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Cuantum chaos in many-body systems provides a bridge between statistical and quantum physics with
strong predictive power. This framework is valuable for analyzing properties of complex quantum systems
such as energy spectra and the dynamics of thermalization. While contemporary methods in quantum
chaos often rely on random ensembles of quantum states and Hamiltonians, this is not reflective of
maost real-world systems. In this paper, we introduce a new perspective: across a wide range of exam-
ples, a single nonrandom quantum state is shown to encode universal and highly random quantum state
ensembles. We characterize these ensembles using the notion of quantum state k-designs from guantum
information theory and investigate their universality using a combination of analytic and numerical tech-
niques. In particular, we establish that k-designs emerge naturally from generic states in a Hilbert space
as well as physical states associated with strongly interacting Hamiltonian dynamics. Our results offer a
new approach for studying quantum chaos and provide a practical method for sampling approximately
uniformly random states; the latter has wide-ranging applications in quantum information science from

tomography to benchmarking.
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L INTRODUCTION

Analysis of the exact dynamics of general strongly inter-
acting quantum many-body systems is intractable using
existing analytic and numerical tools. However, there is
a widely used heuristic for understanding chaotic gquan-
tum dynamics: the eigenstates and eigenvalues of chaotic
Hamiltonians have properties as if they were sampled from
a random ensemble. This heuristic leads one to lever-
age statistical approaches, such as random matrix theory
[1.2]. to address many physical problems and has become
a foundational principle in understanding chaos and ther-
malization in quantum systems [3-6]. Examples of this
heuristic include Berry’s conjecture [7] and the eigenstate-
thermalization hypothesis (ETH) [8—10], which have been
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supported by an overwhelming amount of numerical evi-
dence [11-13].

While these statistical approaches hinge on the pres-
ence of random ensembles, realistic quantum systems are
often deseribed by a fived Hamiltonian. Crucially, physical
Hamiltonians are very special and highly structured from
a mathematical and statistical point of view, as they must
satisfy multiple constraints imposed by locality and energy
conservation. Thus, it is a surprising empirical finding that
deterministic functions of physical Hamiltonians, such as
eigenstates, eigenvalues, and states evolved by Hamilto-
nian dynamics, can still be well characterized by typical
instances of random ensembles. It remains as a funda-
mental question to establish a connection between isolated
quantum systems and the emergence of random ensembles
that dictate their statistical properties.

In this paper, we present a new perspective on the emer-
gence of statistical behavior in chaotic quantum many-
body systems: instead of imagining that a physical state
is sampled from a random ensemble, we use a single
many-body wave function lo generate an ensemble of
pure states on a subsystem. This approach goes beyond
using the reduced density matrix, as the ensemble encodes
higher-order statistical moments of the wave functions on
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the subsystem, as well as certain types of correlations
between the subsystem and its complement. In contrast to
using reduced density matrices, our approach allows the
characterization of information-theoretic properties of the
subsystem that cannot be otherwise described by expecta-
tion values of conventional observables,

Applying our approach to a wide class of examples,
we discover a novel type of universality: under robust
conditions, the generated ensemble approaches a univer-
sal value that follows the maximally entropic distribu-
tion over the subsysterm Hilbert space. This universality
establishes a connection between quantum many-body
dynamics and information theory, with several implica-
tions. In quantum chaos and thermalization, our findings
suggest that physical quantum many-body systems drive
not only local observables to thermal values but also other
information-theoretic properties of a subsystem (encoded
in higher statistical moments) to certain universal values.
This presents a generalized form of “thermalization™ man-
ifested in higher moments of quantum states. In quantum
information science, the generation of maximally random
pure states is known to be useful [14-19] but compu-
tationally difficult [20]. Here, such random states arise
approximately in the natural setting of quantum many-
body Hamiltonians with local interactions, independent
of their microscopic details. Our results provide a new
hardware-efficient way to generate pseudorandom quan-
fum states. Finally, in quantum nonequilibrium dynam-
ics, exotic phase transitions induced by measurements
have been recently discovered. This manifests in higher-
moment statistical properties of quantum states such as
the entanglement, state purity, and variance in charge
[21-24]. The statistical nature of these transitions neces-
sitates considering an ensemble of random evolutions.
The novel perspective presented here allows the analysis
of statistical properties of quantum states from a single
tfime-independent Hamiltonian evolution, providing a new
framework to analyze this new physics.

Our key idea is to note that an ensemble of states can be
generated from a single wave function by performing local
measurements over only part of the total system. Con-
cretely, we consider a many-body system partitioned into a
subsystem 4 and its complement B. Performing local mea-
surements on B, we obtain exponentially many different
pure states |¥,y(zg)) on A, each corresponding to a dis-
tinct measurement outcome zz on 8. We call the set of pure
states on 4, along with the associated measurement proba-
bilities p(zg), the projected ensemble on A [see Figs. 1{a)
and 1(b)]; see also Ref. [25].

To quantify the degree of randomness of an ensemble,
we use a well-established notion from quantum informa-
tion theory, namely quantum state k-designs [26,27]. An
ensemble of pure states is said to form a quantum state
k-design if its first & moments agree with those of the
uniform distribution over the entire Hilbert space.

Forming a higher k-design implies that the ensemble is
more uniformly distributed over the Hilbert space. In addi-
tion to quantitatively characterizing the randomness of an
ensemble, k-designs are also relevant for applications that
only require randomness up to the first £ moments [ 14-19].

Our claimed universality is that approximate k-designs
arise from a variety of quantum many-body states. We
establish two theorems showing that the projected ensem-
ble coming from a generic many-body quantum state
forms an approximate A-design as long as the size of B is
sufficiently larger than the size of 4.

Furthermore, a concurrent work [25] finds evidence that
approximate k-designs emerge from projected ensembles
in a Rydberg quantum simulator. We argue that this is a
much more general phenomenon: we find strong numerical
evidence across several models that approximate k-designs
arise from both quantum states obtained by quenched time
evolution and energy eigenstates of chaotic Hamiltonians
[see Fig. 1(c)]. In the former case, we find that the degree
of randomness in a projected ensemble continues to grow
even after conventional local thermalization has occurred.
Specifically, we establish numerically that states evolved
for a longer amount of time form higher approximate k-
designs. We also find that a subsystem forms a projected
E-design in a time independent of global system size,
suggesting that the same phenomenology persists in the
thermodynamic limit. In particular, this implies that a pro-
jected k-design can form from global wave functions that
are not typical instances of random states, going beyond
the predictions of our rigorous theorems.

The above results hold only for the case of infinite-
temperature thermalization. We then study energy eigen-
states at infinite and finite effective temperatures. We find
that approximate A-designs emerge from states in the mid-
dle of the energy spectrum corresponding to effective
infinite temperature. For finite-temperature eigenstates, we
observe that the projected ensembles converge to a uni-
versal ensemble that smoothly varies with respect to the
energy density.

Our findings suggest that for a wide range of physically
relevant many-body states, projected ensembles exhibit a
universal form of randomness. This allows us to quantify
the chaotic nature of Hamiltonian dynamics and to study
the growth of complex nonlocal correlations between a
subsystem and its complement beyond the conventional
paradigm of quantum thermalization [#-11,13.25-30].
Postthermalization physics in quantum many-body sys-
tems exhibits interesting quantitative and qualitative dif-
ferences from its classical counterpart (see, e.g., Ref. [31])
and the current work clarifies and extends this paradigm.
Furthermaore, our work presents a simple protocol to effi-
ciently produce an ensemble of random pure states from
fixed time-independent Hamiltonian dynamics that does
not require highly fine-tuned controls. This may open up
new possibilities for utilizing analog quantum simulators
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FIG. 1. The emergence of a universal quantum state ensemble from a single many-body wave function. (a) A subsystem B of a pure
many-body wave function |¥} is measured in a fixed local basis; the remaining unmeasured qubits in 4 are in a pure state that depends
on the measurement outcome on B. (b) For quantum systems consisting of qubits, the measurement on B samples random outcomes,
each characterized as a bit string z5 (binary numbers in the blue and yellow arrows). Different measurement outcomes zg occur with
probability p(zp) and lead to distinct quantum states | y(zy)), forming the projected ensemble £ = [p(zg), |¥4izg)}}. In the right
panel, the ensemble of pure states | W ,(zg)) (black arrows) is randomly distributed in the Hilbert space of 4 (black sphere), forming an
approximate quantum state k-design. (c) Examples of many-body wave functions the projected ensembles of which form approximate
quantum state designs include the typical output states of random unitary circuit evolution, quantum states obtained from quenched
time evolution, and energy eigenstates of a chaotic Hamiltonian at infinite temperature. (d) An illustration of minimal quantum state
k-designs for a single qubit on the Bloch sphere. The formation of higher £-designs requires a larger number of pairwise nonorthogonal
quantum states. In the limit of & — 0o, a k-design approaches the so-called Haar ensemble, which is the uniform distribution over all

pure quantum states.

in wide-ranging applications from quantum cryptography
[14,15] to benchmarking [17-19,32-34]. Indeed, a new
benchmarking protocol based on emergent-state 2-designs
is demonstrated using a Rydberg quantum simulator in a
parallel work [25].

Il QUANTUM STATE DESIGNS FROM
PROJECTED ENSEMBLES

A. Ensemble of quantum states

The study of properties of random quantum states is
useful because they ofien encode universal phenomena
found in nature. Randomness is not a property of an indi-
vidual wave function or density matrix but is a property
of an ensemble of quantum states. An ensemble of states
E = |pun W)} is a set of quantum states |¥;) weighted
by probabilities p;. This is simply a (discrete or continu-
ous) probability distribution of quantum states, capturing a
random process that stochastically gives pure states |'F).

State ensembles capture more information than the den-
sity matrix. An ensemble £ uniquely specifies a den-
sity matrix p = 3}, py |¥;) {¥]. Then, the density matrix
captures the average of the expectation values of any
observable O: } ", p;0; = tr(Op), where O, := (¥, O |\¥;).
However, a given density matrix p does not uniquely
specify a state ensemble. For example, Fig. 1(d) shows
several ensembles of single-qubit states that have the same
density matrix p—the maximally mixed state [/2—but
are qualitatively different. For example, these ensembles

can be distinguished through their higher moments of the
observable expectation values (J;, e.g., the second moment
¥ Py is related to the variance of O and can be com-
puted given £ but not p. While such higher moments are
difficult to measure, they can be statistically estimated with
access to many (labeled) samples from the ensemble £.
The kth moment of any observable @ can be calculated
from the &th moment of £:

pf) = Egg[(IW) (D] = D p: (W) (&) . (1)
i

The kth moment of O is ¥, p,0¢ = tr(0%p"). pV is
the conventional density matrix and pg} can be viewed
as a density matrix on k copies of the Hilbert space H®*
describing an incoherent sum of k copies of identical states
|W;}. Just as higher moments such as variance and skew-
ness are used to characterize a conventional probability
distribution, knowledge of higher moments characterizes
a state ensemble.

The higher moments of an ensemble are required to
measure nonlinear quantities associated with the ensem-
ble. For example, the Renyi entropy of a state |W),
across a bipartition Ay, A4z, is given by S"N(|¥)) =
1/(1 —n) log (ir4, [(tr‘;2|lll}|:l[!|}"]}. The average Renyi
entropy of states in the ensemble £ is given by §% =
3 pS™ (). This, and other nonlinear quantities,
necessitates the knowledge of all kth moments pg:'. For
a single state, the Renyi entropy is fully defined via its
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reduced density matrix in a nonlinear fashion. This reduced
density matrix is distinct from the density matrix of the

ensemble pé_—l], The average Renyi entropy 5™ taken over
an ensemble requires knowledge of all higher moments
') and hence is a nonlinear quantity of the ensemble.

Such nonlinear gquantities have been the subject of recent
theoretical inferest. For example, recent works [21-24]
have discovered a measurement-induced phase transition
in quantities such as the entanglement entropy, state purity,
Fisher information, or charge variance. These are all non-
linear quantities: the measurement-induced phase transi-
tion cannot be detected by any linear observable. In the
cited works, the detection of these transitions requires
keeping track of each measurement cutcome and averag-
ing the above nonlinear quantities over their corresponding
pure states.

Lastly, we highlight a theoretically important ensemble
of states: the Haar ensemble. This is the uniform distri-
bution over all pure states in a Hilbert space, formally
defined as the unique ensemble that is invariant under
any unitary transformation U It is the maximally entropic
distribution of quantum states and we can quantify the ran-
domness of an ensemble of states by its proximity to the
Haar ensemble.

B. Quantum state designs

The randomness of an ensemble of states is quantified
through its kth moments. Conventionally, the distance of
an ensemble £ from the Haar ensemble can be systemati-
cally measured by comparing their kth moments. The kth
moment of the Haar ensemble pff:" is of interest because
of its application to quantum information science [14
19]. An ensemble is called a quantum state k-design if
its kth moment equals the &th moment of a Haar-random
ensemble: p“‘j = p,'f,'t:a,.

While the Haar ensemble can be studied analytically
using various statistical tools [35], it is extremely chal-
lenging to realize experimentally, as doing so requires an
exponential amount of resources (such as the number of
quantum gates or experimental operations) [20]. Instead,
ensembles that form quantum state designs are consid-
ered because they mimic the Haar ensemble and can be
efficiently realized in physical systems [14,36—40].

To build intuition, let us consider quantum state
designs for a single qubit [see Fig. 1id)]. For exam-
ple, the ensemble of single-qubit states {|0}, |1}} with
equal probabilities has the same mean (first moment)
as the Haar ensemble: p'V' = 1/2(|03(0] + [1}{1)) =
E o tizarl | 9) { ¥ |1, where Eg.-.s denotes averaging | V) over
the ensemble £. We say that such a two-state ensem-
ble forms a 1-design. However, the two-state ensemble
does not form a 2-design because its second moment
L/2()0W0] @ |0H0] + [13¢1] @ [13(1]) differs from that of
the Haar ensemble. To form a 2-design for a single qubit,

one can use four distinet nonorthogonal quantum states
uniformly spread over the Bloch sphere [Fig. 1{d)]. In gen-
eral, for an ensemble to form a higher-order design, it must
be supported over a larger number of states [41].

Formally, we say that an ensemble £ is an &-
approximate quantum state k-design if

& &
o - o, <. @
where | - ||; denotes the trace norm. Further details of

the Haar kth moments are provided in Appendix A. This
definition means that the kth moment of £ is nearly indis-
tinguishable from the A&th moment of the Haar ensemble up
to a small error £. [t can be shown that an e-approximate k-
design is also an e-approximate j-design for any j = kand,
accordingly, larger values of & indicate that an ensemble
looks more uniformly random.

Unlike the Haar ensemble, approximate designs arise
in physical settings [14.36-40]. A canonical example is
that of random unitary circuits [14,36,38], where a set
of random two-qubit unitary gates in a certain geomet-
ric arrangement are sequentially applied to simple initial
states [for an example, see Fig. 1{c)]. Then the ensemble
of resulting states over different choices of unitary gates
forms an e-approximate A-design as long as the depth of
the circuit is sufficiently large, scaling polynomially in
k, log(1/&), and the number of qubits N [14]. Similarly,
there are a number of proposals to generate approxi-
mate designs based on time-dependent local Hamiltonian
evolution [37.40].

C. Projected ensembles

In the above examples, states are sampled from approx-
imate k-designs by realizing many distinct highly engi-
neered quantum evolutions. By contrast, we show that
approximate k-designs arise naturally from the projected
ensemble of a single many-body wave function. More pre-
cisely, consider a many-body wave function |W) in the
Hilbert space H for a bipartite system consisting of Ny
qubits in 4 and Ny qubits in B. The projected ensemble
for 4 is generated by performing projective measurements
on all Ng qubits in B in a local basis [|zg}}. where a bit
string zg € {0, 1}"® enumerates over all 2V% measurement
outcomes. After the measurement, with probability p(zg),
the system is described by the normalized wave function
|W4(zp)} @ |zg). where

plzp) = (| (14 @ |zg) {zal) ¥} (3)
|Wy(zg)) == (L4 ® (zp])|W)/\/P(28) (4)

and 1,4 is the identity operator acting on qubits in 4. This
defines a projected ensemble:

Ewa = {p(za) . [Walza))}. (3)
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The ensemble consists of 2"® states that are generally
not pairwise orthogonal. We call [¥) the generator state
of £y 4. Conversely, we can reconstruct |¥) from £y 4,
assuming that we also know the global phase of each pro-
jected state [Wy(zp)): |W) = ¥y p(z8) [Wa(z8)) ® |z).

Projected ensembles have been considered in previ-
ous works. Specifically, Refs. [42,43] use a related con-
struction to define localizable entanglement, Refs. [44,45]
discuss the projected ensemble generated by typical micro-
canonical states, and Refs. [46,47] discuss using a pro-
jected ensemble to generate k-designs from a fine-tuned
state. In this work, we find that projected ensembles form
approximate k-designs for many physically relevant many-
body wave functions, including special analytically soluble
cases,

D. Solvable example I: Graph states from
time-independent Hamiltonian evolution

A generator state for an e-approximate k-design can
be efficiently prepared by a simple protocol, in which an
initial product state is evolved by a Hamiltonian over a
short time duration. The Hamiltonian can be time inde-
pendent and only has nearest-neighbor Ising interactions
{Fig. 2). This is possible because a universal resource state
for measurement-based quantum computation can be pre-
pared within a constant time independent of system size
[46—48].

This has been explicitly shown in Ref. [47]. More
specifically, let us consider N = N, = N, qubits arranged
in a square lattice with M, rows and N, columns (see
Fig. 2). We assume a periodic boundary condition along
each column, for the concreteness and simplicity of our
analysis. For later convenience, we associate every qubit in
the system with one of the four distinet groups {a, b, ¢, d},
as indicated in Fig. 2(b). All qubits are initially pre-
pared in |Wy) = [0}®¥ states and time evolved under the
Hamiltonian

Hlsing = Zhiﬂf + Z Jﬂcr}rqfxs (6)
i it ek

for duration T = r/(4/p). Here, the on-site field strength
h; takes one of the four values {h, = 0, by = Jy/2, b, =
—Ju/2, by = Sy}, depending on which group the qubit at
site I belongs to. The Ising interactions with strength Jy are
present only for nearest-neighboring qubit pairs connected
by edges of the graph shown in Fig. 2(a).

The results from Ref. [47], when viewed in the con-
text of our currently proposed framework, show that if all
(N. — 1)N, qubits in the first N, — 1 columns are measured
in the computational basis, the projected ensemble for the
remaining N, qubits forms a e-approximate E-design as
long as N, = C(N.k + log,(1/€)) with some constant C

(a) Ne

(b)

0/070/0'0/0'0/0'0'0/00}
560S0EE0000

FIG. 2. A geometric arrangement of qubits for the solvable
example of a generator state for an g-approximate k-design. The
generator state can be efficiently prepared by time-independent
Hamiltonian evolution. (a) A graph representing the connectiv-
ity of N' = N, = N, qubits arranged in a two-dimensional square
lattice. QJubits are represented by wvertices (gray circles) and a
pair of neighboring qubits interact via an Ising coupling when-
ever an edge (black line) exists between them. The connectivity
exhibits a periodicity, where the two-row 12-column unit cell
(blue box) is repeated in a brick-wall layout. (b) The connec-
tivity and grouping of qubits within a single unit cell. Each qubit
belongs to one of the four distinet groups as indicated by labels
la, b, c, d).

[45]. Note that the state-preparation time T in this proto-
col is independent of the subsystem size N,, which can be
arbitrarily large as long as N is sufficiently larger.

The formation of the approximate k-design can be rig-
orously shown by using results in measurement-based
quantum computation as follows [48]. Since all terms in
Huiging commute with one another, we can decompose the
time evolution under Hy,,, into products of two unitary
evolutions, each generated by single-qubit terms and two-
qubit Ising terms. When the initial state is evolved under
Ising interactions without on-site field terms for duration
T, the resultant state is equivalent to the graph state [49]
associated with the graph in Fig. 2(a) up to local unitary
rotations along the x axis. The graph state forms a univer-
sal resource for measurement-based quantum computation:
by sequentially measuring qubits column by column, one
can simulate the quantum circuit dynamics of depth &, — 1
consisting of N, qubits. The output of the quantum cir-
cuit is encoded in the remaining unmeasured N, qubits.
In this simulation, the choices of quantum gates are deter-
mined by the combination of the measurement basis and
the measurement outcomes, Since measurement outcomes
are probabilistic, quantum gates are also random, forming
an ensemble of random quantum circuits. In our case, the
measurement basis is along the z direction (computational
basis), which is effectively rotated along the x axis due to
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the unitary evolution generated by single-qubit terms. The
values of #; are chosen such that the set of measurements
represents an ensemble of quantum circuits that forms an
approximate unitary k-design for large N, [47].

E. Solvable example 11: Generic quantum states

While the example in the preceding section is fine tuned,
we show that, in fact, generic many-body wave functions
are good generator states for e-approximate k-designs.

Theorem 1. Let |V} be chosen umiformly at random
Sfrom the Hilbert space 'H. The ensemble E40 forms an
s-approximate k-design with probability at least | — 8 if

Ng = Q (kN +log (1) + loglog (1)) . (7)

Here, £2(-) denotes a lower bound up to a constant mul-
tiplicative factor and subleading terms. A proof sketch for
this theorem is given in Appendix E, along with a full
proof in Appendix F. This theorem establishes that all
but a tiny fraction (of order approximately l,:‘EINH} of the
states in the Hilbert space are generator states for approxi-
mate k-designs if Ng is asympltotically larger than k times
N4y. However, a quantum state randomly sampled from the
entire Hilbert space is not so physical, since such a state is
extremely difficult to produce experimentally [20]. To this
end, we also present the following theorem.

Theorem 2. Lef |V} be a state sampled from an ensem-
ble on 'H that forms an e"-approximate k'-design. Then the
projected ensemble £, forms an e-approximate k-design
with probability at least 1 — § if

Nig = Q (kN; + log () . (8)
K= (k(Ns +10g (). (9)

log (%) = 2 (kNp (Np + log (55))) - (10)
Na = €2 (log(Np) + log(k) + loglog [é]} (11)

The proof is given in Appendices E and I and relies on
higher-order concentration of measure results [50] as well
as a polynomial approximation technique used in quantum
algorithms for solving linear systems [51]. This theorem
shows that if the generator state is complex enough, in the
sense that it is a typical state from an "-approximate k-
design for small 2" and large &' [52], then the projected
ensemble will well approximate a quantum k-design.

Theorem 2 has implications for ongoing experiments:
it a single sample of an approximate design is experi-
mentally realized, our theorem states that it can be used
to generate ensembles forming approximate designs on
its subsystems. This can be achieved, for example, with
a single instance of a random unitary circuit [Fig. 1{c)].
A single instance is easier to generate than an ensemble

of random circuits, which requires fine-tuned controls to
ensure that the ensemble satisfies desired statistical prop-
erties. Therefore, this approach to generating random states
is extremely hardware efficient and could lead to vari-
ous useful applications in quantum information science
[14.15,17,18,32,33].

At a conceptual level, Theorem 2 establishes that a large
class of states that can be efficiently prepared are good gen-
erators of &-designs. This raises the possibility that, even in
natural chaotic quantum systems, approximate k-designs
may arise from projected ensembles. We investigate this
possibility in Sec. 111

1, QUANTUM STATE DESIGNS FROM CHAOTIC
SYSTEMS

Motivated by Theorems | and 2, we numerically inves-
tigate projected ensembles that arise from chaotic Hamil-
tonian dynamics. In particular, we study the projected
ensembles of time-evolved states and find that infinite-
temperature dynamics does indeed generate projected
ensembles that look Haar random in a quantifiable way,
ie., they form approximate K-designs. Crucially, we go
beyond the intuition from our theorems and find that pro-
jected ensembles form in a constant time, before the global
state has equilibrated, and hence very distinct from typical
random states. We further investigate projected ensembles
at finite temperature and find the emergence of a universal
ensemble.

A. Model

We start with the paradigmatic example of the one-
dimensional quantum lsing spin system with mixed fields
(QIMF), described by the Hamiltonian

N N N-1
HoMe =W of +F Y ol +J Y ofa’,. (12)
=1 i=l i

=1

where N is the number of spins, o° with u = x,y,z are
the Pauli operators for a spin at site §, J is the strength of
the Ising interactions, and & and ¥ are the strengths of
the longitudinal and transverse fields, respectively. In the
ahsence of the longitudinal field (A" = 0), the Hamiltonian
can be mapped to an integrable model of noninteracting
fermions via the Jordan-Wigner transformation, leading to
nonergodic dynamics. However, for any nonzero longi-
tudinal field (f* # 0), the Hamiltonian is ergodic and its
eigenvalues and eigenvectors are expected to have prop-
erties consistent with ETH predictions. This has been
explicitly checked for a specific parameter set (&7, F,J) =
{0.8090, 0.9045, 1) [53], which we adopt for our study. We
note that we do not find a qualitative differences in our
results when using nearby parameter values.
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FIG. 3.

Emergent quantumn state designs from chaotic time evolution, (a) Quenched dynamics under a time-independent Hamiltonian

H starting from an initial product state, |0} for a N-qubit system. The system is partitioned into two subsystems, 4 and B, with sizes
Ny and Ng, respectively. At time §, a projective measurement in the local z basis is performed on subsystem B, resulting in a specific
outcome zp of length Ng. (b) The trace distances A™® between the kth moments of the Haar ensemble and projected ensembles for an

N4 = 3 subsystem as a function of the evolution time for various total system sizes N =

12,14, . .. 24 (darker colors for increasing V).

The dashed lines are a phenomenological power-law fit, vielding a scaling of A™ ~ =12 (c) The design time 1; defined by the

evolution time to achieve a trace distance of A%

= (L.02. We find that longer time evolution is required to form a higher approximate

k-design. (d) Late-time trace distances at ¢ = 10°. For a mixed-field chaotic Hamiltonian (circles), the late-time trace distances exhihit
an exponential scaling with Np while they remain nearly constant for an integrable nonergodic Hamiltonian (crosses; time traces not
shown). The dashed lines represent the trace distances A} between the kth moments of the Haar ensemble and a finite set of 2 states

sampled from the Haar ensemble on 4.

B. Infinite-temperature projected ensembles

We first consider the many-body state |[¥(1)) =
e~ "MOIMF! |} resulting from time evolution of the initial
state |Wo) = |02V [Fig. 3(a)]. Here, [0); and [1); are the
eigenstates of of with eigenvalues +1 and —I, respec-
tively. The initial product state, |}, has a zero energy
expectation value with respect to Hypyp, corresponding
to the total energy of an infinite-temperature state. This
implies that local subsystemns will relax to an infinite-
temperature ensemble after a local thermalization time
[B—10].

At any time 7, the projected ensemble for a subsystem
A is obtained by simulating projective measurements on
the rest of the Mg = N — Ny qubits in the local z basis
[Fig. 3{a)] [54]. In order to check if the projected ensem-
ble forms an approximate k-design, we compare the kth
moment of the ensemble._, pg]' in Eq. (1), to that of the
uniform ensemble pﬂm using the trace distance A =

172 Pi'm— (k) "

3, we numerically compute the trace distance A™® up to
k=4 as a function of time for various Ny [Fig. 3(b)]. In
all cases, A™ decays in time, following a phenomeno-
logical power-law scaling A™ ~ 1/¢2, until it saturates
to a value that is governed by finite-size effects. This
slow power-law decay could be due to emergent hydro-
dynamics associated with energy conservation [55] and

For a fixed subsystem size of Ny =

is absent when the Hamiltonian is geometrically nonlo-
cal or time dependent (see Appendix C and Fig. 6). The
saturation value of A" decreases exponentially with Np
[Fig. 3(d), circles], exhibiting the scaling A® ~ 1//2%s_
If the power-law scaling persists at larger system sizes,
then A" may decrease over an exponentially long time
scale.

As a comparison, we also present AX), which is the
trace distance between the kth moments of the Haar ensem-
ble and the empirical Haar ensemble consisting of 2#
states sampled uniformly at random on 4 [Fig. 3(d),
dashed lines]. Since the empirical ensemble asymptoti-
cally approaches the Haar ensemble in the limit of infinite
samples, ﬂiﬁ is determined only by statistical fluctua-
tions associated with having a finite number of quantum
states (see Appendix B). Remarkably, we find that the pro-
jected ensemble obtained from the quench dynamics shows
a trace distance almost identical to that of the empirical
ensemble of the same size, suggesting that the former is
as uniformly random as the latter. By contrast, repeating
similar calculations for the integrable model (5* = ), we
observe qualitatively different behavior where the trace
distance to the Haar ensemble is much larger than in
the nonintegrable case [Fig. 3(d), crosses]. Furthermore,
there is no appreciable dependence on system size. This
is expected, since integrable systems do not locally ther-
malize and instead relax to a generalized Gibbs ensemble

010311-7



JORDAN S. COTLER et al

PRX QUANTUM 4, 010311 (2023)

and hence will not form 1-designs at effective infinite
temperature [56].

Given the emergence of k-designs in asymptotic regimes
for a chaotic Hamiltonian, it is natural to ask how long it
takes for a subsystem to achieve an approximate design
up to a small fixed precision. To this end, we introduce a
design time 73, defined as the time at which A® becomes
smaller than a certain fixed threshold 2. For a chosen
threshold £ = 0,02, we find that the formation of higher
k-designs requires longer time evolution [Fig. 3(c)]. This
observation is consistent with the idea that typical quan-
tum states from higher k-designs are more complex and
hence more difficult to prepare [52,57,58].

We note that our numerical results cannot be explained
by, and go beyond, our theorem in Sec. 1. Maively, one
could argue that the global time-evolved wave function
behaves as if it is a typical instance of a random state. If
50, based on our Theorem 2, its projected ensemble should
form an approximate f-design. Indeed, Refs. [37,58,59]
investigate whether a state design can be generated by
evolving a simple state under an ensemble of different
Hamiltonians at late times (scaling with system size). In
contrast, our numerical simulations suggest that the pro-
jected ensemble may form very quickly, well before its
global wave function behaves like a random state. Figure
3{b) suggests that for a given £, we form an e-approximate
projected k-design in constant fime, independent of the
total system size N. Therefore in the thermodynamic
limit, an g-approximate projected ensemble may form even
though the global state is far from a typical state. The latter
is due to locality: e.g., its half-chain entanglement entropy
requires at least Q(N) time to reach its equilibrium “typi-
cal value.” In fact, the global state can never be a typical
design state owing to energy conservation.

Our experimental companion paper [25] observes sig-
natures consistent with the formation of a projected k-
design in quenched states in a Rydberg quantum simulator,
Mamely, it has been shown that the statistical properties
of measurements in the computational basis are consistent
with those from a projected E-design.

Mext, we investigate the properties of energy eigen-
states. We repeat an analysis that is similar to the one above
by replacing the time-evolved state |W(f)} with an energy
eigenstate |E;) of Hopyr. Figure 4 shows the trace distance
A® ag a function of energy E; for a projected ensemble
generated from |£;). We find a sharp dip at zero energy
density corresponding to infinite temperature, which signi-
fies the emergence of approximate quantum state designs
[Fig. 4(a)]. At zero energy, A® decreases exponentially as
a function of the system size for k = 1, 2, 3. However, the
decay rate is slightly slower than in the case of quenched
dynamics [Fig. 4{b)].

In addition to the QIMF, we also study time-dependent
dynamics and two other ergodic Hamiltonian models in
order to corroborate the universality of our findings (see

[H:l‘;_ T r{l T T ICr ? T T #I - T
2 E\ N ||\
b \e
E i i i i i i i i i
LR R
[h}: T T T T T T T T T T T T
0.5 o
r o
T T ¢¢ = ¢°
El o
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FIG. 4. Emergent quantum state designs from energy eigen-
states. (a) The trace distances between the &th moments of the
Haar ensemble and a projected ensemble for an Ny = 3 subsys-
tem generated from the energy eigenstates of a Hamiltonian. The
results are presented as a function of the energy density E/N for
a total system size of N = 14, (b) The trace distances for the
projected ensembles obtained from eigenstates near zero energy
corresponding to infinite temperature. The distances exhibit an

exponential decay as a function of the system size. The points
are evaluated for 100 eigenstates near zero energy and the error
bars denote their standard deviation. For comparison, the dashed
lines represent the trace distances A*) between the Haar ensem-
ble and an empirical ensemble of 2"¢ states sampled from the
Haar ensemble.

Appendix C and Fig. 8). Specifically, we consider a sys-
tem of random all-to-all coupled spin-1/2 particles as well
as hard-core bosons with random all-to-all hoppings with
particle-number conservation. In both cases, we observe
excellent convergence of projected ensembles to approx-
imate k-designs. In the latter case, the measurement out-
comes in B and the corresponding pure quantum states on
A are strongly correlated owing to the particle-number-
conservation symmetry: hence a naive approach based
on Eq. (5) does not lead to approximate k-designs. We
instead introduce symmetry-resolved projected ensembles
by grouping certain subsets of measurement outcomes
from B (for details, see Appendix C 3); this does lead to
approximate k-designs.

C. Finite-temperature projected ensembles

For chaotic Hamiltonians, projected ensembles forming
k =1 designs can be anticipated from the standard pic-
ture of quantum thermalization since the first moment of
a projected ensemble simply corresponds to the reduced
density matrix of a subsystem. The reduced density matrix
approaching the maximally mixed state, ie. the first
moment of the Haar ensemble, follows from local thermal-
ization at infinite temperature. However, the convergence
of higher moments & = 2 of the projected ensemble to
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higher k-designs is nontrivial and surprising. Such con-
vergence cannot be explained by ETH alone and sug-
gests a new form of emergent randomness beyond the
conventional framework of quantum thermalization.

A natural next step is to generalize our results to a
finite-temperature setting. However, we are unaware of
any straightforward generalizations of the Haar ensemble
and its corresponding quantum state designs at finite tem-
perature. Such an ensemble, if it exists, would generally
depend on the system Hamiltonian and its first moment
should {approximately) be a thermal state. While explicitly
identifying properties of such an ensemble is an interest-
ing future direction, here we find numerical evidence that
such an ensemble exists. In Fig. 5, we compute projected
ensembles for all energy eigenstates of Hypyr and present
the pairwise distances

s (13)

a_1l.a_ o
8P =51 - 07|

where pfzj denotes the second moment of a projected

ensemble generated from an eigenstate |£;). We find that

&;,;] is a smooth function of energy up to small fluc-
tuations, suggesting that the projected ensembles vary

smoothly with the energy as well [Fig. 5(a)]. Also, .E*.EE]
is minimized when the energy difference |E; — E;| is small
[Fig. 5(b)] and in this regime ﬂf) decreases exponentially
with the system size (Fig. 5(b) inset). These observations
suggest that the second moment of the projected ensemble
is indeed universal even at finite temperatures.

One possible choice of the universal ensemble is the
Scrooge ensemble proposed in Ref. [60]. The Scrooge, or
“Gaussian Adjusted Projected” (GAP), ensemble has been
conjectured to deseribe the thermal equilibrium distribu-
tion and shown to arise from a projected ensembles in an
certain idealized situation [44.,45]: a typical microcanon-
ical state is projectively measured in a random nonlocal
basis under appropriate conditions. For a given density
matrix p, the Scrooge ensemble is the unique distribu-
tion of pure states that has o as its first moment and has
minimal accessible information [60]. Figure 5(c) tests this
conjecture for the projected ensembles generated from nat-
ural quantum states and local measurement bases. We plot
the trace distance between the second moments of the pro-
jected ensemble and corresponding Scrooge ensemble for
eigenstates |£). Across the spectrum, the trace distance
is much smaller than that against the 2-design and does
not depend sensitively on the energy over a wide range
EfN € [—0.5,0.5], with deviations only near the edges of
the spectrum. While this is consistent with the conjecture,
it remains as an interesting future direction to systemati-
cally study when the Scrooge ensemble arises from natural
many-body dynamics and, if so, to what extent.

(b) (c)

=A@
B

1 il | S L
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FIG. 5.

A universal ensemble at finite temperature. (a) The
trace distances between the second moments of the projected
ensembles generated from a pair of energy eigenstates at E;
and E; for Ny =3 subsystems. We plot the pairwise distances
af.f] for every pair of eigenstates |}, |E; }, computed for system
size N = 11. The distances are minimized when E; ~ E;. The
plot suggests the existence of a universal ensemble that depends
smoothly on the energy density. The black dashed line indicates a
cut defined by (E; + E;)/N = —0.6. (b) The trace distances plot-
ted as a function of the energy-density difference, |E; — £;|/N,
along the black dashed line in (a) for varous systems sizes
N=910,...,15 (darker colors for increasing V). The inset
shows that the distances at zero energy difference E; = E; decay
exponentially with the system size. The trace distances from the
projected ensemble are comparable to those from the finite-size
ensemble, A2, of the empirical Haar distribution (dashed line).
Such an exponential scaling suggests the existence of a universal
random ensemble at finife temperatures, which we hypothesize
to be the Scrooge ensemble. (c) The trace distance ﬁg’ {dark
red, dots) between the second moments of the projected ensemble
and the corresponding Serooge ensemble of eigenstates |E), for
a Ny = 3 subsystem of a ¥ = 14 system. aE’ remains small for
eigenstates |E) in a wider energy range E/N e [—0.5,0.5], with
an average value of A® = 0,11 (dashed line). In contrast, the
trace distance between the projected and Haar ensembles (light
red, crosses) is strongly energy dependent and is large at energies
away from infinite effective temperature £ = (.

IV¥. DISCUSSION

We introduce a qualitatively different study of equilib-
rium behavior on a subsystem. Conventional studies of
ensembles such as microcanonical or canonical ensembles
are fully specified by their corresponding reduced den-
sity matrices. In contrast, our formalism concerns more
general statistical properties (such as higher moments) of
an ensemble with a large number of pure states that are
generally pairwise nonorthogonal. As such, a projected
ensemble encodes additional information about a subsys-
tem. In particular, a projected ensemble is useful when
describing the information-theoretic properties of a sub-
system. For example, one can ask the following question:
How much information (i.e., classical bits) is required in
order to specify the full wave function of a subsystem A
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after its complement B is measured in the standard basis?
This question is natural for a classical observer who only
has direct access to the subsystem B. If the projected
ensemble induced by the measurement on B was to be the
Haar ensemble, an exponential number of bits would be
required to specify the wave function on A. By contrast, if
the projected ensemble is uniformly distributed only over
computational basis states of A, a linear number of bits
suffice to specify the wave function on 4. Note that the
former and latter projected ensembles produce the same
density matrix, namely the maximally mixed state. There-
tore, projected ensembles provide a novel framework to
analyze the information content associated with quantum
states of a subsystem and their relation with the remainder
of the system,

V. OUTLOOK

Our findings open up a number of new directions in
quantum chaos, thermalization, and quantum information.
In particular, our numerical results demonstrate that for an
initial product state evolved by a chaotic Hamiltonian, the
largest k-design attained by the projected ensemble grows
as a function of time; moreover, this growth persists sig-
nificantly past the local thermalization time scale. While
it is not presently clear how long this growth will persist,
the observed growth is clearly diagnostic of the sustained
dewvelopment of nonlocal correlations after local thermal-
ization has occurred (see, e.g., Refs. [31,61]). There may
even be connections to the quantum complexity of a state
evolving by chaotic dynamics, which likewise grows long
after thermalization has occurred [52,62]. It would also
be interesting to fully generalize the above to projected
ensembles at finite temperature, in the presence of sym-
metries, quasi-integrability, or strong disorder resulting in
localization [11—13].

In quantum information science, quantum state designs
are valuable resources in many applications. Our work
establishes projected ensembles as a practical way of sam-
pling states from approximate designs using natural Hamil-
tonian evolutions of existing quantum simulators without
fine control. Further, our work could lead to novel exper-
imental quantum tomography protocols [17.34], crypto-
graphic protocols for hiding information [14]. the design
of unforgeable quantum encryption [15], and also new
methods for quantum device verification [18,19]. Indeed, a
parallel work [25] uses projected ensembles to devise and
implement a novel benchmarking protocol.

Finally, an important question at the intersection of
computer science and quantum many-body physics is
whether the computational complexity of simulating nat-
ural chaotic dynamics is beyond the capability of con-
temporary classical computers. In other words, can quan-
tum advantage tests be performed using a fixed chaotic
Hamiltonian with analog quantum simulators? Existing

sampling-based quantum advantage protocols rely heav-
ily on certain statistical and computational properties of
state ensembles formed by applying random unitaries to
a fixed state [63-65]. The projected ensemble emerging
from generic quantum dynamics may also possess the req-
uisite properties and our work could lead to a new approach
to quantum advantage using analog quantum simulators.
Note added —We recently became aware of Refs. [44,45],
where the projected ensemble has been studied in the
context of typical microcanonical states,
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APPENDIX A: ATH MOMENT OF THE HAAR
ENSEMBLE

To quantify the degree of randomness of our projected
ensembles, we compute the trace distance A'® between
the kth moments of the projected ensemble and the Haar
ensemble:

w_ 1w w
o=

. (Al)
Here, pf&r is the kth moment averaged over the Haar
ensemble. For a Hilbert space H with dimension d, it has
the form [33]

P = Bbtaara [(19) (W) ] (A2)
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FIG. 6. Emergent quantum state designs in Floguet dynamics. The trace distance A™ versus the time for time evolution under the
Floquet dynamics in Eq. (C1), for k = 1,2,3,4 in (a), (b). (c), and (d), respectively. We plot the trace distance A'™ between the kth
moments of the Haar ensemble and the projected ensembles for an Ny = 3 subsystem and the total system sizes N = 12,14,...,22
{darker colors denote increasing N'). The solid lines denote the Floguet dynamics, while the dotted lines denote the time-independent
dynamics. The dashed line denotes the power-law fit for time-independent dynamics. The Floquet dynamics quickly saturate to
their late-time A™ value and deviate from power-law behavior, This suggests that the power-law decay of A™ is associated with

hydrodynamic behavior due to energy conservation.

B 2 nes, Permyes ()
Cdd+ ) (d+k—1)

(A3)

Here, 5 is the symmetric group on k elements and m € 5
is an element of the group. Permy =« is a representation of
5 on H®*, which permutes the tensor factors according to

PETm'H@*(Hj |!.]l‘]}| @ N"k} = r'l";q-l“]:"

@@ W) (Ad)
The inverses in the subscripts are chosen so  that
Permyet () - Permyat (") = Permyas (m o ') (ice., the
representation is a homomorphism of 8 and not an anti-
homomorphism). It is readily checked that Eq. (A2) can be
written as

Y res, Permymi(m) My (AS)
dd+1)---(d+k—1) (a*+k—1)’
k

where T1; is simply the projector onto the symmetric sub-
space of H®* (i.e., the invariant subspace under S;); this

G

APPENDIX B: FINITE SAMPLING ERROR FROM
THE EMPIRICAL HAAR ENSEMBLE

In the main text, we construct projected ensembles of
size 2V2_ where Np is the size of the complementary sub-
system. In Figs. 3(d), 4(b), and 5(b), we compare the
system-size scaling of A" against the trace distance Al
of the empirical Haar ensemble, an ensemble formed by
sampling from the Haar ensemble 2V times. In particular,

subspace has dimension

we have

aNg

1
Pl = 7 2_ (N (WD, W) ~ Haar(d), (B)
=1

k)

1
AL = Euy ay,.. ~Haard) |:§ ol — Pff:,,lll]- (B2)

This comparison is made to estimate the degree to which
the error A® in our projected ensemble is due to its finite
size. We estimate A'¥) for various values of Ny and find

that A'® scales exponentially as 1/+/2%8,

APPENDIX C: ADDITIONAL NUMERICAL
SIMULATIONS OF ERGODIC DYNAMICS
1. Floquet evolution

Under the time-independent Hgpyg, the observed power-
law decay of A™ over time evolution is likely due to
emergent hydrodynamics associated with energy conser-
vation [55]. To illustrate this, we study a time-dependent
Floquet variant of Hgmr:

N N N-1
Home ) = B0 Y of +# 3 0] +J Y ofaf.
j=1 J=1 =1

_ Ja—sm,
B )T

if (fmod 27) € [0,7),

al if (fmod 2T) € [T, 27):

(C1)

i.e., we modulate the o* term by § &* with period 2T For
ease of comparison, we use the same parameters as Hopr:
(A = (0.80090,0,9045, 1) and the same initial state
[¥o) = |0)®Y, In Fig. 6, we present A™ data for Flo-
quet parameters (8, T) = (0.5, 1). The late-time saturation
value is the same as the time-independent case but we see
deviations from power-law decay. A® reaches its satu-
rated value more quickly under Floquet dynamics.
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FIG. 7. Emergent quantum state designs in random-coupling and random-hopping models. (a),(b) The time-evolution (a) and eigen-
state (b) data for the random all-to-all coupling model in Eq. (C2). The trace distances A™ for k = 1. 2, and 3 are plotted in orange, red,
and purple, respectively, for Ny = 3 subsystems [(a), left]. The time-evolution data for N = 21 are plotted, along with the system-size
scaling of the late-time A" for N = & to 21 [(a), right]. We also plot A" for each eigenstate for N = 14 [(h), left], along with the
system-size scaling of the eigenstate data near E = 0 for N = 10 to 14 [{b), right]. (c),(d) The time-evolution (c) and eigenstate (d) data
for the random-hopping model in Eq. (C3). Data are presented for Ny = 5 subsystems, in the 5, = 0 sector. In (c), time-evolution
data for N = 24 are plotted along with system-size scaling for ¥ = 10,12, ..., 24. To illustrate the failure of projecting onto all strings
zg, we plot the results of this naive procedure with Ny = 3 in light colors and dashes. In (d), eigenstate data for N = 16 are plotted,
along with their system-size scaling for ¥ = 12, 14, 16 and 18. The system-size scaling is plotted against the effective Ny, which is
log, of the number of strings zg and which is postselected. In each plot, the error bars are smaller than the marker sizes.

2. Random-coupling model

In the main text, we present results for the ergodic QIMF
model. Here, we discuss an additional ergodic model: a
spin-1/2 model with random all-to-all interactions,

2

i, v = [‘xﬁ_}"'zl'
(e, v) # (z,2)

N
>
i.j=1
i=j

H= Jaftal . (C2)

A s . s
where J; are random variables drawn from indepen-

dent identically distributed normal distributions: J"" ~
N(0,1/N). Such random-coupling models are paradig-
matic examples of quantum chaotic systems. The variance
of the couplings is chosen so that Tr(H?)/2Y ~ Q(N). Our

model does not have afaf terms, so that our initial state

[Wp) = |0)=Y has zero energy and, accordingly, is regarded
as being at infinite temperature.

As shown in Fig. 7(a), we see excellent convergence
to k-designs for our projected ensembles constructed from
time-evolved quenched states as well as eigenstates. The
late-time A™ values are very close to A®). The average
A™ values for infinite-temperature eigenstates are also
close to A and show clear exponential decay [Fig. 7(h)].
Motably, we do not average over disorder realizations: each

data point and time series is computed with fixed disorder
realizations. This provides additional support for our con-
jecture that ergodic Hamiltonian systems generate approx-
imate A-designs via time-evolved states and eigenstates
at infinite temperature. Furthermore, the non-power-law
behavior of A®(¢), along with our Floguet Hamiltonian
results, supports our hypothesis that the power-law decay
is due to emergent hydrodynamics associated with energy
conservation.

3. Random-hopping model with U(1) symmetry

Having established that chaotic models such as the
QIMF and the all-to-all random-coupling model provide
projected ensembles that converge to k-designs, we next
ask whether quantum models with symmetries do so as

well. We specifically study a random-hopping model

N
H= Z Al (crj‘af +a;vcr;') +Jy ('-Tfﬂjrv —a aj"),
ij=1
i<j
(C3)
where .Iff are random variables drawn from indepen-
dent identically distributed normal distributions: J,-;t ~
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N(D,1/N). Like the all-to-all random-coupling model, this
muodel is also expected to exhibit chaos. However, the spe-
cific interaction terms are chosen such that this model has
a U(1) symmetry: there is conservation of the total mag-
netization 8, = 1/2}; 7. The model can equivalently
be viewed as describing hard-core bosons with random
complex all-to-all hopping amplitudes.

Any bit string in the z basis is a suitable infinite-
temperature quench state. For N even, we choose the initial
state [Wo) = [0101 . 01}, which lies in the 5, = 0 sec-
tor. Under time evolution by our chaotic Hamiltonian, the
wave function is ergodic in the 55, = 0 Hilbert space.

Maively forming the projected ensemble, we do not find
convergence to an approximate k-design. This is shown
in the light curves in Fig. 7{c). With increasing system
size, A'™™ for k = 1,2, 3 saturate at a nonzero value. This is
because of large correlations between the bit strings zg and
the projected state |¥4(zg)}: if zp has total magnetization
sg, |W4(zg)) necessarily has total magnetization 5, — sp
due to the global conservation law. The Hilbert space H.4
naturally decomposes into a direct sum of multiple sectors
enumerated by the magnetization s4. Accordingly, the pro-
jected ensemble now produces multiple ensembles, one for
each sector.

In order to properly account for the /(1) conservation
law, instead of projecting onto all strings zg, we postselect
a subset of all strings: bit strings with fixed total magneti-
zation, e.g., 5g = 1/2. The projected states |Wy(zg)} will
also have fixed magnetization and we then ask whether
this ensemble forms a k-design in the subspace of H 4 with
magnetization 54 = 5, — sg. In our numerical examples,
we present results with Ny = 5 qubits and 54 = —1/2 and
sp = 1/2. The relevant subspace of H4 has dimension 10,
far smaller than 2¥4 = 32.

Figures 7(c) and 7{d) show the results of our symmetry
resolution. We now see excellent convergence toward a k-
design. As with the random-coupling model, the late-time
A® yalues are very close to A¥) Tn order to make a fair
comparison, we plot the late-time A'® against an “effective
Ng,” defined as log, of the number of postselected strings
Zp. f_‘.,f_ﬂ 15 also computed by sampling the same number of
times.

Using this postselection procedure, we find excellent
k-design convergence for projected ensembles from eigen-
states near E = 0. Our resuliz indicate that our basic
approach remains valid for chaotic models, with additional
symmetries if these symmetries are properly addressed.

APPENDIX D: FINITE-TEMPERATURE
PROJECTED ENSEMBLES: SCROOGE
ENSEMBLE

In Fig. 5{c), we compute the trace distance between
the second moments of the projected ensemble and the
Scrooge ensemble. The Scrooge, or GAP, ensemble has

been introduced in Refs. [44,60]. Given a density matrix
g the corresponding Scrooge ensemble of states can be
viewed as a “o distortion” of the Haar ensemble such that
its first moment is exactly p.

In order to compute its k&th moments, we use an explicit
expression from Ref. [60]. The probability density of
obtaining a wave function |y} is given by

. D! S
= 5oga; Wl )y (D1
1 ¥y dl
m l_[; g ey (D2)

2wl -cap (|1"| Z/a 4 |-"D|2,r"}-f_}}ﬂ+l s

where the 4; are the eigenvalues of p and difr is the Haar
measure. In Eq. (D2), we explicitly write the probability
densities in the eigenbasis of p: |f) = Ej Fexpligy) |d).
This allows us to compute the kth moments péﬂnm in
terms of its matrix elements:

k
{J'"ﬁ T J"“t | péczbngn |J"b| o ‘j'-bt:ll

k
P ({r}}) (g rm”’:e”\wr_%ﬂ) :

D3

After integrating over the phases {¢], the only nonzero
matrix elements are those with {i,} = (A} or, equiv-
alently, where the list of indices {a;} 15 a permutation
of [}, The remaining integral over the probability sim-
plex {r}z | .rf =0, er}’ = 1} can be evaluated either
numerically or analytically.

We use this expression for the second moment of
the Scrooge ensemble to compute the frace distance

1/21p® — pgarogelln in Fig. S(c).

APPENDIX E: PROOF SKETCH OF MAIN
THEOREMS

We begin with a sketch of the proof of Theorem 1.
We use streamlined notation for clarity. Recall that for a

generator state |} on H, the projected ensemble £4,4 =
{p:. |D:)} has

pe = (®|P:|®) (E1)
|9:) = (14 ® (z])| D)/ /P (E2)

It is convenient to define the unnormalized state
1B.) == (1, @ (zlg)|®} for ze (0,1} (E3)

010311-13



JORDAN S. COTLER et al

PRX QUANTUM 4, 010311 (2023)

g0 that p. = (@.|®.) and |®.) = |£ﬂﬁ:};’@. We note that,
in our new notation, we can write

o .
JE [(w0w)®] (F4)
= Y p(1o@)® (ES)
zeji,1p¥e
&,)(5.)%*
> ) —agen. @
zef, 1 ¥

The key to establishing Theorem 1 is to understand the
random tensor A(|d®}) when |&) 15 a Haar-random state.
Here, the Haar-random state is a normalized vector cho-
sen uniformly at random in d = dydp complex dimensions,
where d = 2V, dy = 2%, dy = 2"5 are the dimensions of
the Hilbert space with N, N4, and Ny qubits, respectively.
Twao ingredients are needed to understand A(|d}):

(1) The expectation value of A{|®}) over the Haar
ensemble

(2) The concentration of 4(|$)) around its expectation:
this tells us that, with high probability, A{|d)}) is
close to its expectation

Let us discuss these two ingredients in more detail.

Using the fact that the uniform measure (i.e., the Haar
measure) on the complex sphere is invariant under any
unitary rotations, we can show that p. and |&,){d.| are
independent random variables. Furthermore, |$.){®.]| is
a uniform random vector from a ds-dimensional complex
sphere. Hence, we have

E A(eh)= E
d~Haar(d) Jr~Haar(d,

](|~l-}c~b|}@*, (ET)

which is the fth moment of the uniform ensemble. This
means that the expectation of the Ath moment of the
projected ensemble of a randomly selected many-body
wave function [®) reproduces the kth moment of the Haar
ensemble in d4 complex dimensions. Hence the expec-
tation Eg-panasA(|®)) is exactly equal to the desired
quantity.

To understand the concentration of A(|®)}) around its
expectation, we recall the well-known result that the uni-
form distribution over a high-dimensional sphere has a
very sharp concentration. For any Lipschitz function on
the sphere, the fluctuation around its expectation value
is small and the probability of having a large fluctuation
decays exponentially. This is known as Levy’s lemma and
it allows us to upper bound the probability that A(|$))
is far from its expectation. Together with the expectation

identity, we have

@k
. gﬂﬂ[ ”mw SR N ((7107) ]N1 > e]
dp &” ]
< 2d¥ exp( T l}df‘)' (ES)

The asymptotic relation in Theorem | follows immediately
from the above probabilistic statement. The detailed proof
of Theorem 1 is given in Appendix F.

The proof of Theoram 2 is very different from that of
Theorem 1. First, the expectation of A(|&)) in Theorem 1
is computed using the invariance property of the Haar mea-
sure, which does not hold for a measure that only forms a
state design. Furthermore, Levy's lemma only holds for
the Haar measure, so we cannot resort to Levy’s lemma to
control its statistical fluctuations. To prove Theorem 2, we
make use of a technique vused in the context of solving lin-
ear systems on a quantum computer [51]. The key idea is
to add a modulating function that approximates A(|d®)) by
a polynomial function in |[$). In particular,

Aoy =

ze{0,1}"E

(18.)(®.1)™
(@B, )]

= @k
(18:)(.1)° =
~ B(|®)) = — dpg{®.| D)),
(1)) ZH g e (82 82))
ze|l 1)
(E9)
where the modulating function is given by
pep(s) = (1= (1 =" for beven.  (E10)

Using the binomial expansion, we can check that B(|d})
is a polynomial function. Furthermore, pep(s) is very
close to one when s = dp(d;|d;} is around one. Taking
b larger allows us to better approximate the constant func-
tion gegn(s) = 1, which corresponds to the target expres-
sion A(|d}). A visualization of pg(s) can be found in
Fig. 8(a). If |@) is sampled from the uniform measure on
the quantum state space, then s = dg{®.|®.} will concen-
trate around one [see Fig. 8(b}]. So for |$) sampled from
the uniform measure, we can show that A{|d}) = B(|d)).
However, |®} is sampled from a quantum state design, so
there is no guarantee that s = dp(P.|d.} should concen-
trate around one. To address this, we utilize the following
result proved in Lemma 5 {Appendix F):

A ®}) — BldDI, = R(|P)), (E11)
where R({|®)) is a polynomial function given by
Z {EZIE':} [I = HEh {dﬂ‘{Ezl&-"z}H . {.[_—']2}

ze(0, 1M
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FIG. 8. A visualization of the modulating function and the concentration of d;{&?,ﬁ,}_ (a) The modulating function ju; () defined
in Eq. (E10) for varying values of b from 2 to 16. The darker colors correspond to higher b, We fix k = 2 in the plot. (b) The
concentration of s = dg(®. | P, ) for the Hilberi-space dimension of subsystem A, i.e., dy = 2% = 16, when |®) is sampled uniformly
at random from the complex sphere. We sample 10000 different vectors |$) to generate the histogram. The black solid line is a
kernel-density-estimation fit of the histogram. If d; is larger, then 5 is more concentrated.

Hence, the approximation error can be upper bounded by a

polynomial function over which we have better control.
After introducing the key quantities, the proof proceeds

by bounding the error between (i) A(|$}). where |} is

sampled from a state design, and (ii) the expectation of

A(I), where |} is from the Haar measure. We use
B(|d}) as an intermediate point of comparison:

E HAI{N?H - 'I_“EWA(I'-F}}

Dreie’ k') design I
= E (l4(®)) — B(|®),
(&' k") design
+ B |BQ®) - E A(W) (E13)
(=" &) design Haar 1

The first term can be upper bounded by R{|$)) and we
can use the fact that state designs approximate the expec-

tation of any polynomial function under the Haar measure.
Accordingly,

E  lA(1e) - B(eNI = E

(&' k") design (&' k") design
= E R(|®)).
Haar

R(|®))
(E14)

In the second term, we can apply a similar idea by upper
bounding the 1-norm with the 2-norm and utilizing the fact
that B(|$)) — EppaarA (W) is a polynomial function in |4},
This gives

E NB{I‘I’}} - r%E A(I‘FHH
AT 1

(' k") design

2
(E15)

< \/a:& E Hﬂﬂw— E A(W))
(" &'y design Haar 2

2
}B{I'TP}} -k AiI‘I‘}}N - (El6)
aar 2

"
gJ'{HEH’

We then approximate B(|®)) by A(|d}) in the above
expression, where the error can be upper bounded by

R(|®))%. This gives the approximate relation

E ”ﬂnwﬂ— E A(wn“
(&' k') design Haar 1

< |d B (R{|-:I:}]1 + Nﬂf(lfﬁ}} - Hliaimr‘flil'l*‘]*]

2
)
(E17)

Using these steps, all our expressions contain only expec-
tations over the Haar measure. More precisely,

E HA{I‘MJ— E AuwnN
(g’ k) desigm di~—Haar |

S E R(®) + aj[;E R(|®))?

2
. (E18)
2

+ Jﬂ'ﬁ E Nm-:b}} - IE“AKI‘P}}|

The first two terms are small because

(1) prepls) is close to one when s is close to one.
(2) It |@} is sampled from the Haar measure, then s =

dpld.|d.) will concentrate around one.

See Fig. 8 for visualizations. The third term is small due to
Theorem 1. Finally, we can resort to Markov's inequality
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to show that with a probability of at least .99, we have
that [JA(|®)) — EgetaaeA(| L)), is small. The full proof
of Theorem 2 is given in Appendix F.

APPENDIX F: PROOF OF MAIN THEOREMS

1. Useful identities

We collect here several useful identities that we leverage
throughout the remainder of the appendix. The first identity
is

2 res, Permyes ()

®.)(®.))®] = _
fbmrEarm[{l @] dd+1)---d+k-1)
(F1)
Taking the trace, we find
daldg+1)---(dy+ k1)
@,|P.)*
rbMHau[d}[{ 4 :I] did+1)---(d+ k-1
(F2)
The related identity
D.|d,) [
N ((CAC ST
Kdyde+1)---(ds+k—-1) .
= fi F3
dd+ 1) @d+2k—1) orz#y (1)

is likewise useful.

2. Proof of Theorem 1

The main ingredient to prove Theorem 1 is Levy's
lemma, which states that if a function is Lipschitz continu-
ous, then it will concentrate around its expectation value if
the variable is sampled uniformly from a high-dimensional
complex sphere.

where here, as above, |&) = [1 1] - §. We have

Lemma I (Levy's lemma). Let/ : 5" — R satisfying
[f (v) —f (w)| = nllv — w2 Then, for any & = 0, we have

Probo-piaara| [f (9) — Egmttaaria[f ()] | = 8]
-5 2d 8 )
=Zexp|— o)

Betore applyving Levy's lemma, we need to define a
function of interest. In particular, we consider individ-

ual entries in the main quantity Y~ _ g ;v Pz (|9:){®: |}®*
Let {|f}}igq0,1yva be the standard basis on ?{fﬁ and write
i} = @}, 1'%}, where each |i®) € M. Similarly, write
i) = @i, ™). Consider the function f; : §¥~! — R
defined by

(F4)

(1) (®.1)™
>

Ji(1®)) = (il MHSW vy (F3)
({01}, |j©
Z ]_lr U ::aji—l_lj ]I_ (F&)

ze[uu"'ﬂ

A nice property of this function is that it is Lipschitz
continuous and hence Levy’s lemma can be applied.

Lemma 2 (Lipschitz constant). A Lipschitz constant for
fyisn=2(2k—1).

Proof. Let ¥ be an element of 7', Then, |®) =[1 i1]-
i is a normalized state in C7, where 1 denotes the d x
d identity matrix. Here, we are using a mix of bra-ket
notation and ordinary vector notation, where the latter is
reserved for real-valued vectors. Shortly, we also use the
notation © for the d x d matrix of all zeros. Since our fj; is
differentiable, we can choose any 1 such that

3

=1 ze0,1}¥8

d
2w -

k
ey y L

=0, 1Y

E'=1 zein, 1} Ve

+2(k=1)

. ‘; : (FT)
Flzae"}i:::?;}f h{mj; (18:)(B:1/ )
:;ﬂuclbé}} ) if“‘zm
z z z
nwg:::z}t_1 A ﬁ‘{tt‘ucb (@) L
RICREOR -

zejd, 1jve
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where we simply explicitly evaluate the derivatives and use the triangle ine fguallt}r for the 2-norm. Let us bound each of
the terms on the right-hand side in turn. For the first one, defining Mé [0 () £ | €N (Y], we have

”r#;{;(ﬂ | .1; 2|}. tEn

jED FTILS]
B dv{ |®.) (D] )

_]’E[DI]NB 2
8 ey i (706D R
]_[f'?"_-f"{i |¢3}{¢2U } M; _IMF L l_-.g
{;ﬁﬁ;}k_] iM-  M* ® |z)izlp ) - v (FY)
¢'='|:E{EI,I]~H z| ™z e 'y 2
. TATE ST L] e Y .| M::""- _I‘Mt‘: ‘
ertlngbgr,,=(l_[gﬁyl[: [ ) (b [f 1/ (b )7 and My = M- Mt , the above evaluates to
& ¢
. 1/2
Y B 0 (MIMe @ [2)(ela) - B
pt=1zef,1}VE
12
Ay % 631 1B 1] (@] (1M M| @ I2)z1) 10} ) (F10)
£p'=1zg[0,1)Mr
where |4| := +/47A. But since
= e a@ik—1) = a@ik—1)
D), &) (.
Ibesl = Jtr{ | @ U] -({' 3{—-” ) QU *“I ( j{ﬂ-”k_] u—'
E#-E' {¢ |¢ } E?Ef‘r {¢'z|¢"z} 2
Eq. (F10) is less than or equal to
172 [ 1/2
Z > (MM le) 5| =| 3 5 (1M Mel®©15) -5
£ p'=1 ze[0, 1} VB \t'p'=1
[k 112
% .
=| D0 MMyl | (F11)
\ &' p'=1

Since ||M;.«Mr oo = ||M;, laa lMeloc = 4, the above is = 2k,

Now, we bound the term in the last line of Eq. (F8). Letting ¢, (]_[r : ({91@.) (D7 )/ ({®-] -)F). the term can be
written as

12
2w—n| Y el [’E ‘E]m . (F12)
e, 1% =
Using the bound
¢ (19.) (@)™ ¢ (1%.)(®.])*
le.| = |tr 'H:IHi-Eﬂlll ) s IE:I [Ell T 1.
(@U (| P @ ) (@D |
we can upper bound Eq. (F12) by
1/2 112
[P 0] - . (T1 o . ,
2= X0 Vg p ] =2k=n | 30 0T ([ (| @F) | =2k-D. (FI3)
ze[0,1) V8 ze(0,1)8
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Putting our bounds together, we have

which is the desired result. |

d
22 ho)

=24+ 2k—1)=2(2k- 1), (F14)
2

While the above bound on the Lipschitz constant, along with Levy’s lemma, guarantees that each function fi; concen-
trates around the its expectation value, the expectation value of f; has not yet been computed. The following lemma shows
that the expectation value of f; is closely connected to the quantum state k-design on subsystem 4.

Lemma 3 (Expectation-value identity). We have the identity

®~Haar(d) ze%ﬁs %%%T = %HIEMA}[(l'-P}{'-I‘I}@#]_ (F15)
Therefore, the expectation of f; is given by
B o] =B [anw)®] ). F16)
Proof. Observe that
UBIHED™ 14 )(01)%4(8.15,). F17)

{d}zl@?:‘*_l N

Furthermore, from a technical lemma given below, we have that |$.) is independent from (&b, |d,). Using this fact and
the linearity of expectation, we compute

(19.){®.])=F . o
E | Y 222 = Y B [0e@)®] B [(3:432)]
o-Ha@) | v (&, |, ) il &~Haar(d)
1
'I"vllaar[d,;][{l A ] . HJ,Z]}'VB dp ( )
as desired. -

During the evaluation of the expectation value, we use a property that the normalized state |d;)(P;| and the
corresponding probability p. are independent random variables. This is proven in the following lemma.

Lemma 4. If|®) is a Haar-random state on 'H, then the random variables |®.)(®.| and p. are independent.

Proaf. Define the map P:(|d}) .= (P$|F.|d} and let R; be the map taking | &} to the normalized state |[$.):
RoA(|®)) := tra((L4 @ |2){zlg) - |PHD]) /P=(| D). (F19)

Let Uy be a Haar-random unitary operator on H; and let U = Uy @ 1. Because U is unitary and |®} is Haar random,
the state U/|®) is also Haar random. Also note that
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P.U|®)) = P.(19)), R.(U|®)) = UsR.(19)Uf, (F20)
where the equivalence is in the sense of random variables. Therefore, for any functions # and G,
E [FR:A19)) GP:(|$)] = I [FIR(U|2) G(P:(I$))]
b--Haar(d) & ~ Haar(d)
Ug ~ Uldy)
= B [FumRqepul6p.qen]

& ~ Haar{d)
Uy ~ Uldy)

= g FOV WD B IGP:(O)]. (F21)

To pass from the second line to the third, we use the fact that for any state |W) on H4, the state L7y |} is an independent
Haar-random state on Hy. This shows that R, (|®)) and P.({|®)) are independent, as desired. |

With the above lemmas, we now proceed with the proof of Theorem 1.

Proof of Theorem 1.. Let us consider the function f; (|$}) defined in Eq. (F5). Because we have bound the Lipschitz
constant § < 4k — 2, we can leverage Levy’s lemma given in Lemma 1 to obtain

de?
gl =< 2 cxp —m . {FQE}

Proba-Haar(a) H/u (1®}) — i [/ (1@)]

~Haar(d}

Performing a union bound and rescaling & — g,.l’n‘%"‘, we have

del
.. 2 .
—ik f@rmmet,}} = 2dy" exp (_IE 2k =) A“). (F23)

Prﬂb-tmﬂmﬂd'}[ i) — o E [far

By comparing with the definition of f; in Eq. (F5} and using Lemma 3 to obtain the expectation value of fi;, the above is
equivalent to the following concentration inequality:

Probsin| | T (CRIC) N 3 (19.)(.1)* ..
‘ o (BT oHata) b (BB ) -
zefl, 18 ze[0, 18 entrywise, |
d &*
12k o _ . F24
= < pr( lEnJ(Zk—l}dj*) (F24)

where | 4] camrywise, 1 = 2, i |4y |. Finally, using |l 4||enrywize, 1 = (|41 and applying Lemma 3, we find that

&) (@)%

{I
Probe.taara Z
ﬁ'— -
iy }Nﬂ DD, ) W~Haar(d, |

dpe’ ]
WU =6 | <24 (— ) F25
}[{I }{ |} ] = & -_ 4 CKP‘ IEJTJ{Z;:— l}d.:*_ { }
We can see that if we have

pap k
dy = 187 [2:2 D4 2k log(dy) + log(2/8)) . (F26)

then the ensemble g 4 forms an e-approximate t-design with probability at least 1 — 3. Reeall that dy = 2™ dy = 2%,
hence taking a logarithm on both side of the above condition gives rise to

Nyg=28 (M"A + log (é) + log log (é)) . (F27)

which is the result stated in the main text. |
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3. Proof of Theorem 2

For convenience, we restate Theorem 2 in the following.

Theorem 3 (Restatement of Theorem 2). Let |W) be a
state chosen from an ensemble on H that forms an &'-
approximate k'-design. Then the projected ensemble £y,

Sfarms an g-approximate k-design with probability at least
1—8if

Np = Q(kNs +log (1)), (F28)

K = (k(Ng +log (£))). (F29)

log(4) = Q (kN (Ng +1log (%)), (F30)

Ny = Q (log(Ng) + log(k) + loglog (£)).  (F31)

In the following subsections, we begin with a discus-
sion of a generalized Levy’s lemma that provides sharper
concentration for quadratic functions. We then give a gen-
eral structure of the proof and provide the detailed proot of
several technical lemmas afterward.

a. Higher-order concentration

In the proof of Theorem 1, Levy’s lemma plays a crucial
role in establishing the desired statement. Levy’s lemma
tells us about a sharp concentration when the random
variables are sampled from a high-dimensional sphere.
We continue to utilize concentration on high-dimensional
spheres for the proof of Theorem 2. However, the orig-
inal statement of Levy’s lemma does not provide good
bounds for Theorem 2. We instead make use of a higher-
order variant of Levy’s lemma. In this section, we recall a
higher-order variant of Levy’s lemma that has been estab-
lished in Ref. [50] and use it to provide a simple proof of
a concentration inequality for the quantity {®:|®.}. The
higher-order concentration results provided in Ref. [50]
are a useful tool for obtaining concentration inequalities
tor polynomial functions on measures satisfying a log-
Sobolev inequality and may prove useful in other problems
arising in quantum information theory. For this work, we
only need the following result from Ref. [50].

Theorem 4 (Theorem 1.13 in [S0]). Letf bea Clsmooth
function on an open neighborhood of the sphere 8" ' with

Jowr S dow =001

|
2 ! — .
sz_J IVF Iz dow_1 = N (F32)
and || Hess [ () |loc = 1 forall 8 € §Y-1 then
fnr exp((N = 1)|f |/ (8e)) doy—1 < 2. (F33)
V-

As a corollary, we obtain the following result for
quadratic forms.

Corollary 1 (Concentration for quadratic forms). Let
Q: RY — BY be a linear map satisfying | Q|2 < 1/2 and
Qe = 1/2 and let

gn = fsn—l 8" 00 deory_1(8).

Then,

fﬁw_] exp((N — 1)(0700 — qo)/(8e)) dow_, <2. (F34)

Proof. Letf (x) = xTQ.: —ag. Then, Vf (x) = 20x, so
_LN_I IV 113 dory— =4fﬁw_] a'0" 00 doy_1(8). (F35)

Let {u;}}"‘;l be an orthonormal basis of eigenvectors of

0" Q with eigenvalues }L}-. Then, the latter integral is equal
to

4 -
4 ZA} fw_] (@ - u) doy_(0) = 5 Y =dn Y0l
¥ ’ i

(F36)

If |21z = 1/2, then f satisfies the condition given in
Eq. (F32). Moreover, Hessf =20, so | Hessf | =
2| M || 0. We can therefore apply Theorem 4 to f to obtain
(F34). |

We only need to use Corollary (1) in the case in which
() is an orthogonal projection.

Corollary 2 (Concentration for quadratic forms with
projectors). Let V' C BRY be a subspace of BY with dimen-

sion m and let Py be the orthogonal projection onto V.
Then,

(N — DIIPyOII3 — mfNI) .
ﬁ«g-l[ﬂp( Sev2m =2 (B9

and, in particular, for 0 sampled umiformly from the
sphere,

Proby. sua[|I1Py6]* — m/N| = 5]

|
< 2exp (——2 (N — l}m“”zﬁ) . (F38)

Ee«,-"—

Proof. Observe that ||P,,-||% =m and ||Py|lw = 1. so the
operator (2m)~ /2Py satisfies the conditions of Corollary
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1, from which Eq. (F37) follows. Then Eq. (F38) follows
from Markov's inequality applied to Eq. (F37). [

Specializing to the case in which |®} is a Haar-random
quantum state on H and Py is the projector P. =14 ®
|z}{z], we deduce an exponential concentration inequality
for (®,|®.).

Corollary 3 (Concentration for probability in a pro-
jected ensemble). We have the bound

e |
Pmammm[|{¢z|¢z} - ?g' > a}

] 172 )
d, “dgd ).
Rey2 ?

= 2exp (— {F39)

b. General structure of the proof

The proof is based on the idea of modulating the target
expression, which is a rational function, with a high-degree
polynomial to form a polynomial function. More precisely,
we are interested in the following two functions:

D) D, | = :
A ¢' = ——= ., .["-4-(}
(1%)) ZE”}Z”:MB B30 (F40)
||
B(®) = ) =t
2c{0}"8 (D:|D;)
2061\
% 1—(|—(d_ﬂ{$z|$z}) )
r
(F41)

where r, b = 0 are parameters for tuning the approxima-
tion of polynomial function B{|®}) to the target expression
A(|d)), which is a rational function. Because the 1 is
cancelled in the binomial expansion

2k—1py b
- (I - (di(&"'flﬁz}) )
F
b 2k—1)p
-y @{—nﬂ (d—f@z@z}) . (F4Y)
=1

it is not hard to see that 8(|d)) is indeed a polynomial
function in the real and imaginary parts of |$).

We consider |d) to be sampled from an (¢, £')-design.
We use the basic Markov inequality to bound the concen-
tration. A higher-order concentration inequality can also be

used but would require &’ to be higher. The central quantity
in Markov inequality is the expectation value of the error

A(|®)) — A | . F43
MEE]MW (op) - E A }}HI (F43)

We use B(|d}) as a surrogate to obtain an upper bound
on the above quantity. This is because B(|d}) is a poly-
nomial function rather than a rational function in the real
and imaginary parts of |$}. A triangle inequality gives the
following bound:

E |41o)- E A{I‘I-'}J“ (F44)
e’ k) design Wi~Haar 1
= E |4(l®) - B(dhi,
(' k') design
+ E fo‘(lf@}}— E A(I‘W}“- (F45)
(& &'} design Y~Haar 1

We can now analyze the two terms independently by using
properties of quantum designs. For the first term, we prove
in Lemma 5 that the following inequality holds:

l4(1®) — BN < D (D)

ze{0,1}"E

k=1 b
(I—(?{fﬁzl‘?éz}) ) .

Therefore, we define a polynomial function

L dy ~ ~ 2k—1y
RI®) = {mng}(l—(ﬁcbfwz:') )

ze[0,1 VB
which is an upper bound on the approximation error
between A(|d)) and B(|d}). Because a quantum design
approximates any polynomial function, we have the fol-

lowing upper bound:

(F46)

E l4(®) - B(eHl, = E  R(dh
(' k) design (" &) design
(F48)
=E R(|®}) +&" x Ey, (F49)

where the exact expression of E is given in Lemma 6. We
also apply a similar philosophy for bounding the second
term in Eq. (F45) by first upper bounding the term by a
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polynomial function that turns expectations over designs
into expectations over the Haar measure:

| Hﬂumn— E A(IW}}H
(e’ &) design JrHaar i

= d* | B(|d)) - AW F50
< B YA |Bien— & a0wp| 50
2
'ﬂfJ E d Bfl‘ﬁ}}— E A(|W)) (F51)
(& k') design e Haar a
2
EJ |BUP) — E  A(W)| +¢& xEp.
Haar Jr~Haar 7
(F52)

The first line follows from the relation between the 1-
norm and the 2-norm. The second line applies Jensen's
inequality. The third line I"ullowq from the observation
that d* I1B{|d}) — IEun,a,A{Il[-'}}IIlg is a polynomial func-
tion in |@}. Therefore, we can tum the expectation over
a quantum state design to one over the Haar measure,
which incurs a small error of £ x E;. The exact expres-
sion of Es is given in Lemma ? We now upper bound
Ettaar 1B(1D)) — EgpetraarA(¥))]13 by turning B(|d)) back

into A(|d}) and incurring an additional error;

2
T%E |3(|¢}} ]E A(|W)) EZHE I1B(|P})
[aar Y~Haar 1 aar
—A(@)I5 +2 E 14(19))
Haar
2
- K A{I'-lf}}' (F33)
~Haar 7

<2 E IB(®) - A DD

)
+2E NA(|¢}} E A(¥) (F54)
Haar d~-Har 3
R(I®)* 42 E 41D
Haar
2
— K A{I*I-'})N. (F55)
Jr~Haar 2

The first line follows from the triangle inequality and (@ +
E:}"- = 2{:12 + bE],‘#"a._,b e . The second line follows from
the relation between the 1-norm and 2-norm. The third line
uses the inequality given in Eq. (F46), which is proved in
Lemma 5. We can now combine Eqs. (F45), (F49), (F52),
and (F35) to find

A(d)) — Al Fia

M[G'E design (I }) 'l"v%.nar {l }} H 1 ( )
2

< E R(®) +¢& x Er + JZHE R(®)? +2 E NA(|¢=}} E AWD| +e xEs. (F57)
aar mar aar Jr~~Haar 2

In Lemma 8, we give upper bounds for Fip.R(|d})
and By R(|®))2. Lemma § is the key to Theorem 2. The
goodness of fit of the polynomial approximation B(|®)) to
the target expression A(|9)) is reflected in upper bound of
EiaacR(|®)) and EpR(]®))*. By changing the polyno-
mial approximation, one may likely obtain an improved
statement of Theorem 2. We leave open the choice of
the optimal polynomial approximation and focus mainly
on the simple and tractable polynomial approximation
given in Eq. (F41). The upper bounds for Epp,R(|P}) and
Eaac R (| B))? rely on the higher-order variant of Levy's
lemma given in Sec. Fia. In Lemma 9, we obtain an
upper bound on Ey,, [4(|D)) — IEHWA{M)]II%. Along
with Lemma 6 that bounds £'E} and Lemma 7 that bounds

£'F;, we can show that for any & = 0, as long as we choose
r= 2 and b to be an even integer with

b= Q (Ng + log(1/£))., (F58)
Ny = Q2 (log(Ng) + log(k) + loglog(1/e)),  (F59)
K = Q(hk), {F6)

log(l/e") = Q(log(1/e) 4+ k(BNg + log k 4+ N4)),

(F61)
£

(F62)
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we can obtain the following upper bounds:

e % E| =&, & x By =&, (F63)
ER(e) =e,  E R(|®))? = &7, (F64)
2
E |An:|d>}1 - E A{I‘I’}Ju <&’ (F65)
Haar Yr~Haar 7

Together with Markov’s inequality, we have the following
concentration result:
= ¢]
1

(F66)

Pr ["A{l*ﬁ}}— E z‘fﬂ'-l‘ﬂ‘
e’ &) dhesign Wi-~Haar

2e + V5el
HE —— =
5

5

T ]

for any £, & = (. Using Lemma 3 established in the proof
of Theorem 1, we have

E A(w)= E [()wp®].  (Fe7)
dieHanria 4)

JrHaar

Therefore, the projected ensemble of a randomly sample
state |@) forms an (g, K)-design on the local subsystem
with dimension dy = 2" under probability at least 1 — §
as long as the following conditions hold:

1 .
Neg=22 (k."'l",i + log (H)) . i F6E)
F=0lk (Ng + log (—l))) . (Fa9)
£d
(F70)

(
st = (s (e e (1)),
(

Ny = €| log(Ng) + log(k) + log log (%)) ;
(F71)

This concludes the proof of Theorem 2.

¢. Technical lemmas

Lemma 5 (Error bound on polynomial approximation).

If b is even, then || A(|d)) — B(|®))]l; = R(|d)).

Proof. Recall the following definitions:

FIENE Y

ze(0,1) e

|} b, | B

(@] @) (F72)

|®. ) D.|=F
(@], )1

B(lo) = Y

ze[0,1 VB

) (1 ) (' (@ I%)M_U)b) |

(F73)

o dy ~ ~ \2D b
R(®) = D (B.18.) (1—(7-:4:;@;}) )

o)

ze(i, 1) Ve
(F74)
We note the definition of trace norm ||-||; for Hermitian
matrices:
X, = sup tr{OX). (F75)
O[O =1
Hence, we have
l4(1®}) — B(1P)),
Fo v |k
= sup r|O Z —lfi{?%
0:10)| <1 cetonys Pzl P
Y
(-Eaa))) e
®, (%) O (|1®, )"
= sup Z [{ ”!a*}l:%EL_I} }
0=t o 1ye =T
201y P
X (l—(d—at?ﬁzlfiz}) ) (F77)
r
& 1
< wp ¥ BN
0:||D'°°Elzegn,1|-"a{ D)
L N2e-Dy
* (l - (d—f{d-‘-gl‘bz]l) ) (F78)

o de o 2T\ E

< sup Y c¢z|¢z>(l—(—”{¢z|¢z>) )
Ol M =1 zl0,1)Ve r

(F79)

= R(|®)). (F80)

This concludes the proof. [ |

Lemma 6 (Quantum state design on the error bound).
Fork' = 2b(k — 1) + 1, we have

E R(®) = E R(|®)) +£'E.
(e’ k') design Haar
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where the error ferm is given by

In particular, if we choose r = 2 < dy and recall that dy = 2"8, then for any & = 0 as long as

K'= Q(bk) .

log(1/e") = Q2 (log(1/e) + bkNp) .

we have the following upper bound on the error term: £'E) < &.

Proof. Letting M., = 14 & |z}{z], for £ = £, we have

> B (@E) - 3 (&)

&' k') desi ,
zelﬂ,l|""’ﬂt ) design ——

—le| [18*¥ -0 g Z M2 ( E (|¢-}<¢|}®*’—IEH{I¢H¢-I)@”)

) desi
R {&" k') design

¢[00V o

E - (|®) (b))% - E (1) {b[)S¥ “
aar |

(&' k") design

I

=E£

(F81)

(F82)

(F83)

(F&4)

where in the last inequality we use ||1‘3"f_!]' 2 E;Em,”.\-‘a MBE " = 1. Upon examining Eq. (F47), we see that for k" =
o0

2b(k — 1)+ 1, we can leverage (F84) to achieve

k=1 b
E R(|¢ns|£:“ﬂ{|¢n+sf(|+(7“) ) ,

(' 1) design

which is the desired bound.

Lemma 7 (Quantum state design on the polynomial approximation). For k' = 4b(k — 1) + 2,

2
E d + €'Es,
2

(&' k") design

2
d’
2El|§ar 4

B(o) — E [A(I‘I-‘}}]|

~Haar

B(®) — E_[4(W))]

where the error term is given by

2
2017\ P 201\ P
d d
E;=|2& —1+(|+(—3) ) +d _1+(|+(_ﬂ) )
r r

In particular, if we choose r = 2 < dg and recall that dg = 2"®, then for any & = 0 as long as

K = Q(bk).

log(1/&") = Q (log(1/£) + k(bNg + logk + N,)) .

we have the following upper bound on the error term: £'E; < &,
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Proaf. Recall from Lemma 3 that
M4k
dy +k—1
k
where in the last line, Tlsz is the projector onto the symmetric subspace of Hf*. Then, we can wrile
1B(®) — Empisarl (W) a5

E [A(¥DH]l= E ]n*ﬁ:-l:'bn@*: (FOO)

s~ Haar(d) @ ~Haar(dy

! 2tr(B(P)) 1
— v
= tr(B{d)*) (d1+k—l)+(ffd+k—l)'
k k

(F91)

Nsm — E (W)
i~ Haar 7

Using Eq. (F&4), we have for &' = 2b(k — 1) + 1 that

2tr(B(®)) 2 tr(B(®)) f dy\ 24 b
. _( di+k—1 ) <4 E _( dit k1 ) ek [_'+('+(,) )
k k

To obtain a similar bound on df;E(s* & dﬁ.sntr(Biib}l], we need the following generalization of the inequality in (F584).
Letting M,. = 14 @ |v)iz|, for & = 2{(p + g) we have

> E @000 ]) — Y E (D] ®,)]¥ (D] D.)4(D, D,
., b5"') design a " Haar
vzefl, 178 yze{0 18

=u-((1@“’-2“'+‘*”® D, M ®M?”®M§“®MJ?")~( E (|¢}{¢|}@*’—"Eﬂd::'@n@"))

r ' k) desi
y2e(0. 1}V ("K'} design

< l@;r'—zur+¢lj ® Z Mr}?.ﬂ ®@ ME.F ® Mg“" ® ng
el 1Ve

E (&) @) — Eﬂfb}«bn@"u
(=" &'} design Haar

1
oo

<g (F93)
where we use that [156 =200 @ 3 o, MF @ M @ M2 @ MST| = 1. Using Fq. (F93), for K> 2k +
2(2b — 1)(k — 1) = 4b(k — 1) + 2, we have

{£" k") design

=1y P
i E u(B(®)?)=<d E tr(B(®)?) + &' - df [—1 + (1 i (%) ) } . (F94)

Putting together Eqs. (F92) and (F94), we arrive at

2 2
“wﬁmgﬂﬂﬁ B(|®)) — %]%WH(I‘P})] i < IE.'«Mdfq uB(I‘b}} - wﬁ%ﬂ[ﬂl“’?]]“g
PR b o 2061 2k
+¢ |2 —|+(|+(Tﬂ) ) +d —|+(|+(Tﬂ) ) (F95)
for &' = 4b(k — 1) + 2 as claimed. |
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Lemma 8 (Moment bounds on error function). For & =
2,r=1,beven andd* = 8k — 6,

dy E—1)42 ( I |,f4)
R(|®)) = — + 2451+ ——d ),
E R(®)) = 57 +2d i Gy L7
(F96)
E R(|®)) < ﬁﬂd“““”*%x (— ! d'f‘*)
Haar — 2 B P Rea2 )
(F97)

In particular, if we fix an £ > 0 and recall that dq =
2N4 dp = 2%, then as long as

b= (Ng + log(1/e)),
Ny = Q (log(Ng) + log(k) + loglog(1/&)),

(F98)
(F99)

we have the following moment bounds on the error func-
tion:

E R(|®}) = &, (F100)
Haar

E R(®))* = £ (F101)
Haar

Proof. Recall the following definitions with » = 1:
z = = = ok F
RU®) = 3 (&:182) (1 — (da(®:18)" ")
zef0,1 e

(F102)

We note that {&'IZIE*;} & [0, 1] and we define an associated
function

y(s) =s(1— @)’ )", Vs e[0,11.  (F103)

For s € [(1 — 1/dy")/dp.(1 + 1/d}")/dg], we can see
that y(s) = 0 because b is even. We now proceed to upper
bound y(s) in this domain. We have the following bound

based on the condition that s < (1 4+ l,n"d,:"lqj,"dg:

1 2ik—1)
2(k—1
(dps)** 1 —1 = (HF)

A

1,4
o 2k=nja k-1

= = (F104)
1—@k=3)yd{" ~  dj"

The first inequality follows from the monotonicity of
(dps)*™=1 — 1. The second inequality follows from
the factthat (1 +x)" = |l +nx/(l — (n — D)x), ¥z e [—1,
1/in — 1)],n = L. The third inequality uses the condition

that dy = 8k — 6 = 2(2k — 3). We can also obtain another
bound using s = (1 — Ud;’q};’dg.

2k —1)

174
dg

1= l:dﬂ‘ﬁ'}zﬁ_l} E

(F105)

which follows from the fact that (1 +x)" = | 4+ nx, ¥x =
—1,n > 1. Together, we have ¥s € [(1 — 1/dY*)/dg, (1 +
1 ;’d},""‘};‘dg], that the function () is bounded as follows:

b
Y@l < @)D — 1] < (M) <t

The second inequality uses the fact that r:fjJr4 =8k—62=
8k — 1). If the variable 5 is not within that domain but is
in [0, 1], we have

() < dy“". (F107)

We consider the event & such that

s 1—1/dy" 14 1/d)"
(b |d.) e [ d: 4 . +d: 4 , Wz e {ﬂ1]’NR-
{F108)
which is equivalent to the event that
P I
(D] P.) — —| = ——. ¥z [0,1}".  (F109)
[680-3] < 7

We now utilize the concentration result given in Corollary

3.
Prob ||{¢* | }— : =4
robg.-. | —
- Haar(d) o | =
if” ifgﬁ),

1
= 2exp (_Eeﬁ ¥

to derive the probability upper bound for the complement
of the event G

(F110)

Probg.-. gaari[ G did not happen ]

= 2dpexp (_s L@dyd) :
[

which is obtained by taking the union bound. We can
now proceed to upper bound the first and second moments
of R(|&}) by noting that R(|$)) = Ezewluyg yi{d, b))

(F111)
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When the event G happens, we can use Eq. (F106) to
obtain

|
IR(|®))] < —.

= (F112)

If the event & did not happen, then using Eq. (F107), we
have
R(®))] = dy" " (F113)

Together, for both m = 1,2, we have

d i
HE R(|d)" = (E_i) Probg-. Haargn [ G happened |
(F114)

+ Ef;{ib{*—lHU Probg. gauran [ G did not happen ]
(F115)

< S e (). o

where the last inequality uses the concentration result
given in Eq. (FI111). The asymptotic bounds can be

obtained from the above result under suitable choices of

the parameters given in the statement of this lemma. W

Lemma 9 (Second-moment bound for projected ensem-
ble from Haar measure).

2

2]

In particular, recalling that dg = 2V4,dg = 2", then for
any & = 0, as long as

|
Ng=10Q (H‘ﬁ + log (E)) ,

we have the upper bound

E 'A{I'i“'}} - %PEM[A{I'-P}}]

®~Hasr(d) [

< 36m° 2k — 1)(d¥ /dy).

(F117)

(F118)

Aqe) - E 409

F
E [‘ ] =&l (F119)
@--Haar(d) 2

FProof. Note that Eq. (F25) implies that

Probg faara |:HA{|¢':'] T |IEmd}

dgy
< Ay exp (_ 1873 (2k — I}dj") |

2
[A(¥))] N EJ‘]

2

(F120)

Then, we can use the fact that E[X ] = fum dr ProblX = x]
for any positive random variable X to obtain

2
E {Anm}— E[AQW))] ] (F121)
ib-~Haar{d) W ~~Haar{d) 7
- f dy Proba st [14(15))
—o0
2
- E rmuuwmuz zy] (F122)

f:fmd 2d% ex (— dry ) (F123)
=Jy VTP T Rk — Dar
< 367  (2k — 1}£, (F124)
dy
which establishes the bound. |
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