces with
taper ratio, peak leading edge forces increase. The
most flexible wings experience the largest leading edge
forces, where the peaks in forces coincide approxi-
mately with peak deflections. This indicates that the
inertial and aerodynamic forces associated with elastic
deformation increase the leading edge forces required
to sustain the prescribed kinematics of O.

4.3. Deviations from hovering kinematics

In this section, we explore the sensitivity of the wing
response to kinematic deviations from the hovering
flapping kinematics shown in table 1. We characterize
the influence of taper ratio on lift, power, leading
edge force and mean lift-to-power for various sets of
flapping kinematics.

4.3.1. Pitch amplitude

First, we investigate how pitch amplitude affects wing
dynamics. Rigid-body pitch angle is difficult to char-
acterize in flexible insect wings. We define rigid body
pitch as the angle between the leading edge and
trailing edge assuming the wing is rigid (figure 1).
However, if the trailing edge deforms out-of-plane,
the perceived pitch angle between the leading edge
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and trailing edge will increase. All insect wings experi-
ence some deformation at the trailing edge in practice,
and thus pitch amplitudes reported in the literature
may overestimate rigid body pitch. We tested several
values of rigid-body pitch amplitude to examine how

wing performance is affected by variations in this
quantity (figure 7).

Lift and power consumption are both strongly
impacted by pitch amplitude. Pitch amplitude sig-
nificantly affects mean lift in highly flexible wings,
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but only modestly affects lift in stiffer wings. When
highly tapered, the wing produced nearly constant lift
regardless of the pitching amplitude. By contrast, the
highly flexible homogeneous wing is more sensitive
to pitch amplitude. The wing experiences similar
deformation under both pitch angles, but the effective
angle of attack is decreased by the higher pitch angle
in addition to the deflection-induced camber and
the downwash caused by the wake vortices. Around
stroke reversal in the 50° pitching case, the aerody-
namic force is heavily weighted towards the leading
edge, reducing both lift and power consumption. A
byproduct of this is that the taper ratio associated with
maximum lift decreases with increasing pitch ampli-
tude. These results also demonstrate that there is an
optimal taper ratio which maximizes lift generation,
and that this optimal taper ratio depends on pitch
amplitude.

Power consumption of the flexible wing is lower
than that of the rigid wing in all cases. The mean
power versus taper ratio curve is concave, with the
location of the maxima contingent on pitch ampli-
tude. The low energy requirement of the flexible wing
at high pitch amplitude is due to the wing bending
out of the way and minimizing aerodynamic loads,
though this adversely affects lift generation. Mean lift-
to-power increases with taper ratio, but is relatively
stationary in the range of taper ratios that produce
sufficient lift to hover. Across the taper ratios con-
sidered, the mean lift-to-power of the flexible wing is
higher than that of the rigid wing.

Peak leading edge force is largely unaffected by the
pitching angle. Forces in general are dominated by
the plunging inertial and aerodynamic forces rather
than the pitching inertial force. The pitching motion
accounts for only 19% of the peak leading edge force
in a homogeneous flexible wing and 14% in a wing
with a taper ratio of 0.2. On the other hand, peak
leading edge force is sensitive to taper ratio. The
lowest leading edge forces occur in the most tapered
wing, presumably because the wing’s center of mass
is closer to the point of rotation. This reduces the
inertial forces associated with pitching. The largest
leading edge forces occur in the untapered wing, since
the center of mass is further from the point of rotation
and the wing experiences larger deflections.

4.3.2. Plunge amplitude
Some insects have been shown to increase their
flapping amplitude to increase lift generation [31].
Within the pitch—plunge model, this is akin to
increasing the plunge amplitude. We tested three
different values of plunge amplitude to identify how
variation of this parameter affected lift, mean power
and peak leading edge forces (figure 8).

Plunge amplitude impacts each quantity strongly.
Raising the plunge amplitude increases the distance
and velocity of the wing during each stroke. As

J Reade and M Jankauski

expected, this increases the lift, power, and lead-
ing edge force. Mean lift in flexible wings does not
increase proportionally to the plunge velocity squared
as might be expected from conventional steady aero-
dynamic theory. A possible reason for this is that
the increased velocity generates higher aerodynamic
forces on the wing, which in turn leads to higher
deflections and reduced angle of attack, meaning that
increasing the plunge amplitude and velocity results
in diminishing returns. Mean lift in stiffer wings more
closely scales with plunge velocity squared.

For a stationary airfoil subject to a uniform free-
stream velocity, aerodynamic power scales with the
free-stream velocity cubed [32]. We observe that the
mean power scales nearly cubically with plunge veloc-
ity in rigid wings. In the highly tapered wing, the
mean power requirement is nearly identical to that
of a rigid wing at low plunge amplitudes. However,
at higher plunge amplitudes, the disparity between
power requirements is larger. The increased deflection
arising from plunge amplitude likely decreases the
effective drag on the wing, thereby reducing the power
required by the flexible wing. This also explains why
power decreases with taper ratio for all plunge ampli-
tudes considered, though mean lift decreases above
a certain taper ratio as well. The optimal taper ratio
thus falls somewhere between providing sufficient
lift to fly while requiring low energetic expenditures.
Since the lift-to-power ratio increases monotonically
with taper ratio for all plunge amplitudes considered,
the optimal configuration corresponds to the highest
taper ratio that satisfies the roughly 10 mN mean lift
constraint.

Increasing the plunge amplitude increases the
peak leading edge force for all wings considered, since
the increased plunging amplitudes lead to larger lin-
ear accelerations and aerodynamic forces. As plunge
amplitude increases, the contribution of the plunging
force actually decreases slightly for all tested taper
ratios. This is because the aerodynamic forces acting
on the wing are more sensitive to increases in plung-
ing amplitude than the plunging inertial forces are.

4.3.3. Pitch—plunge phase
Hawkmoths have been shown to adjust the relative
phase of activation between their two flight muscle
groups in response to visual stimuli [33], which influ-
ences the relative phase between their wing’s flap and
pitch rotations. It is plausible that modulation of the
phase between kinematic parameters is responsible
for some maneuvers during flight. Here, we explore
how the relative phase between wing pitching and
plunging motions affects flapping wing aeromechan-
ics. Mean lift, power and peak leading edge forces
are shown as a function of taper ratio for various
pitch—plunge phase differences in figure 9.

Mean lift is fairly influenced by deviations in
pitch—plunge phase. Increasing the phase to —75°
increases the highest achievable lift in both flexible

10



Bioinspir. Biomim. 17 (2022) 066007

J Reade and M Jankauski

Phase Angle ( °)
-90

—
(==}

(mN)

Mean Lift
ot

Mean Power
(mW)
|3
S

Peak Force

Lift-to-Power
(N/W)

0.4

respectively.

Taper Ratio trp/tLe

Figure 9. Study of pitch—plunge phase offset. The flexible and rigid wing values are represented by the solid and dashed lines,

0.6 0.8 1 0.2 0.4 0.6

and rigid wings, whereas decreasing the phase to
—105° decreases highest achievable lift. Flexible wings
across all taper ratios produce higher lift than rigid
wings for a pitch—plunge phase of —105°, but for
a pitch—plunge phase of —75°, flexible wings only
produce mean lift than rigid wings for low taper
ratios. Similar to trends observed in pitch amplitude,
the taper ratio associated with greatest mean lift varies
modestly with respect to pitch—plunge phase.

Mean power in general decreases
pitch—plunge phase is lowered. The largest reduction
in mean power occurs in the rigid wing. The flexible
wing have similar power requirements for —105° and
—90° pitch—plunge phases, while power requirements
for —75° are slightly higher, presumably due to an
increase in lift and drag. The opposite trends in
leading edge force are true, where leading edge force
is reduced as the phase angle is decreased. As with all
other parameter studies considered, the peak leading
edge force increases with taper ratio as the wing
becomes more flexible. The mean lift-to-power ratio
is similar for all phase angles considered, particularly
in the range of taper ratios that produce sufficient lift
for hovering flight.

when

5. Discussion

5.1. Optimal lift production

Functionally graded flexural rigidity may improve
flight performance in terms of aerodynamic force
generation across a broad range of flapping wing
kinematics. Figures 7-9 show that the mean lift

produced by flexible wings is generally greater than
that produced by rigid wings, though rigid wings
may outperform flexible wings when deformation
is extreme. Interestingly, there is an optimal taper
ratio that maximizes the mean lift. For the normal
flapping kinematics shown in table 1, this taper ratio
is about 0.5, which corresponds to a natural frequency
of 83 Hz and a flapping-to-natural frequency ratio
of about 0.3. Prior studies show similar aerodynamic
benefits when operating close to this ratio. Vanella
et al showed that flapping at 1/3 the wing’s natural fre-
quency evokes a super-harmonic resonant response
that improves the lift-to-drag ratio compared to a
rigid wing with identical kinematics [2]. Dai et al
found that flexible wings with flapping-to-natural
frequency ratios equal to or less than 0.3 produced
more lift than rigid wings [34]. Though our results
generally agree with these findings, we saw that the
exact lift-maximizing flapping-to-natural frequency
ratio depends on flapping kinematics. For a pitching
amplitude of 50°, the optimal flapping-to-natural
frequency ratio is about 0.27; this increases to about
0.35 when the pitching amplitude is reduced to 40°.
The optimal flapping-to-natural ratio changes with
pitch—plunge phase as well, but is stationary with
respect to plunge amplitude. This collectively shows
that the wing’s natural frequency is strongly associ-
ated with lift generation.

5.2. Trade-offs between power & force
In all cases tested, mean power and peak leading edge
force were inversely proportional. With increasing

11
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taper ratio, mean power decreased while peak leading
edge force increased. The reduction of power at high
taper ratios likely stems from a reduction of drag,
though lift is lower at higher taper ratios as well. Large
leading edge forces at high taper ratios result from
the increased deflections and accompanying inertial
forces.

The inverse relationship of mean power and peak
leading edge force poses trade-offs for flight. Low
mean power consumption implies the insect requires
less energy storage, and low peak leading edge forces
implies that the insect requires less muscle mass.
Based on insect anatomy, we hypothesize that the
flight mechanism is oriented more towards energetic
efficiency. The thorax constitutes about 25%-30%
of the total body mass in M. sexta [30] and the
flight muscles occupy much of the thorax volume.
The flight muscles can generate staggering forces,
with one flight muscle group producing forces as
high as 1 N [35]. These forces are 50 times greater
than the total weight of the insect assuming a body
mass of 2 grams. It is possible that the increased
muscle force requirements resulting from wing flex-
ibility are an acceptable trade-off for high aero-
dynamic force generation and relatively low power
consumption.

5.3. Implications for robotics

The results of this study can inform the design
and fabrication of insect-scale flapping wing micro
air vehicles (FWMAVs). FWMAVs operating at low
Reynolds numbers have reduced payload capac-
ity, which makes conventional sensing and actua-
tion technologies prohibitively heavy or energetically
inefficient. Consequently, many FWMAVs rely on
external tethers to supply power [16], which limits
their autonomy and ability to perform useful tasks.
Lightweight, flexible wing structures inspired by fly-
ing insects can reduce the power required to flap,
thereby improving the energy economy of the robotic
vehicle.

Artificial have been fabricated in a variety of
ways, including additive manufacturing, laser cutting,
molding or a combination thereof [25, 36, 37]. As
manufacturing techniques become more sophisti-
cated, the ability to tailor local wing stiffness through
geometric or material modifications has improved.
The capacity to modulate geometric or material prop-
erties may enable artificial wings to behave more sim-
ilarly to their biological counterparts during flight.
Chordwise functional rigidity plays a key role in
some insect wings [38], and as shown within this
work, may benefit aerodynamic force generation and
energetic expenditures. Graded flexural rigidity in
artificial wings can be realized by varying the taper
ratio of vein structures that serve support scaffolding
for surrounding membrane material.

In the design of functionally graded wings, one
must first establish the range of taper ratios what
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produce enough lift to support the aircraft. Trade-
offs between peak force and mean power should also
be considered. As discussed, mean power and peak
force scale inversely with one another as taper ratio
is varied. From a robotics perspective, higher mean
power draw requires increased energy storage, and
larger peak forces require bigger actuators capable
of delivering such forces. However, within the per-
missible range of taper ratios, higher taper ratios
correspond to larger mean lift-to-power ratios. We
consequently believe that the upper bound of taper
ratio that provides enough lift for flight represents
a design that balances the various requirements for
power and force. However, true three-dimensional
simulations should also be performed to understand
how physics neglected by this two-dimensional model
(e.g., spanwise bending and flow) may also influence
wing performance.

5.4. Computational economy and model
assumptions

The reduced-order FSI model developed through
this work can be used to estimate how morpho-
logical or material properties beyond flexural rigid-
ity impact flapping wing performance. Though the
pitch—plunge idealization is used frequently to study
of flapping wings, most implementations still rely
on high-order computational solvers. UVLM has
been incorporated into the pitch—plunge model to
reduce the computational costs of the fluid solver
on several occasions, but the AMM representation is
less frequently used to lower the costs of the struc-
tural solver. Together, our model based on coupled
UVLM/AMM can be solved in less than 1 s per
wingbeat for the described discretization parameters,
representing a large computational savings compared
to higher-order solvers. When running on a lap-
top with a Ryzen 5800H 3.2 GHz CPU and 16 GB
of DDR4 RAM, our model solves in roughly 10 s
when considering 20 wing beat cycles. Further, to
our knowledge, the flapping wing moments, lead-
ing edge forces and power for a flexible wing expe-
riencing pitch—plunge motion have not previously
been derived in modal coordinates. If wing defor-
mation is known, these expressions can be used to
compute quantities more efficiently than if using
the canonical definitions, since spatial and temporal
dependence can be decoupled and spatial integrals
pre-computed.

While computationally efficient, our FSI model
has limitations as well. First, the simplified 2D model
neglects some dynamics associated with 3D flap-
ping, such as spanwise bending, spanwise flow and
wingtip losses. Previous studies have shown that
spanwise flow may positively or negatively influ-
ence lift depending on the relative phase between
bending and flapping [18]. Spanwise bending may
be incorporated in future work and would best be
accounted for by modifying plunge to be the sum of
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rigid body flapping and elastic deformation, where
the elastic deformation is a degree-of-freedom to
be solved for. Spanwise flow and wingtip losses are
more difficult to accommodate in a 2D setting, and
consequently 2D models are most appropriate to
generate approximate low-fidelity solutions quickly.
The validity of the 2D solution, and how spanwise
flow and wingtip loss may affect a specific wing
configuration, should subsequently be assessed with
higher-fidelity 3D modeling. Nonetheless, in many
cases results from 2D have agreed with results gen-
erated by computational or experimental 3D studies
with reasonable accuracy [39—-41]. This suggests that
at least some of the insights garnered from a 2D
study can inform a 3D simulation. Next, the UVLM
fluid model neglects viscous effects. While the inviscid
assumption is appropriate for a broad range of flying
insects including M. sexta, fluid viscosity may play
a non-trivial role in the flight of very small insects
[42]. Finally, the structural model is based on linear
assumptions and cannot account for structural non-
linearity. As a result, some dynamic phenomena asso-
ciated with large deformation may be lost. Further,
numerous features observed in real wing structures,
such as venation patterns, curvature, corrugation
and graded material properties are neglected. Each
of these may contribute to the wing’s overall flexu-
ral rigidity, but should first be studied in isolation
before a high-fidelity structural model of the wing
is attainable.

6. Conclusion

Flapping insect wings are complex structures that
deform from aerodynamic and inertial forces. In
addition to the flapping motions of the wing, het-
erogeneous geometric and material properties influ-
ence how the wing deforms. Previous studies have
shown that flexural rigidity in some insect wings
varies as much as two orders of magnitude from
the leading edge to the trailing edge [8]. However,
the computational cost of many flapping wing FSI
models have precluded us from understanding how
these gradients in flexural rigidity regulate flapping
wing performance. In this work, we developed a
simplified 2D FSI model of a flapping wing as a
pitching-plunging airfoil using AMM and UVLM. We
derived expressions for the power, leading edge forces
and moments required to flap the wing using modal
coordinates. We used these models to understand how
gradients in flexural rigidity affect flight energetics
and the forces needed to sustain flight.

We found that wings with functionally graded
flexural rigidity increased aerodynamic force gener-
ation and decreased power requirements relative to
rigid wings or wings with uniform flexural rigidity.
For normal hovering flapping kinematics, a wing with
an optimal taper ratio of 0.5 produced about 20%
more mean lift than a rigid wing and required about
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15% less mean power. This taper ratio corresponded
to a wing with a natural frequency of about 85 Hz,
which is similar to the torsional natural frequency
measured in M. sexta wings [25]. Variation of rigid
body pitch amplitude and relative pitch—plunge phase
affected the taper ratio that maximized lift produc-
tion. Otherwise, trends in mean lift, mean power and
peakleading edge force were not dramatically affected
by deviations in flapping kinematics. This work sug-
gests that functionally graded flexural rigidity, driven
by spatial variations of wing thickness, enhances the
performance of flapping wing insects.
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Appendix A. Aerodynamic modeling

This appendix details the derivation of the UVLM
approach used to determine the aerodynamic forces
acting on the wing. The flow velocity at any point i in
space that is induced by a vortex at j is given by the
Biot—Savart law:

Vi, = 3 (%~ Zoer + (Y = Vez)y (A1)
where Viyq is the induced velocity, L is the distance
between point i and vortex j, Y and Z are the coor-
dinates of 7 and j in the inertial reference frame, and
I'; is the circulation of the vortex. Then, according to
the Kelvin—Helmholtz theorem for an ideal fluid, the
total circulation around a closed contour must remain

constant, or
Dr

o

Flow may not travel through the solid surface of
the wing, meaning that the component of velocity
normal to the surface is zero. This is represented by

(A.2)

(—R+Vinq) - n=0 (A.3)

where R is the velocity of the wing’s surface in the
inertial reference frame and n is the surface nor-
mal vector. By simultaneously enforcing the non-
penetration condition at all control points on the
wing, as well as the Kelvin—Helmholtz condition, the
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strengths of the bound vortices can be determined via

a, Ay ... AN, GLNp+1 I

a1 Ay ... 2N, 2N+l I,

aNp,1  ANp,2 ANp,N,  ANp,Np+1 FNp

1 ... 1 1 I'Np+1
I’hS]
I'hSz
= : (A.4)

rhsz
rhs”

where a;; is the influence coefficient. On the right-
hand side, rhs; n,, are the normal velocities due
to the combined effect of the pitch—plunge motion,
structural deflection, and velocity induced by the
wake vortices. rhs* is the total bound vorticity from
the previous time step. The solved quantities I'; ;.. Np
and I'n,+1 are the strengths of the bound vortices
on the wing and of the newly-shed wake vortex,
respectively.

The new wake vortex is placed a fixed distance
aft of the trailing edge. All existing wake vortices are
advected with the local flow. The velocity of the ith
wake vortex is given by

NP Ny
Vi=> Vi, + Y, Viays  (A5)
=1 k=1,ks£i

where V; is the total induced velocity at i by N}, bound
vortices on the wing and N,, — 1 wake vortices. A

wake vortex is not influenced by its own vorticity. The
aerodynamic force on the wing is determined using
the unsteady Bernoulli equation,

Py—P V2-V: 00
! e O (A.6)

p - 2 ot’

where P and P, are the local and reference pressures,
V and V. are the local and reference (freestream)
velocities, p is the fluid density, and @ is the flow
potential. When solved at the bound vortex for the ith
wing panel, this becomes

: I 0
AP = —p|(=R+Ving,i) Ti-+ ) T
p|(=R+ d,)rds+atj§:l j

(A7)
where AP is the pressure difference between the top
and bottom surfaces of the wing and 7 is the unit vec-
tor tangent to the wing surface. The total aerodynamic
force is obtained by summing the products of the
pressure differentials and the panel normal vectors.

Appendix B. Finite element modeling

This appendix details how the mode shapes and nat-
ural frequencies of the 2D wing are determined. The
stiffness matrix K. based on Euler—Bernoulli beam
theory for an individual element is

12 6cc —12  6c
El. | 6c. 42 —6c. 2¢

K. = ¢ ¢ B.1
¢ ¢ |—12 —6c. 12 —6c. (B.1)
6cc  2c2  —6c. 4c
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Table C3. Discretization parameters.

Symbol Description Value
N, Number of elements 40
N, Number of panels 40
N, Number of wake vortices 100
T/dt Time-steps per cycle 200

where I, E., and c. are the elemental area moment
of inertia, elastic modulus, and length respectively. In
the I, calculation, the cross-sectional area of the wing
in the x—z plane is assumed rectangular. E. and c.
are uniform across all elements. The elemental mass
matrix M, is

156 22c. 54 —13ce

_ Puw btece | 22c. 4c§ 13¢. —3c§

¢ 420 54 13cc 156 —22c
—13¢c. —3c —22c.  4c

(B.2)

where p,, is the wing material density, b is the wing
span, and f. is the element thickness. The wing vibra-
tion modes and natural frequencies are determined by
finding the eigenvectors and eigenvalues of the matrix

quantity M~ 'K.

Appendix C. Discretization parameter
convergence studies

This appendix shows the convergence studies used
to determine panel count, number of time steps and
number of elements. All discretization parameters
are shown in table C3. Sensitivity of lift, power, and
deflection as a function panel count are shown in
figure C10, and as a function of time step size in
figure C11. The wing’s first natural frequency as a
function of element count is shown in figure C12.
In both the panel count and time step analyses,
a homogeneous wing is used, as the most flexible
wing should experience the greatest deformation and
dependence on panel count. In the element count
analysis, a highly-tapered wing is used, since natural
frequency converges fastest with the homogeneous
wing. In the time-step sensitivity analysis, the number
of time-steps per wing beat is varied from 30 to 500.
The number of wake vortices N,, was fixed to half of
this value to prevent the results being affected by the
wing flying back through its wake.

Appendix D. Validation

In this section, we benchmark our model using
results from high fidelity CFD from [7]. The two-
dimensional wing is uniform thickness and stiff-
ness. The pitch and plunge amplitudes are 22.5° and
1.25¢, respectively. The driving-to-natural frequency
ratio is 0.4, and the mass number (a measure of
the relative magnitude of inertial to aerodynamic
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Lift Coeflicient vs Dimensionless Time
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Figure D13. Lift coefficient over a single wing beat from
UVLM (blue) and CFD [7] (black).

forces) is 1. We use the same geometric parameters
as shown in table 1, as the comparison study used
non-dimensional quantities. We apply low-pass filter
to the lift coefficient with a cutoff frequency about 16
times that of the flapping frequency.

We compare then the lift coefficient predicted by
both models using the maximum plunge rate as the
reference velocity (figure D13). Both methods results
in similar lift coefficients, though the lift coefficient
by UVLM slightly lags the phase of that predicted by
the higher fidelity model. Given the computational
savings of the reduced-order model, we consider these
results to be sufficiently similar.
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