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Abstract. We consider a model of congestion dynamics with chemotaxis: the density of cells follows
a chemical signal it generates, while subject to an incompressibility constraint. The incompressibility

constraint results in the formation of patches, describing regions where the maximal density has been
reached. The dynamics of these patches can be described by either Hele-Shaw or Richards equation type

flow (depending on whether we consider the model with diffusion or the model with pure advection).
Our focus in this paper is on the construction of weak solutions for this problem via a variational discrete
time scheme of JKO type. We also establish the uniqueness of these solutions. In addition, we make
more rigorous the connection between this incompressible chemotaxis model and the free boundary
problems describing the motion of the patches in terms of the density and associated pressure variable.
In particular, we obtain new results characterizing the pressure variable as the solution of an obstacle
problem and prove that in the pure advection case the dynamic preserves patches.

1. Introduction

1.1. Motivations and Overview of the paper’s objectives. The classical parabolic-elliptic Patlak-
Keller-Segel model for chemotaxis is:

{
∂tρ− µ∆ρ+ χdiv (ρ∇φ) = 0, in Ω× (0,∞)

η∆φ+ θρ− σφ = 0 in Ω× (0,∞)

where ρ denotes the cell density and φ the concentration of some chemical. The parameters µ and η
are the cell and chemical diffusivity, χ is the cell sensitivity, and θ and σ describe the production and
degradation of the chemical (see e.g. [19], [26], [15]). The equation is set in a bounded domain Ω ⊂ R

d

(with d ≥ 1) and will be supplemented by Neumann boundary conditions for ρ and Robin boundary
conditions for φ.

In this model, the diffusion competes with the aggregating potential φ and it is well known that such
an aggregation-diffusion equation might lead to concentration and possibly finite time blow-up of the
density, as the diffusion is not strong enough to balance the attractive potential (see e.g. [14]). In this
paper we want to take into account the incompressibility of the cells in order to investigate the behavior
of the density ρ after saturation occurs. One way to enforce a constraint ρ ≤ ρM is to consider the limit
m→ ∞ of the nonlinear diffusion version of the PKS model:

(1.1)

{
∂tρ− µ∆ρ−∆(ρ/ρM )m + χdiv (ρ∇φ) = 0,

η∆φ+ θρ− σφ = 0.

This approach (stiff, or incompressible, limit of a porous media type equation) has been used in numerous
papers, in particular in the context of tumor growth ([27, 24, 21, 9, 8]) and chematoxis ([7], [13]). Note
that in this limit, the very strong cell diffusion in the region {ρ > ρM} enforces the constraint ρ ≤ ρM ,
while the diffusion vanishes in the region {ρ < ρM}.
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In this paper, we directly address the incompressible problem, without the intermediary (1.1), using
an approach that has been successfully used, in particular, in the study of congested crowd motion (see
[23, 29, 25]). Formally, the idea is to project the desired velocity v = −µ∇ log ρ+χ∇φ onto the set C(ρ)
of admissible velocities, which preserve the constraint ρ ≤ ρM :

{
∂tρ+ div (ρPC(ρ)(−µ∇ log ρ+ χ∇φ)) = 0, ρ ≤ ρM

σφ− η∆φ = ρ.

Definitions of the admissible set C(ρ) and the projection operator PC(ρ), which will not be used in our
subsequent analysis, are recalled in Appendix B. Since the term −µ∇ log ρ cannot increase the maximum
value of ρ, we can also write PC(ρ)(−µ∇ log ρ+χ∇φ) = −µ∇ log ρ+PC(ρ)(χ∇φ) (see Remark B.3). For
convenience, we replace ρ with ρMρ and φ with χφ to arrive at the normalized version,

(1.2)

{
∂tρ− µ∆ρ+ div (ρPC(ρ)(∇φ)) = 0, ρ ≤ 1

σφ− η∆φ = ρ,

where we redefined the constants σ and η as necessary (η/(χρMθ) 7→ η, σ/(χρMθ) 7→ σ). In the sequel,
we will take σ = 1 and η = 1 since these constants do not play any role in our results.

The goal of this paper is to construct weak solutions of (1.2) and study their properties (e.g. unique-
ness and relation to free boundary problems) both when µ = 0 and when µ > 0. This analysis will lay
the foundation for a subsequent paper in which we investigate the asymptotic behavior of the solutions
when η � 1 and t ∼ η−1. Throughout our paper, Ω is a fixed bounded subset of Rd with smooth
boundary. As is classical, the equation for ρ is supplemented by Neumann boundary conditions which
guarantee conservation of mass. The equation for φ will be supplemented with general Robin boundary
conditions:

(1.3)

{
φ−∆φ = ρ in Ω

αφ+ β∇φ · n = 0 on ∂Ω

with α ≥ 0, β ≥ 0 and α + β > 0. These boundary conditions account for possible degradation of the
chemical along ∂Ω; they do not significantly affect the analysis developed in this paper, but play an
important role in the singular limit η � 1 which we study in the companion paper [20]. In fact, the
particular form of the equation for φ does not play a fundamental role in this paper: It is used in Lemma
3.6 to get some bounds on φ, in Lemma 6.1 to get some regularity on D2φ and in the proof of Theorem
1.8, where the fact that −∆φ ≥ 0 in the set {ρ = 1} plays an essential role. In particular, all the results
of this paper hold when φ solves −∆φ = ρ in Ω with Robin boundary condition (or −∆φ = ρ − 1

|Ω| in

the case of Neumann boundary condition α = 0).

A rigorous approach to (1.2) was developed in [23] when µ = 0 and ∇φ is a fixed velocity field by
using variational methods (see also [25] for the case µ > 0). The existence of a weak solution was proved
via an appropriate JKO type scheme with constraint. As we will see in this paper, we can extend this
approach to our case. Following [23], we will not use the projection operator PC(ρ), but instead introduce
the pressure p such that (see Appendix B)

PC(ρ)(∇φ) = ∇φ−∇p, p ≥ 0, p(1− ρ) = 0 a.e..

While this pressure p appears naturally as the limit of pm = ρm−1 in the stiff limit of the porous media
equation (1.1), it appears, in this variational approach, as a Lagrange multiplier for the constraint ρ ≤ 1
(like the pressure in incompressible fluid mechanics equations). It is thus not surprising that p = 0 when
ρ 6= 1, as guaranteed by the condition p(1 − ρ) = 0 a.e. The conditions on p can also be expressed by
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writing p ∈ P (ρ) with

(1.4) P (ρ) :=

{
0 0 ≤ ρ < 1

[0,∞) ρ = 1

which is sometimes referred to as the Hele-Shaw graph.

Using the fact that ρ∇p = ∇p, we obtain the following simple model for chemotaxis in incompressible
settings:

(1.5)

{
∂tρ− µ∆ρ+ div (ρ∇φ−∇p) = 0, p ∈ P (ρ),

φ−∆φ = ρ.

This equation is the main topic of this paper when µ ≥ 0. Of particular interest is the evolution of the
saturated region Ωs(t) = {ρ(·, t) = 1} and the free boundary Σ(t) = ∂Ωs(t).

When µ > 0, equation (1.5) is a weak formulation for the problem
{
ρ ∈ (0, 1), p = 0, ∂tρ− µ∆ρ+ div (ρ∇φ) = 0 in Ω \ Ωs(t)
ρ = 1, p > 0, ∆p = ∆φ in Ωs(t)

with the free boundary Σ being determined by the conditions

ρ = 1, p = 0, µ∇ρ · ν|Σ+
= ∇p · ν|Σ−

where ν denotes the normal unit vector along Σ (pointing outward of Ωs). The last condition comes
from the fact that ∆(µρ + p) cannot have a singular part along Σ in (1.5). This problem can be seen
as a two phase free boundary problem for the function u = µ(ρ − 1) + p. Using the fact that u ≤ p
a.e., we can check that {u > 0} = {p > 0}. In that set, we have ρ = 1, u = p and (1.5) reduces to
div (∇φ−∇p) = 0. In the set {u < 0}, we have u = µ(ρ− 1). Multiplying (1.5) by µ and using the fact
that µ div (ρ∇φ) = div (u∇φ) + µ∆φ we conclude that u solves

(1.6)

{
∂tu+ div (u∇φ) = µ(∆u−∆φ) in {u < 0}
∆u−∆φ = 0 in {u > 0}

with the zero jump conditions

(1.7) [u] = [∇u · ν] = 0 on ∂{u > 0}.
The problem (1.6)-(1.7) is similar to the Richards equation used in filtration models (see e.g. [2]),
although the discontinuity of the drift term across the interface makes it more singular than the standard
problem.

When µ = 0, equation (1.5) is a weak formulation for the problem

(1.8)

{
ρ ∈ [0, 1), p = 0, ∂tρ+ div (ρ∇φ) = 0 in Ω \ Ωs(t)
ρ = 1, p > 0, ∆p = ∆φ in Ωs(t)

(the pressure p is still continuous across Σ, but ρ might have a jump) where the free boundary now
moves according to the velocity law

(1.9) (1− ρ|Σ+
)V = (−∇p+∇φ) · ν|Σ−

(V denotes the normal velocity of Σ(t)). When the density is a characteristic function of some set, that
is ρ(x, t) = χΩs(t)(x), we recognize the usual one phase Hele-Shaw problem without surface tension:

(1.10)

{
∆p = ∆φ in Ωs(t), p = 0 on ∂Ωs(t)

V = (−∇p+∇φ) · ν on ∂Ωs(t).
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In other words, in this fully saturated regime, the chemotaxis system (1.5) can be seen as a free
boundary problem describing the motion of the region occupied by the cell, driven by the chemical
concentration φ and the pressure variable p. However, since we obtained (1.5) by imposing the constraint
ρ ≤ 1, but without requiring ρ ∈ {0, 1}, it is not clear that we should actually have ρ(x, t) = χΩs(t)(x)
in general. In fact this is clearly not possible when µ > 0 since the diffusion term has a smoothing
effect. But when µ = 0 and using the fact that the potential φ is attractive (more precisely, the fact
that −∆φ = η−1(ρ−φ) ≥ 0 in {ρ = 1}), we will show that if ρ is a characteristic function at t = 0, then
this remains true for all t > 0.

The transition from (1.6)-(1.7) to (1.10) as µ → 0 is interesting, particularly due to the emergence
of the free boundary velocity law in the limit. This connection between the Richards-type equation and
the Hele-Shaw flow has been observed earlier in [22] when the drift term was replaced by a growth term.
Note that the convergence of u to p is only of zeroth order, due to the discontinuity of ρ in the limit µ = 0
across the interface. This partially explains the abrupt change of the interface conditions from (1.7) to
the velocity law. Our analysis yields that ∇p strongly converges in the limit µ → 0 (Proposition 1.4),
serving as the regular part in the limit of the flux ∇u.

Below is a brief summary of the main results of this paper:

(1) Adapting the variational framework of [23, 25], we construct weak solutions of (1.5) as limit of
a discrete-time variational JKO scheme ([18]) in a bounded domain.

(2) We show that for all t > 0 the pressure p(t) can be defined as the unique solution of a simple
obstacle problem. This result is similar to a result obtained in [12] in the context of tumor growth
(without the potential φ). The derivation of this obstacle problem relies on the variational nature
of the JKO scheme and is thus very different from the proof presented in [12], which involved
the porous media type equation (1.1). But it does not require any technical a priori estimates
and it yields the complementarity condition:

p(∆p−∆φ) = 0.

We also show that the discrete time approximation of the pressure, given by the variational
scheme, is a subsolution of the same obstacle problem for all t > 0.

(3) Using a duality method, as in [27], we prove that (1.5) has a unique weak solution and thus fully
characterizes the limit of the JKO scheme.

(4) When µ = 0 (no diffusion) we show that if ρ is initially a characteristic function, then this
remains true for all t > 0 (such a property cannot hold when µ > 0 because of the regularizing
nature of diffusion). A similar result, when φ is a fixed potential satisfying −∆φ ≥ 0, was proved
in [1] (see also [7]) using viscosity solution type arguments, based on the comparison principle
that holds in this case. For our system the comparison principle for densities no longer hold.
We develop a very different, measure theoretic, approach which is simple and fits well with our
notion of solutions.

In a companion paper [20], we will investigate the singular limit for this problem when φ solves
φ−η∆φ = ρ with η � 1. We then show that at an appropriate time scale, the evolution of the saturated
patches is described by the Hele-Shaw free boundary problem with surface tension.

1.2. Setting and notations. We recall that Ω is a bounded subset of R
d with smooth boundary.

Throughout the paper we denote the space-time domain ΩT := Ω× (0, T )) for any given T > 0.

We introduce

(1.11) K := {ρ ∈ P(Ω), ρ(x) ≤ 1 a.e. in Ω}
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where P(Ω) denotes the set of probability measures on Ω. In particular all ρ ∈ K are absolutely
continuous with respect to the Lebesgue measure and we can identify the measure with its density. The
set K is equipped with the usual Wasserstein distance, defined by

W 2
2 (µ, ν) = inf

π∈Π(µ,ν)

ˆ

Ω×Ω

|x− y|2dπ(x, y)

where Π(µ, ν) denotes the set of all probability measures π ∈ P(Ω× Ω) with marginals µ and ν. Given
ρ ∈ K, the solution φ of (1.3) can be expressed as

(1.12) φ(x) =

ˆ

Ω

G(x, y)ρ(y) dy

for some Green kernel G(x, y) : Ω×Ω → R
d. Importantly, the Green kernel is not of the form G(|x−y|).

But since the equation (1.3) is self-adjoint, we have

G(x, y) = G(y, x), ∇xG(x, y) = −∇yG(y, x).

In addition, the maximum principle applied to (1.3) gives

(1.13) 0 ≤ φ(x) ≤ 1 in Ω,

and multiplying (1.3) by φ and integrating lead to the estimate

(1.14) ‖φ‖2L2(Ω) + ‖∇φ‖2L2(Ω) +
α

α+ β
‖φ‖2L2(∂Ω) +

β

α+ β
‖∇φ · n‖2L2(∂Ω) ≤

ˆ

Ω

φρ dx ≤
ˆ

Ω

ρ dx = 1.

Most results presented in this paper (with the exception of Theorem 1.8) are not specific to equation
(1.3) and hold for more general kernel G. We focus on equation (1.3) because of its interest in several
applications, most notably chemotaxis models. In addition, it would be straighforward to generalize our
results to include an external potential φe ∈ L∞(0,∞;W 2,∞(Ω)) and replace (1.12) with

(1.15) φ(x) =

ˆ

Ω

G(x, y)ρ(y) dy + φe(x)

(Theorem 1.8 would then require the additional assumption that −∆φe > 0).

We are studying the following initial boundary value problem with µ ≥ 0:

(1.16)





∂tρ− µ∆ρ+ div (ρ∇φ−∇p) = 0, in Ω× (0,∞), p ∈ P (ρ)

(−µ∇ρ+ ρ∇φ−∇p) · n = 0, on ∂Ω× (0,∞)

ρ(x, 0) = ρin(x) in Ω

with φ solution of (1.3). The Neumann boundary condition is natural and guarantees that
´

Ω
ρ(t) dx is

preserved. We recall (see the introduction) that the pressure p(x, t), as in the equations of incompressible
fluid mechanics, is a Lagrange multiplier for the incompressibility constraint ρ ≤ 1. In particular (see
(1.4)) the condition p ∈ P (ρ) implies ρ ≤ 1, p ≥ 0 and p(1− ρ) = 0 a.e. in Ω× (0,∞).

We will use the following natural definition of weak solutions of (1.16).

Definition 1.1. The pair of functions (ρ, p) is a weak solution of (1.16) if ρ ∈ L1(0,∞;L∞(Ω)) ∩
C1/2(0,∞;P(Ω)), p ∈ L2(0,∞;H1(Ω)) with

0 ≤ ρ ≤ 1, p ≥ 0, (1− ρ)p = 0 a.e. in ΩT

and the followings hold:

(1.17)

ˆ

Ω

ρin(x)ζ(x, 0) dx+

ˆ ∞

0

ˆ

Ω

(ρ ∂tζ + ρv · ∇ζ) dxdt = 0
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for any function ζ ∈ C∞
c (Ω× [0,∞)) and for some v ∈ (L2(dρ))d satisfying

(1.18)

ˆ ∞

0

ˆ

Ω

(ρv · ξ − ρ∇φ · ξ − µρ div ξ − p div ξ) dx dt = 0

for any vector field ξ ∈ C∞
c (Ω× (0,∞);Rd) such that ξ · n = 0 on ∂Ω and with φ given by (1.12).

Here we denote L2(dρ) := {f :
´∞

0

´

Ω
|f(x, t)|2ρ(x, t) dx dt <∞}.

Equation (1.17) is the usual weak formulation for the continuity equation ∂tρ + div (ρv) = 0 with
Neumann boundary conditions and initial condition ρin. (1.18) is equivalent to ρv = −µ∇ρ+ρ∇φ−∇p
in L2(ΩT ). Recall that P(Ω) is equipped with the Wasserstein distance W2, so the condition ρ ∈
C1/2(0,∞;P(Ω)) means that W2(ρ(t), ρ(s)) ≤ C|t − s| 12 . In view of Lemma 3.5, this implies also that
ρ ∈ C1/2(0,∞;H−1(Ω)).

1.3. The JKO scheme. The key tool to prove the existence of weak solutions in the sense of Defini-
tion 1.1 is the fact that (1.16) is the gradient flow - or minimizing movement scheme - with respect to
the Wasserstein distance W2 for the functional

J(ρ) = µ

ˆ

ρ log ρ dx− 1

2

ˆ

Ω

ρ φ dx = µ

ˆ

ρ log ρ dx− 1

2

ˆ

Ω

ˆ

Ω

G(x, y)ρ(x)ρ(y) dy dx

with the constraint ρ ≤ 1 (which will be enforced by requiring that ρ ∈ K, with K defined by (1.11)).

The idea of the JKO scheme is to construct a time-discrete approximation of the solution by successive
applications of a minimization problem. More precisely, for a given initial data ρin ∈ K, we fix a time
step τ > 0 (destined to go to zero) and define the sequence ρn by:

(1.19) ρ0 = ρin, ρn ∈ argmin

{
1

2τ
W 2

2 (ρ, ρ
n−1) + J(ρ) ; ρ ∈ K

}
∀n ≥ 1.

The fact that this problem has a minimizer will be proved in Proposition 2.1 (and the minimizer is
unique if τ is small enough). Furthermore, if Tn is the unique optimal transport map from ρn to ρn−1

(that is Tn#ρn = ρn−1 and W 2
2 (ρ

n, ρn−1) =
´

|x− Tn(x)|2ρndx), we can define the velocity

vn(x) =
x− Tn(x)

τ

and the pressure variable pn(x) such that

ρnvn = −µ∇ρn + ρn∇φn −∇pn, pn ∈ H1
ρn

(the existence of pn will be proved in Proposition 2.6) with φn =
´

Ω
G(x, y)ρn(y) dy.

We can then define the piecewise constant function ρτ , pτ : [0, T ] 7→ P (Ω) by

(1.20)
ρτ (t) := ρn+1 for all t ∈ [nτ, (n+ 1)τ)
pτ (t) := pn+1 for all t ∈ [nτ, (n+ 1)τ).

Our goal is now to characterize the limit of these functions when τ → 0 and prove the existence of weak
solutions to (1.16)-(1.3))
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1.4. Main results. Our first theorem concerns the limit τ → 0 and proves in particular the existence
of a weak solution of (1.16):

Theorem 1.2 (Convergence when τ → 0). Fix T > 0 and µ ≥ 0. Let τk be a sequence such that
τk → 0. For any initial condition ρin ∈ K, there exists a subsequence, still denoted τk, such that the
interpolations ρτk defined by (1.20) converge uniformly in [0, T ] with respect to W2 to ρ and pτk converges
weakly in L2(0, T ;H1(Ω)) to p where (ρ, p) is a weak solution of (1.16) in the sense of Definition 1.1.
Furthermore, ρ satisfies the energy inequality

(1.21) J(ρ(t)) +

ˆ t

0

ˆ

Ω

|v|2dρ ≤ J(ρin) ∀t > 0

with v defined in Definition 1.1.

Since the limit is proved only for a subsequence, an immediate question is whether the equation (1.16)
is enough to characterize ρ(t) for all t > 0. We recall that uniqueness for the Keller-Segel model without
the density constraint is proved in [4]. Uniqueness for a related equation (with no drift term, but with
a growth term) was proved in [27] by using a delicate duality argument. Using a similar approach, we
can prove:

Proposition 1.3. For µ ≥ 0 and given ρin ∈ P(Ω), there exists a unique (ρ, p) weak solution of (1.16)
in the sense of Definition 1.1. In particular, the whole sequence (and not just a subsequence) converges
in Theorem 1.2.

The proof of Proposition 1.3 would be a relatively straightforward adaptation of [27] if the potential φ
was in W 2,∞(Ω). Unfortunately, Calderon-Zygmund estimates only give φ ∈ L∞(0,∞;W 2,p(Ω)) for all
p <∞ in our case. Particular care has to be taken to handle the drift term because of this fact: the proof
makes use of the fact that the lack of L∞ bound on D2φ is of logarithmic nature (see Lemma 6.1). This
is closely related to the log-Lipschitz regularity of ∇φ which plays a crucial role in the well-posedness
theory for gradient flows of ω-convex energy, see [4, 6]. Several other uniqueness results can be found in
the literature for evolution equations under density constraints, especially when the drift term is fixed:
in [16], uniqueness is proved for the first order system (µ = 0) under Sobolev regularity on φ in the spirit
of DiPerna-Lions theory for transport equations. In [11] uniqueness is proved for the first order system
(µ = 0) when the fixed velocity field ∇φ satisfies some monotonicity assumption and for the diffusive
model (µ > 0) when ∇φ ∈ L∞. This last result is obtained via a duality method similar to the one
developed in this paper, making use of the additional regularity of ρ to require less regularity on φ (a
similar idea could be used to simplify our proof in the case µ > 0). The proof that we present applies
for all µ ≥ 0 and when φ is given by (1.3). Finally, we note that the uniqueness for a similar system
with Newtonian kernel in R

n and µ = 0 was shown very recently by a different approach in [13].

Before stating our next result, we introduce, for a given density ρ ∈ K the pressure set

(1.22) H1
ρ :=

{
q ∈ H1(Ω) ; q ≥ 0, q(1− ρ) = 0 a.e.

}
.

We recall that weak solutions of (1.16) in the sense of Definition 1.1 are in particular Hölder continuous in
time with respect toW2. It follows (see Lemma 3.5) that the function t 7→

´

Ω
ρ(x, t)ζ(x) dx is continuous

for all ζ ∈ H1(Ω) and thus well defined for all t > 0. It is thus possible to define the set H1
ρ(t0)

for

all t0 (even though ρ(x, t) is only defined for a.e. x, t) as the set of q ∈ H1(Ω) satisfying q ≥ 0 and
´

Ω
(1− ρ(x, t0))q(x) dx = 0. With this, we can now state our main result concerning the pressure p(t0):
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Proposition 1.4. With the notations of Theorem 1.2 and for any t0 > 0, let q(t0) be the unique solution
of the variational problem (obstacle problem):

(1.23)




q ∈ H1

ρ(t0)
ˆ

[∇q −∇φ(t0)] · [∇q −∇ζ] dx ≤ 0 ∀ζ ∈ H1
ρ(t0)

where φ(t0) is the solution of (1.3) with ρ = ρ(t0). Then the limiting pressure satisfies p(t) = q(t) a.e.
t > 0, and ∇pτ converge to ∇q strongly in L2(ΩT ).

After redefining p(t) on a set of measure zero, we can thus assume that p(t) = q(t) for all t > 0.

Note that formally (1.23) states −∆(q − φ(t0)) ≥ 0 in {ρ(t0) = 1}, with equality in {q > 0}. An
important ingredient in the proof of Proposition 1.4 will be the fact, interesting in itself, that the discrete
pressure pτ (t) given in (1.20) is a subsolution of (1.23)(with ρτ instead of ρ), for all t > 0 and all τ > 0.
(see Lemma 2.7 and Remark 2.9). Moreover, the discrete solution of the obstacle problem is not much
larger from pτ . Indeed we can show that the discrete solution of the obstacle problem converges, like pτ ,
to the solution of (1.23):

Proposition 1.5. For all τ > 0 and t0 > 0, let qτ (t0) be the unique solution of the

(1.24)




q ∈ H1

ρτ (t0)
ˆ

[∇q −∇φτ (t0)] · [∇q −∇ζ] dx ≤ 0 ∀ζ ∈ H1
ρτ (t0)

Then pτ ≤ qτ . Moreover ∇qτ converges strongly in L2(ΩT ) to ∇q (with q solution of (1.23)). In
particular, we have

‖∇(pτ − qτ )‖L2(ΩT ) → 0.

If the set {ρ(t0) = 1} is smooth enough, then (1.23) is the usual variational formulation of an obstacle
problem in the set {ρ(t0) = 1} with zero Dirichlet boundary condition on ∂{ρ(t0) = 1}∩Ω and Neumann
condition on ∂Ω ∩ {p > 0}. Using the fact that ∆φ(t0) < 0 in {ρ(t0) = 1} we can in fact show (still
assuming that {ρ(t0) = 1} is smooth enough) that the solution of (1.23) solves





∆q = ∆φ in {ρ(t0) = 1}
q = 0 on ∂{ρ(t0) = 1} ∩ Ω,

(∇φ−∇q) · n = 0 on ∂Ω ∩ {ρ(t0) = 1}
which makes rigorous the equation for p in (1.10). However, it is difficult to show that the set {ρ(t0) = 1}
is regular (in fact, we do not know how to prove that its boundary has zero Lebesgue measure) which is
why the variational formulation (1.23) is useful.

All the results presented above hold if we add an external potential φe ∈ L∞(0,∞;W 2,∞(Ω)) by
replacing (1.12) with (1.15). In that case, and depending on the sign of ∆φe, it is possible for the unique
solution of (1.23) to have support {q > 0} 6= {ρ(t0) = 1}. This corresponds to an instant collapse of the
saturated set {ρ(t) = 1} similar to the phenomenon observed and studied in [12].

The variational formulation (1.23) implies in particular the following:

Corollary 1.6. The pressure p(x, t) satisfies the complementarity condition

(1.25) p(∆p−∆φ) = 0 in D′(ΩT )

and the velocity v = ρ∇φ − ∇p satisfies v(t) = PC(ρ(t))(∇φ(t)) where PC(ρ) denotes the orthogonal
projection onto the set of admissible velocity defined in Appendix B.
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Remark 1.7. The key estimates used to prove Theorem 1.2 (see Lemma 3.2 and 3.5) are independent
of µ. Furthermore, Proposition 1.4 implies that ∇p is uniformly bounded in L2(ΩT ) with respect to µ.
We can thus proceed as in the proofs of the results above to show that the weak solution of (1.16) with
µ > 0 (constructed in Theorem 1.2) converges, as µ→ 0 to the weak solution of (1.16) with µ = 0 (with
the gradient of the pressure converging in L2 strong). In particular, the Richards equation (1.6) is an
approximation of the Hele-Shaw problem (1.8)-(1.9) when µ� 1.

Finally, an important question, when working with the weak equation (1.16) and the related Hele-
Shaw problem (1.10) is whether the solution of (1.16) is a characteristic function χΩs(t) for all time, or
takes value in (0, 1). Indeed, it is only when ρ = χΩs(t) that we can claim that (1.16) is related to the
Hele-Shaw problem (1.10). Otherwise, the evolution of ρ in the region {0 < ρ < 1} must be taken into
account.

Such a property clearly does not hold when µ > 0. When µ = 0, it can be proved that the discrete
approximation ρτ is always a characteristic function. This result was first proved in [17] (we recall the
proof in appendix). However, this property is typically lost when τ → 0 without additional conditions.
Assuming that the initial condition ρin = χEin is a characteristic function (and that µ = 0) we can
(almost) prove that ρ is characteristic function for all time. A similar result was proved in [7] when φ is
a fixed potential satisfying −∆φ > 0 by using viscosity solution type arguments. In our case, we only
have −∆φ > 0 in the set {ρ = 1} but this is enough to recover the result of [7] and we will prove (using
a completely different approach from [7]):

Theorem 1.8. Assume that the initial condition ρin = χEin
is a characteristic function and that µ = 0.

Let (ρ, p) be the solution of (1.16) provided by Theorem 1.2.
For all t > 0 there exists a set Ωs(t) such that

(i) ρ(x, t) = 1 a.e. in Ωs(t)

(ii) ρ(x, t) = 0 a.e. in Ω \ Ωs(t).

We point out that, as in [7], we do not exactly prove that ρ = χΩs(t) a.e., since we do not know
that ∂Ωs(t) has zero Lebesgue measure. This is a very delicate (and important) regularity question
that we do not address in this paper. A related question is whether the density ρ(·, t) is bounded in
BV(Ω) for t > 0 (if the initial condition is in BV(Ω)). Such a BV bound was derived in [10] for a
density-constrained model but without the presence of the drift. It is not clear to us that this type of
argument can be used for our model. Note that even such a BV bound would not imply that ∂Ωs(t) has
zero Lebesgue measure (since there are sets of finite perimeter whose boundary has positive Lebesgue
measure). Nevertheless, together with Proposition 1.4, Theorem 1.8 makes more precise the connection
between the incompressible chemotaxis model without diffusion ((1.5) with µ = 0) and the Hele-Shaw
free boundary problem (1.10). This result also holds when φ is given by (1.15), provided the external
potential φe satisfies −∆φe ≥ 0.

2. The minimization problem

2.1. Existence of a minimizer. In this section, we will prove that the JKO scheme defined by (1.19)
is well defined and we study the properties of the minimizers. We recall that the energy functional is
defined by

J(ρ) = µ

ˆ

ρ log ρ dx− 1

2

ˆ

Ω

ρφ dx,

where µ ≥ 0 and φ(x) =
´

Ω
G(x, y)ρ(y) dy is the solution of the elliptic equation with Robin boundary

condition (1.3).
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For a given ρ̄ ∈ P(Ω), we consider the minimization problem

(2.1) min

{
1

2τ
W 2

2 (ρ, ρ̄) + J(ρ) ; ρ ∈ K

}

where K is the convex set defined by (1.11).

We then have:

Proposition 2.1. The following holds for all ρ̄ ∈ P(Ω):
(i) The set of minimizers of (2.1) is non empty
(ii) When µ = 0, any minimizer of (2.1) is a characteristic function.
(iii) When µ > 0 then any minimizer ρ∗ of (2.1) satisfies ρ∗(x) > 0 a.e. in Ω and log(ρ∗) ∈ L1(Ω).

The existence of a minimizer (part (i)) follows from Lemma 2.2 below. The fact that any minimizer
is a characteristic function when µ = 0 (part (ii)) is a very nice result which was first proved in [17] in a
slightly different setting; we recall the proof in appendix for the sake of completeness. Finally, we refer
to [28] Lemma 8.6 for a proof of (iii).

Lemma 2.2. The functional J is bounded below and lower semicontinuous with respect to the weak
convergence in P(Ω).

Proof of Lemma 2.2. Since φ ≤ 1 (see (1.13)), ρ ≤ 1 and s log s ≥ −e−1 for s ≥ 0, we have J(ρ) ≥ −C
for all ρ ∈ K. Furthermore, for any sequence ρk which converges weakly to ρ it is easy to show that
the corresponding φk, which are bounded in W 2,p(Ω) for all p <∞, converge strongly to φ in W 1,p and
thus in Cα. The lower semicontinuity of J follows from the convexity of s 7→ s log s. �

Remark 2.3. While not necessary for our analysis, it is worth pointing out that the minimizer is unique
for τ small enough. This follows from the fact that the functional J is ω-convex (although it is not λ-
convex). We refer to [7] where the ω-convexity is proved for the corresponding functional when G(x, y)
is the usual Newtonian potential. The proofs are similar and we do not provide details here, since the
result isn’t necessary for our analysis. Without using the uniqueness result, one can still define the JKO
scheme (1.19) by choosing for ρn any element in the set of minimizers.

2.2. The Euler-Lagrange equation. We recall that given two probability measures µ and ν, we have
the equivalent (dual) definitions of the Wasserstein distance:

1

2
W 2

2 (µ, ν) = min

{
1

2

ˆ

Ω×Ω

|x− y|2dπ(x, y) ; π ∈ Π(µ, ν)

}
(2.2)

= max

{
ˆ

Ω

ψ(x) dµ+

ˆ

Ω

ϕ(y) dν
∣∣∣ψ, ϕ ∈ C0(Ω), ψ(x) + ϕ(y) ≤ 1

2
|x− y|2

}
.(2.3)

The minimum in (2.2) is attained for some π of the form π = (id, T )#µ with T#µ = ν and

1

2
W 2

2 (µ, ν) =
1

2

ˆ

Ω

|x− T (x)|2dµ.

The maximum in (2.3) is realized by a pair of Lipschitz conjugate functions (ψ,ψc) where

ψc(y) := inf
x∈Ω

1

2
|x− y|2 − ψ(x).

Below, we will call Kantorovich potential from µ to ν any concave function ψ such that (ψ, ψc) realizes
the maximum in (2.3). Note that we do not, in general, have uniqueness of the potential (unless one of
the support of the two measures is the whole domain Ω), but we have T (x) = x − ∇ψ(x) a.e. x ∈ Ω,
which is uniquely determined on {µ > 0} (and T−1(x) = x−∇ψc(x)).

In the remainder of this section, we denote by ρ∗ a minimizer of (2.1) provided by Proposition 2.1.
We start with:
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Proposition 2.4. For any µ ≥ 0, let ρ∗ be a minimizer of (2.1) and φ∗(x) =
´

Ω
G(x, y)ρ∗(y) dy be the

corresponding solution of (1.3). There exists a Kantorovich potential ψ from ρ∗ to ρ̄ such that

(2.4)

ˆ

Ω

(
µ log ρ∗ − φ∗ +

ψ

τ

)
(ρ− ρ∗) ≥ 0

for all ρ ∈ K.

The proof is similar to the proof of Lemma 3.1 in [23]. We provide it here for the reader’s convenience.

Proof. Given ρ ∈ K, we consider ρδ = ρ∗+δ(ρ−ρ∗), which belongs to K for all δ ∈ (0, 1). By optimality
of ρ∗, we have:

J(ρδ) +
1

2τ
W 2

2 (ρ
δ, ρ̄) ≥ J(ρ∗) +

1

2τ
W 2

2 (ρ
∗, ρ̄).

and so

(2.5) lim inf
δ→0

1

δ
[J(ρδ)− J(ρ∗)] +

1

2τ
lim inf
δ→0

1

δ
[W 2

2 (ρ
δ, ρ̄)−W 2

2 (ρ
∗, ρ̄)] ≥ 0.

Let ψδ be a Kantorovich potentials from ρδ to ρ̄. We have:

1

2
W 2

2 (ρ
δ, ρ̄) =

ˆ

Ω

ψδ(x)ρ
δ(x) dx+

ˆ

Ω

ψcδ(y)ρ̄(y) dy

1

2
W 2

2 (ρ
∗, ρ̄) ≥

ˆ

Ω

ψδ(x)ρ
∗(x) dx+

ˆ

Ω

ψcδ(y)ρ̄(y) dy

and so
1

2δ

(
W 2

2 (ρ
δ, ρ̄)−W 2

2 (ρ
∗, ρ̄)

)
≤ 1

δ

ˆ

Ω

ψδ(x)(ρ
δ(x)− ρ∗(x)) dx =

ˆ

Ω

ψδ(x)(ρ(x)− ρ∗(x)) dx.

We note that we can always assume that ψδ(x0) = 0 for some x0 ∈ Ω, in which case ψδ converges
uniformly, up to a subsequence, to a Kantorovich potential ψ associated with ρ̄ and ρ∗ (see [3]). We
deduce

(2.6) lim inf
δ→0

1

2δ

(
W 2

2 (ρ
δ, ρ̄)−W 2

2 (ρ
∗, ρ̄)

)
≤
ˆ

Ω

ψ(x)(ρ(x)− ρ∗(x)) dx.

Furthermore, the fact that µ log(ρ∗) ∈ L1(Ω) (see Proposition 2.1 (iii)) implies that δ → J(ρδ) is
differentiable at 0 and that

lim
δ→0

1

δ
[J(ρδ)− J(ρ∗)] = δJ(ρ∗)[ρ− ρ∗] = −

ˆ

Ω

φ∗(ρ− ρ∗) dx+ µ

ˆ

Ω

log ρ∗(ρ− ρ∗) .dx

Together with (2.5) and (2.6) this implies (2.4).
�

2.3. The velocity. Let T be the unique optimal transport map from ρ∗ to ρ̄. We define the velocity
v(x) by

v(x) =
x− T (x)

τ
=

∇ψ(x)
τ

.

We then have the following classical result:

Proposition 2.5. The velocity v satisfies:

(2.7)

ˆ

Ω

ρ∗v2 dx =
1

τ2
W 2

2 (ρ
∗, ρ̄) <∞

and for all test function ζ ∈ C2(Ω):

(2.8) τ

ˆ

Ω

ρ∗(x)v(x) · ∇ζ(x) dx =

ˆ

Ω

[ρ∗(x)− ρ̄(x)] ζ(x) dx+O(‖D2ζ‖∞W 2
2 (ρ

∗, ρ̄)).
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Proof. The definition of T gives

T#ρ∗ = ρ̄ and W 2
2 (ρ

∗, ρ̄) =

ˆ

Ω

|x− T (x)|2ρ∗(x) dx = τ2
ˆ

Ω

|v(x)|2ρ∗(x) dx.

We get (2.7) immediately and we can write:
ˆ

Ω

(ρ∗(x)− ρ̄(x))ζ(x) dx =

ˆ

Ω

[ζ(x)− ζ(T (x))]ρ∗(x) dx

=

ˆ

Ω

∇ζ(x) · (x− T (x))ρ∗(x) dx+O
(
‖D2ζ‖∞

ˆ

Ω

|x− T (x)|2ρ∗(x) dx
)

= τ

ˆ

Ω

∇ζ(x) · v(x)ρ∗(x) dx+O
(
‖D2ζ‖∞W 2

2 (ρ
∗, ρ̄)

)

and the result follows. �

2.4. The pressure. To end this section, we prove that the Euler-Lagrange equation (2.4) can be rewrit-
ten using a pressure term:

Proposition 2.6. Let ρ∗ be a minimizer of (2.1) and φ∗(x) =
´

Ω
G(x, y)ρ∗(y) dy be the corresponding

solution of (1.3). There exists p ∈ H1
ρ∗ such that

(2.9) −∇p(x) =
{
−∇φ∗(x) + v(x) a.e. in {ρ∗ = 1}
0 a.e in {ρ∗ < 1}.

and

(2.10) ρ∗v = −µ∇ρ∗ + ρ∗∇φ∗ −∇p a.e. in Ω

In addition µ log ρ∗ ∈ H1 and if µ = 0 then −∇p = −∇φ∗ + v a.e in {ρ∗ > 0}.

Proof. We can proceed as in [23]: If we introduce F (x) = µ log ρ∗ − φ∗(x) + ψ(x)
τ , Proposition 2.4 gives

(2.11)

ˆ

Ω

Fρ∗ dx ≤
ˆ

Ω

Fρ dx ∀ρ ∈ K.

This implies that there exists a Lagrange multiplier ` (associated with the mass constraint) such that

(2.12)





ρ∗ = 0 a.e. in {F > `}
0 ≤ ρ∗ ≤ 1 a.e. in {F = `}
ρ∗ = 1 a.e. in {F < `}

We now define the pressure by

p(x) = (`− F (x))+.

which satisfies (1− ρ∗(x))p(x) = 0 a.e. in Ω.
When µ = 0, we then get that p ∈ H1

ρ∗ thanks to (2.7) and (1.14).
When µ > 0, we first note that

(2.13) {F < `} = {`+ φ∗ − ψ/τ > 0}.
Indeed, we recall (Proposition 2.1 (iii)) that ρ∗ > 0 a.e. in Ω and so F ≤ ` a.e. (this is also evident here
since we have F = −∞ a.e. in {ρ∗ = 0} and so (2.12) yields |{F > `}| = 0). Furthermore, in {F < `} we

have ρ∗ = 1 and thus F = −φ∗(x)+ ψ(x)
τ < ` while in {F = `} we have −φ∗(x)+ ψ(x)

τ = `−µ log ρ∗ > `.
Using (2.13), it is now straightforward to show that

µ log ρ∗ = −(−`− φ∗ + ψ/τ)+ ∈ H1 and p = (`+ φ∗ − ψ/τ)+ ∈ H1.
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In particular F ∈ H1 and so ∇Fχ{F<`} = ∇Fχ{F≤`}. We deduce (using (2.12)):

∇p = −∇Fχ{F<`} = −ρ∗∇Fχ{F<`} = −ρ∗∇Fχ{F≤`} = −ρ∗∇F
Equalities (2.9) and (2.10) follow from the definition of F .

�

Finally, we prove the following lemma, which will be crucial to the derivation of the obstacle problem
for the pressure p:

Lemma 2.7. Let ρ∗ be a minimizer of (2.1), φ∗(x) the corresponding solution of (1.3) and p the pressure
given by Proposition 2.6. There holds:

(2.14)

ˆ

Ω

∇ζ(x) · [∇p(x)−∇φ∗(x)]dx ≤ 0 ∀ζ ∈ H1
ρ∗ .

Proof. We recall that T is the optimal transportation map such that T#ρ∗ = ρ̄ and we denote

Tt(x) = (1− t)x+ tT (x), ρt(x) = Tt#ρ
∗.

We point out that ρ0 = ρ∗ and ρ1 = ρ̄, so compared to the interpolation ρ̃τ (t) defined by (3.7), this
ρt flows backward. We have in particular ρt ∈ P(Ω) and since M 7→ | detM |−1 is convex on the set of
positive definite matrices, we have

ρt(x) =
ρ∗

| det∇Tt|
◦ T−1

t ≤
(
(1− t)ρ∗ +

tρ∗

| det∇T |

)
◦ T−1

t .

Using the fact that ρ̄(T (x)) = ρ∗(x)
| det∇T (x)| ≤ 1 a.e. x ∈ Ω, we deduce ρt(x) ≤ 1 a.e. and so ρt ∈ K.

Next, we note that for any text function ζ ∈ H1
ρ∗ , we have

ˆ

Ω

ζ(x)(ρ(x)− ρ∗(x)) dx =

ˆ

Ω

ζ(x)(ρ(x)− 1) dx ≤ 0 ∀ρ ∈ K.

In particular, we can write
ˆ

Ω

ζ(x)(ρt(x)− ρ∗(x)) dx =

ˆ

Ω

[ζ(Tt(x))− ζ(x)]ρ∗(x) dx ≤ 0.

Dividing by t > 0 and passing to the limit t→ 0 we get

(2.15)

ˆ

Ω

∇ζ(x) · (T (x)− x)ρ∗(x)dx = −τ
ˆ

Ω

∇ζ(x) · ρ∗(x)v(x)dx ≤ 0.

Since ∇ζ satisfies ∇ζ(1− ρ∗) = 0 a.e., we can now use (2.9) to get (2.14). �

Remark 2.8. With the notations of Appendix B, inequality (2.15) says that −v ∈ C(ρ∗) (i.e. −v is
admissible for ρ∗). A similar argument, with ζ ∈ H1

ρ̄ , can be used to prove that v ◦ T−1 ∈ C(ρ̄).

Remark 2.9. Since p ∈ H1
ρ∗ , we can take ζ = p in (2.14) to find:

(2.16)

ˆ

Ω

∇p(x) · [∇p(x)−∇φ∗(x)]dx ≤ 0.

This inequality will be all that is really needed to prove that pτ converges strongly to the solution of the
variational inequality (1.23). Of course, Lemma 2.7 is stronger than that. It implies in particular that
p(∆p−∆φ∗) ≥ 0 and that p is the subsolution for the obstacle problem

(2.17)





q ∈ H1
ρ∗

ˆ

Ω

[∇q(x)−∇φ∗(x)] · [∇q(x)−∇ζ(x)]dx ≤ 0 ∀ζ ∈ H1
ρ∗ .
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If we denote by q∗ the unique solution of (2.17), then (2.14) implies

0 ≤ p(x) ≤ q∗(x) in Ω.

(to see this, take ζ = (p− q∗)+ in (2.14) and ζ = q∗ + (p− q∗)+ in (2.17)).

3. Definition of ρτ , ρ̃τ and a priori estimates

In this section we derive classical a priori estimates which will be used to pass to the limit τ → 0.
We recall that we define the sequence ρn by successive applications of the minimization problem (1.19)
starting with ρ0 = ρin. We also define the velocity

vn(x) =
x− Tn(x)

τ
=

∇ψn(x)
τ

and the pressure pn, given by Proposition 2.6, which satisfies:

(3.1) ρnvn = −µ∇ρn + ρn∇φn −∇pn, pn ∈ H1
ρn , φn(x) =

ˆ

Ω

ρn(y)G(x, y) dy

(of course, ρn, pn, Tn, ... depend on τ , even though we do not indicate this dependence).
Finally, we define the piecewise constant interpolations ρτ (x, t), pτ (x, t), vτ (x, t) and φτ (x, t) by

(3.2)

ρτ (t) := ρn+1 for all t ∈ [nτ, (n+ 1)τ)

pτ (t) := pn+1 for all t ∈ [nτ, (n+ 1)τ)

vτ (t) := vn+1 for all t ∈ [nτ, (n+ 1)τ)

φτ (t) := φn+1 for all t ∈ [nτ, (n+ 1)τ).

We also define the momentum

Eτ (x, t) = ρτ (x, t)vτ (x, t).

Using the results from the previous section, we can easily prove:

Proposition 3.1. For any smooth test function ζ(x, t) compactly supported in Ω × [0, T ) and given N
such that Nτ ≥ T , there holds:

ˆ ∞

0

ˆ

Ω

Eτ · ∇ζ dx dt = −
ˆ

Ω

ρin(x)ζ(x, 0) dx−
ˆ ∞

0

ˆ

Ω

ρτ (x, t)∂tζ(x, t) dx dt

+O
(
‖D2ζ‖L∞(Ω×R+)

N∑

n=0

W 2
2 (ρ

n, ρn−1) + τ‖∂tζ‖∞ + τT‖∂2t ζ‖∞
)

(3.3)

For any smooth vector field ξ(x, t) satisfying ξ · n = 0 on ∂Ω, there holds:

(3.4)

ˆ ∞

0

ˆ

Ω

Eτ · ξ dx dt =
ˆ ∞

0

ˆ

Ω

(ρτ∇φτ · ξ + µρτdiv ξ + pτdiv ξ) dxdt.

Proof. We recall that (2.8) implies

τ

ˆ

ρn(x)vn(x) · ∇ζ(x, t) dx =

ˆ

[ρn(x)− ρn−1(x)] ζ(x, t) dx+O(‖D2ζ(·, t)‖∞W 2
2 (ρ

n, ρn−1)) ∀n ≥ 1

which gives in particular for n ≥ 1 and t ∈ [(n− 1)τ, nτ):

(3.5) τ

ˆ

Eτ (x, t) · ∇ζ(x, t) dx =

ˆ

[ρτ (x, t)− ρτ (x, t− τ)] ζ(x, t) dx+O(‖D2ζ‖∞W 2
2 (ρ

n, ρn−1)).
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Integrating with respect to t ∈ [(n − 1)τ, nτ) and adding these equalities for n = 1, . . . N , we easily
obtain

ˆ ∞

0

ˆ

Ω

Eτ · ∇ζ dx dt = −
ˆ

Ω

ρin
1

τ

ˆ τ

0

ζ(t) dt dx−
ˆ ∞

0

ˆ

Ω

ρτ (x, t)
ζ(x, t+ τ)− ζ(x, t)

τ
dx dt

+O
(
‖D2ζ‖L∞(Ω×(0,∞))

N∑

k=0

W 2
2 (ρ

n, ρn−1)

)
(3.6)

and (3.3) follows. Equation (3.4) follows from (3.1). �

We recognize in (3.3) and (3.4) approximations of the weak equations (1.17)-(1.18). Our next task is
thus to derive a priori estimates that will allow us to pass to the limit in (3.3) and (3.4). This limit will
be easier to manage with the help of the continuous in time interpolation which we introduce now:

Continuous interpolation. Interpolating between ρn and ρn+1 along the natural geodesic for the
Wasserstein distance, we define:

(3.7) ρ̃τ (t) =

(
t− nτ

τ
(Id− Tn+1) + Tn+1

)
#ρn+1 for t ∈ [nτ, (n+ 1)τ)

where we recall that Tn+1 is the optimal transport from ρn+1 to ρn. We define ṽτ (t, ·) as the unique
velocity field such that ṽτ (t, ·) ∈ Tanρ̃τP2(R

d) and (ρ̃τ , ṽτ ) satisfy the continuity equation, that is:

ṽτ = vτ ◦
(
t− nτ

τ
(Id− Tn+1) + Tn+1

)−1

.

Finally, we defind the momentum

Ẽτ := ṽτ ρ̃τ .

In particular we have

∂tρ̃
τ +∇ · Ẽτ = 0

in the sense of distribution on ΩT .

3.1. A priori estimates. We start with the following lemma:

Lemma 3.2. There exists a constant C depending only on J(ρin) such that for all τ > 0 we have:

(i) J(ρN ) ≤ C and
∑N
n=0W

2
2 (ρ

n, ρn−1) ≤ 2Cτ for all N ≥ 0

(ii) W2(ρ
τ (t), ρτ (s)) ≤ C

√
t− s+ τ for any 0 ≤ s ≤ t ≤ T and ‖vτ‖L2

ρτ
≤ C

(iii) W2(ρ̃
τ (t), ρ̃τ (s)) ≤ C

√
t− s for any 0 ≤ s ≤ t ≤ T and ‖ṽτ‖L2

ρ̃τ
≤ C

(iv) ‖Eτ‖L2(ΩT ) ≤ C and ‖Ẽτ‖L2(ΩT ) ≤ C.

Proof of Lemma 3.2. The definition of ρn+1, (1.19), implies

(3.8) J(ρn+1) +
1

2τ
W 2

2 (ρ
n, ρn+1) ≤ J(ρn),

In particular,

(3.9) J(ρN+1) +
1

2τ

N∑

n=1

W 2
2 (ρ

n, ρn+1) ≤ J(ρin) for all N ≥ 0.

Both (i) and the first inequality in (ii) follow easily. Furthermore, inequality (2.7) implies (using (3.9)
with Nτ ≥ T )

ˆ T

0

ˆ

Ω

ρτ |vτ |2dxdt ≤
N∑

n=0

τ

ˆ

Ω

ρn+1|vn+1(x)|2dx ≤
N∑

n=0

1

τ
W 2

2 (ρ
n, ρn+1) ≤ 2J(ρin).
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which gives the second part of (ii).
To prove (iii), we note that ρ̃τ , it is an absolutely continuous curve in the Wasserstein space and it is a

constant speed geodesic interpolation with the velocity field ṽτ = 1
τW2(ρ

n, ρn+1) when t ∈ [nτ, (n+1)τ).
Thus if nτ ≤ s ≤ t < (n+ 1)τ , we have

W2(ρ̃
τ (t), ρ̃τ (s)) ≤W2(ρ

n, ρn+1)
t− s

τ
≤ C

t− s√
τ

≤ C
√
t− s

since 0 ≤ t − s ≤ τ . If nτ ≤ s < (n + 1)τ ≤ mτ ≤ t < (m + 1)τ for some n + 1 ≤ m, using
Cauchy-Schwartz, we have

W2(ρ̃
τ (t), ρ̃τ (s)) ≤

(
m∑

k=n

W 2
2 (ρ

k, ρk+1)

)1/2((
(n+ 1)τ − s

τ

)2

+m− (n+ 1) +

(
t−mτ

τ

)2
)1/2

≤
√
Cτ

√
t− s

τ
≤ C

√
t− s

since
(

(n+1)τ−s
τ

)2
≤ (n+1)τ−s

τ and
(
t−mτ
τ

)2
< t−mτ

τ .

Moreover, we have (using (3.8)):
ˆ T

0

ˆ

Ω

ρ̃τ |ṽτ |2dxdt =
ˆ T

0

‖ṽτ‖2L2
ρ̃τ
dt =

ˆ T

0

|(ρ̃τ )′|2W 2(t)dt =
∑

n

1

τ
W 2

2 (ρ
n, ρn+1) ≤ 2J(ρin).

Here we use the notation |σ′|(t) for the metric derivative of a curve σ and ||σ′||W 2(t) means that this
metric derivative is computed according to the distance W2.

Finally, (iv) follows from the bound ρτ ≤ 1:
ˆ T

0

ˆ

Ω

|Eτ |2dxdt =
ˆ T

0

ˆ

Ω

ρτ 2|vτ |2dxdt ≤
ˆ T

0

ˆ

Ω

ρτ |vτ |2dxdt

and similarly for Ẽτ . �

Lemma 3.2 implies:

Proposition 3.3. For any sequence τn → 0 there exists a subsequence (still denoted τn) along which

ρτn and ρ̃τn converge uniformly with respect to W2 to the same limit and Eτn and Ẽτn converge weakly
in L2(ΩT ) to the same limit.

Proof of Proposition 3.3. The equicontinuity estimate W2(ρ̃
τ (t), ρ̃τ (s)) ≤ C

√
t− s (Lemma 3.2 (iii))

implies that ρ̃τn converges uniformly in [0, T ] with respect to the W2 distance (up to a subsequence).
The curves ρτ and ρ̃τ coincide at every time t of the form nτ . The former is constant on every interval
[nτ, (n+ 1)τ), whereas the latter is uniformly Hölder continuous of exponent 1/2, which implies

(3.10) W2(ρ
τ (t), ρ̃τ (t)) ≤ C

√
τ

This proves that ρτn converges uniformly to the same limit as ρ̃τn .

Since Ẽτn and Eτn are uniformly bounded in L2(ΩT ) (Lemma 3.2 (iv)), they have weak-* limits Ẽ

and E respectively. It only remains to prove that Ẽ = E. We note that

ṽτ = vτ ◦
(
t− nτ

τ
(Id− Tn+1) + Tn+1

)−1

= vτ ◦
(
(n+ 1)τ − t

τ
(Id− Tn+1) + Id

)−1

= vτ ◦ (((n+ 1)τ − t)vτ + Id)
−1
.
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For a test function f ∈ Lip(Ω× [0, T ],Rd), we then have:
ˆ T

0

ˆ

Ω

f · Ẽτ =

ˆ T

0

dt

ˆ

Ω

f · ṽτ ρ̃τdx =

ˆ T

0

dt

ˆ

Ω

f ◦ (((n+ 1)τ − t)vτ + Id) · vτρτdx,

which implies
∣∣∣∣∣

ˆ T

0

ˆ

Ω

f · Ẽτ −
ˆ T

0

ˆ

Ω

f · Eτ
∣∣∣∣∣ ≤
ˆ T

0

ˆ

Ω

|f ◦ (((n+ 1)τ − t)vτ + Id)− f | |vτ |ρτdxdt

≤ Lip(f)τ

ˆ T

0

ˆ

Ω

|vτ |2ρτdxdt ≤ CLip(f)τ

and so Ẽτn − Eτn → 0 in D′(ΩT ). The result follows. �

We end this section with some a priori estimates for the pressure pτ and the potential φτ which will
be used for the proof of Theorem 1.2. First we have:

Lemma 3.4. For all τ > 0 we have

(3.11) ‖∇pτ (t)‖L2(Ω) ≤ ‖∇φτ (t)‖L2(Ω) ≤ 1 for all t > 0.

Furthermore, there exists C depending only on J(ρin) such that

(3.12) ‖µ∇ρτ‖L2(ΩT ) ≤ C.

Proof of Lemma 3.4. The first inequality in (3.11) follows from (2.16) while the second one is a conse-
quence of (1.14).

To prove (3.12), we use (2.10) to write µ∇ρτ = −ρτv + ρτ∇φτ −∇pτ and so (since ρτ ≤ 1):

‖µ∇ρτ‖2L2(ΩT ) ≤
ˆ T

0

ˆ

Ω

ρτ |vτ |2 dx dt+ ‖∇φτ‖2L2(ΩT ) + ‖∇pτ‖2L2(ΩT )

and the result follows. �

In order to get additional estimates on φτ , we will use the following classical Lemma (see for instance
[23]):

Lemma 3.5. Given ν1, ν2 ∈ K (and so satisfying in particular νi ≤ 1) and for all f ∈ H1(Ω), we have
∣∣∣∣
ˆ

Ω

fd(ν1 − ν2)

∣∣∣∣ ≤ ‖∇f‖L2(Ω)W2(ν1, ν2).

We then prove:

Lemma 3.6. There exist s > 0 and a constant C depending only on J(ρin) such that the continuous

interpolation ∇φ̃τ (which solves (1.3) with ρ = ρ̃τ ) satisfies

‖∇φ̃τ‖Cs(ΩT ) ≤ C,

‖φ̃τ‖C1/2((0,T );H1(Ω)) ≤ C,

and

‖∇φ̃τ −∇φτ‖L2(ΩT ) ≤ C
√
τ ,

Proof. Let 0 < s < t < T and w = φ̃τ (x, s)− φ̃τ (x, t). Using (1.3), we see that w solves

w −∆w = ρ̃τ (x, s)− ρ̃τ (x, t)
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together with the Robin boundary conditions. Multiplying by w, integrating by parts and using
Lemma 3.5 we get:

ˆ

Ω

|w|2 dx+

ˆ

Ω

|∇w|2 dx ≤
ˆ

Ω

(ρ̃τ (x, s)− ρ̃τ (x, t))w dx

≤
(
ˆ

Ω

|∇w|2 dx
)1/2

W2(ρ̃
τ (s)− ρ̃τ (t))

Using Lemma 3.2 (iii), we deduce

(
ˆ

Ω

|∇w|2 dx
)1/2

≤ C
√
t− s

which proves that ∇φ̃τ is bounded in C1/2(0, T ;L2(Ω)). Furthermore, (1.3) implies that ∆φ̃τ is bounded

in L∞(0, T ;Lp(Ω)) for all p ∈ [0,∞], so Calderon-Zygmund estimates imply that ∇φ̃τ is bounded in
L∞(0, T ;W 1,p(Ω)) for all p < ∞ and so in L∞(0, T ;Cs(Ω)) for all s < 1. Together, these estimates
imply the first two bounds.

Finally the function z = φ̃τ (x, t)− φτ (x, t) solves

z −∆z = ρ̃τ (x, t)− ρτ (x, t)

and using Lemma 3.5 and (3.10) we get

ˆ

Ω

|z|2 dx+

ˆ

Ω

|∇z|2 dx ≤
(
ˆ

Ω

|∇z|2 dx
)1/2

W2(ρ̃
τ (t)− ρτ (t))

≤
(
ˆ

Ω

|∇z|2 dx
)1/2 √

τ

and the last bound of Lemma 3.6 follows.
�

4. Convergence of the discrete time scheme τ → 0

4.1. Proof of Theorem 1.2. For any sequence τn → 0, we can use Proposition 3.3 to find a subse-

quence (still denoted τn) such that ρτn , ρ̃τn converge uniformly with respect toW2 to ρ(x, t) and E
τn , Ẽτn

converge weakly in L2 to E(x, t). Furthermore, using Lemma 3.4 we can assume, up to another subse-
quence, that pτn → p, ∇pτn → ∇p and µ∇ρτn → µ∇ρ weakly in L2(ΩT ) and finally, Lemma 3.6 implies

that ∇φ̃τn converges uniformly and ∇φτn converges strongly in L2 to ∇φ where φ =
´

G(x, y)ρ(y) dy.
We then have:

Proposition 4.1. The limits ρ ∈ C1/2(0, T ;P(Ω)) and E ∈ L2(ΩT ) are such that

(4.1)

ˆ ∞

0

ˆ

Ω

ρ(x, t)∂tζ(x, t) + E(x, t) · ∇ζ(x, t) dx dt+
ˆ

Ω

ρin(x)ζ(x, 0) dx = 0

for all ζ ∈ C∞(Ω× [0, T ]) with

(4.2) E = ρ∇φ− µ∇ρ−∇p, φ =

ˆ

Ω

G(x, y)ρ(y) dy.

Furthermore, E is absolutely continuous with respect to ρ, and can be written as E = ρv for some
v ∈ L2(dρ).
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Proof. Equation (3.3), together with the a priori estimate Lemma 3.2 (i) yields, for any ζ ∈ C∞(ΩT ):
ˆ ∞

0

ˆ

Ω

Eτn · ∇ζ dx dt = −
ˆ

Ω

ρin(x)ζ(x, 0) dx−
ˆ ∞

0

ˆ

Ω

ρτn(x, t)∂tζ(x, t) dx dt

+O
(
(‖D2ζ‖L∞(Ω×(0,∞)) + ‖∂tζ‖∞ + T‖∂2t ζ‖∞)τn

)

and passing to the limit, we deduce (4.1).
In order to pass to the limit in (3.4) and derive (4.2), we just need to check that we can pass to the

limit in the nonlinear term ρτn∇φτn . We recall that ∇φτn converges strongly in L2. And since ρτn is
bounded in L1 ∩L∞(ΩT ) (thanks to the constraint ρ ≤ 1), it converges weakly in L2. We can thus pass
to the limit in (3.4) to get
ˆ ∞

0

ˆ

Ω

E(x, t) · ξ(x, t) dx dt =
ˆ ∞

0

ˆ

Ω

ρ(x, t)∇φ(x, t) · ξ(x, t) + µρ(x, t)div ξ(x, t) + p(x, t)div ξ(x, t) dx.

for all ξ ∈ C∞(Ω× (0, T )) with ξ · n = 0 on ∂Ω, which gives (4.2).
We complete the proof as in [23] by noticing that the function

Θ : (s, F ) 7→





ˆ T

0

ˆ

Ω

|F |2
s

if F � s a.e. t ∈ [0, T ]

+∞ otherwise

is lower semi-continuous for the weak convergence of measure. Together with the uniform bound

Θ(ρτn , Eτn) =
´ T

0

´

Ω
ρτn |vτn |2 ≤ C, it implies that E is absolutely continuous with respect to ρ and that

there exists v(t, ·) ∈ L2(dρ(t)) such that E = ρv. Furthermore, we get
ˆ T

0

ˆ

Ω

|v|2dρ =

ˆ T

0

ˆ

Ω

|E|2
ρ

≤ lim inf

ˆ T

0

ˆ

Ω

|Eτn |2
ρτn

= lim inf

ˆ T

0

ˆ

Ω

|vτn |2dρτn

which, together with (3.9), implies (1.21). �

To complete the proof of Theorem 1.2, it only remains to show that p ∈ P (ρ), which follows from the
following lemma:

Lemma 4.2. The limiting pressure p(x, t) satisfies p ≥ 0 a.e. and
ˆ

Ω

p(x, t)(1− ρ(x, t)) dx = 0 a.e. t > 0.

In particular, p(x, t) ∈ H1
ρ(t) a.e. t > 0.

Since we have
´

Ω
pτ (x, t)(1−ρτ (x, t)) dx = 0, the difficulty is in passing to the limit in the product pτρτ

(both functions only converge weakly). The crucial observation is that pτ is bounded in L2(0, T ;H1(Ω))
while ρτ is bounded in C1/2(0, T ;H−1(Ω)) so that some compensated compactness type result can be
used to pass to the limit. We refer the reader to [23] for a detailed proof of this lemma.

5. Obstacle problem and strong convergence of the pressure

We now want to prove Proposition 1.4 (and its consequences), that is the fact that the limiting
pressure p is the unique solution of an obstacle problem (depending on ρ(t0)). This is not a surprising
result (in fact, following [23] one can show that for a.e. t > 0 p(t) solves an elliptic equation), but we
believe that it is interesting that, as we did in [12] using the porous media approximation, there is a
simple variational proof of this fact using the JKO scheme. The key to the proof of Proposition 1.4 is
Lemma 2.7.
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Proof of Proposition 1.4. Equation (2.8) together with (2.10) give
ˆ

Ω

(−∇pn + ρn∇φn − µ∇ρn) · ∇ζ dx =
1

τ

ˆ

Ω

[ρn − ρn−1] ζ dx+O
(
1

τ
W 2

2 (ρ
n, ρn−1)

)

while Lemma 2.7 (in fact (2.16) suffices here) implies
ˆ

Ω

(∇pn −∇φn) · ∇pn dx ≤ 0.

Adding these inequalities, we find
ˆ

Ω

(∇pn −∇φn) · ∇(pn − ζ) dx ≤ 1

τ

ˆ

Ω

[ρn − ρn−1] ζ(x) dx+

ˆ

Ω

(1− ρn)∇φn · ∇ζ dx

+ µ

ˆ

Ω

∇ρn · ∇ζ dx+O
(
1

τ
W 2

2 (ρ
n, ρn−1)

)
.

We deduce (with n0 such that n0τ ≤ t0 < (n0 + 1)τ and n1 such that n1τ ≤ t0 + δ < (n1 + 1)τ)
ˆ t0+δ

t0

ˆ

Ω

(∇pτ −∇φτ ) · ∇(pτ − ζ) dx ≤
ˆ

Ω

[ρτ (t0 + δ)− ρτ (t0)] ζ(x) dx+

ˆ t0+δ

t0

ˆ

Ω

(1− ρτ )∇φτ · ∇ζ dx

+ µ

ˆ t0+δ

t0

ˆ

Ω

∇ρτ · ∇ζ dx+O
(

n1∑

n=n0

W 2
2 (ρ

n, ρn−1)

)
+O(τ).

We can now pass to the limit τ → 0: For the left hand side, we use the weak convergence of ∇pτ in
L2, the lower semicontinuity of the L2 norm and the fact that ∇φτ convergence strongly in L2 (Lemma
3.6). For the right hand side, we use the convergence of

´

ρτ (t)ζ (which follows from Lemma 3.5 and
the uniform convergence of ρτ (t) with respect to W2), the strong convergence of ∇φτ in L2 and Lemma
3.2 (i). We deduce:
ˆ t0+δ

t0

ˆ

Ω

(∇p−∇φ) · ∇(p− ζ) dx dt

≤
ˆ

Ω

[ρ(t0 + δ)− ρ(t0)] ζ(x) dx+

ˆ t0+δ

t0

ˆ

Ω

(1− ρ)∇φ · ∇ζ dx dt+ µ

ˆ t0+δ

t0

ˆ

Ω

∇ρ · ∇ζ dx

In particular, if we take ζ ∈ H1
ρ(t0)

, we find

ˆ t0+δ

t0

ˆ

Ω

(∇p−∇φ) · ∇(p− ζ) dx dt

≤
ˆ

Ω

[ρ(t0 + δ)− 1] ζ(x) dx+

ˆ t0+δ

t0

ˆ

Ω

(ρ(t0)− ρ(t))∇φ · ∇ζ dx dt+ µ

ˆ t0+δ

t0

ˆ

Ω

∇ρ · ∇ζ dx

≤
ˆ t0+δ

t0

W2(ρ(t0), ρ(t)) dt‖∇φ · ∇ζ‖L∞(0,T ;H1(Ω)) + µ

ˆ t0+δ

t0

ˆ

Ω

∇ρ · ∇ζ dx

where we use the fact that ρ(t0 + δ) ≤ 1 a.e. and Lemma 3.5. Since ρ ∈ C1/2(0, T ;P(Ω)), we obtain
ˆ t0+δ

t0

ˆ

Ω

(∇p−∇φ) · ∇(p− ζ) dx dt ≤ C‖∇φ · ∇ζ‖L∞(0,T ;H1(Ω))δ
3/2 + µ

ˆ t0+δ

t0

ˆ

Ω

∇ρ · ∇ζ dx

and it remains to divide by δ and pass to the limit to get

(5.1)

ˆ

Ω

(∇p(t0)−∇φ(t0)) · ∇(p(t0)− ζ) dx ≤ µ

ˆ

Ω

∇ρ(t0) · ∇ζ dx = 0

at all the Lebesgue points of p (that is a.e. t0 > 0).
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Since we already proved that p(t0) ∈ H1
ρ(t0)

a.e. t0 > 0 (see Lemma 4.2), this proves that p(t0) is the

unique solution of (1.23) a.e. t0 > 0.

It remains to prove that ∇pτ converges strongly in L2. We note that (2.16) gives
ˆ T

0

ˆ

Ω

|∇pτ |2 dx dt ≤
ˆ T

0

ˆ

Ω

∇pτ · ∇φτ dx dt

Since ∇pτn converges to ∇p weakly in L2(ΩT ) and ∇φτn converges strongly in L2 to ∇φ, we deduce

(5.2)

ˆ T

0

ˆ

Ω

|∇p|2 dx dt ≤ lim inf

ˆ T

0

ˆ

Ω

|∇pτn |2 dx dt ≤
ˆ T

0

ˆ

Ω

∇p · ∇φ dx dt.

However, taking ζ(x) = 2p(x, t0) in (5.1) we find

−
ˆ

Ω

(∇p(t0)−∇φ(t0)) · ∇p(t0) dx ≤ 0 a.e. t0 > 0

which implies
ˆ T

0

ˆ

Ω

∇p · ∇φ dx dt ≤
ˆ T

0

ˆ

Ω

|∇p|2 dx dt

It follows that the inequalities in (5.2) are in fact equalities and thus that ∇pτn converges to ∇p strongly
in L2(ΩT ). �

We can now prove the solution of the discrete time obstacle problem (1.24) converges to the same
limit as pτ :

Proof of Proposition 1.5. Equation (1.24) implies in particular
ˆ

Ω

|∇qτ (t)|2 dx ≤
ˆ

Ω

∇φτ (t) · ∇qτ (t)dx

so that ∇qτ is bounded in L2(ΩT ). Note also that qτ is bounded in L∞(ΩT ) by the maximum principle
applied to the obstacle problem. We deduce that qτn and ∇qτn converge weakly (up to a subsequence)
to q̄ and ∇q̄ with

(5.3)

ˆ T

0

ˆ

Ω

|∇q̄|2 dx dt ≤ lim inf

ˆ T

0

ˆ

Ω

|∇qτn |2 dx ≤
ˆ T

0

ˆ

Ω

∇φ · ∇q̄ dx dt.

Furthermore, we can proceed as in the proof Lemma 4.2 to show that q̄(t0) ∈ H1
ρ(t0)

a.e. t0 > 0.

Next, taking ζ = pτ in (1.24) and passing to the limit (using the strong convergence of ∇pτ and the
lower-semicontinuity of the L2 norm), we get

ˆ T

0

ˆ

Ω

[∇q̄(x, t)−∇φ(x, t)] · [∇q̄(x, t)−∇p(x, t)]dx dt ≤ 0.

Furthermore, since q̄(t0) ∈ H1
ρ(t0)

a.e. t0 > 0, we can take ζ = q̄ in (1.23) to get

ˆ T

0

ˆ

Ω

[∇p(x, t)−∇φ(x, t)] · [∇p(x, t)−∇q̄(x, t)]dx dt ≤ 0.

Together, these inequalities imply
ˆ T

0

ˆ

Ω

[∇q̄(x, t)−∇p(x, t)]2 dx dt ≤ 0

and so q̄ = p a.e.. Finally, this implies that
´ T

0

´

Ω
|∇q̄|2 dx dt =

´ T

0

´

Ω
∇φ · ∇q̄ dx dt and (5.3) yields the

strong convergence of qτ . �



22 I. KIM, A.MELLET, AND Y. WU

The proof of Corollary 1.6 is classical and is given here for the sake of completeness:

Proof of Corollary 1.6. We recall that the pressure p has been redefined (on a set of measure zero) so
that it coincides with the solution of the obstacle problem (1.23) for all t > 0.

Given a test function u ∈ D(ΩT ) such that ‖u‖L∞ ≤ 1 the functions ζ± = p(1 ± u) satisfies ζ±(t) ∈
H1
ρ(t) for all t > 0 and so (1.23) implies

±
ˆ

Ω

(−∇p(t) +∇φ(t)) · ∇(p(t)u(t)) dx ≤ 0 for all t > 0

and the complementarity condition (1.25) follows.
Next, we rewrite (1.23)(for a fixed t > 0) as

(5.4)

ˆ

Ω

(∇p−∇φ) · (∇p−∇ζ) dx ≤ 0 ∀ζ ∈ H1
ρ(t).

Taking ζ = 0 and ζ = 2p(t) in this inequality immediately gives
ˆ

Ω

(∇p−∇φ) · ∇p dx = 0

and using the fact that ρ∇p = ∇p since p ∈ H1
ρ(t), we get the orthogonality condition

(5.5)

ˆ

Ω

∇p(t) · v(t) dx = 0

where the velocity v(t) satisfies ρ(t)v(t) = ρ(t)∇φ(t)−∇p(t). Furthermore, (5.4) now implies
ˆ

Ω

(∇φ−∇p) · ∇ζ dx ≤ 0 ∀ζ ∈ H1
ρ(t)

and using the fact that ρ∇ζ = ∇ζ for ζ ∈ H1
ρ(t), we deduce

ˆ

Ω

v(t) · ∇ζ dx ≤ 0 ∀ζ ∈ H1
ρ(t)

that is v(t) ∈ C(ρ(t)) for all t > 0. Together with (5.5) this says that v(t) = PC(ρ(t))(∇φ(t)). �

We end this section with a lemma which will be useful in the proof of Theorem 1.8:

Lemma 5.1. Let p(t) be the unique solution of the obstacle problem (1.23) and denote P(t) = {p(t) > 0}.
Then µt = ∆p−∆φχP(t) is a non-negative radon measure supported on ∂P(t).

Proof. First, we recall that the solution of the obstacle problem (1.23) satisfies p ∈ C1,1
loc (O(t)) with

O(t) := Int({ρ(t) = 1}) and
(5.6) ∆p = ∆φχ{p>0} in O(t).

Next, we show that Suppµt ⊂ ∂P(t) \ O(t): For all smooth test functions ζ ∈ D(Ω), by definition of
µt we have

µt(ζ) =

ˆ

Ω

(−∇p · ∇ζ −∆φχP(t)ζ) dx.

Clearly, if ζ is supported in {p(·, t) = 0}, the fact that p ∈ H1(Ω) implies that ∇p = 0 a.e. in {p = 0}
and thus µt(ζ) = 0. And if ζ is supported in O(t), (5.6) implies

µt(ζ) = 0.

Since O(t) is an open set, we deduce that

Supp (µt) ∩ Int({p(t) = 0}) = ∅, Supp (µt) ∩ O(t) = ∅.
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On the other hand, note that Int(P(t)) ⊂ O(t). Indeed if p(t) > 0 in Bδ(x0), then 1 − ρ(t) = 0 a.e.
in Bδ(x0). It follows that x0 ∈ O(t). Thus we can conclude that µt is supported in ∂P(t) \ O(t).

Next we show that µt is nonnegative. Define the function

Qδ(s) :=

{
s
δ if s ∈ [0, δ];

1 if s ≥ δ.

For any test function ζ ∈ D(Ω) satisfying 0 ≤ ζ(x) ≤ 1, we write

µt(ζ) =

ˆ

Ω

−∇p · ∇ζ −∆φχP(t)ζ dx

=

ˆ

Ω

−∇p · ∇(ζQδ(p))−∆φζQδ(p) dx+ 〈∆p, ζ(1−Qδ(p))〉 −
ˆ

Ω

∆φχP(t)ζ(1−Qδ(p)) dx.

Using (1.23) with test function p+ζQδ(p) (which is in H1
ρ(t)) we see that the first integral is non-negative.

Next note that

〈∆p, ζ(1−Qδ(p))〉 =
ˆ

∇p · ∇ϕ(Qδ(p)− 1) +∇p · ϕQ′
δ(p)∇p.

The second term in above equality is nonnegative since Qδ is increasing. For the first term, we note that
∇ϕ(Qδ(p) − 1) converges a.e. to ∇ϕχ{p=0}. Lebesgue dominated convergence theorem implies that it

converges in L2 and thus the first term converges to zero since ∇p = 0 a.e. in {p = 0}.

Thus

µt(ζ) ≥ −
ˆ

Ω

∆φχP(t)ζ(1−Qδ(p)) dx.

Finally, we have χP(t)(1 − Qδ(p)) → 0 a.e. in Ω when δ → 0. Sending δ → 0 and using Lebesgue
dominated convergence theorem, we can conclude that µt(ζ) ≥ 0 and the result follows.

�

6. Uniqueness

This section is devoted to the proof of Proposition 1.3. The proof uses ideas first introduced in [27],
but which must be carefully adapted due to the lack of appropriate regularity of the potential φ (namely,
the fact that we do not have φ ∈ L∞(0, T ;W 2,∞(Ω))). We consider two functions (ρ1, p1) and (ρ2, p2),
solutions of {

∂tρ− µ∆ρ+ div (ρ∇φ−∇p) = 0, p ∈ P (ρ),

φ(x) =
´

Ω
G(x, y)ρ(y) dy

in the sense of Definition 1.1 and with same initial data ρin. We have in particular
ˆ

Ω

ρin(x)ψ(x, 0) dx+

ˆ ∞

0

ˆ

Ω

(ρi ∂tψ + ρi∇φi · ∇ψ + (µρi + pi)∆ψ) dx dt = 0, i = 1, 2

for any function ψ ∈ C∞
c (Ω × [0,∞)) satisfying ∇ψ · n = 0 on ∂Ω. To simplify the notation, we will

write G ∗ ρi for φi =
´

Ω
G(x, y)ρi(y) dy below, even though it is not really a convolution.

For a test function ψ ∈ C∞
c (ΩT ) satisfying ψ(T ) = 0 and ∇ψ · n = 0 on ∂Ω, we can write

(6.1)

ˆ T

0

ˆ

Ω

(ρ1 − ρ2 + p1 − p2)
(
A∂tψ + (µA+B)∆ψ +A∇φ1 · ∇ψ +A∇G ∗ (ρ2∇ψ)

)
dx dt = 0
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where

0 ≤ A =
ρ1 − ρ2

ρ1 − ρ2 + p1 − p2
≤ 1

0 ≤ B =
p1 − p2

ρ1 − ρ2 + p1 − p2
≤ 1

(with the convention that A = 0 whenever ρ1 − ρ2 = 0 and B = 0 whenever p1 − p2 = 0). To get this
equality, we used in particular the fact that

ˆ T

0

ˆ

Ω

ρ2∇(φ1 − φ2) · ∇ψ dx dt =
ˆ T

0

ˆ

Ω

ˆ

Ω

ρ2(x)∇G(x, y)(ρ1(y)− ρ2(y)) · ∇ψ(x) dx dy dt

=

ˆ T

0

ˆ

Ω

ˆ

Ω

(ρ1(x)− ρ2(x))∇G(x, y)ρ2(y)∇ψ(y) dx dy dt.

In order to prove uniqueness, we want to solve the dual equation
{
A∂tψ + (µA+B)∆ψ +A∇φ1 · ∇ψ +A∇G ∗ (ρ2∇ψ) = Ah in ΩT ;

ψ(x, T ) = 0 on Ω, ∇ψ · n = 0 on ∂Ω.

for any reasonable test function h. Since this equation is not uniformly parabolic, we first need to
regularize A, B and φ1: As in [27], we first consider sequences An, Bn of smooth bounded functions
such that

‖A−An‖L2 ≤ C/n, 1/n ≤ An ≤ 1,

‖B −Bn‖L2 ≤ C/n, 1/n ≤ Bn ≤ 1.

In addition, since D2φ1 /∈ L∞, we approximate φ1 by a appropriate sequence of function φ1,n. More
precisely, we will use the following lemma:

Lemma 6.1. There exists λ, γ > 0 and a sequence φ1,n such that

(6.2) ‖∇φ1,n −∇φ1‖L2(Ω) ≤ γ/
√
n, ‖D2φ1,n‖L∞(Ω) ≤ λ ln(n)

Postponing the proof of this lemma to the end of this section, we can now solve the approximate
equation

(6.3)

{
∂tψn +

(
µ+ Bn

An

)
∆ψn +∇φ1,n · ∇ψn +∇G ∗ (ρ2∇ψn) = h in ΩT ;

ψn(x, T ) = 0 on Ω, ∇ψn · n = 0 on ∂Ω.

since the diffusion coefficient satisfies in particular 1
n ≤ Bn

An
≤ n. In order to pass to the limit n → ∞,

we will need the following a priori estimates on ψn:

Lemma 6.2. There exists a constant C, depending on h, but independent of n such that

‖ψn‖L∞(ΩT ) ≤ CT

and

sup
t∈(0,T )

ˆ

Ω

|∇ψn(t)|2 dx ≤ eCTnλT ,

ˆ T

0

ˆ

Ω

Bn
An

|∆ψn|2 dx dt ≤ eCTnλT .

Proof. The first bound follows from the comparison principle (using ‖h‖L∞ × (T − t) as barrier).
For the second bound, we multiply by −∆ψn to get:

d

dt

ˆ

Ω

|∇ψn|2 dx =

ˆ

Ω

(
µ+

Bn
An

)
|∆ψn|2 dx+

ˆ

Ω

(∇φ1,n · ∇ψn +∇G ∗ (ρ2∇ψn))∆ψn dx−
ˆ

Ω

∆hψn dx
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and we need to bound the second integral in the right hand side. First, we recall that the term ∇G ∗
(ρ2∇ψn))∆ψn should be written as divU∆ψn dx where U solves (1.3) with ρ2∇ψn in the right hand
side. We thus have (since ∇ψn · n = 0 on ∂Ω and using Calderon-Zygmund estimates):
ˆ

Ω

∇G ∗ (ρ2∇ψn)∆ψn dx =

ˆ

Ω

∇divU · ∇ψn dx ≤ ‖D2U‖L2(Ω)‖∇ψn‖L2(Ω)

≤ C‖ρ2∇ψn‖L2(Ω)‖∇ψn‖L2(Ω) ≤ C‖∇ψn‖2L2(Ω)

Next, we can write
ˆ

Ω

(∇φ1,n · ∇ψn)∆ψn dx =

ˆ

Ω

(−D2φ1,n : ∇ψn ⊗∇ψn +∆φ1,n
|∇ψ|2

2
) dx.

Since ‖D2φ1,n‖ ≤ λ ln(n) (see Lemma 6.1), we deduce

d

dt

ˆ

|∇ψn|2 dx ≥
ˆ

(
µ+

Bn
An

)
|∆ψn|2 − C(1 + λ ln(n))

ˆ

|∇ψn|2 − C.

Gronwall’s inequality, together with the fact that
´

|∇ψn|2(T ) dx = 0 implies

sup
t∈(0,T )

ˆ

|∇ψn(t)|2 dx+

ˆ T

0

ˆ

(
µ+

Bn
An

)
|∆ψn|2 dx dt ≤

eC(1+λ ln(n))T − 1

(1 + λ ln(n))
≤ eCTnλT ,

which completes the proof of Lemma 6.2. �

We can now complete the proof of Proposition 1.3:

Proof of Proposition 1.3. First, we fix T = 1/(2λ). Equation (6.3) yields

0 =

ˆ T

0

ˆ

Ω

(ρ1 − ρ2 + p1 − p2)
(
A∂tψn + (µA+B)∆ψn +A∇φ1 · ∇ψn +A∇G ∗ (ρ2∇ψn)

)
dx dt

=

ˆ T

0

ˆ

Ω

(ρ1 − ρ2 + p1 − p2)
(
Ah+B∆ψn −A

Bn
An

∆ψn +A(∇φ1 −∇φ1,n) · ∇ψn
)
dx dt

and so, using (6.1), we can write:
ˆ T

0

ˆ

Ω

(ρ1 − ρ2)h =

ˆ T

0

ˆ

Ω

(ρ1 − ρ2 + p1 − p2)
(
A
Bn
An

−B
)
∆ψn dx dt

=

ˆ T

0

ˆ

Ω

(ρ1 − ρ2 + p1 − p2)
Bn
An

(
A−An

)
∆ψn dx dt

+

ˆ T

0

ˆ

Ω

(ρ1 − ρ2 + p1 − p2)
(
Bn −B

)
∆ψn dx dt

+

ˆ T

0

ˆ

Ω

(ρ1 − ρ2 + p1 − p2)
(
A(∇φ1 −∇φ1,n) · ∇ψn

)
dx dt.

We now show that the three terms in the right hand side go to zero as n→ ∞: First, we have
∣∣∣∣∣

ˆ T

0

ˆ

Ω

(ρ1 − ρ2 + p1 − p2)
Bn
An

(
A−An

)
∆ψn dx dt

∣∣∣∣∣ ≤ C

(
ˆ

Ω

Bn
An

(
A−An

)2
dx dt

)1/2

eCT/2nλT/2

≤ Cn1/2
(
ˆ

Ω

(
A−An

)2
dx dt

)1/2

eCT/2nλT/2

≤ Cn−1/2eCT/2nλT/2
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which goes to zero since T < 1/λ. Similarly,

∣∣∣∣∣

ˆ T

0

ˆ

Ω

(ρ1 − ρ2 + p1 − p2)
(
Bn −B

)
∆ψn dx dt

∣∣∣∣∣ ≤
(
ˆ T

0

ˆ

Ω

An
Bn

(
Bn −B

)2
dx dt

)1/2

eCT/2nλT/2

≤ Cn−1/2eCT/2nλT/2 → 0

and
∣∣∣∣∣

ˆ T

0

ˆ

Ω

(ρ1 − ρ2 + p1 − p2)
(
A(∇φ1 −∇φ1,n) · ∇ψn

)
dx dt

∣∣∣∣∣ ≤ ‖∇φ1 −∇φ1,n‖L2‖∇ψn‖L2

≤ γn−1/2eCT/2nλT/2 → 0.

We have thus showed that
´ T

0

´

Ω
(ρ1−ρ2)h dx dt = 0 for all test function h and thus ρ1(x, t) = ρ2(x, t)

a.e. for x ∈ Ω and t ∈ [0, T0] with T0 = 1/(2λ). This short time uniqueness result easily yield uniqueness
for all time by iteration over the time interval.

�

Proof of Lemma 6.1. The proof makes use of the following bounds on the kernel G:

(6.4) |∂iG(x, y)| ≤ C|x− y|−d+1 , |∂ijG(x, y)| ≤ C|x− y|−d ∀(x, y) ∈ Ω× Ω, x 6= y,

which follow from the uniform bounds established in [5].

We define ρn(x) =
´

Ω
ηn(x − y)ρ(y) dy where ηn(x) =

nd

ωn
χB1/n

(x) and φn(x) =
´

Ω
G(x, y)ρn(y) dy.

Since ρ ≤ 1, we have

|ρn(x)− ρn(x
′)| ≤

ˆ

Rd

|ηn(x− y)− ηn(x
′ − y)| dy

≤
{
Cn|x− x′| if |x− x′| ≤ 1/n

1 otherwise

and so

|ρn(x)− ρn(x
′)|

|x− x′|s ≤
{
Cn|x− x′|1−s if |x− x′| ≤ 1/n

|x− x′|−s otherwise

≤ Cns

Thus for any x ∈ Ω we write

∂ijφn(x) =

ˆ

Ω

∂ijG(x, y)ρn(y) dy =

ˆ

Ω

∂ijG(x, y)[ρn(y)− ρn(x)] dy +

ˆ

Ω

∂ijG(x, y) dyρn(x)

where
´

Ω
∂ijG(x, y) dy = ∂ijv(x) with v solution of

{
v −∆v = 1 in Ω

αv + β∇v · n = 0 on ∂Ω.
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Classical Shauder’s estimates give supx∈Ω ∂ijv(x) ≤ C and so

|∂ijφn(x)| =
∣∣∣∣
ˆ

Ω

∂ijG(x, y)[ρn(y)− ρn(x)] dy

∣∣∣∣+ |∂ijv(x)ρn(x)|

≤ Cns
ˆ

Ω

|∂ijG(x, y)| |y − x|s dy + |∂ijv(x)|

≤ Cns
ˆ

Ω

|y − x|s−d dy + C

≤ C

s
ns + C,

where the constant C depends on Ω, but not on s. It remains to take s = 1
lnn to optimize the right hand

side, which yields

|∂ijφn| ≤ C lnn in Ω.

Next, we consider the function zn = φ− φn and prove that

(6.5) ‖zn‖L1(Ω) ≤
C

n
.

To get this estimate, we denote Ω1/n = {x ∈ Ω ; dist(x, ∂Ω) ≥ 1/n} and we write:

φ(x)− φn(x) =

ˆ

Ω

ˆ

Ω1/n

G(x, y)ηn(y − z)[ρ(z)− ρ(y)] dy dz +

ˆ

Ω

ˆ

Ω\Ω1/n

G(x, y)ηn(y − z)[ρ(z)− ρ(y)] dy dz

= I1(x) + I2(x)

Since

|I2(x)| ≤
ˆ

Ω

ˆ

Ω\Ω1/n

G(x, y)ηn(y − z) dy dz =

ˆ

Ω\Ω1/n

G(x, y) dy

we have
ˆ

|I2(x)| dx ≤
ˆ

Ω\Ω1/n

ˆ

Ω

G(x, y) dx dy ≤ |Ω \ Ω1/n| ≤
C

n
.

Next, we note that for y ∈ Ω1/n, we have Supp ηn(y − ·) ⊂ B1/n(y) ⊂ Ω and so

I1(x) =

ˆ

Ω

ˆ

Ω1/n

[G(x, z)−G(x, y)]ηn(y − z)ρ(y) dy dz

=

ˆ

Ω

ˆ

Ω1/n

ˆ 1

0

∇G(x, y + t(z − y)) · (z − y)ηn(y − z)ρ(y) dy dz.

We deduce
ˆ

Ω

|I1(x)| dx ≤
ˆ

Ω

ˆ

Ω1/n

ˆ 1

0

ˆ

Ω

|∇G(x, y + t(z − y) dx||z − y|ηn(y − z) dy dz

≤
ˆ

Ω

ˆ

Ω

|z − y|ηn(y − z) dy dz

≤ C
1

n
.

and (6.5) follows.
Finally, we remark that zn solves

{
zn −∆zn = ρ− ρn in Ω

αzn + β∇zn · n = 0 on ∂Ω.
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Multiplying by zn and integrating, we deduce the following bound:
ˆ

Ω

|∇zn|2 dx ≤
ˆ

Ω

(ρ− ρn)zn dx ≤
ˆ

Ω

|zn| dx ≤ C

n

which gives the first bound in (6.2) and conclude the proof.
�

7. Characteristic functions: Proof of Theorem 1.8

Proof of Theorem 1.8. Since we now assume that µ = 0, ρ solves (in the sense of distribution)

∂tρ+ div (ρ∇φ) = ∆p.

With the notations of Lemma 5.1, we can also write this equation as (since ρ = 1 a.e. in P)

(7.1) ∂tρ+∇ρ · ∇φ = µt − ρ(1− χP(t))∆φ.

Lemma 5.1 together with equation (1.3) then implies

∂tρ+∇ρ · ∇φ ≥ ρ(1− χP(t))(ρ− φ)

and since φ ≤ 1, we get (since ρ = 1 a.e. in P)

(7.2) ∂tρ+∇ρ · ∇φ ≥ ρ(1− χP(t))(ρ− 1) = −ρ(1− ρ)

(note that when working with a fixed potential φ such that −∆φ ≥ 0, we get ∂tρ+∇ρ ·∇φ ≥ 0 meaning
that ρ is monotone increasing along the characteristic curves associated with the vector field ∇φ. The
proof is simpler in that case).

Heuristically, the proof now goes as follows: Given (x0, t0), we consider the characteristic curve

(7.3) Ẋ(t) = ∇φ(X(t), t), X(t0) = x0.

The density along the characteristic curve, u(t) = ρ(X(t), t) satisfies (thanks to (7.2)):

u′(t) ≥ −u(t)(1− u(t)) ≥ −(1− u(t))

which implies

1− u(t) ≥ (1− u(t0))e
−(t0−t) ∀t < t0.

In particular, if u(t0) < 1, then u(t) < 1 for all t < t0.
So given x0 such that ρ(x, t0) < 1 in a neighborhood of x0 and X(t) solution of (7.3), (7.2) implies

that ρ(x, t) < 1 for all t < t0 in a neighborhood of X(t). It follows that p(x, t) = 0 a.e. in that same
neighborhood and so ∆p = 0 (as a distribution) and going back to (7.1), we find

d

dt
ρ(X(t), t) = −ρ(X(t), t)∆φ(X(t), t) ∀t ∈ [0, t0].

Since ρ(X(0), 0) < 1, we must have ρ(X(0), 0) = 0 (this is where we use the fact that ρin is a characteristic
function) and thus ρ(X(t), t) = 0 for all t ∈ [0, t0].

In particular ρ(X(t0), t0) = ρ(x0, t0) = 0 (and this holds for all t0 and x0 such that ρ(x, t0) < 1 in a
neighborhood of x0). The result follows.

To make this argument rigorous, we prove the following lemma:

Lemma 7.1. Given t0 > 0, let ψ(x, t) be the solution of

∂tψ = ∇φ ◦ ψ, ψ(x, t0) = x.

Then

1− ρ(ψ(x, t1), t1) ≥ (1− ρ(x, t0))e
−(t0−t1) ∀t1 < t0.
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Proof. Given a test function ζ0(x) ≥ 0, the function ζ(x, t) = ψ(·, t)#ζ0 solves

∂tζ + div (∇φ ζ) = 0, ζ(t0) = ζ0.

So, taking ζ as a test function in (7.1), we find (in D′(0, T ))):

d

dt

ˆ

Ω

ρ(x, t)ζ(x, t) dx =

ˆ

Ω

∂tρ(x, t)ζ(x, t) + ρ(x, t)∂tζ(x, t), dx

= 〈µt, ζ(·, t)〉 −
ˆ

Ω

ρ(x, t)(1− χP(t))∆φζ(x, t) dx(7.4)

≥
ˆ

Ω

ρ(x, t)(1− χP(t))(ρ− σφ)ζ(x, t) dx

≥
ˆ

Ω

ρ(x, t)(1− χP(t))(ρ− 1)ζ(x, t) dx

≥ −
ˆ

Ω

(1− ρ(x, t))ζ(x, t) dx

since d
dt

´

Ω
ζ(x, t) dx = 0 (by construction of ζ), we deduce

d

dt

ˆ

Ω

(1− ρ(x, t))ζ(x, t) dx ≤
ˆ

Ω

(1− ρ(x, t))ζ(x, t) dx

which implies (with t1 < t0)
ˆ

Ω

(1− ρ(x, t1))ζ(x, t1) dx ≥
ˆ

Ω

(1− ρ(x, t0))ζ(x, t0) dxe
−(t0−t1).

Since
ˆ

Ω

(1− ρ(x, t1))ζ(x, t1) dx

ˆ

(1− ρ(x, t1))ψ(·, t1)#ζ0 dx =

ˆ

(1− ρ(ψ(x, t1), t1))ζ0(x) dx,

the result follows. �

To complete the proof of the theorem, we consider Br(x0) ⊂ {ρ(·, t) < 1} and a test function ζ0
supported in Br(x0). As in the proof above, we define ζ(x, t) = ψ(·, t)#ζ0. Lemma 7.1 implies that
ρ(x, t) < 1, and so p(x, t) = 0, a.e. in ψ(Br(x0), t) for all t < t0. Since Supp ζ(t) ⊂ ψ(Br(x0), t) we
deduce that

〈µt, ζ(t)〉 = 0 ∀t < t0.

We now go back to (7.4): If ζ ≥ 0 and using the fact that −∆φ = ρ− σφ ≤ 1 we get:

d

dt

ˆ

Ω

ρ(x, t)ζ(x, t) dx ≤
ˆ

Ω

ρ(x, t)ζ(x, t) dx in D′((0, t0)).

Since
´

Ω
ρ(x, 0)ζ(x, 0) dx = 0 (when ρ(0) is a characteristic function), we deduce that

´

Ω
ρ(x, t0)ζ(x, t0) dx

and thus ρ(x, t0) = 0 a.e. in Br(x0).
We have thus proved that for all t > 0, ρ(x, t) = 0 a.e. in the interior of Ω\{ρ(·, t) = 1}. The theorem

follows (with Ωs(t) = {ρ(·, t) = 1}). �
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Appendix A. Proof of Proposition 2.1 (ii)

We now prove the second part of Proposition 2.1, which claims that the minimizers of (2.1) are
characteristic functions when µ = 0. This remarkable fact implies that the JKO approximation ρτ are
characteristic functions for all time, regardless of whether the initial data is a characteristic function
or not. The proof presented below first appeared in [17] and requires only minor modifications to our
framework. We present it here for the reader’s convenience.

The proof relies on two remarks:

(1) The functional J is concave.
(2) We can rewrite the minimization problem (2.1) in term of the optimal plan π instead of the

density ρ, thus replacing the nonlinear term ρ 7→ W 2
2 (ρ, ρ̄) by the linear term π 7→

´

Ω×Ω
|x −

y|2 dπ(x, y).
Thanks to these two remarks, we end up with a minimization problem for a concave functional on a
convex set. Minimizers must then be extremal points, which, in K, are characteristic functions.

To make the second point more precise, we denote

S(ρ) =
1

2τ
W 2

2 (ρ, ρ̄) + J(ρ), ρ ∈ K

and we introduce

S̃(π) =
1

2τ

ˆ

Ω×Ω

|x− y|2 dπ(x, y) + J̃(π), π ∈ K̃

where

J̃(π) =
1

2σ

ˆ

Ω×Ω

dπ(x, y)− 1

2

ˆ

Ω4

G(y1, y2)dπ(x2, y2)dπ(x1, y1)

and K̃ is the set of plans in P(Ω × Ω) whose first marginal (denoted π1) is ρ̄ and second marginal
(denoted π2) is in K, that is

ˆ

Ω×Ω

u(x)dπ(x, y) =

ˆ

Ω

u(x)dρ̄(x),

ˆ

Ω×Ω

v(y)dπ(x, y) =

ˆ

Ω

v(y)dρ(y), for some ρ ∈ K.

Clearly, for any π ∈ K̃ with π2 = ρ, we have S̃(π) ≥ S(ρ). Also, given ρ ∈ K, the optimal plan π

from ρ̄ to ρ is in K̃ and satisfies S̃(π) = S(ρ). We easily deduce that

min{S(ρ) ; ρ ∈ K} = min{S̃(π) ; π ∈ K̃}
and any minimizer of one problem is associated with a minimizer of the other one.

To check the concavity of J̃ , we write

D2J̃(π∗)(θ, θ) = −
ˆ

Ω4

G(y1, y2)dθ(x2, y2)dθ(x1, y1) = −
ˆ

Ω×Ω

G(y1, y2)f(y1)f(y2)dy1dy2

with f(y) = θ2(y). Then

D2J̃(π∗)(θ, θ) = −
ˆ

Ω

f(y1)ψ(y1)dy1

with ψ solving (1.3) with right hand side replaced by f . As simple integration by part leads to

D2J̃(π∗)(θ, θ) = −
ˆ

Ω

|ψ(y1)|2dy1 −
ˆ

Ω

|∇ψ(y1)|2dy1 −
ˆ

∂Ω

α

β
|ψ(y1)|2 dHn−1(y1)

≤ 0(A.1)
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which implies that J̃ , and thus S̃(π), is concave. We note that this last inequality is strict unless ψ ≡ 0,
which requires f = θ2 ≡ 0.

As explained above, the fact that S̃(π) is strictly concave implies that it achieves its minimum in K̃
at an extremal point, which corresponds to a characteristic function. To make this point precise, let ρ be
a minimizer of (2.1) and π the corresponding optimal plan between ρ̄ and ρ, which is then a minimizer

of S̃ in K̃. We assume that ρ is not a characteristic function, so that there exists 0 < α < 1 such that
the set Ωα = {y ∈ Ω, ρ(y) ∈ (α, 1−α)} has positive measure. Next, we partition Ωα into two sets E1, E2

of equal measure so that there exists a measure preserving map T : E1 → E2. We now construct an
admissible perturbation θ of π as

θ = (ρ̄⊗ (ρ ◦ T ))
∣∣
Ω×E1

− (ρ̄⊗ ρ)
∣∣
Ω×E2

i.e. for all ψ ∈ C(Ω× Ω),
ˆ

Ω×Ω

ψ(x, y)dθ(x, y) =

ˆ

Ω×E1

ψ(x, y)dρ̄(x)dρ(T (y))−
ˆ

Ω×E2

ψ(x, y)dρ̄(x)dρ(y).

We can then check that for δ = min{α, 1− α}, we have

π ± tθ ∈ K̃ for all t ∈ [0, δ).

Indeed, π ± tθ defines a non-negative measure for t ∈ [0, δ) and we have
ˆ

Ω×Ω

u(x)dθ(x, y) =

ˆ

Ω

u(x)dρ̄(x)

ˆ

E1

dρ(T (y))−
ˆ

Ω

u(x)dρ̄(x)

ˆ

E2

dρ(y) = 0,

which implies θ1(x) = 0 a.e. x ∈ Ω (so the first marginal of π ± tθ is ρ̄). Taking u = 1 above, we also
find

´

Ω×Ω
dθ(x, y) = 0, which gives

´

Ω
dθ2(x) = 0. In fact, we have θ2(y) = ρ ◦ T |E1

(y)− ρ|E2
(y) which

is not zero.

Since π is a minimizer of S̃ in K̃, we must have S̃(π ± tθ) ≥ S̃(π). However (A.1) and the fact that

θ2 6= 0 implies that the function t 7→ S̃(π + tθ) (which is a quadratic polynomial) is strictly concave on
(−δ, δ) and cannot have a minimum at t = 0, a contradiction.

We have thus proved that for any minimizer of S in K, we have |{y ∈ Ω ; ρ(y) ∈ (α, 1− α)}| = 0 for
all α > 0, that is ρ(x) ∈ {0, 1} a.e. in Ω.

Appendix B. Incompressible motion by chemotaxis with projection operator

In this section, we briefly recall some considerations presented in [23] and relevant to this paper. We
consider the evolution of a density function ρ(x, t) representing a population moving in response to the
gradient of the potential φ, subject to the incompressibility constraint ρ(x, t) ≤ 1 (so no diffusion). Since
the continuity equation ∂tρ + div (ρ∇φ) = 0 does not preserve the L∞ norm of ρ, we can consider the
equation

(B.1)

{
∂tρ+ div (ρPC(ρ)(∇φ)) = 0 in Ω× R

+

ρ(x, 0) = ρ0(x) ≤ 1 in Ω.

where PC(ρ) denotes the projection operator onto the set of admissible velocity fields:

C(ρ) =

{
v ∈ L2(Ω)n ;

ˆ

Ω

v · ∇q dx ≤ 0, ∀q ∈ H1
ρ(Ω)

}
, H1

ρ =
{
q ∈ H1(Ω) ; q ≥ 0, q(1− ρ) = 0 a.e.

}

Formally at least, this projection operator guarantees that the density satisfies the compressibility
constraint since it implies div v ≥ 0 in (the interior of) the set {ρ = 1}. Note however that if {ρ = 1}
is a set with empty interior (but positive Lebesgue measure), then we have C(ρ) = L2(Ω)n and the
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constraint is not being enforced (see [23]). Whether such a thing can happen when the initial condition
is nice enough, is an interesting and probably challenging question.

The definition of C(ρ) also impose v · n ≤ 0 on ∂Ω ∩ {ρ = 1} (nothing can leave the domain in the
saturated region) which is crucial to the preservation of mass. When φ satisfies Neumann conditions
(α = 0) ∇φ · n = 0, the projection PC(ρ)(∇φ) will satisfy the same conditions. When φ satisfy Robin
conditions or Dirichlet conditions, we have ∇φ · n < 0 on ∂Ω and we have to impose ρ = 0 on ∂Ω to
have conservation of mass. The condition ρv · n = 0 in (1.16) includes both cases.

As a reminder, the projection v = PC(ρ)(∇φ) is uniquely defined since C(ρ) is a convex set, and it is
characterized by the following inequality:

(B.2)

ˆ

Ω

(v −∇φ) · (v − ξ) dx ≤ 0, ∀ξ ∈ C(ρ).

Classically, this projection, or minimization with constraint, gives rise to a Lagrange multiplier in the
form of a pressure term: One can show that there must exist p ∈ H1

ρ such that

∇φ− v = ∇p.
The velocity v = PC(ρ)(∇φ) is in C(ρ) and thus satisfies

(B.3)

ˆ

Ω

v · ∇q dx ≤ 0, ∀q ∈ H1
ρ(Ω)

and the pressure satisfies the orthogonality condition (which follows from (B.2) by taking ξ = 0 and
ξ = 2v):

(B.4)

ˆ

Ω

v · ∇p dx = 0.

Using (B.3) and (B.4), we get that −
´

v · ∇(p− q) dx ≤ 0 for all q ∈ H1
ρ . This implies that p solves the

variational inequality (obstacle problem):

(B.5)




p ∈ H1

ρ
ˆ

Ω

[∇p−∇φ] · ∇(p− q) ≤ 0 , ∀q ∈ H1
ρ

which is our equation (1.23). In fact, we can prove

Proposition B.1. Assume φ ∈ H1 and let p(x) be the (unique) solution of the variational inequality
(B.5). Then

∇φ−∇p = PC(ρ)(∇φ).
Proof. Let v = ∇φ−∇p. The variational inequality (B.5) gives

(B.6) −
ˆ

Ω

v · ∇(p− q) dx ≤ 0 , ∀q ∈ H1
ρ .

For any q0 ∈ H1
ρ , we have q = p+ q0 ∈ H1

ρ and so this inequality implies
ˆ

Ω

v · ∇q0 dx ≤ 0 , ∀q0 ∈ H1
ρ

that is v ∈ C(ρ). In particular we have
´

Ω
v · ∇p dx ≤ 0 and (B.6) with q = 0 gives

´

Ω
v · ∇p dx ≥ 0 so

we must have the complementarity condition
ˆ

Ω

v · ∇p dx = 0.
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This complementarity condition can then be used to show that v satisfies (B.2):
ˆ

Ω

(v −∇φ) · (v − ξ) dx = −
ˆ

Ω

∇p · (v − ξ) dx =

ˆ

Ω

∇p · ξ dx ≤ 0, ∀ξ ∈ C(ρ).

by definition of C(ρ) (since p ∈ H1
ρ). �

Remark B.2. We note that for q ∈ H1
ρ we also have (1 − ρ)∇q = 0 a.e. and so the solution of (B.5)

also satisfies
ˆ

Ω

∇p · ∇(p− q)− ρ∇φ · ∇(p− q) ≤ 0 , ∀q ∈ H1
ρ

Proceeding as above, we can then show that ρ∇φ−∇p = ρ(∇φ−∇p) = PC(ρ)(ρ∇φ) that is
ρv = PC(ρ)(ρ∇φ).

Remark B.3. When we add diffusion to the transport equation, we need to consider w = PC(ρ)(−µ∇ log ρ+
∇φ), which is characterized by the inequality

ˆ

Ω

(w − (−µ∇ log ρ+∇φ)) · (w − ξ) dx ≤ 0, ∀ξ ∈ C(ρ).

Since −µ∇ log ρ ∈ C(ρ) (using the fact that log ρ is maximum on {ρ = 1}) we can take ξ = ξ0−µ∇ log ρ
to get

ˆ

Ω

(w + µ∇ log ρ−∇φ) · (w + µ∇ log ρ− ξ0) dx ≤ 0, ∀ξ0 ∈ C(ρ).

This implies that w + µ∇ log ρ = v, that is PC(ρ)(−µ∇ log ρ+∇φ) = −µ∇ log ρ+ PC(ρ)(∇φ).
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