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Insect Wing Buckling Influences
Stress and Stability During
Collisions
Flapping insect wings collide with vegetation and other obstacles during flight. Repeated
collisions may irreversibly damage the insect wing, thereby compromising the insect’s
ability to fly. Further, reaction torques caused by the collision may destabilize the insect
and hinder its ability to maneuver. To mitigate the adverse effects of impact, some insect
wings are equipped with a flexible joint called a “costal break.” The costal break buckles
once it exceeds a critical angle, which is believed to improve flight stability and prevent
irreversible wing damage. However, to our knowledge, there are no models to predict the
dynamics of the costal break. Through this research, we develop a simple model of an
insect wing with a costal break. The wing was modeled as two beams interconnected by a
torsional spring, where the stiffness of the torsional spring instantaneously decreases
once it has exceeded a critical angle. We conducted a series of static tests to approximate
model parameters. Then, we used numerical simulation to estimate the reaction moments,
angular impulse, and peak stresses experienced by the wing during a collision. When
evaluated over the duration of an external load, we found that buckling could reduce
reaction moments and angular impulse up to 82% and 99%, respectively, compared to a
homogeneous wing. This suggests the costal break can enhance flight stability. On the
other hand, buckling maximally increased peak stresses two times compared to a homo-
geneous wing, indicating the costal break does not reduce likelihood of damage under
the simplified loading considered. [DOI: 10.1115/1.4055309]

1 Introduction

Insect wings are complex structures that serve multiple func-
tions. Most notably, flapping wings produce the aerodynamic
forces required for flight, such as lift and thrust, which are pre-
dominantly generated by the wing’s rigid body rotation [1].
Smaller wing deformation superimposed on larger rigid body
motion is believed to augment aerodynamic force generation [2]
and power economy [3]. At the same time, wings may play a role
in sensing. Hawkmoth Manduca sexta wings are imbued with
mechanoreceptors called campaniform sensilla, and the feedback
encoded by these mechanoreceptors is believed to facilitate pos-
tural control [4]. Wings are therefore essential to flight, which
enables insects to forage, locate food sources, escape predators,
and in some cases, predate.

Because of the wing’s importance to flight, irreversible wing
damage may reduce an insect’s likelihood of survival. Wing dam-
age has been shown to increase mortality rates in both honeybees
[5] and bumblebees [6]. While it is difficult to prove causality, the
increase in mortality rate may stem from the compromised aero-
dynamics. Wing area loss has been correlated to a decline in verti-
cal accelerations in dragonflies [7] and is believed to inhibit
maneuverability in bumblebees [8]. Loss of peak accelerations
and maneuverability could affect an insect’s ability to evade pred-
ators, navigate complex environments, or cope with aerodynamic
disturbances, such as turbulence or wind. In addition to aerody-
namic repercussions, wing damage may increase the energetic
costs of flight. For example, unilateral wing damage in phorid flies
has been estimated to increase the power required to flap the dam-
aged wing up to 40% relative to the intact wing [9]. This increase
in power consumption results from an increase in flapping ampli-
tude of the damaged wing, where the increased flapping amplitude

is necessary to generate aerodynamic forces comparable to the
intact wing.

Wing damage may arise for a variety of reasons, though a pre-
dominant cause appears to be collisions with vegetation during
foraging behavior. Foster and Cartar filmed bumblebees foraging
in their natural habitat, and found wings that collided with vegeta-
tion often suffered more area loss relative to wings with less fre-
quent collisions [10]. Mountcastle and Combes investigated wing
loss in a more controlled setting and used a motor to automate
wing collisions at a regular interval [11]. They found that after the
wing experienced nearly 780,000 collisions, the estimated number
of collisions a wing may experience over the lifetime of the bum-
blebee, the wingtip lost approximately 20% of its area. In addition
to area loss, wings may experience other types of damage, such as
cracking and surface wear [12].

Some insects employ strategies to reduce the damage their
wings experience during collision. The wings of many hymeonop-
terans (bees and wasps) are equipped with a flexible joint located

Fig. 1 Image of yellowjacket wing costal break. The costal
break typically buckles such that the wing bends out-of-plane.
Note that this is not the exact wing tested in this work.
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along the leading edge vein [13] (Fig. 1). This joint is called the
costal break and exists in healthy, undamaged wings. Relatively
little is known about the geometry or material characteristics of
the costal break and surrounding regions, but research indicates
that it behaves as a flexible joint that buckles once it exceeds a
critical angle [14]. This buckling appears to reduce the damage
the wing experiences during collision. Mountcastle and Combes
tested normal yellowjacket wings and yellowjacket wings with
splinted costal breaks in a controlled collision apparatus and found
that the normal wings experienced less area loss relative to the
splinted wings [11]. Given its benefits in insects, the costal break
damage mitigation feature has begun to be emulated in engineer-
ing design [15].

In addition to reducing wing damage, the costal break may also
improve insect flight stability. The external forces generated when
a wing strikes an object may produce a large reaction torque on
the insect body. Depending on where the wing is in its stroke
phase, this reaction torque may destabilize the insect by imparting
an angular velocity to its body. The costal break may lessen the
amount of force transmitted from the point of impact to the insect
body, thereby reducing the body’s post-collision angular velocity.
While there is no conclusive evidence that the costal break
improves stability in live insects, a buckling feature on an insect-
scale flapping wing micro air vehicle has been shown to lessen the
aircraft body’s post-collision yaw rate [14].

Despite the importance of the costal break to insect flight, to
our knowledge, there are no mathematical models that estimate
the damage-minimizing or stability benefits conferred by this fea-
ture. The purpose of the present work is to develop a simple
model of an insect wing embedded with a costal break to predict
its dynamics during a collision. We are specifically interested in
estimating the peak stresses, reaction moments, and angular
impulse experienced by the wing during external loading. Though
this simplified model does not fully capture the complexity of the
insect wing, it provides a reasonable starting place towards under-
standing the dynamic behavior of the costal break and establishes
foundational knowledge for more sophisticated models moving
forward. Some of the model assumptions include:

(1) The wing is reduced to a system comprising two beams
interconnected by a torsional spring representative of the
costal break. The material and geometric properties of the
two beams, which represent the portion of the wing
proximal and distal of the costal break, are assumed
homogeneous.

(2) The static testing used to tune model parameters considers
dried wings. Desiccation may influence the wing’s absolute
material properties.

(3) The costal break model is quasi-static and does not account
for rate-dependent effects.

(4) We consider only out-of-plane bending of the wing and
therefore restrict the costal break to rotate only in one
direction.

(5) In dynamic simulations, the collision force is treated as a
short impulsive load applied to the wingtip. We neglect
contact physics between the wing and the object of colli-
sion, such as the friction and adhesion.

The remainder of the paper is organized as follows: First, we
derive the model of the insect wing with costal break. We then
detail a series of static force–displacement tests conducted to tune
model parameters. Next, we conduct numerical studies to better
understand how the wing’s dynamics are influenced by the costal
break. We conclude by discussing implications and future direc-
tions of this work.

2 Theory

Here, we derive a mathematical model to predict the deforma-
tion of a structure representative of an insect wing with a costal
break. The wing is comprised two flexible beams interconnected

by a torsional spring. Similar models have been used to model the
dynamics of cracked beams [16–18], and thus the following pro-
vides only a brief summary of the model derivation. For a more
detailed derivation, the reader is encouraged to refer to the above
references.

The wing model is shown in Fig. 2. We denote the left beam
and right beam as beams 1 and 2, respectively. Beam 1 represents
the portion of wing proximal to the insect body, and beam 2 repre-
sents the distal portion of the wing. The beams are of lengths L1
and L2, and the position along each beam is described by x1 and
x2.W1 and W2 denote the beam’s infinitesimal transverse displace-
ment. The beams are connected by a torsional spring of stiffness
kT. Assuming each beam has homogeneous material properties
and cross-sectional area, and that shear deformations are negligi-
ble, the partial differential equation governing the beam’s trans-
verse displacement [19] is

EiIi
@4W xi; tð Þ

@x4i
þ qiAi

@2W xi; tð Þ
@t2

¼ Fi xi; tð Þ (1)

where i¼ 1, 2 and represents the left or right beam respectively, E
is the Young’s modulus, I is the area moment of inertia, A is the
cross-sectional area, q is the mass density, F is a transverse force
per unit length dependent on space and time, and t is time. The no
displacement, no rotation boundary conditions at the fixed edge of
beam 1 are

W1ð0Þ ¼ 0 (2)

W0
1ð0Þ ¼ 0 (3)

where 0 denotes a first-order spatial derivative, 00 denotes a second-
order spatial derivative, and so on. The no moment, no shear
boundary conditions at the free edge of beam 2 are

W00
2 ðL2Þ ¼ 0 (4)

W000
2 ðL2Þ ¼ 0 (5)

At the torsional spring, the beam’s transverse displacements,
moments, and shear are continuous, which gives

W1ðL1Þ ¼ W2ð0Þ (6)

W00
1 ðL1Þ ¼ W00

2 ð0Þ (7)

W000
1 ðL1Þ ¼ W000

2 ð0Þ (8)

Lastly, compatibility at the torsional spring implies that

KT ½W0
1ðL1Þ �W0

2ð0Þ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
h

� þ E1I1W
00
1 ðL1Þ ¼ 0 (9)

Fig. 2 Simple schematic of insect vein with costal represented
by two flexible beams connected by a torsional spring

111002-2 / Vol. 17, NOVEMBER 2022 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putationalnonlinear/article-pdf/17/11/111002/6914651/cnd_017_11_111002.pdf by M
ontana State U

niversity Library user on 23 June 2023



where h is the angle of the torsional spring. This boundary condi-
tion permits that the slope be discontinuous at the torsional spring.
The bending moment M and compressive/tensile stress r internal
to the deformed beams are

Mi xið Þ ¼ EiIi
d2Wi xið Þ

dx2i
(10)

ri xið Þ ¼
zMi xið Þ

Ii
(11)

where z is the distance from the beam’s neutral axis to a point of
interest. We use maximum stress as a proxy to identify how
severely the wing may be damaged during collision. Lastly, we
assume that the torsional spring has a linear stiffness defined by
kT. Once the joint angle has exceeded a critical angle hc, the
“costal break” torsional spring buckles and its stiffness instantane-
ously switches to akT (Fig. 2), where a is a nondimensional post-
buckling stiffness scaling factor to be determined. We assume that
the torsional spring stiffness remains akT until the joint angle
returns to zero, and that the stiffness of the torsional spring is akT
if h > hc. This is consistent with what we found in the static tests
detailed in the following section.

For practical implementation, we discretize the continuous
model in Eq. (1) to form a multiple-degree-of-freedom system
comprised of interconnected finite beam elements [20] as

M€q þ C _q þKq ¼ FðtÞ (12)

where M, C, and K are the system’s mass, damping, and stiffness
matrices, respectively, and F is an external force vector. Note that
the damping matrix is not explicit to the continuous formulation
and is instead added to stabilize the dynamic solutions later in this
manuscript. We assume the damping matrix is proportionally
damped such that C ¼ cKþ bM, where c; b are constants tuned
such that the first two vibration modes of the beam system have
modal damping ratios of 10%. Lastly, state vector q is
q ¼ ½w1; h1; w2; h2;…;wn; hn�T, where w and h are the beam
elements transverse displacement and rotation, respectively. We
use 100 beam elements to represent the system, which is sufficient
to show convergence of the assembly’s first four natural frequen-
cies (Fig. 3). The costal break is represented as a sprung nodal
hinge connecting two beam elements.

3 Static Experiments

We conducted a series of static experiments to estimate the
wing’s effective cross-sectional area A, area moment of inertia I,
Young’s modulus E as well as the costal break’s effective pre and
post-buckling stiffness KT and aKT . These experiments were con-
ducted on desiccated wings, where desiccation has been shown to
increase wing stiffness in other contexts [21]. The benefit of work-
ing with dried wings is that their material properties are stable and
do not change with time [22], which reduces the time sensitivity

of the experiments. However, the flexural rigidity determined
through this approach is perhaps higher than the flexural stiffness
in fresh insect wings. Though we acknowledge there will be natu-
ral variation of model parameters between wings of different
insects, we expect that these minor variations will not substan-
tially affect the trends later detailed in the results section. Thus,
we report data only for a single wing.

We first estimate the wing’s effective cross-sectional area and
area moment of inertia through microscopy. We captured yellow-
jacket wasps using traps baited with Heptyl Butyrate and water.
Captured wasps were euthanized with ethyl acetate and frozen.
Wasps were removed from the freezer and let to dry prior to
experimentation and their wings were removed using dissection
scissors. In order to estimate the cross-sectional area A and area
moment of inertia I, we made slides from the wing pressed
between two glass slips. Images for analysis were taken using the
Nikon Eclipse E800 microscope and the infinity two-color micro-
scope camera. We hypothesize that the leading edge vein is the
wing’s predominant load bearing structure and base our estimates
of A and I from its geometry. Using ImageJ to analyze our images,
we found that the leading edge vein’s effective diameter ranged
from roughly 200 lm near the wing base to 70lm near the wing
tip. We assume that the vein cross section is circular and has a
diameter of 100lm. In practice, the vein’s cross-sectional geome-
try is complex and variable.

To determine the wing’s Young’s modulus and costal break tor-
sional stiffness, we conduct a series of force–deflection tests
(Fig. 4) on a wing separate from that used during slide prepara-
tion. The base of the wing was clamped using a 3D printed fixture
(Fig. 5), and the clamping fixture was subsequently attached to a
manual rotation stage (0.1 deg resolution) such that we could
impose an angular displacement to the wing base. To measure the
reaction forces resulting from base rotation, we placed a load cell
(Transducer Techniques, GSO-10, 0.05mN resolution) near the
tip of the wing. We rotated the wing in one-degree increments
until it buckled, and subsequently rotated the wing back to its ini-
tial orientation. We recorded the force versus angular displace-
ment curve during both the loading and unloading phase. We
conducted this process for the (1) intact wing, with the load cell
placed distal to the costal break, and (2) a wing that had been

Fig. 3 Fourth natural frequency versus element count shows
convergence. Lower natural frequencies converge at a lower
element count.

Fig. 4 Schematic of static tests used to identify wing’s Young’s
modulus and costal break torsional stiffness

Fig. 5 Photograph of experimental set-up. A yellowjacket wing
is fixed into a custom clamp. The clamp is subsequently fixed
to a rotation stage. The wing is then slowly rotated into a load
cell until it buckles, and is then rotated in the opposite direc-
tion. The reaction force is then determined as a function of
base rotation angle for the loading and unloading phase.
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trimmed at the costal break, with the load cell placed near the end
of the remaining wing segment (Fig. 4). Assuming both beams
have uniform material properties, cross-sectional area, and area
moment of inertia, we are able to estimate E by quantifying the
force-deflection curve of the trimmed wing (Fig. 6, top). Once E
is known, we estimate KT and aKT through the force-deflection
curve of the intact wing (Fig. 6, bottom).

Model parameters estimated through static testing are shown in
Table 1. The Young’s modulus falls within the lower end of range
for dried insect cuticle (the primary material constituent of vein),
though this modulus range varies substantially [21]. Our estimate
of E is sensitive to the approximated vein diameter t since the area
moment of inertia and consequently the beam’s flexural stiffness
scale with t4. We found that the costal break’s pre-buckling stiff-
ness in the dried wing was about twice as high as that measured in
a fresh wing [14], and were unable to find a comparison for post-
buckling stiffness in either fresh or dried wing. Since we did not
measure the joint angle directly, but rather the angle between the
rotation stage and the wing tip, we used our model to estimate the
critical buckling angle. We found that the dried wing buckled at
an angle approximately double that of a fresh wing [14]. The
beam density was estimated from values published in the litera-
ture [23].

4 Dynamic Simulations

In this section, we use numerical simulation to better under-
stand the wing’s dynamics. We first determine the wing’s natural
frequencies and mode shapes. Then, we determine the response of
the wing subjected to a short impulsive force applied at the wing
tip. We calculate the wing’s peak stress (rpeak), peak reaction
moment (Mpeak), and angular impulse (DL) generated by the exter-
nal loading over the loading duration. Stress serves as a proxy for
how much damage the wing may incur during the collision,
whereas reaction moment and angular force serve as indicators of
how the collision may destabilize the insect. We parameterize the
model to understand how critical buckling angle and loading dura-
tion affect these quantities.

4.1 Mode Shapes and Natural Frequencies. We calculate
the wing’s normal modes (Fig. 7) and natural frequencies by
determining the eigenvectors and eigenvalues of M�1K. The first
natural frequency of a homogeneous wing (no costal break) is
517Hz, while the first natural frequency of the wing with costal
break is 798Hz and 494Hz in its pre and post-buckled state,
respectively. This implies that the costal break, at least before
buckling, stiffens the overall beam assembly and is stiffer than the
beam sections immediately surrounding it. As a result, beam’s
angle of rotation instantaneously decreases at the costal break
location when viewed from wing root to tip. By contrast, buckling
of the costal break lowers the overall stiffness of the wing, and the
buckled costal break has a lower stiffness than the surrounding
beam sections. The beam’s angle of rotation therefore increases at
the costal break location. If the costal break stiffness were to be
further reduced, it would eventually behave as a hinge. The first
natural frequency would then be zero and correspond to rigid
body rotation of the distal portion of the wing.

4.2 Response Under Dynamic Loading. Next, we simulate
the response of the wing subject to a large impulsive force applied
at the wingtip. This loading is idealized from what the insect
would experience in flight, where the wing would have a non-zero
initial velocity profile and the point of contact may collide inelas-
tically with the object it strikes. The insect would likely continue
to apply a moment at the base of the wing as it attempts to clear
the obstacle. Further, there may be nontrivial interactions between
the wing and the obstacle, such as wing-obstacle sliding friction
or adhesion, that are not well captured by the idealized force.
Nonetheless, little is known about the specifics of the wing colli-
sion, including duration, the jump in velocity distribution upon
impact, or the moments the insect applies at the wing base during
contact. The simplified loading case presented here is thus a suita-
ble starting point towards understanding the complex dynamics of
the coastal break until further studies have better characterized the
nature of impact.

Fig. 6 Force–displacement tests for intact and trimmed yellow-
jacket wing

Table 1 Estimated model parameters

Property Symbol Value Unit

Young’s modulus E 1.403 GPa

Cost break stiffness kT 7.0
mN�mm

radPost-buckle scaling factor a 0.11 —
Length one L1 2.85 mm
Length two L2 2.81 mm
Diameter t 100 lm
Cross-sectional area A 0.0079 mm2

Area moment of inertia I 4.91� 10– 6 mm4

Density q 1000 kg/m3

Critical buckling angle hc 19.1 deg

Parameter estimates are from experiments on a single wing.

Fig. 7 Mode shapes of homogeneous beam and beam with
costal break (pre and post buckle)
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We assume the load F(t) is applied at the tip of the wing at
length L1 þ L2 and is described by a half-sine wave modulated by
the heaviside function U(t), or

F tð Þ ¼ Fmax sin p
t

Td

� �
U tð Þ � U t� Tdð Þ
� �

(13)

where Fmax is the force magnitude and Td is the duration over
which the force is applied. To select Fmax and Td, we use the
impulse-momentum principle. We consider the wing to be rigid
immediately before impact with an angular velocity x¼ 942 rad/s
(150 Hz). Following impact, the wing has a zero angular velocity.
The angular impulse–momentum relationship gives

ðtd
0

FðtÞdt
� �

ðL1 þ L2Þ ¼ I0x (14)

where I0 is the wing’s moment of inertia about its left edge. The
term to the left-hand side of the equation is equal to the angular
impulse about the wing’s left edge, which is imparted by F(t) act-
ing at the right-hand side of the wing. The term to the right hand
side of the equation is equal to the wing’s angular momentum
immediately before the force is applied. We consider collision
durations that last 1%, 2%, and 10% of the wingbeat period Twb,
where Twb¼ 6.67ms. This results in maximum force values Fmax

ranging from about 0.19mN to 1.9mN. The force is assumed to
act in the negative transverse direction.

We simulate the wing response using MATLAB. Though the wing
would continue to vibrate following the collision, we simulate the
wing’s response only during the collision itself. This is in part
because the insect may react during or immediately following the
collision, thereby affecting the wing’s free vibration. Each simula-
tion is broken into 500 evenly spaced time intervals, where the
specific time step is dictated by the collision duration. We

consider three cases to simulate: (1) the case where the wing has a
costal break that experiences buckling during the collision, (2) the
case where the wing has a costal break that does not buckle during
the collision, and (3) the case where the wing is homogeneous
and the costal break is absent. Across most loading cases consid-
ered, the costal break did not exceed the measured buckling angle
hc described in Table 1. This is due to simplifications in loading,
as well as the fact that the buckling angle in fresh wings occurs
closer to 10 deg [14]. Therefore, we parameterized hc across all
loading conditions to better understand how this variable affects
flight stability and wing damage. We consider a lower bound of
hc¼ 0.5 deg and increase hc in 0.25 deg intervals until the wing
does not buckle for a specific loading condition. Peak stress, reac-
tion moment, and angular impulse are quantified for all combina-
tions of buckling angle and loading duration.

The results are summarized in Fig. 8. For the homogeneous
wing, the angular impulse, peak moment, and peak stress
increased with pulse duration. Between Td¼ 0.01Twb and
Td¼ 0.10Twb, angular impulse increased about 150 times, peak
moment increased about eight times while peak stress increased
only 1.15 times. For the wing with costal break that did not expe-
rience buckling, angular impulse and peak moment increased with
pulse duration, whereas peak stress decreased. Between
Td¼ 0.01Twb and Td¼ 0.10Twb, angular impulse increased about
80 times, peak moment increased about 3 times, and peak stress
decreased by 1.62 times. In both of these cases, the angular
impulse and peak moment fall short of the 460mm-mN-ls angu-
lar impulse and 1–10mm-mN peak moment that a rigid wing
would experience during analogous loading. This suggests that,
even without buckling, wing compliance may reduce the destabi-
lizing effects associated with collision. Of course, the more rigid
wing would not experience the same levels of stress during colli-
sion and consequently would not be as susceptible to damage.

Now, consider the cases where the costal break buckled during
the collision. Each impulse duration resulted in a different

Fig. 8 Summary of angular impulse (DL), absolute value of peak moment (Mpeak), and absolute value of peak stress (rpeak)
experienced by the wing during a collision of duration Td. Collision durations are 1%, 2%, and 10% of the 150Hz wingbeat
period Twb. Plots show responses for (1) the wing with costal break that experiences buckling after exceeding a parameterized
critical angle hc, (2) the wing with costal break that does not experience buckling, and (3) the homogeneous wing with no cos-
tal break.
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maximum hc. The maximum hc was 7.25 deg, 11.5 deg, and
2.5 deg for Td¼ 0.01Twb, Td ¼ 0:02Twb, and Td¼ 0.05 Twb,
respectively. The maximum force influences the maximum hc, but
so do the internal elastic forces produced by the deforming beam.
Consequently, we do not observe a monotonic relationship
between pulse duration and maximum hc. For very quick colli-
sions (Td¼ 0.01Twb), the costal break (whether buckled or not)
adversely impacts the wings performance in terms of angular
impulse and peak moment compared to the homogeneous wing.
Peak stress is only modestly improved. On the other hand, for lon-
ger collisions (Td¼ 0.02Twb, Td¼ 0.10Twb) buckling greatly
attenuates angular impulse and peak moment. Across these two
collision durations and range of hc, angular impulse is attenuated
from 2% to 99% while peak moment is attenuated from 0.5% to
82% compared to the homogeneous wing. However, buckling
causes peak stress to increase from about 25% to 100% compared
to the homogeneous wing, suggesting the buckled wing may incur
more damage than the homogeneous wing during collision. Based
on these results, buckling of the costal break appears to improve
post-collision stability but at the expense of increased likelihood
of wing damage. To better understand the wing response during
the collision, we investigate a case where Td¼ 0.02Twb and plot
the reaction moment (Fig. 9) and spatiotemporal stress (Fig. 10)
as a function of collision duration fraction. We consider a homo-
geneous wing, wing with costal break and no buckling, and wing
with costal break that buckles at hc¼5 deg. First, we analyze the
reaction moments (Fig. 9). Reaction moments are similar for all
three conditions through about the first 40% of the collision dura-
tion, and begin to diverge from this point. Interestingly, the reac-
tion moment acts in opposite direction for the wings with costal
break compared to the homogeneous wing owing to the

discontinuity in slope at the costal break location. Reaction
moments for both wings with the costal break track each other
until one wing buckles at about 70% of the collision duration.
From here, the buckling causes an instantaneous jump in reaction
moment, and the reaction moment trends toward a negative ampli-
tude after this point. For the wing with costal break that does not
experience buckling, the reaction moment increases in positive
amplitude over the entire duration of the collision. For the buck-
ling wing, the instantaneous jump in reaction moment and the
change in reaction moment sign that follows result in a very low
angular impulse of the duration of the collision.

Next, we discuss wing stress (Fig. 10). In all cases, the wing
experiences the largest stress near the wingtip where the load is
applied. As discussed previously, the homogeneous wing experi-
ences the lowest peak stress, whereas the buckled wing experien-
ces the highest. The onset of stress begins about 50% through the
collision at the wingtip and subsequently propagates toward the
center of the wing as the collision continues. Buckling occurs at
about 70% of the loading duration, and causes stress to propagate
more quickly toward the costal break location relative to the
unbuckled wing. Post buckle, the wing experiences the maximum
amount of stress at the costal break itself, whereas in the homoge-
neous and unbuckled wings, the maximum stress remains near the
wingtip.

5 Discussion

Our results support the hypothesis that the costal break pro-
motes flight stability, but do not support the hypothesis that the
costal break reduces wing damage. Depending on the duration of
the collision and the critical buckling angle, the costal break
reduced collision-induced reaction moments up to 82% and angu-
lar impulses by as much as 99% relative to a homogeneous wing.
Larger attenuation of the reaction moment and angular impulse
generally occurred for lower critical buckling angles and longer
duration collisions. On the other hand, buckling of the costal
break greatly increases wing stress relative to the homogeneous
wing in most cases. This was particularly true for longer duration
collisions, where wing buckling nearly doubled the stress experi-
enced by the wing. This suggests the wing that experiences buck-
ling is more likely to incur damage during a collision compared to
the homogeneous wing. Thus, at least for the simple loading con-
ditions and wing model considered in this work, there appears to
be a trade-off between wing damage and flight stability related to
whether or not the wing is equipped with a buckling joint.

Nonetheless, while this simple model provides insight into the
costal break, there are several factors that must be considered
moving forward to better understand its dynamics. First, we must
acquire a more accurate representation of the collision itself. As
the wing strikes an object, the collision will cause an instantane-
ous jump in the velocity profile of the wing. This velocity profile
jump is difficult to predict without a more thorough understanding

Fig. 9 Reaction moments during a collision of length
Td 5 0:02Twb for a homogeneous wing (no costal break (CB)),
wing with costal break and no buckling (CB, no buckle), and
wing with costal break and buckling (CB, buckle). hc 55deg for
the wing that experiences buckling. Reaction moments are plot-
ted as a function of collision duration.

Fig. 10 Spatiotemporal stress profiles during a collision of length Td 5 0:02Twb for a homogeneous wing (no CB), wing with
costal break and no buckling (CB, no buckle), and wing with costal break and buckling (CB, buckle). hc 55deg for the wing
that experiences buckling. Stresses are plotted as a function of collision duration.
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of the contact between the wing and the object it strikes. Depend-
ing on the object the wing strikes, the collision may be fully
inelastic. In this case, the wing would temporarily stick to the
object. The insect would continue to rotate the wing base as it
attempts to clear the obstacle. Once the base of the wing has
rotated sufficiently, the wingtip would begin to slide off the
object, during which the wing and object would apply frictional
forces to one another. In this case of inelastic collision, wing
buckling may allow the wing to geometrically clear the object
sooner than if the wing did not buckle. The resultant stress profile
and peak stresses may be reduced in this case, and the reaction
moments and angular impulse would be influenced as well.

Further, to improve subsequent modeling efforts, we must
acquire a more accurate representation of the insect wing. Wings
are complex structures with spatially varying geometry and mate-
rial properties. Material properties rely critically on hydration,
and mechanical testing on desiccated wings may distort property
absolute values. Moving forward, we must better characterize
how the material and geometric properties vary in space on fresh
wings. It is plausible that the costal break is intended to reduce
stresses primarily near the wingtip, where the leading edge vein has
the lowest diameter and the wing is most flexible. Owing to this
reduced diameter, this portion of the wing experiences the largest
stresses during collision. Indeed, most damage occurs near the wing-
tip during collision [11], and so modeling the wing geometry more
accurately may better demonstrate where the costal break reduces
stress along the leading edge vein. Lastly, we must conduct dynamic
testing on the costal break to determine if rate-dependent effects
influence its behavior. While the quasi-static tests conducted in this
research demonstrate hysteresis, it is plausible that time-dependent
force-displacement testing will change the characteristics of this hys-
teresis. There may be energy dissipation mechanisms associated with
buckling that simply cannot be observed through static testing.

6 Conclusion

In this work, we developed a simple model of an insect wing
with costal break. The model consisted of two homogeneous
beams interconnected by a torsional spring, where the torsional
spring stiffness changed instantaneously once it had exceeded a
critical angle. We carried out static tests on a yellowjacket wing
to determine model parameters and used numerical simulation to
predict the wing’s response during a simplified collision. We
found that the across most parameters tested, buckling of the cos-
tal break reduced peak moments and angular impulses evaluated
over the duration of the external loading. For collisions lasting 2%
and 10% of a single wingbeat period, angular impulse was
reduced by 2% to 99% while peak moment was reduced by 0.5%
to 82%. This result suggests that the costal break may improve the
insect’s flight stability by reducing the insect body’s rate of rota-
tion following a collision, which agrees with studies conducted on
free flying robotic insects [14]. In contrast, wing buckling generally
resulted in larger stresses, in some cases nearly double that of the
peak stresses experienced by the homogeneous wing. However, we
note that during a more realistic inelastic collision, wing buckling
would allow the wing to geometrically clear an obstacle with a
lower angle applied to the wing base compared to the homogeneous
wing. If true, wing buckling would likely reduce the irreversible
damage the wing would experience during a collision.
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Nomenclature

A ¼ cross-sectional area
CB ¼ costal break
C ¼ damping matrix
E ¼ Young’s modulus
F ¼ external loading dependent on space and time
i ¼ index representing distal or proximal portion of wing

(1¼ proximal, 2¼ distal)
I ¼ area moment of inertia

kT ¼ torsional stiffness of costal break buckling joint
K ¼ stiffness matrix
L ¼ wing segment length
M ¼ bending moment
M ¼ mass matrix
q ¼ vector of generalized coordinates for finite element wing

discretization
Td ¼ duration of force from collision

Twb ¼ wingbeat period
W ¼ transverse deflection
x ¼ axial position along beam
a ¼ post-buckling stiffness scaling factor of kT
h ¼ angle of costal break
hc ¼ critical buckling angle of costal break
q ¼ density
r ¼ bending stress
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