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Abstract: We investigate two important properties of M-estimators, namely, ro-
bustness and tractability, in a linear regression setting, when the observations are
contaminated by some arbitrary outliers. Specifically, robustness is the statistical
property that the estimator should always be close to the true underlying param-
eters, regardless of the distribution of the outliers, and tractability refers to the
computational property that the estimator can be computed efficiently, even if the
objective function of the M-estimator is nonconvez. In this article, by examining the
empirical risk, we show that under some sufficient conditions, many M-estimators
enjoy nice robustness and tractability properties simultaneously when the percent-
age of outliers is small. We extend our analysis to the high-dimensional setting,
where the number of parameters is greater than the number of samples, p > n, and
prove that when the proportion of outliers is small, the penalized M-estimators with
the L; penalty enjoy robustness and tractability simultaneously. Our research pro-
vides an analytic approach to determine the effects of outliers and tuning parameters
on the robustness and tractability of some families of M-estimators. Simulations
and case studies are presented to illustrate the usefulness of our theoretical results
for M-estimators under Welsch’s exponential squared loss and Tukey’s bisquare loss.

Key words and phrases: Computational tractability, gross error, high-dimensionality,
nonconvexity, robust regression, sparsity.

1. Introduction

M-estimation plays an essential role in linear regression, owing to its robust-
ness and flexibility. From a statistical viewpoint, it has been shown that many
Me-estimators enjoy desirable robustness properties in the presence of outliers,
and asymptotic normality when the data are normally distributed without out-
liers. Some general theoretical properties and reviews of robust M-estimators
can be found in Bai, Rao and Wu (1992), Huber and Ronchetti (2009), Cheng
and Huang (2010), Hampel et al. (2011), and El Karoui et al. (2013). In the
high-dimensional setting, where the dimensionality is greater than the number of

Corresponding author: Ruizhi Zhang, The Department of Statistics, University of Nebraska-Lincoln,
Lincoln, NE 68583, USA. E-mail: rzhang35Qunl.edu.


https://doi.org/10.5705/ss.202019.0324
mailtos:rzhang35@unl.edu

1296 ZHANG ET AL.

samples, penalized M-estimators have been widely used to tackle the challenges
of outliers, and have been used for sparse recovery and variable selection; see
Lambert-Lacroix and Zwald (2011), Li, Peng and Zhu (2011), Wang et al. (2013),
and Loh (2017). However, it is often not easy to compute the M-estimators from a
computational tractability perspective, because optimization problems over non-
convex loss functions are usually involved. Moreover, the tractability issue may
become more challenging when the data are contaminated by some arbitrary out-
liers, which is essentially the situation that robust M-estimators are designed to
address.

This study simultaneously investigates two important properties of M-estima-
tors, robustness and tractability, simultaneously under the gross error model.
Specifically, we assume the data-generation model is y; = (6o, ;) + €;, where
yi € R,x; € RP for i =1,...,n, and the noise term ¢; is from Huber’s gross error
model (Huber (1964)): ¢; ~ (1 —0)fo + dg, for i = 1,...,n. Here, fy denotes the
probability density function (pdf) of the noise of the normal samples, which has
desirable properties such as a zero mean and a finite variance; g denotes the pdf
of the outliers (contaminations), which can be arbitrary, and may also depend
on the explanatory variable x;, for ¢ = 1,...,n. Note that we do not require
the mean of g to be zero. The parameter § € [0,1] denotes the percentage of
contaminations, also known as the contamination ratio in the robust statistics
literature. The gross error model indicates that for the ith sample, the residual
term ¢; is generated from the pdf fo with probability 1 — §, and from the pdf g
with probability . Note that the residual ¢; is independent of x; and other x;s
when it is from the pdf fy, but can be dependent on the variable x; when it is
from the pdf g.

In the first part of this paper, we start with the low-dimensional case when
the dimension p <« n. We consider the robust M-estimation with a constraint on
the o norm of . Mathematically, we study the following optimization problem:

R 1 —
Minimize: n(0) := — i — (0, x;)), 1.1
inimize R, (0) n;p(y (0, ;) (1.1)
subject to:  ||0|]2 < 7.

Here, p : R — R is the loss function, and is often nonconvex. We consider
the problem with the /o constraint for three reasons. First, it is well known
that the constrained optimization problem in (1.1) is equivalent to the uncon-
strained optimization problem with an ¢s regularizer. Therefore, it is related to
the ridge regression, which alleviates multicollinearity among the regression pre-
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dictors. Second, considering the problem of (1.1) in a compact ball with radius
r guarantees the existence of the global optimal, which is necessary for estab-
lishing the tractability properties of the M-estimator. Finally, by working on a
constrained optimization problem, we avoid technical complications and establish
the uniform convergence theorems of the empirical risk and population risk. Note
that constrained M-estimators are widely used and studied in the literature; see
Geyer (1994), Mei, Bai and Montanari (2018), and Loh (2017) for more details.
To be consistent with the assumptions used in the literature, in the current work,
we assume r is a constant and the true parameter 6 is inside the ball.

In the second part, we extend our research to the high-dimensional case,
where p > n and the true parameter 6 is sparse. To achieve sparsity in the
resulting estimator, we consider the penalized M-estimator with the ¢; regularizer:

n

> oy — (0,:)) + AallO]]1, (1.2)

i=1

-~ 1
Minimize: L, (0) := —

inimize n(6) -
subject to: |02 < 7.

Note that the corresponding penalized M-estimator with the ¢ constraint is re-
lated to the elastic net, which overcomes the limitations of the lasso-type regu-
larization (Zou and Hastie (2005)).

In both parts, we show that (in the finite-sample setting) the M-estimator
obtained from (1.1) or (1.2) is robust in the sense that all stationary points of
the empirical risk function R, (6) or L,(#) are bounded in the neighborhood of
the true parameter 6y when the proportion of outliers is small. In addition,
we show that with a high probability, there is a unique stationary point of the
empirical risk function that is the global minimizer of (1.1) or (1.2) for some
general (possibly nonconvex) loss functions p. This implies that the M-estimator
can be computed efficiently. To illustrate our general theoretical results, we study
some specific M-estimators, namely, Welsch’s exponential squared loss (Dennis Jr
and Welsch (1978)) and Tukey’s bisquare loss (Beaton and Tukey (1974)), and
explicitly discuss how the tuning parameter and the percentage of outliers affect
the robustness and tractability of the corresponding M-estimators.

Our research makes several fundamental contributions to the field of robust
statistics and nonconvex optimization. First, we demonstrate the uniform conver-
gence results for the gradient and Hessian of the empirical risk to the population
risk under the gross error model. Second, we provide a nonasymptotic upper
bound of the estimation error for general M-estimators that nearly achieves the
minimax error bound in Chen, Gao and Ren (2016). Third, we investigate the
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computational tractability of general nonconvex M-estimators under the gross
error model. The results show that when the contamination ratio § is small,
there is only one unique stationary point of the empirical risk function. There-
fore, efficient algorithms such as gradient descent or proximal gradient descent
can be guaranteed to converge to a unique global minimizer, irrespective of the
initialization. Our general results also imply the following interesting statement:
the percentage of outliers impacts the tractability of nonconvex M-estimators.
In essence, the estimation and the corresponding optimization problem become
more complicated in terms of the solution quality and computational efficiency
when more outliers appear. While the former is expected, that more outliers
make M-estimators more difficult to compute numerically is an interesting and
somewhat surprising discovery. Our simulation results and case study also verify
this phenomenon.

Related works

Since Huber’s pioneering work on robust M-estimators (Huber (1964)), many
M-estimators with different choices of loss functions have been proposed, includ-
ing Huber’s loss (Huber (1964)), Andrew’s sine loss (Andrews et al. (1972)),
Tukey’s bisquare loss (Beaton and Tukey (1974)), and Welsch’s exponential squared
loss (Dennis Jr and Welsch (1978)), among others. From a statistical perspective,
several works have investigate the robustness of M-estimators, for example, the
large breakdown point (Donoho and Huber (1982); Mizera and Miiller (1999);
Alfons, Croux and Gelper (2013)), finite influent function (Hampel et al. (2011))
and asymptotic normality (Maronna and Yohai (1981); Lehmann and Casella
(2006); El Karoui et al. (2013)). Recently, regularized M-estimators have re-
ceived much attention in high-dimensional contexts. Lambert-Lacroix and Zwald
(2011) proposed a robust variable selection method by combing Huber’s loss and
the adaptive lasso penalty. Li, Peng and Zhu (2011) show that the nonconcave
penalized M-estimation method can perform parameter estimation and variable
selection simultaneously. Welsch’s exponential squared loss combined with the
adaptive lasso penalty is used by Wang et al. (2013) to construct a robust esti-
mator for sparse estimation and variable selection. Chang, Roberts and Welsh
(2018) proposed a robust estimator by combining Tukey’s bisquare loss with the
adaptive lasso penalty. Loh and Wainwright (2015) proved that under mild con-
ditions, any stationary point of the nonconvex objective function is close to the
true underlying parameters. However, these statistical works do not discuss the
computational tractability of the M-estimators, even though many of the loss

functions are nonconvex.



ROBUSTNESS AND TRACTABILITY FOR M-ESTIMATORS 1299

During the last several years, nonconvex optimization has attracted fast-
growing interests owing to its ubiquitous applications in machine learning and
deep learning, such as dictionary learning (Mairal et al. (2009)), phase retrieval
(Candes, Li and Soltanolkotabi (2015)), orthogonal tensor decomposition (Anand-
kumar et al. (2014)), and training deep neural networks (Bengio (2009)). It is
well known that there is no efficient algorithm that can guarantee finding a global
optimal solution for general nonconvex optimization.

Fortunately, in the context of estimating nonconvex M-estimators for high-
dimensional linear regression (without outliers), under some mild statistical as-
sumptions, Loh (2017) establishes the uniqueness of the stationary point of the
nonconvex M-estimator when using some nonconvex bounded regularizers instead
of the /1 regularizer. By investigating the uniform convergence of gradient and
Hessian of the empirical risk, Mei, Bai and Montanari (2018) prove that with
a high probability, there exists one unique stationary point of the regularized
empirical risk function with the ¢; regularizer. Thus, regardless of the initial
points, many computationally efficient algorithms, such as the gradient descent
or proximal gradient descent algorithms, can be applied, and are guaranteed to
converge to the global optimizer, which implies the high tractability of the M-
estimator. However, their analysis is restricted to the standard linear regression
setting without outliers. In particular, they assume that the distribution of the
noise terms in the linear regression model should have some desirable properties,
such as have a zero mean, be sub-Gaussian, and be independent of the feature
vector x, which might not hold when the data are contaminated by outliers. To
the best of our knowledge, no studies have analyzed the computational tractabil-
ity properties of nonconvex M-estimators when the data are contaminated by
arbitrary outliers, despite M-estimators having being developed to handle out-
liers in the linear regression. Our research is the first to fill this significant gap in
the tractability of nonconvex M-estimators. We prove that under mild assump-
tions, many M-estimators can tolerate a small number of arbitrary outliers in the
sense of keeping the tractability, even if the loss functions are nonconvex.

Notation. Given p,r € RP, their standard inner product is defined by (u,v) =
P | wivi. The £, norm of a vector z is denoted by ||z||,. The p-by-p identity
matrix is denoted by Ip,xp. Given a matrix M € R™*™ let Ayax (M) and Apin (M)
denote the largest and smallest eigenvalues of M, respectively. The operator norm
of M is denoted by ||M]||op, which is equal to max(Amax(M), —Amin(M)) when
M e R™ ™ Let Bl(a,r) = {z € RP: ||z —al|; < r} be the £, ball in the R space
with center a and radius r. Moreover, let BY(r) be the ¢, ball in the RP space
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with center 0 and radius r. Given a random variable X with pdf f, we denote the
corresponding expectation by E;. We often omit the density function subscript
f when it is clear from the context, and the expectation is taken for all variables.

The rest of this paper is organized as follows. In Section 2, we present the
theorems about the robustness and tractability of general M-estimators under the
low-dimensional setup, when the dimension p is much smaller than n. Then, in
Section 3, we consider the penalized M-estimator with the ¢; regularizer in a high-
dimensional regression when p > n. The ¢5 error bounds of the estimation and the
scenario in which the M-estimator has nice tractability are provided. In Section
4, we discuss two special families of robust estimators, constructed using Welsch’s
exponential loss and Tukey’s bisquare loss as examples, to illustrate our general
theorems of robustness and tractability of M-estimators. Simulation results and
a case study are presented in Section 5 and Section 6, respectively, to illustrate
the robustness and tractability properties when the data are contaminated by
outliers. Concluding remarks are given in Section 7. We relegate all proofs and

supporting lemmas to the Supplementary Material.

2. M-estimators in the Low-Dimensional Regime

In this section, we investigate two critical properties of M-estimators, namely
robustness, and tractability, in the setting of a linear regression with arbitrary
outliers in a low-dimensional regime, where the dimension p is much smaller than
the number of samples n. In terms of robustness, we show that under some mild
conditions, any stationary point of the objective function in (1.1) is well bounded
in a neighborhood of the true parameter 6y. Moreover, the neighborhood shrinks
when the proportion of outliers decreases. In terms of tractability, we show that
when the proportion of outliers is small and the sample size is large, with a high
probability, there is a unique stationary point of the empirical risk function, which
is the global optimum (and hence the corresponding M-estimator). Consequently,
many first-order methods are guaranteed to converge to the global optimum,
irrespective of the initialization. In particular, we show that the gradient descent
algorithm converges to the global optimum exponentially, for any initializations.

Before presenting our main theorems, we make the following mild assump-
tions on the loss function p, explanatory or feature vectors z;, and idealized noise
distribution fy. We define the score function v (z) := p/(2).

Assumption 1.

(a) The score function 1(z) is twice differentiable and odd in z with ¢¥(z) > 0, for
all z > 0. Moreover, we assume max{||1(2)||oo ||%'(2)||o0s || (2)|loo } < L.
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(b) The feature vector x; is independent and identically distributed with zero mean
and is T2-sub-Gaussain; that is, E[eM)] < exp((1/2)7%(|A||3), for all X €
RP.

(¢c) The feature vector x; spans all possible directions in RP; that is, Elzr;xl] =

Y72 Ly p, for some 0 < v < 1.
(d) The idealized noise distribution fo(e) is symmetric. Define h(z) := [*_ fo(e)
¥(z + €)de, and h(z) satisfies h(z) > 0, for all z >0 and h'(0) > 0.

Assumption (a) requires the smoothness of the loss function in the objective
function, which is crucial to study the tractability of the estimation problem.
Assumption (b) assumes a sub-Gaussian design of the observed feature matrix.
Assumption (c) assumes that the covariance matrix of the feature vector is pos-
itive semidefinite. Note that the condition on h(z) is mild. It is not difficult to
show that it is satisfied if the idealized noise distribution fy(e) is strictly positive
for all € and decreasing for € > 0, for example, if fo = pdf of N(0,?2).

Before presenting our main results, we first define the population risk as
follows:

R(6) = ER.(0) = E[p(Y — (6, X)) (2.1)

Conceptually, we analyze the population risk first, and then build a link
between the population risk and the empirical risk, which solves the original
estimation problem. Theorem 1 summarizes the results for the population risk
function R(#) in (2.1).

Theorem 1. Assume that Assumption 1 holds and that the true parameter g
satisfies ||0oll2 < /3.

(a) There ezists a constant ng = (6/(1 — 0))Cy such that any stationary point 6*
of R(0) satisfies ||6* — bp||2 < no, where § is the contamination ratio, and
Cy is a positive constant that depends only on v,r, 7,7 (2), and the pdf fo,
but does not depend on the outlier pdf g.

(b) When 6 is small, there exists a constant n; = Co — C3d > 0, where Cy,C3 are
two positive constants that depend only on ~v,r, 7,1 (2), and the pdf fo, but
do not depend on the outlier pdf g, such that

Amin(VZR(6)) > 0, (2.2)

for every 6 with ||6p — 0||2 < 1.
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(c) There is a unique stationary point of R() in the ball B5(0,7), as long as
no < M1, for a given contamination ratio 9.

It is useful to add some remarks to better understand Theorem 1. First, recall
that the noise term ¢; follows the gross error model: ¢; ~ (1—46) fo+dg, where the
outlier pdf g may also depend on z;. While the true parameter 6y may no longer
be the stationary point of the population risk function R(6), Theorem 1 implies
that the stationary points of R(6) will always be bounded in a neighborhood of
the true parameter 6y when the percentage of contamination ¢ is small. This
indicates the robustness of M-estimators in the population case.

Second, Theorem 1 asserts that when there are no outliers, that is, § = 0,
the stationary point is indeed the true parameter 6. In addition, because the
constant 7p in (a) is an increasing function of d, whereas the constant 7; in (b) is
a decreasing function of J, stationary points of R(f) may disperse from the true
parameter g, and the strongly convex region around 6y will be decreasing, as the
contamination ratio § increases. This indicates the difficulty of optimization for
cases with large contamination ratios.

Third, part (c) follows directly from part (a) and (b). Note that ny(d =
0) =0 < m(6 = 0) = Cy. Thus there exists a positive 6* such that ny < 71,
for any 6 < ¢*. A simple lower bound on §* is C3/(C1 + Co + C3), because
Ci0 < (1 — 5)(02 — 035) whenever 0 < § < Cg/(Cl + Cy + 03)

Our next step is to link the empirical risk function (and the corresponding
M-estimator) to the population version. To this end, we introduce Lemma 1,
which shows the global uniform convergence theorem of the sample gradient and
Hessian. For brevity, it is presented in the Supplementary Material.

We are now ready to present our main result about M-estimators by investi-
gating the empirical risk function R, (6).

Theorem 2. Assume Assumption 1 holds and ||0g||2 < r/3. We use the same
notation ng and n1 as in Theorem 1. Then, for any ™ > 0, there exist constants
C, Cr = Co(Cy, Vlog(rr/m) V 1), where C' is a constant greater than Cr,Cy is a
universal constant, Cp, is a constant depending on ~,r, 7,9 (z), and h(z), but is
independent of m,p,n, 0, and g, such that asn > Cplogn, the following statements
hold with probability at least 1 — 7 :

(a) for all [|0 — 6oll2 > no + (1/(1 = 6))C,
(6 — 60, VR, (6)) > 0, (2.3)

where  is a constant that does not depend on d.
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(b) for all ||0 — 6ol|2 < m,

~

Amin(VZR,(6)) > 0. (2.4)

Thus, as long as 1o + (1/(1 —8))C < m1, Ra(0) has a unique stationary point,
which lies in the ball BE(6p,mo + (1/(1 — 6))¢). This is tfb\e unique global optimal
solution of (1.1); denote this unique stationary point by 6,,.

(¢) There exists a positive constant k that depends on m,~,r, 1,0, and fo, but is
independent of n,p, and g, such that

47 [Crplogn

162 — Boll2 < o + (2.5)

K n

(d) There exist constants C1,Co, hmax that depend on m,~v,7,1,0, and fo, but that
are independent of n,p, and g, such that the gradient descent with fixed step
size h < hmax converges exponentially fast to the global minimizer; that is,
for any initialization 6,,(0) € B5(0,7),

16,(k) — Bn |3 < C1(1 — C2h)*[16,(0) — 6, 2. (2.6)

A few remarks are in order. First, the constant C); is the same constant in
Lemma 1, which gauranntees the uniform convergence of the sample gradient and
Hessian when n > Ciplogn. C is a constant that depends on Cj and is larger
than C), which means additional samples are required to ensure the results in
Theorem 2 compared to the sample size in Lemma 1. Second, because g, (
are independent of n,p, and g, Theorem 2(a) asserts that the M-estimator that
minimizes Ry, (0) is always bounded in the ball BB (6o, mo+(1/(1 — §))¢), regardless
of g (and hence the outliers observed). This indicates the robustness of the M-
estimator; that is, the estimates are not severely skewed by a small number of
“bad” outliers. Next, when the contamination ratio ¢ is small such that 7y +
(1/(1 = 6))¢ < m1, there is a unique stationary point of R, (6). In fact, as shown
in the Supplementary Material, when § = 0, we always have 19 + { < 11, which
implies that the condition 79+ (1/(1 — 6))¢ < 11 always holds for some small value
of §. Therefore, although the original optimization problem (1.1) is nonconvex and
the sample contains some arbitrary outliers, the optimal solution of ﬁn(H) can
be computed efficiently using most off-the-shelf first-order algorithms, such as
the gradient descent or stochastic gradient descent. Specifically, in Theorem 2,
we show with high probability that the gradient descent algorithm converges to
the global optimal solution exponentially, regardless of the initializations. This
indicates the tractability of the M-estimator. Interestingly, as in the population
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risk case, the tractability is closely related to the number of outliers; the problem
is easier to optimize when the data contain fewer outliers. Finally, when the
number of samples n > plogn, the estimation error bound is O(é + y/plogn/n),
which nearly achieves the minimax lower bound of O(6 + v/p/n) in Chen, Gao
and Ren (2016).

3. Penalized M-estimator in the High-Dimensional Regime

In this section, we investigate the tractability and robustness of the penalized
Me-estimator in the high-dimension region, where the dimension of the parameter
p is much greater than the number of samples n. Specifically, we consider the same
data-generation model y; = (6p, z;) + €;, where y; € R, x; € RP, and the noise
term ¢; is from Huber’s gross error model (Huber (1964)): € ~ (1 — ) fo + dg.
Moreover, we assume p > n and that the true parameter 6 is sparse.

We consider the ¢i-regularized M-estimator under an ¢s-constraint on 0:

. 1
Minimize: Ly, = i — \U, g n ) 1
inimize (9) n;p(y (0,2:)) + Anll0]1 (3.1)
subject to:  [|f]|2 < 7.

Before presenting our main theorem, we need additional assumptions on the
feature vector x.

Assumption 2. The feature vector x has a pdf in RP. In addition, there exists a
constant M > 1 that is independent of the dimension p, such that ||x||sc < MT,
almost surely.

Remark 1. For unbounded subGaussian feature vectors, Theorem 3 can be
supplemented by taking a truncation at M = Cy/log(np). Then, the conclusions
still hold, with an additional log(np) term. Thus, for simplicity of the statement
of Theorem 3, we consider the case when Assumption 2 holds.

In the Supplementary Material, we present Lemma 2, which shows the uni-
form convergence of the gradient and the Hessian under Huber’s contamination
model in the high-dimensional setting, where p > n. Then, we are ready for our

main theorem.

Theorem 3. Assume that Assumption 1 and Assumption 2 hold, and the true
parameter Oy satisfies ||0o||2 < r/3 and ||0o||lo < so. Then, there exist constants
C, Cy, Cy that are dependent on (p, Ly, 72, 7r,7,), but independent of (8, so,n, p,
M), such that as n > Csologp and A\, > 2CoM +/log p/n + 26 Ly, the following
hold with probability at least 1 — 7 :
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(a) All stationary points of problem (3.1) are in BE(6o,n0 + (\/S0/(1 — 8))A\nCh).

(b) As long as n is large enough such that n > C'sglog?® p and the contamination
ratio 6 is small such that (no+ (1/(1 = 0))y/50AC1) < mi, the problem (3.1)
has a unique local stationary point, which is also the global minimizer.

The proof of Theorem 3 is based on several lemmas, which are postponed
to the Supplementary Material. We believe that some of our lemmas are of
interest in their own right. Theorem 3 implies that the estimation error of the
penalized M-estimator is bounded as O(d + \/m), which achieves the
minimax estimation rate (Chen, Gao and Ren (2016)). Moreover, it implies that
the penalized M-estimator has good tractability when the percentage of outliers
0 is small.

Remark 2. In Theorem 3, we show there is a unique local stationary point for
the problem (3.1) if (7o + (1/(1 — 6))\/S0AnC2) < 11 and n is large. Thus, many
first-order algorithms can be guaranteed to converge to the global optimal when
the initialization is in the ball BE(6,1:). However, owing to the complexity of
analyzing the restricted empirical risk ﬁn(ﬁ), we leave as an open problem the
convergence analysis of such fast algorithms for any initializations in the ball
BE(r).

4. Example

In this section, we use some examples to illustrate our general theoreti-
cal results about the robustness and tractability of M-estimators. In the first
subsection, we consider the low-dimensional regime, and study a family of M-
estimators with a specific loss function, known as Welsch’s exponential squared
loss (Dennis Jr and Welsch (1978); Rey (2012); Wang et al. (2013)). In the sec-
ond subsection, we consider the high-dimensional regime, and study the penalized
M-estimator with Tukey’s bisquare loss (Beaton and Tukey (1974)). In both sub-
sections, we derive explicit expressions of the two critical radii ng, 71, and discuss
the robustness and tractability of the corresponding M-estimators.

4.1. M-estimators with Welsch’s exponential squared loss

In this subsection, we illustrate the general results presented in Section 2
by considering a family of M-estimators with a specific nonconvex loss function
known as Welsch’s exponential squared loss (Dennis Jr and Welsch (1978); Rey
(2012); Wang et al. (2013)),
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_1- exp(—at?/2)

pa(t) " , (4.1)

where o > 0 is a tuning parameter. The corresponding M-estimator is obtained
by solving the optimization problem

meian(H) = %Zpa(yi —(0,2;)), (4.2)
i=1

subject to ||0||2

IN

T.

The nonconvex loss function p,(t) in (4.1) has been used in other contexts, such
as robust estimation and robust hypothesis testing, owing to their many nice
properties; see Ferrari and Yang (2010) and Qin and Priebe (2017). First, it is a
smooth function of both « and ¢, and the gradient and Hessian are well defined.
Second, when o goes to zero, pu(t) converges to t2/2. Thus, the least squares
estimator is a special case of the M-estimator obtained from (4.4). Third, for
fixed a > 0, pqa(t), pl,(t), and pl(t) are all bounded. Intuitively, this implies that
the impact of outlier observations of y; is controlled, and thus the corresponding
statistical procedure is robust.

We now study the robustness and tractability of the M-estimator of (4.2)
based on our framework in Theorem 2. In order to emphasize the effects of
the tuning parameter o and the contamination ratio J on the robustness and
tractability properties, we consider a simplified assumption on the feature vector
x; and the pdf of the idealized residual fj.

Assumption 3.

(a) The feature vector x; has an i.i.d. multivariate Gaussian distribution N (0,

2 Lyxp).-
(b) The idealized noise pdf fo(e) has a Gaussian distribution N(0,0?).
(c) Assume the true parameter ||fg||2 < r/3.

Now, we are ready to present Corollary 1, which is a direct application of
Theorem 2.

Corollary 1. Assume Assumption 3 holds and ||0||l2 < r/3. For any © > 0,
there exists a constant C' such that as n > Cplogn, the following statements hold
with probability at least 1 — 7 :

(a) All stationary points of problem (4.2) are in BY(6g,m0 + (1/(1 = 8))C).

(b) The empirical risk function R, () is strongly convez in the ball BE(0o,m).
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(c) Aslong as no+(1/(1 — 8))C < m1, Rn(6) has a unique stationary point, which
is the unique global optimal solution of (1.1).

Here,

1
‘<= 13.5v3a(1 + ac?)3/27’

2\3/2
mo(d, ) = ° \/124(1_%(10 il 320177 /(3(1+a0?))
’ 1-6V i ,

1
9v3a(1 + ac2)¥/2r

A special case of Corollary 1 with a = 0 reduces to the least squares es-

m (57 a)

[1 — (14 3(1 + ac?)¥?)] .

timator. On the one hand, with a = 0, we have n;(J,« = 0) = +o0, for any
0 > 0. Thus, the corresponding risk function is strongly convex in the entire
region of BY(0,r = 10), and hence is always tractable. On the other hand, be-
cause 1o(d,« = 0) = +o0, the solution of the optimization problem in (4.4) can
be arbitrarily in the ball BY(0,7 = 10), even when the proportion of outliers is
small. Thus, it is not robust to outliers. This supports the well-known fact that
the least squares estimator is easy to compute, but is very sensitive to outliers.

Additionally, for another special case with 6 = 0 and a > 0, we have 1y(J =
0,a) = 0 and ¢ < 71(d = 0,a). This implies that Welsch’s estimator has nice
tractability when there are no outliers. However, when the percentage of outliers
0 is increasing, 71 (d, @) decreases, implying that the presence of outliers reduces
the tractability of the M-estimator.

4.2. Penalized M-estimators with Tukey’s bisquare loss

In this subsection, we illustrate the general results presented in Section 3 by
studying Tukey’s bisquare loss function (Beaton and Tukey (1974)):

1 A2\
pa(t) = 6 1_<1_<a)> 1> (4.3)

0, if [t| > a,

where a > 0 is a tuning parameter. The corresponding penalized M-estimator is
obtained by solving the optimization problem

min L, me (0,:)) + Aall61]1, (4.4)
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subject to ||0]]2 < 7.

Note that the loss function p,(t) in (4.3) is nonconvex. For fixed o > 0, pl (t)
and pl(t) are both bounded. We now study the robustness and tractability of
the penalized M-estimator of (4.4) based on our framework in Theorem 3. When
a goes to 00, pa(t) converges to t2/2. Thus, the penalized M-estimator obtained
by (4.4) reduces to the lasso estimator, which can be computed easily. However,
the lasso is also known to be very sensitive to outliers (Alfons, Croux and Gelper
(2013)). On the other hand, when « increases, the estimator becomes more
robust, but may lose tractability, owing to the nonconvexity of the function p,(t)
and the presence of outliers.

In order to emphasize the relation between the tuning parameter « and the
contamination ratio d, we consider a simplified assumption on the feature vector
x; and the pdf of the idealized residual fj.

Assumption 4.

(a) The feature vector x; has an i.i.d. multivariate uniform distribution [—7,7P.
(b) The idealized noise pdf fo(€) has a Gaussian distribution N(0,0?).

(c) The true parameter ||6p||2 < r/3.

Assumption 4 and Theorem 3 yield Corollary 2, which characterizes the
robustness and tractability of the penalized M-estimator with Tukey’s exponential
squared loss in (4.3).

Corollary 2. Assume that Assumption 4 holds, and that the true parameter 6y
satisfies ||0o|l2 < /3. Then, for any m € (0, 1), there exists a constant C such
that if choosing A, = 2Cr7T+/logp/n + 2a7d, as n > sglogp, the following hold
with probability at least 1 — 7 :

(a) All stationary points of problem (4.4) are in BE(6o, (1 + 27)no).
(b) The empirical risk function Ly, (0) are strong convex in the ball B (6o, m1).

(c) As long as n is large enough and the contamination ratio § is small such
that (1 + 27)ng < m, the problem (4.4) has a unique local stationary point,
which is also the global minimizer.

Here,

_ (5 28\/ 27Te(a2+64727,2)/02
1—46 10302 ’

770(67 Oé) (45)
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(1—0)M(a,0)T? — 46
d,a) = Q, 4.6
m(d, o) 2 ar (4.6)
where M (o, 0) = 2« fol(l —t)(1 +t)(1 — 5t2) fo(at)dt is a positive number when
a>0,0>0.

The special case of Corollary 2 with o — 0o reduces to the lasso estimator.
On the one hand, with o« = oo, we have 71 (d,« = 0) = +o0, for any § > 0. This
means that the corresponding risk function is strongly convex in the entire region
of BE(0,7 = 10), and hence is always tractable. On the other hand, because
no(d, « — 00) — +o0, the solution of the optimization problem in (4.4) can be
arbitrarily in the ball BY(0,r = 10), even when the proportion of outliers is small.
Thus, it is not robust to outliers. This supports the well-known fact that the lasso
estimator is easy to compute, but is very sensitive to outliers.

Additionally, for another special case with 6 = 0 and a > 0, we have 7y(d =
0, @) = 0, which means the true parameter 6 is the unique stationary point of the
risk function. This implies that Tukey’s estimator has nice tractability when there
are no outliers. However, when the percentage of outliers § is increasing, 71 (9, @)
decreases, implying that the presence of more outliers reduces the tractability of

the M-estimator.

5. Simulation Results

In this section, we report simulation results using Welsch’s exponential loss
and Tukey’s bisquare loss when the data are contaminated, using synthetic data.
We first generate covariates z; ~ N(0, Ipx,) and responses y; = (6o, x;) +¢€;, where
|16o]|2 = 1. We consider the case when the residual term ¢; is from the gross error
model with contamination ratio &; that is, ¢; ~ (1—38)N (0, 1)+ N (1, 3%), where
i = ||z;]|3+1. The outlier distribution is chosen to highlight the effects of outliers
when they are dependent on z; and have a nonzero mean.

In the first part, we consider the low-dimensional case, when the dimension
p = 10. Specifically, we generate n = 100 pairs of data (y;,2;)i=1,..» with di-
mension p = 10 and with different choices of contamination ratios J. We use
the projected gradient descent to solve the optimization problem in (4.2) with
Welsch’s loss and r = 10. To make the iteration points be inside the ball, we
project the points back into BY(0,r = 10) if they fall outside of the ball. The
step size is fixed as one. In order to test the tractability of the M-estimator,
we run the gradient descent algorithm with 20 random initial values in the ball
BE(0,r = 10) to determine whether the algorithm can converge to the same
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Figure 1. The value of std(f(k)) for differ- Figure 2. The value of std(6(300)) for dif-
ent 6. Y-axis is with log scale. ferent 6. Y-axis is with log scale

stationary point. Denoting é(kz) as the kth iteration point, we then plot the
empirical standard deviation of each iteration std(f(k)) = Tr(@(é(k))) for 20
different initializations. Figure 1 shows the convergence of the gradient descent
algorithm for Welsch’s exponential loss with v = 0.1 under the gross error model,
with different 6. From Figure 1, we observe that when the proportion of outliers
is small (i.e., § < 0.1), the algorithm converges to the same stationary point fast.
However, when the contamination ratio § becomes larger, the algorithm may
not converge to the same point for different initial points, indicating a loss of
tractability for the same objective function with an increasing proportion of out-
liers. These observations are consistent with Theorem 2, which asserts that the
M-estimator is tractable when the contamination ratio § is small. Then, in Figure
2, we show the empirical standard deviation at the k = 300 iteration std(6(300))
when p = 20 and the ratio of n/p varies from 1 to 21. The figure shows that
when the sample size n is small, the gradient descent may not converge to the
same stationary point. However, when n is large enough, for a small proportion
of outliers §, the algorithm does converge to the same stationary point, which
implies the uniqueness of the stationary point.

To illustrate the robustness of the M-estimator, we generate 100 realizations
of (Y,X) and run the gradient descent algorithm with different initial values.
The average estimation errors between the M-estimator and the true parameter
Ay are presented in Figure 3. As we can see, when § = 0, all estimators have small
estimation errors, which is expected because those M-estimators are consistent
without outliers (Huber (1964); Huber and Ronchetti (2009)). However, for the
M-estimator with o = 0, that is, the least squares estimator, the estimation error
increases dramatically as the proportion of outliers increases. This confirms that
the least squares estimator is not robust to outliers.
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When o = 0.1, the overall estimation error does not increase much, even
with 40% outliers, which clearly demonstrates the robustness of the M-estimator.
Note that when « is increased from 0.1 to 0.3, although the estimator error is
still very small for § < 0.2, it increases dramatically when § is greater than 0.2.
We believe that two reasons contribute to this phenomenon. First, robustness
starts to decrease when « becomes too large. Second, and more importantly, the
algorithm fails to find the global optimum owing to the multiple stationary points
when « is large. Thus for each «, there exists a critical bound of § such that the
estimator will be robust and tractable when the proportion of outliers is smaller
than that bound.

In the second part, we present our results in the high-dimensional region
when p = 200 and n = 200. Data (y;, ;) are generated from the same gross
error model in the previous simulation study, with the true parameter 6y a sparse
vector with s = 10 nonzero entries. All nonzero entries are set to 1/4/10. We
use the proximal gradient descent algorithm to solve problem (3.1) with Tukey’s
bisquare loss. As before, we project the points back into BF (0,7 = 10) if they
fall outside of the ball. We set the fixed step size as 0.1 and the Ly regularization
parameter A = /log(p)/n. We first illustrate the robustness of the penalized
Me-estimator using Tukey’s loss with the tuning parameter a = 4,5, 10, 20, 500.
We generate 100 realizations of (Y, X) and run the proximal gradient descent
algorithm. The average estimation errors between the penalized M-estimator
and the true parameter are reported in Figure 4. First, note that as « is large,
Tukey’s loss is similar to the squared loss. Thus, the penalized M-estimator with
a = 500 performs similarly to the lasso. From Figure 4, we can see it has the
smallest estimation error when ¢ = 0, but has the largest estimation error when
6 > 0.1. Moreover, when « is small, the corresponding estimation error does not
increase much, even if 6 = 0.4. These results imply the robustness of the penalized
robust M-estimator.

Next, we illustrate the tractability of the penalized M-estimator by showing
std(é(k)) for 20 initializations of the proximal gradient descent algorithm with
Tukey’s loss and o = 20 under the gross error model, with different §. Figure
5 shows the result for p = 200 and n = 200, and Figure 6 shows the result for
p = 400 and n = 400. From the two plots, we observe an interesting phenomenon:
the proximal gradient descent converges to the same stationary points, even when
the percentage of outliers = 0.4. This result seems to contradict the result for
the low-dimensional case, where @ = 0.4 can make the algorithm converge to
different stationary points. Thus, a more accurate analysis on the tractability
property of the penalized M-estimators is needed.
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6. Case Study

In this section, we present a case study of the robust regression problem
for the Airfoil Self-Noise data set (Brooks, Pope and Marcolini (2014)), which is
available from the UCI Machine Learning Repository. The data set was processed
by NASA and is commonly used in regression studies to learn the relation between
the airfoil self-noise and five explanatory variables. Specifically, the data set
contains five explanatory variables: Frequency (in Hertz), Angle of attack (in
degrees), Chord length (in meters), Free-stream velocity (in meters per second),
and Suction side displacement thickness (in meters). There are 1,503 observations
in the data set. The response variable is Scaled sound pressure level (in decibels).
In this section, the five explanatory variables are scaled to have a zero mean and
unit variance. Then, we corrupt the response by adding noise € from the same
gross error model as the previous section: €; ~ (1 — §)N(0,1) + IN (ps, 3%), with
i = Nl 3+ 1.
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We apply the M-estimator using Welsch’s exponential loss (Dennis Jr and
Welsch (1978)) to the data set to validate the tractability and robustness of the
corresponding M-estimator. First, we run 100 Monte Carlo simulations. At each
time, we split the data set of 1,503 pairs of observations into a training data set
of size 1,000 and a testing data set of size 503. Then for the training data set,
we use the gradient descent method with 20 different initial values to update the
iteration points.

Figure 7 shows the empirical standard deviation of each iteration std(é(k))
with a = 0.3 and step size 0.5. Clearly, when § is smaller than 0.3, the gradient
descent converges to the same local minimizer, which implies the uniqueness of
the stationary point. This result demonstrates the nice tractability of the M-
estimator under the gross error model when the proportion of outliers is small.
Then, using the optimal point as the M-estimator, we calculate the prediction
error, which is the mean squared error on the testing data. Figure 8 shows the
average prediction error on the testing data. As we can see, the prediction error
with a = 0 increases dramatically when the percentage of outliers increases. In
contrast, the prediction error of the M-estimator with v = 0.4 is stable, even with
a large percentage of outliers. This illustrates the robustness of M-estimators for

some positive a.

7. Conclusion

We have investigated the robustness and computational tractability of gen-
eral (nonconvex) M-estimators in both classical low-dimensional and modern
high-dimensional regimes. In terms of robustness, in the low-dimensional regime,

we show that the estimation error of the M-estimator is O(d+ +/plogn/n), which
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nearly achieves the minimax lower bound of O(J + /p/n) in Chen, Gao and Ren
(2016). In the high-dimensional regime, we show that the estimation error of the
penalized M-estimator has an estimation error O(d++/so log p/n), which achieves
the minimax estimation rate (Chen, Gao and Ren (2016)).

In terms of tractability, our theoretical results imply that under sufficient
conditions, when the percentage of arbitrary outliers is small, the general M-
estimator could have good computational tractability because it has only one
unique stationary point, even if the loss function is nonconvex. Therefore, M-
estimators can tolerate a certain level of outliers while maintaining both their es-
timation accuracy and computational efficiency. Both simulations and a real-data
case study validate our theoretical results about the robustness and tractability
of M-estimators in the presence of outliers.

Supplementary Material

The online Supplementary Material contains proofs for the lemmas and main
theorems.
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