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Abstract

We investigate the fractional diffusion approximation of a kinetic equation set in a bounded
interval with diffusive reflection conditions at the boundary. In an appropriate singular limit
corresponding to small Knudsen number and long time asymptotic, we show that the asymptotic
density function is the unique solution of a fractional diffusion equation with Neumann boundary
condition. This analysis completes a previous work by the same authors in which a limiting
fractional diffusion equation was identified on the half-space, but the uniqueness of the solution
(which is necessary to prove the convergence of the whole sequence) could not be established.

1 Introduction

1.1 The linear Boltzmann equation with diffusive boundary conditions

In this paper, we investigate the fractional diffusion approximation of a linear kinetic equation set
on a bounded domain with diffusive boundary conditions in dimension 1. Our starting point is the
following kinetic equation, which models the evolution of a particle distribution function f(t, x, v) ≥ 0
depending on the time t > 0, the position x ∈ Ω ⊂ R and the velocity v ∈ R:





∂tf + v ∂xf = ν0

(∫

R

f(t, x, w) dw F (v)− f

)
in R+ × Ω× R

f(0, x, v) = fin(x, v) in Ω× R.

(1)

The left hand side of (1) models the free transport of particles, whereas the operator in the right hand
side models the diffusive and mass preserving interactions between the particles and the background.
For simplicity, we consider here the linear Boltzmann operator with constant collision frequency
ν0 > 0 and equilibrium function F (v). Importantly, the function F (v) is taken to be a given heavy-
tail distribution function satisfying, for some s ∈ (1/2, 1) and γ > 0:





F ∈ L∞(R),

∫
F (v) dv = 1, F (v) = F (|v|) ≥ 0

∣∣∣F (v)−
γ

|v|1+2s

∣∣∣ ≤
C

|v|1+4s
for all |v| ≥ 1.

(2)

Importantly, we consider here the case where Ω is a bounded interval and we take (without loss
of generality) Ω = (0, 1). We denote Γ± = {(x, v) ∈ ∂Ω ; ±n(x) · v > 0} (note that ∂Ω = {0, 1}
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and n(0) = −1, n(1) = 1) and define the traces γ±f = f |Γ±
. With these notations, we consider the

following diffusive reflection conditions on ∂Ω:

γ−f(t, x, v) = B[γ+f ](t, x, v) ∀(x, v) ∈ Σ− (3)

where B is the following scattering operator

B[γ+f
ε](t, x, v) = c0F (v)

∫

w·n(x)>0

γ+f
ε(t, x, w)|w · n(x)| dw (4)

with c0 the normalizing constant:

c0 :=

(∫

w·n(x)>0

F (w)|w · n(x)| dw

)−1

. (5)

The use of diffusive reflection conditions at the boundary is classical in kinetic theory. We are
assuming that the boundary operator B involves the same equilibrium function F as the bulk collision
operator in order to avoid the need of boundary layer analysis. Note that we consider s > 1/2 in
order for the constant c0 to be well-defined.

The diffusion approximation of such an equation is obtained by investigating the long time, small
mean-free-path asymptotic behavior of f . To this end we introduce the Knudsen number ε� 1 and
the following rescaling of (1)-(3):





ε2s∂tf
ε + εv∂xf

ε = ν0

(∫

R

fε(t, x, w) dwF (v)− fε
)

in R+ × Ω× R

fε(0, x, v) = fin(x, v) in Ω× R

γ−f
ε(t, x, v) = B[γ+f

ε](t, x, v) on R+ × Γ−

(6)

We see that the particular choice of power of ε in front of the time derivative in (6) depends on the
equilibrium F . When Ω is the whole line R it has been proved (see for instance [11, 9, 3, 4] and
references therein) that as ε goes to 0, fε converges to a function f0(t, x, v) = ρ(t, x)F (v) where
ρ(t, x) is the weak solution of a fractional diffusion equation ∂tρ+ κ

(
−∆

)s
ρ = 0.

There is now a very significant literature devoted to the fractional diffusion approximation of
kinetic equations. But the role of boundary conditions in these limits has only recently started to be
investigated. The case of Dirichlet boundary condition was studied in [1] and the case of specular
reflection conditions was investigated by the first author in [6, 7]. In [8], we considered the case of
diffusive reflection conditions (3) in dimension n ≥ 1 when Ω is the half space {xn > 0}. However,
while this previous work clearly identified the limiting Neumann fractional diffusion equation in Ω
(see Section 1.3 below), we did not prove that the limiting density was the unique weak solution of
that equation (given, for instance, by Hille-Yoshida’s theorem). We only established that it satisfies
the equation in a weaker sense, for which uniqueness is not clear. As a result, we also did not prove
the convergence of the whole sequence fε.

The goal of this paper is to fill this gap in the simpler one-dimensional framework by proving
that the limiting density is the unique weak solution of a Neumann fractional diffusion equation.
We achieve this by sharpening the assumptions on the test functions used to derive the limiting
equation. In addition, this paper provides the first result of this type in a bounded domain. Finally,
we point out that while we focus here on the one-dimensional case, the proofs provide a roadmap
for handling this problem in higher dimensions and in general convex domains.
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1.2 Weak solutions of (6)

We now recall the standard definition of weak solutions for the kinetic equation with diffuse boundary
condition. First, we note that for any test function φ ∈ D(R+ × Ω × R), smooth solutions of (6)
satisfy:

−

∫∫∫

R+×Ω×R

fε∂tφ dt dx dv −

∫∫

Ω×R

fin(x, v)φ(0, x, v) dx dv

+ ε1−2s

∫∫

R+×Γ+

γ+f
ε (γ+φ− B∗[γ−φ]) |v · n(x)| dt dσ(x) dv

= ε−2s

∫∫∫

R+×Ω×R

[
fε (εv∂xφ− ν0φ) + ν0ρ

εF (v)φ
]
dt dx dv

with

B∗[γ−φ](t, x) = c0

∫

w·n(x)<0

γ−φ(t, x, w)F (w)|w · n(x)| dw. (7)

and ρε(t, x) =
∫
R
fε(t, x, v) dv. Note that B∗ does not depend on v because of the simple form of

diffuse reflection operator we consider here (constant cross-section). We then have:

Definition 1.1. We say that fε ∈ L2
F−1(R+ × Ω × R) is a weak solution to (6) if for every test

function φ such that φ, ∂tφ and v∂xφ are in L2
F (R+ × Ω × R) and φ satisfies the dual boundary

condition

γ+φ = B∗[γ−φ] on R+ × R+

we have ∫∫∫

R+×Ω×R

fε∂tφ dt dx dv +

∫∫

Ω×R

fin(x, v)φ(0, x, v) dx dv

= −ε−2s

∫∫∫

R+×Ω×R

[
fε (εv∂xφ− ν0φ) + ν0ρ

εF (v)φ
]
dt dx dv

(8)

Here and in the rest of the paper, we used the notation

L2
F−1((0,∞)× Ω× R

N ) =

{
f(t, x, v) ;

∫ ∞

0

∫

Ω

∫

RN

|f(t, x, v)|2
1

F (v)
dv dx dt <∞

}

and a similar definition for L2
F ((0,∞)× Ω× R

N ).
The existence of a weak solution in the sense of this definition is discussed, for instance, in [5, 10].

1.3 The asymptotic diffusion equation

In this section, we recall previous results (in particular our result of [8]) and introduce the asymptotic
model.

As already mentioned above, it is now classical that when Ω is the whole line R (or more generally
Ω = R

n), fε converges to a function ρ(t, x)F (v) where ρ(t, x) is the weak solution of a fractional
diffusion equation ∂tρ+ κ

(
−∆

)s
ρ = 0. When Ω is a subset of Rn, the diffusion equation must be

supplemented by boundary condition. Studying the asymptotic limit of this kinetic equation provides
us with the framework to find out physically relevant boundary conditions for fractional diffusion
equations. We recall that in the classical diffusion approximation (e.g. when F is a Maxwellian
distribution) the limiting equation is the diffusion equation with Neumann boundary conditions.
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In [8], we study the problem (6) in dimension n ≥ 1 when Ω is the upper half plane. We show that
the asymptotic operator (which we denote by (−∆)N since it corresponds to Neumann boundary
conditions) is given by

(−∆)sNu(x) := −
cn,s
2s

∫

Ω

∇u(y) ·
y − x

|x− y|n+2s
dy,

with cn,s =
22sΓ(n

2
+s)

πn/2|Γ(−s)|
(the constant is chosen here so that when Ω = R

n, we recover (−∆)sN =

(−∆)s) which can also be written in divergence form as

(−∆)sNu(x) = −divD2s−1
N [u], D2s−1

N [u](x) :=
cn,s

2s(2s− 1)

∫

Ω

(y − x) · ∇u(y)
y − x

|y − x|n+2s
dy.

With these notations, the main result of [8] is:

Theorem 1.1 ([8],Theorem 1.1). Assume that F satisfies (2) with s ∈ (1/2, 1) and let Ω be the upper
half space Ω = {x ∈ R

n ; xn > 0}. Assume that fε(t, x, v) is a weak solution of (6) in (0,∞)×Ω×R
n.

There exists a subsequence fε
′

which converges weakly in L∞(0,∞;L2
F−1(Ω×R

n)) to the function
ρ(t, x)F (v) where ρ(t, x) satisfies

∫∫

R+×Ω

ρ(t, x)
(
∂tψ(t, x) + κ(−∆)sN [ψ](t, x)

)
dt dx+

∫

Ω

ρin(x)ψ(0, x) dx = 0 (9)

for all test function ψ ∈ C1(0,∞;H2(Ω)), such that (−∆)sN [ψ] ∈ L2(R+ × Ω) and D2s−1[ψ] · n = 0
on ∂Ω.

By using the integration by parts formula (see Proposition 3.4 in [8]):

∫

Ω

divD2s−1[ϕ]ψ dx−

∫

Ω

ϕ divD2s−1[ψ] dx =

∫

∂Ω

[
ψD2s−1[ϕ] · n− ϕD2s−1[ψ] · n

]
dS(x) (10)

we see that (9) is a natural weak formulation for the parabolic boundary value problem





∂tρ− κ divD2s−1
N [ρ] = 0 in (0,∞)× Ω

D2s−1
N [ρ] · n = 0 in (0,∞)× ∂Ω

ρ(0, x) = ρin(x) in Ω.

(11)

Using Hille-Yoshida’s theorem, we prove in [8] that (11) is well posed:

Theorem 1.2 ([8],Theorem 1.2). For all ρin ∈ L2(Ω), the evolution problem

{
∂tρ− κ divD2s−1

N [ρ] = 0 in (0,∞)× Ω,
ρ(0, x) = ρin(x) in Ω.

(12)

has a unique solution ρ ∈ C0([0,∞);L2(Ω)) ∩ C1((0,∞);L2(Ω)) ∩ C0((0,∞);D((−∆)sN )) where

D((−∆)sN ) = {u ∈ Hs(Ω) ; (−∆)sNu ∈ L2(Ω), D2s−1[u] · n = 0 on ∂Ω}.

We recall that the space Hs(Ω) is defined by

Hs(Ω) =

{
u ∈ L2(Ω) ;

∫

Ω

∫

Ω

(u(x)− u(y))2

|x− y|n+2s
dx dy <∞

}
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and is equipped with the norm:

‖u‖2Hs =

∫

Ω

|u(x)|2 dx+

∫

Ω

∫

Ω

(u(x)− u(y))2

|x− y|n+2s
dx dy.

Unfortunately, it is not clear that the characterization of ρ(t, x) given by Theorem 1.1 implies
that ρ is the unique solution of (1.2) provided by Theorem 1.2. Indeed, while we can show that the
solution of Theorem 1.2 satisfies (9) as in Theorem 1.1, it does not appear that this formulation is
strong enough to yield uniqueness. The problem is that the condition ψ ∈ H2(Ω) in Theorem 1.1,
which we use in [8] to pass to the limit, is too restrictive to prove uniqueness. In particular, this
condition cannot be deduced from the condition (−∆)sNψ ∈ L2(Ω) (or even, as we will see later,
from the stronger condition (−∆)sNψ ∈ C∞(Ω)).

The aim of the present paper is to show (in dimension 1) that the convergence result of Theo-
rem 1.1 can be proved for a different set of test function ψ, which allows us to prove that ρ is indeed
the unique weak solution of (11) provided by Theorem 1.2.

For future reference, we also recall that the key step in the proof of Theorem 1.2 is to show that
for all λ > 0, the stationary problem

{
λu(x)− divD2s−1

N [u](x) = g(x) for all x ∈ Ω,
D2s−1

N [u](x) · n(x) = 0 for all x ∈ ∂Ω
(13)

is well posed in Hs(Ω). More precisely, we proved, using Lax Milgram theorem (see Theorem 4.1
and Remark 4.1 in [8]):

Theorem 1.3. For all λ > 0 and g in L2(Ω), there exists a unique u ∈ D((−∆)sN ) solution of (13).

1.4 Main results of the paper

To state our main result, we introduce the space of test function (for β > 0):

Xβ =
{
ψ ∈ C1

c ([0,∞);Cs(Ω)) ; (−∆)sNψ ∈ L∞(0,∞;Cβ(Ω))
}

and
Xβ

0 =
{
ψ ∈ Xβ ; D2s−1

N [ψ] · n = 0 on ∂Ω
}

(we do not indicate the dependence of these spaces on s since s ∈ (1/2, 1) is fixed throughout the
paper). We can now state the main theorem of this paper:

Theorem 1.4. Assume that F satisfies (2) with s ∈ (1/2, 1) and assume that the initial condition
satisfies, for some constant C ≥ 0:

0 ≤ fin(x, v) ≤ CF (v), fin ∈ L2
F−1(Ω× R)).

Let fε(t, x, v) be a weak solution of (6) in (0,∞)× Ω× R in the sense of Definition 1.1. Then the
function fε(t, x, v) converges weakly in L∞((0,∞);L2

F−1(Ω × R)), as ε goes to 0, to the function
ρ(t, x)F (v) where ρ(t, x) is the unique function satisfying

∫∫

R+×Ω

ρ(t, x)
(
∂tψ(t, x)− κ(−∆)sN [ψ](t, x)

)
dt dx+

∫

Ω

ρin(x)ψ(0, x) dx = 0 (14)

for all test function ψ ∈ Xβ
0 for some β > 0.
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Importantly, the uniqueness of the limiting density ρ(t, x) is a new result, which implies that the
whole sequence fε (and not just a subsequence) converges. This uniqueness was not established in
[8] because we required stronger conditions on the test function ψ in order to pass to the limit in (6)
(see Theorem 1.1). This uniqueness result is of independent interest and can be stated as follows:

Proposition 1.1. Given β > 0 and for all ρin ∈ L2(Ω), there exists a unique function ρ(t, x) ∈

L∞(0,∞;L2(Ω)) satisfying (14) for all test function ψ ∈ Xβ
0 .

This solution is also the unique weak solution of (11) provided by Theorem 1.2 and therefore satisfies

ρ ∈ C0([0,∞);L2(Ω)) ∩ C1((0,∞);L2(Ω)) ∩ C0((0,∞);D((−∆)sN ))

In the proof of Theorem 1.4, we make use of the fact that the condition (−∆)sNψ ∈ L∞(0,∞;Cβ(Ω))
– which is a natural condition to get the uniqueness of Proposition 1.1 – yields some Hölder regu-
larity estimates for ψ (see (33)) which are exactly what we need to pass to the limit in the proof of
Theorem (1.4) (see in particular the proof of Lemma 2.3).

While we believe that these Hölder regularity estimates hold in any dimension, we focus on this
paper on the one-dimensional case because, as explained below, the operator (−∆)sN can be written
in term of the usual fractional Laplace operator in one dimension, and existing regularity theory
[12] can then be used. Extending our result to higher dimension would require the development of
a regularity theory for the Neumann boundary value problem (13) in higher dimension.

We conclude this section by explaining what makes the one dimensional case so much nicer to
work with: Given a (continuous) function u defined in Ω, we introduce the continuous extension of
u by constant:

ũ(x) =





u(0) if x ≤ 0

u(x) if 0 ≤ x ≤ 1

u(1) if x ≥ 1.

(15)

We then have:

(−∆)sNu(x) = −
c1,s
2s

∫

Ω

u′(y)
y − x

|x− y|1+2s
dy

= −
c1,s
2s

∫

R

ũ′(y)
y − x

|x− y|1+2s
dy

= c1,sP.V.

∫

R

ũ(x)− ũ(y)

|x− y|1+2s
dy.

that is
(−∆)sNu(x) = (−∆)sũ(x) for all x ∈ Ω. (16)

In particular, we note that if u is the solution of (13) provided by Theorem 1.3, then ũ satisfies





λũ+ (−∆)sũ = g in Ω = (0, 1)

ũ = u(0) in (∞, 0)

ũ = u(1) in (1,∞)

and the regularity theory for the fractional Dirichlet boundary value problem developed for example
in [12, 13] can be used to study the regularity of ũ. When g ∈ L∞(Ω), this gives ũ ∈ Cs(R) and
this regularity is known to be optimal for the Dirichlet problem. It is not immediately obvious
whether this regularity is also optimal for the Neumann boundary value problem or if ũ inherits
better regularity from the Neumann boundary condition. We can actually show that this regularity
is indeed optimal:
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Proposition 1.2. Let Ω = (0, 1) and g ∈ L∞(Ω), then the solution u of (13) provided by Theo-
rem 1.3 satisfies u ∈ Cs(Ω). Furthermore, this regularity is optimal in the sense that there exists
g ∈ L∞(Ω) such that u(x) ∼ xs as x→ 0+ and u(x) ∼ (1− x)s as x→ 1−.

Note finally that we can also write (−∆)sNu(x) = −∂xD
2s−1
N [u] where the non local gradient

D2s−1
N can also be written, using the extension of u, as:

D2s−1
N [u](x) :=

c1,s
2s(2s− 1)

∫

Ω

u′(y)|y − x|1−2s dy

=
c1,s

2s(2s− 1)

∫

R

ũ′(y)|y − x|1−2s dy

=
c1,s
2s

∫

R

[ũ(y)− u(x)]
y − x

|y − x|1+2s
dy. (17)

The rest of the paper is devoted to the proof of Theorem 1.4 and Propositions 1.1 and 1.2.

2 Proof of Theorem 1.4 and Proposition 1.1

2.1 Construction of the test functions

As in previous work [9, 2, 1, 8], the proof relies on the introduction of an appropriate auxiliary
problem: {

ν0φ− εv∂xφ = ν0ψ in Ω× R.

γ+φ(t, x, v) = B∗[γ−φ](t, x) (x) ∈ Γ+.
(18)

And due to the difficulty of writing an explicit solution for (18), we first solve:
{
ν0φ− εv∂xφ = ν0ψ in Ω× R.

γ+φ(t, x, v) = ψ(t, x) (x, v) ∈ Γ+.
(19)

Since we expect to find φε ∼ ψ for small ε and thus B∗[γ−φ] ∼ ψ, which can be seen as a consequence
of the conservation of flux (namely, the fact that B∗[1] = 1), it is reasonable to expect that the
solution of (19) is a good approximation of the solution of (18). We then have:

Proposition 2.1. Given ψ ∈ D(Ω), let ψ̃ be the continuous extension of ψ defined as in (15). Then
the function

φ(x, v) =

∫ ∞

0

ν0e
−ν0zψ̃(x+ εzv) dz

solves (19). Furthermore, φ satisfies γ+φ(x, v) = B∗[γ−φ](x) for (x, v) ∈ Γ+ (and thus solves (18))
if and only if

D2s−1
ε [ψ](0) = D2s−1

ε [ψ](1) = 0 (20)

where the operator D2s−1
ε is defined by (21) below.

Proof. We easily check that φ(x, v) given by Proposition 2.1 solves (19). Indeed, we have:

εv∂xφ =

∫ ∞

0

ν0e
−ν0z

d

dz

[
ψ̃(x+ εzv)

]
dz =

∫ ∞

0

ν20e
−ν0zψ̃(x+ εzv) dz − ν0ψ(x) = ν0(φ− ψ)

and if (x, v) ∈ Γ+, for instance if x = 0 and v < 0, then

φ(0, v) =

∫ ∞

0

ν0e
−ν0zψ̃(εzv) dz =

∫ ∞

0

ν0e
−ν0zψ(0) dz = ψ(0).
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Next, we note that φ satisfies γ+φ(x, v) = B∗[γ−φ](x) on Γ+ if and only if B∗[γ−(φ − ψ)] = 0 on
Γ+, which, using (7) and the fact that φ(x, v)− ψ(x) = 0 on Γ+, is equivalent to

∫

R

vF (v)[φ(x, v)− ψ(x)] dv = 0 on ∂Ω.

The result then follows by introducing the operator

D2s−1
ε [ψ](x) := ε1−2s

∫

R

vF (v)[φ(x, v)− ψ(x)] dv

= ε1−2s

∫

R

∫ ∞

0

ν0e
−ν0zvF (v)[ψ̃(x+ εzv)− ψ(x)] dz dv. (21)

Since we want to use the function φ(x, v) as a test function in (8), we need φ to satisfy the
condition γ+φ(x, v) = B∗[γ−φ](x). We cannot require a given function ψ to satisfy (20) since this
condition depends on ε. But we can approximate a given test function ψ by a function ψε satisfying
(20). To that end, we consider a smooth function χ satisfying

χ ∈ C∞(Ω), χ(0) = 1, supp (χ) ⊂ [0, 1/2), 0 ≤ χ(x) ≤ 1 (22)

(these conditions guarantee that D2s−1
N [χ](0) 6= D2s−1

N [χ](1)). We then have

Proposition 2.2. Given ψ ∈ D(Ω) we defined ψε as

ψε(x) = ψ(x) + λε0χ(x) + λε1χ(1− x) ∀x ∈ Ω (23)

with 



λε0 =
−D2s−1

ε [χ](0)D2s−1
ε [ψ](0) +D2s−1

ε [χ](1)D2s−1
ε [ψ](1)

(D2s−1
ε [χ](0))2 − (D2s−1

ε [χ](1))2
,

λε1 =
−D2s−1

ε [χ](0)D2s−1
ε [ψ](1) +D2s−1

ε [χ](1)D2s−1
ε [ψ](0)

(D2s−1
ε [χ](0))2 − (D2s−1

ε [χ](1))2

(24)

where D2s−1
ε is defined by (21). Then

D2s−1
ε [ψε](0) = D2s−1

ε [ψε](1) = 0 (25)

Proof. We note that

D2s−1
ε [χ(1− x)](0) = D2s−1

ε [χ](1)

so the linearity of the operator D2s−1
ε and the choice of λε0 and λε1 implies (25). Note that we

will prove later that D2s−1
ε [χ](x) converges to γ0

2s
c1,s

D2s−1
N [χ](x) (see Lemma 2.2). So the fact that

D2s−1
N [χ](0) 6= D2s−1

N [χ](1) and Lemma 2.2 imply that the denominator in (24) does not vanish for
ε small enough.

We now have all the tools needed to set up the proof of our main result: for a given test function
ψ(t, x) in D([0,∞)× Ω), we consider ψε(t, x) given by Proposition 2.2. Then the function

φε(t, x, v) =

∫ ∞

0

ν0e
−ν0zψ̃ε(t, x+ εzv) dz (26)
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solves (18) (see Proposition 2.1) and by taking φε as a test function in (8), we find:

∫∫∫

Q

fε∂tφ
ε dt dx dv +

∫∫

Ω×R

fin(x, v)φ
ε(0, x, v) dx dv

= −ε−2s

∫∫∫

Q

[
fε (εv∂xφ

ε − ν0φ
ε) + ν0ρεF (v)φ

ε
]
dt dx dv

= −ε−2s

∫∫∫

Q

[
− ν0f

εψε + ν0ρεF (v)φ
ε
]
dt dx dv

= −ε−2s

∫∫∫

Q

ρεF (v)ν0
[
φε − ψε

]
dt dx dv

= −

∫∫

Ω×R

ρεL
ε[ψε](x) dt dx. (27)

where we used the fact that
∫
R
fε dv = ρε =

∫
R
ρεF (v) dv and we defined the following operator (for

any test function ψ and with φ defined by Proposition 2.1):

Lε[ψ](x) := ε−2s

∫

R

ν0F (v)
[
φ(x, v)− ψ(x)

]
dv

= ε−2s

∫

R

∫ ∞

0

ν20e
−ν0zF (v)[ψ̃(x+ εzv)− ψ(x)] dz dv. (28)

The proof of Theorem 1.4 now consists in passing to the limit in (27), which requires, in particular,

to show that for appropriate ψ, the function Lε[ψε] converges (strongly in L1) to κ(−∆)s[ψ̃] =
κ(−∆)sN [ψ].

In the section below, we first derive simpler formulas for Lε and D2s−1
ε . These formulas will then

be used to prove the needed convergence results.

2.2 Reformulation of the operators Lε and D2s−1

ε

After a simple change of variable, we find the following formula for the operator Lε[ψ], defined by
(28):

Lε[ψ](x) =

∫

Ω

F ε
1 (y − x)[ψ̃(y)− ψ(x)]dy

with

F1(v) =

∫ +∞

0

ν20e
−ν0τ τ−1F

(
τ−1v

)
dτ, F ε

1 (v) =
1

ε1+2s
F1

(v
ε

)
. (29)

Similarly, the operator D2s−1
ε [ψ] introduced in (21) can be written as:

D2s−1
ε [ψ] =

∫

R

(y − x)F ε
0 (y − x)[ψ̃(y)− ψ(x)] dy (30)

with

F0(v) =

∫ +∞

0

ν0e
−ν0τ τ−2F

(
τ−1v

)
dτ, F ε

0 (v) =
1

ε1+2s
F0

(v
ε

)
. (31)

The introduction of the functions F0 and F1 allow us to eliminate the variable z from the definition
of D2s−1

ε and Lε. Of course, their behavior for large v is related to that of F . More precisely, we
have the following Lemma:
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Lemma 2.1. There exists a constant C > 0 such that the distributions F0 and F1 given by (31)
and (29) satisfy

F0(z) ≤ Cmin

(
1

|z|1+2s
,
1

|z|

)
, F1(z) ≤ Cmin

(
1

|z|1+2s
, | ln(z)|

)
, for all z ∈ R

and
∣∣∣∣Fi(z)−

γi
|z|1+2s

∣∣∣∣ ≤
C

|z|1+4s
for all |z| ≥ 1

where γi = γν1−2s
0 Γ(2s+ i), with γ the constant of F in (2).

Proof. We first note that, for i = 0, 1 we can write Fi as

Fi(z) =

∫ +∞

0

ν1+i
0 e−ν0τ τ i−2F

( z
τ

)
dτ.

For the first estimate, using (2) we write on the one hand

∫ z

0

ν1+i
0 e−ν0τ τ i−2F

( z
τ

)
dτ ≤ C

∫ z

0

e−ν0τ τ i−2

(
τ1+2s

|z|1+2s
+

τ1+4s

|z|1+4s

)
dτ

≤
C

|z|1+2s
min

(
1, |z|2s+i

)
+

C

|z|1+4s
min

(
1, |z|4s+i

)

≤ Cmin

(
1

|z|1+2s
,

1

|z|1−i

)

and on the other hand

∫ +∞

z

ν1+i
0 e−ν0τ τ i−2F

( z
τ

)
dτ ≤ ‖F‖L∞

∫ +∞

z

ν1+i
0 e−ν0τ τ i−2 dτ

with

∫ +∞

z

ν1+i
0 e−ν0τ τ i−2 dτ =

∫ +∞

z

ν0e
−ν0τ τ−2 dτ ≤ Cmax

(
e−ν0z,

1

z

)
≤
C

z
for i = 0

∫ +∞

z

ν1+i
0 e−ν0τ τ i−2 dτ =

∫ +∞

z

ν20e
−ν0τ τ−1 dτ ≤ Cmax

(
e−ν0z, ln(z)

)
≤ C ln(z) for i = 1

The first estimates follow.

To prove the second estimates, we use the formula
∫∞

0
ν1+i
0 τ2s+i−1e−ν0τ dτ = ν1−2s

0 Γ(2s+ i) to
get:

∣∣∣∣Fi(z)−
γi

|z|1+2s

∣∣∣∣ ≤
∫ ∞

0

ν1+i
0 e−ν0τ

∣∣∣∣τ
i−2F

( z
τ

)
−
γτ2s+i−1

|z|1+2s

∣∣∣∣ dτ

≤

∫ z

0

ν1+i
0 e−ν0τ τ4s+i−1 C

|z|1+4s
dτ +

∫ ∞

z

e−ν0τν1+i
0

(
τ i−2‖F‖L∞ +

γτ2s+i−1

|z|1+2s

)
dτ

≤
C

|z|1+4s

∫ ∞

0

e−ν0τ τ4s+i−1 dτ + C

∫ ∞

z

e−ν0τ τ i−2 dτ +
C

|z|1+2s

∫ ∞

z

e−ν0τ τ2s+i−1 dτ

and the result follows.
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2.3 Convergence of the operator D2s−1

ε
and Lε

In order to pass to the limit in (27), we need to show that Lε[ψε] converges strongly in L1 when

ψ ∈ Xβ
0 . The key result of this section is the following proposition:

Proposition 2.3. Given ψ ∈ Cs(Ω) such that (−∆)sN [ψ] ∈ Cβ(Ω) for some β > 0 and satisfying
D2s−1

N [ψ] = 0 on ∂Ω, let ψε be defined as in (23). Then

Lε[ψε] → L[ψ] := −κ(−∆)s[ψ̃] strongly in L1(Ω)

with κ = c−1
1,sγ1.

This result implies in particular the convergence of Lε[ψε(t, ·)] for all t whenever ψ ∈ Xβ
0 . Its

proof will follow from the following two lemmas:

Lemma 2.2. Let ψ ∈ Cα(Ω) with α > 2s− 1, then

D2s−1
ε [ψ](x) → γ0

2s

c1,s
D2s−1

N [ψ](x) uniformly in Ω. (32)

In particular, if ψ satisfies D2s−1
N [ψ] = 0 on ∂Ω then the constants defined by (24) satisfy

lim
ε→0

λε0 = lim
ε→0

λε1 = 0.

and

Lemma 2.3. Assume that ψ ∈ Cs(Ω) and (−∆)sN [ψ] ∈ Cβ(Ω) for some β > 0. Then

Lε[ψ] → L[ψ] = −κ(−∆)s[ψ̃] strongly in L1(Ω)

with κ = γ1

c1,s
.

Proof of Proposition 2.3. In view of (23), we have

Lε[ψε](x) = Lε[ψ](x) + λε0L
ε[χ] + λε1L

ε[χ(1− ·)](x).

Lemma 2.3 implies the convergence of Lε[ψ], Lε[χ] and Lε[χ(1 − ·)] in L1 and Lemma 2.2 gives
limε→0 λ

ε
0 = limε→0 λ

ε
1 = 0. The result follows.

The rest of this section is devoted to the proof of the two lemma.

Proof of Lemma 2.2. We write

D2s−1
ε [ψ](x)− γ0

2s

c1,s
D2s−1

N [ψ](x) =

∫

R

[ψ̃(x+ y)− ψ(x)]y

[
F ε
0 (y)−

γ0
|y|1+2s

]
dy.

Lemma 2.1 gives the following bounds:

|y|F ε
0 (y) ≤

C

|y|2s
∀y ∈ R, and

∣∣∣∣|y|F
ε
0 (y)−

γ0
|y|2s

∣∣∣∣ ≤
Cε2s

|y|4s
∀y > ε.

We thus have, using the Cα(Ω) regularity of ψ, with α > 2s− 1:

∣∣∣∣D
2s−1
ε [ψ](x)− γ0

2s

c1,s
D2s−1

N [ψ](x)

∣∣∣∣ ≤ C

∫

|y|≤ε

|ψ̃(x+ y)− ψ(x)|

|y|2s
dy + Cε2s

∫

|y|≥ε

|ψ̃(x+ y)− ψ(x)|

|y|4s
dy

≤ Cε1+α−2s + Cε2s(1 + ε1+α−4s)

≤ C[ε2s + ε1+α−2s].
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Proof of Lemma 2.3. As noted in the introduction, a crucial observation in this proof is the fact that
the condition (−∆)sN [ψ] ∈ Cβ(Ω) implies some Hölder regularity for ψ. Indeed, since (−∆)sN [ψ] =

(−∆)s[ψ̃], we can use the regularity theory developed in [12] to get the following estimate (we use
here the notation of [12] for the Hölder norms):

‖ψ‖
(−s)
β+2s ≤ C(‖ψ‖Cs + ‖(−∆)sN [ψ]‖

(s)
β )

where

‖ψ‖
(−s)
β+2s := sup

Ω
d−s
x u(x) + sup

Ω
d1−s
x u′(x) + sup

(x,y)∈Ω2

dβ+s
x,y

|ψ′(x)− ψ′(y)|

|x− y|β+2s−1
.

and

‖g‖
(s)
β := sup

(x,y)∈Ω2

dβ+s
x,y

|g(x)− g(y)|

|x− y|β
.

with
dx = dist(x, ∂Ω), dx,y = min(dx, dy).

We deduce that for any ψ satisfying the conditions of Lemma 2.3, we have

sup
Ω
d−s
x u(x) + sup

Ω
d1−s
x u′(x) + sup

(x,y)∈Ω2

dβ+s
x,y

|ψ′(x)− ψ′(y)|

|x− y|β+2s−1
≤ C. (33)

We now recall that

Lε[ψ](x) =

∫

R

(
ψ̃(x+ y)− ψ̃(x)

)
F ε
1 (y) dy

where Lemma 2.1 gives (recall that F ε
1 (y) = ε−1−2sF1(y/ε)):

F ε
1 (y) ≤

γ1
|y|1+2s

∀y ∈ R and

∣∣∣∣F
ε
1 (y)−

γ1
|y|1+2s

∣∣∣∣ ≤
Cε2s

|y|1+4s
∀|y| > ε.

For α ∈ (0, 1) (to be chosen later), we thus have (for x ∈ Ω)):

Lε[ψ](x)− L[ψ](x) =

∫

R

(
ψ̃(x+ y)− ψ̃(x)

) [
F ε
1 (y)−

γ1
|y|1+2s

]
dy

=

∫

|y|≤εα

[
ψ̃(x+ y)− ψ̃(x)− ψ̃′(x)y

] [
F ε
1 (y)−

γ1
|y|1+2s

]
dy

+

∫

|y|≥εα

[
ψ̃(x+ y)− ψ̃(x)

] [
F ε
1 (y)−

γ1
|y|1+2s

]
dy

which yields

|Lε[ψ](x)−L[ψ](x)| ≤

∫

|y|≤εα

∣∣ψ̃(x+y)−ψ̃(x)−ψ̃′(x)y
∣∣ C

|y|1+2s
dy+

∫

|y|≥εα

∣∣ψ̃(x+y)−ψ̃(x)
∣∣ Cε

2s

|y|1+4s
dy.

The second term is clearly bounded by ‖ψ‖∞ε
2s−4sα, so we can write

∫

Ω

|Lε[ψ](x)− L[ψ](x)| dx ≤

∫

Ω

∫

|y|≤εα

∣∣ψ̃(x+ y)− ψ̃(x)− ψ̃′(x)y
∣∣ C

|y|1+2s
dy dx+ ‖ψ‖∞ε

2s(1−2α)

and we write the integral in the right hand side as Jε
1 + Jε

2 with

Jε
1 =

∫

Ω

∫

|y|≤εα

∣∣ψ̃(x+ y)− ψ̃(x)− ψ̃′(x)y
∣∣ C

|y|1+2s
1(x+y)/∈Ω dy dx

12



Jε
2 =

∫

Ω

∫

|y|≤εα

∣∣ψ̃(x+ y)− ψ̃(x)− ψ̃′(x)y
∣∣ C

|y|1+2s
1(x+y)∈Ω dy dx.

In order to bound Jε
1 , we note that if (x+ y) /∈ Ω then |y| ≥ dx. Using (33), we deduce

Jε
1 ≤

∫

dx≤εα

∫

dx≤|y|≤εα

[
|ψ̃(x+ y)− ψ̃(x)|+ |ψ̃′(x)|y

] C

|y|1+2s
1(x+y)/∈Ω dy dx

≤ C

∫

dx≤εα

∫

dx<|y|≤εα

[
dsx + ds−1

x |y|
] C

|y|1+2s
dy dx

≤ C

∫

dx≤εα
d−s
x dx ≤ Cεα(1−s)

For Jε
2 , we first notice that when x+ y ∈ Ω we have (using (33)):

|ψ̃(x+ y)− ψ̃(x)− ψ̃′(x)y| =

∣∣∣∣
∫ 1

0

ψ′(x+ τy)y − ψ′(x)y dτ

∣∣∣∣ ≤ C
yβ+2s

dβ+s
x,x+y

and so

Jε
2 ≤ C

∫

Ω

∫

|y|≤εα

yβ−1

dβ+s
x,x+y

1(x+y)∈Ω dy dx ≤ C

∫

|y|≤εα
yβ−1

∫

Ω

d−β−s
x,x+y1(x+y)∈Ω dx dy

As long as β + s < 1, we have
∫
Ω
d−β−s
x,x+y1(x+y)∈Ω dx <∞ and so

Jε
2 ≤ C

∫

|y|≤εα
yβ−1 dy ≤ Cεβα

We have thus proved (provided 0 < β < 1− s):

∫

Ω

|Lε[ψ](x)− L[ψ](x)| dx ≤ C[ε2s(1−2α) + εβα + Cεα(1−s)]

and the result follows by taking α ∈ (0, 1/2).

2.4 Convergence of φε

Finally, in order to pass to the limit in the remaining terms in (27), we need the convergence of φε

and ∂tφ
ε:

Lemma 2.4. Consider ψ ∈ C0
c ([0,∞);Cα(Ω)) with α > 2s − 1 such that D2s−1

N [ψ] = 0 on ∂Ω ×
(0,∞). Then

lim
ε→0

∫∫∫

R+×Ω×R

|φε − ψε|2F (v) dv dx dt = 0.

If ψ ∈ C1
c ([0,∞);Cα(Ω)), with α > 2s− 1 then

lim
ε→0

∫∫∫

R+×Ω×R

|∂tφ
ε − ∂tψ

ε|2F (v) dv dx dt = 0

Proof. First, we note that

|φε(t, x, v)− ψε(t, x)|2 ≤

∫ ∞

0

ν0e
−ν0z|ψ̃ε(t, x+ εzv)− ψε(t, x)|2 dz

13



and so (with T such that ψ(t) = 0 for t ≥ T ):
∫∫∫

R+×Ω×R

|φε − ψε|2F (v) dv dx dt

≤

∫∫∫

(0,T )×Ω×R

∫ ∞

0

ν0e
−ν0z|ψ̃(t, x+ εzv)− ψε(t, x)|2F (v) dz dv dx dt

≤

∫∫

(0,T )×R

∫ ∞

0

∫

Ω

|ψ̃ε(t, x+ εzv)− ψε(t, x)|2 dxF (v)ν0e
−ν0z dz dv dt

Then, we note that (recall that λε0, λ
ε
1 → 0 by Lemma 2.2):

lim
ε→0

∫

Ω

|ψ̃ε(t, x+ εzv)− ψε(t, x)|2 dx = 0 for all t, v, z

and
∫

Ω

|ψ̃(t, x+ εzv)− ψε(t, x)|2 dxF (v)ν0e
−ν0z ≤ ‖ψ‖2L∞F (v)ν0e

−ν0z ∈ L1((0, T )× R× R)

Lebesgue dominated convergence theorem implies the result.
The second limit is proved similarly (note that t is a parameter).

2.5 Proof of Theorem 1.4

Proof of Theorem 1.4. We are now ready to prove our main result.

A priori estimates. We have the following classical lemma:

Lemma 2.5. Let fin be in L2
F−1(Ω×R). The weak solution fε of (6) is bounded in L∞(0,∞;L2

F−1(Ω×
R

N )) and satisfies, up to a subsequence

fε → ρ(t, x)F (v) weakly in L∞(0,∞;L2
F−1(Ω× R)) (34)

where ρ(t, x) is the weak limit of ρε(t, x) =
∫
R
fε dv. Assume furthermore that fin(x, v) ≤ CF (v)

for some constant C. Then fε(t, x, v) ≤ CF (v) and

ρε(t, x)⇀ ρ(t, x) L∞(R+ × Ω× R) ?−weak. (35)

Proof. We do not prove the first part of the lemma which is classical (see for instance Lemma 2.1
in [8]).

For the second part, we note that when fin(x, v) ≤ CF (v), the function (t, x, v) 7→ CF (v) −
fε(t, x, v) is a solution of (6) with non-negative initial data and thus is thus non-negative for all
time. This implies fε(t, x, v) ≤ CF (v) and so ρε(t, x) ≤ C.

Convergence to a solution of the asymptotic problem. Given a test function ψ ∈ Xβ
0 , we

can now pass to the limit in the weak formulation (27), which we recall here:
∫∫∫

Q

fε∂tφ
ε dt dx dv +

∫∫

Ω×R

fin(x, v)φ
ε(0, x, v) dx dv = −

∫∫

Ω×R

ρεL
ε[ψε](x) dt dx.

For any subsequence along which (34) holds, Proposition 2.3, Lemma 2.4 (both of which apply since

ψ ∈ Xβ
0 ) and (35) allow us to take the limit, proving that the limiting density ρ(t, x) satisfies (14).

The fact that the whole sequence converges then follows from the uniqueness of the limit ρ given
by Proposition 1.1 which we prove below. This completes the proof of Theorem 1.4.
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2.6 Proof of Proposition 1.1

Proof of Proposition 1.1. To prove the existence, we simply have to show that the weak solu-
tion u(t, x) provided by Theorem 1.2 satisfies (14) for appropriate test functions. We recall that
u ∈ C0([0,∞);L2(Ω)) ∩ C1((0,∞);L2(Ω)) ∩ C0((0,∞);D((−∆)sN )) and that in dimension one, the
condition (−∆)sNu ∈ C0((0,∞);L2(Ω)) implies that (t, x) 7→ D2s−1

N [u](t, x) is continuous (so the
Neumann condition is satisfied in the classical sense). Using integration by parts and (10), it is easy
to check that u satisfies∫∫∫

R+×Ω

u
(
∂tψ − κ (−∆)sNψ

)
dt dx+

∫∫

Ω

ρin(x)ψ(0, x) dx = 0

for all test function ψ ∈ Xβ
0 .

Let now ρ1(t, x) and ρ2(t, x) be two functions satisfying (14) for appropriate test functions. The
function ρ̄ = ρ1 − ρ2 ∈ L∞(0,∞;L2(Ω)) satisfies

∫∫∫

R+×Ω

ρ̄(t, x)
(
∂tψ − κ (−∆)sNψ

)
(t, x) dt dx = 0 (36)

for all test function ψ ∈ Xβ
0 . Given a smooth test function g ∈ D(Ω) and λ > 0, we let φ(x) be the

weak solution of {
λφ+ κ (−∆)sNφ = g in Ω,
D2s−1

N [φ](x) · n(x) = 0 for all x ∈ ∂Ω

given by Theorem 1.3 and we define

ψ(t, x) = e−λtφ(x).

We need to check that we can take this function ψ as test function in (36):
First, the maximum principle (for the Neumann boundary value problem) implies that ‖φ‖L∞ ≤

C‖g‖L∞ . Next, we note that the extension φ̃ solves (−∆)sφ̃ = g−λφ in Ω with φ̃ constant in R \Ω.
Standard regularity theory for the fractional Dirichlet boundary value problem (Proposition 1.2)
implies that φ̃ ∈ Cs(R) and so φ ∈ Cs(Ω). In turns, this implies that (−∆)sNφ = (−∆)sφ̃ ∈ Cs(Ω).

It is now easy to see that ψ ∈ Xβ
0 .

Using the fact that ∂tψ(t, x)− κ(−∆)sN [ψ](t, x) = −e−λtg(x), it follows from (36) that
∫

Ω

∫ ∞

0

ρ̄(t, x) e−λt dtg(x) dx = 0.

Since this holds for all g ∈ D(Ω), we deduce
∫ ∞

0

ρ̄(t, x) e−λt dt = 0 in Ω, for all λ > 0

and taking the inverse Laplace transform implies that ρ̄(t, x) = 0 in R+ × Ω.

3 Optimal regularity for the elliptic problem: Proof of Propo-

sition 1.2

In this section, we are interested in the optimal regularity of the solutions to
{
u+ (−∆)sNu = g in Ω

D2s−1
N [u](x) = 0 on ∂Ω

(37)
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with Ω = (0, 1) and g ∈ C∞(Ω). As stated before, the extension ũ solves ũ +
(
− ∆

)s
ũ = g and

is constant outside Ω so the regularity theory for the fractional Dirichlet boundary value problems
ensures that u ∈ Cs(Ω). We will show that this regularity is optimal by constructing a solution of
(37) which behaves like dist(x, ∂Ω)s close to the boundary.

First, we recall that v : x 7→ κxs+(1− x)s+ is an explicit solution to

{
(−∆)sv = 1 in Ω

v = 0 in R \ Ω

with Ω = (0, 1) and the proper choice of constant κ, see e.g. [12]. Of course, this function does not
satisfies D2s−1

N [v] = 0 on ∂Ω.
We thus consider two smooth functions ψ0 and ψ1 with compact support in (1/4, 3/4) and such

that for i ∈ {1, 2} and x ∈ ∂Ω: D2s−1
N [ψi](x) 6= 0 and

D2s−1
N [ψ0](0)D

2s−1
N [ψ1](1)−D2s−1

N [ψ0](1)D
2s−1
N [ψ1](0) 6= 0.

We then define the function u as

u(x) = κxs+(1− x)s+ + λ0ψ0(x) + λ1ψ1(x) (38)

where κ is a positive constant and the λi are defined, similarly to Proposition 2.2, as





λ0 =
D2s−1

N [κxs+(1− x)s+](0)D
2s−1
N [ψ1](1) +D2s−1

N [κxs+(1− x)s+](1)D
2s−1
N [ψ1](0)

D2s−1
N [ψ0](0)D

2s−1
N [ψ1](1)−D2s−1

N [ψ0](1)D
2s−1
N [ψ1](0)

,

λ1 =
D2s−1

N [κxs+(1− x)s+](1)D
2s−1
N [ψ0](0) +D2s−1

N [κxs+(1− x)s+](0)D
2s−1
N [ψ0](1)

D2s−1
N [ψ0](0)D

2s−1
N [ψ1](1)−D2s−1

N [ψ0](1)D
2s−1
N [ψ1](0)

.

Note that x→ xs+(1−x)
s
+ ∈ Cs(Ω) hence D2s−1

N [κxs+(1−x)
s
+] is continuous on Ω and the boundary

values exist. This choice of λi and the linearity of D2s−1
N implies naturally

D2s−1
N [u](x) = 0, ∀x ∈ ∂Ω.

Finally, u is a solution of (37) with right hand side

g(x) = u+ 1 + λ0(−∆)sNψ0 + λ1(−∆)sNψ1

and by assumption on the support of ψi we have (−∆)sNψi = (−∆)sψ̃i ∈ C∞(Ω) and in particular
g ∈ L∞(Ω).

We have thus built a solution u of (37) with g ∈ L∞(Ω), which behaves like dist(x, ∂Ω)s when
x→ 0 and x→ 1, which completes the proof.
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