Check for
Updates

Parallel Memory-Independent Communication Bounds for SYRK

Hussam Al Daas Grey Ballard Laura Grigori
Rutherford Appleton Laboratory Wake Forest University Inria Paris
Didcot, Oxfordshire, UK Winston-Salem, NC, USA Paris, France
hussam.al-daas@stfc.ac.uk ballard@wfu.edu laura.grigori@inria.fr

Suraj Kumar
Inria Lyon
Lyon, France
suraj.kumar@inria.fr

ABSTRACT

In this paper, we focus on the parallel communication cost of mul-
tiplying a matrix with its transpose, known as a symmetric rank-k
update (SYRK). SYRK requires half the computation of general ma-
trix multiplication because of the symmetry of the output matrix.
Recent work (Beaumont et al., SPAA ’22) has demonstrated that
the sequential I/O complexity of SYRK is also a constant factor
smaller than that of general matrix multiplication. Inspired by this
progress, we establish memory-independent parallel communica-
tion lower bounds for SYRK with smaller constants than general
matrix multiplication, and we show that these constants are tight
by presenting communication-optimal algorithms. The crux of the
lower bound proof relies on extending a key geometric inequality
to symmetric computations and analytically solving a constrained
nonlinear optimization problem. The optimal algorithms use a tri-
angular blocking scheme for parallel distribution of the symmetric
output matrix and corresponding computation.

CCS CONCEPTS

« Theory of computation — Parallel algorithms.

KEYWORDS

Symmetric matrices, Communication costs, Convex optimization

ACM Reference Format:

Hussam Al Daas, Grey Ballard, Laura Grigori, Suraj Kumar, and Kathryn
Rouse. 2023. Parallel Memory-Independent Communication Bounds for
SYRK. In Proceedings of the 35th ACM Symposium on Parallelism in Algo-
rithms and Architectures (SPAA °23), June 17-19, 2023, Orlando, FL, USA. ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3558481.3591072

1 INTRODUCTION

The symmetric rank-k update computation, known by the acronym
SYRK, takes a single matrix A as input and outputs the multipli-
cation of A with its transpose, C = AAT which is a symmetric
matrix. The computation gets its name from its use as a subroutine
within algorithms for computing the Cholesky decomposition of a
symmetric positive-definite matrix, and it is one of the level-3 Basic

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
SPAA °23, June 17-19, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9545-8/23/06...$15.00
https://doi.org/10.1145/3558481.3591072

391

Kathryn Rouse
Inmar Intelligence
Winston-Salem, NC, USA
kathryn.rouse@inmar.com

Linear Algebra Subroutines (BLAS). SYRK is a useful operation for
many other applications: the result C is known as the covariance
matrix in the context of statistical data, and it is also called the
Gram matrix in the context of numerical linear algebra. The SYRK
computation is often the computational bottleneck for solving lin-
ear least squares problems via the normal equations, computing a
OR factorization using the Cholesky QR algorithm, or computing
singular values and vectors via the Gram SVD algorithm. Because
of its fundamental importance and inclusion in the BLAS, SYRK is
a well-optimized kernel on the full range of sequential and parallel
computational platforms.

Mathematically, SYRK is equivalent to general matrix multi-
plication (GEMM), but because the output matrix is symmetric,
algorithms can save half the computation compared to GEMM
by computing only the lower or upper triangle. In the context of
Cholesky decomposition algorithms, A is typically tall and skinny,
so that the output C is a much larger matrix. For applications like
the normal equations, A is short and wide, so the output C is a
smaller matrix.

In this work, we focus on the communication costs of parallel
algorithms for SYRK. The main contributions of our work are to

(1) establish new communication lower bounds that apply for
all ranges of input matrix dimensions and numbers of pro-
cessors,

(2) present new parallel algorithms for SYRK with parameters
that can be tuned to minimize communication cost, and

(3) prove that lower bounds and algorithms are optimal in all
ranges, with matching constants in the leading order terms.

The I/O complexity and communication bounds for SYRK have
been well studied. A simple reduction argument shows that the
communication cost of SYRK with square input is at least that
of GEMM (up to a constant factor): to multiply matrices A and

0 A
B, compute SYRK for the matrix [0 BT]' Thus, classical results

for matrix multiplication [14, 15] extend to SYRK. These results
imply that for SYRK with square input of dimension n has sequen-
tial I/O complexity of Q(n3/VM), where M is the size of the fast
memory, and parallel communication cost of Q(n? /P?/3), where
P is the number of processors. Ballard et al. [3-5] have given di-
rect proofs for a set of computations that include SYRK, but the
leading order constants are not tight. In the case of GEMM, Smith
et al. [21] tightened the constant for sequential I/O complexity,

https://orcid.org/0000-0001-9355-4042
https://orcid.org/0000-0003-1557-8027
https://orcid.org/0000-0002-5880-1076
https://orcid.org/0009-0001-1449-0165
https://orcid.org/0009-0001-4045-0423
https://doi.org/10.1145/3558481.3591072
https://doi.org/10.1145/3558481.3591072
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3558481.3591072&domain=pdf&date_stamp=2023-06-17

SPAA ’23, June 17-19, 2023, Orlando, FL, USA

and Al Daas et al. [2] tightened the constants for parallel memory-
independent communication lower bounds. Beaumont et al. [7]
establish the I/O complexity of SYRK with input dimensions nj X ny
as (1/V2) - n%ng/\/ﬁ, which is a factor of 23/2 smaller than that
of GEMM, and they show that the leading constant is tight by
providing an optimal sequential algorithm. Sequential communica-
tion lower bounds can be extended to memory-dependent parallel
bounds in a straightforward way (interpreting the fast memory size
M as a local memory size), but the parallel bounds are typically not
attainable when A is sufficiently rectangular or either P or M is
sufficiently large. The parallel lower bounds we establish for SYRK
in this work are attainable, given sufficient memory, and each is a
factor of 2 smaller than the corresponding bound for GEMM.

Our work builds primarily on two of the aforementioned results.
Al Daas et al. [2] use a constrained optimization approach involving
projections of a processor’s assigned computations onto the matrix
data to prove communication lower bounds for rectangular matrix
multiplication. The constraints on the projections are derived from
the Loomis-Whitney inequality [17] as well as individual bounds
on the projections, and these constraints yield three lower bounds
that apply across different ranges of relative matrix dimensions
and number of processors. Al Daas et al. present three types of
algorithms, called 1D, 2D, and 3D corresponding to the number of
dimensions of the computational space that are partitioned, that
obtain the lower bounds in each of the three cases. In this work, we
use the same general approach to prove the lower bound for SYRK
in §4, and we use the same classification scheme to describe our
optimal algorithms. The key difference is that the Loomis-Whitney
inequality does not provide a constraint sufficient to obtain optimal
constants for SYRK. We develop a new result (Lemma 3), based on
Loomis-Whitney, that is specialized to the structure of SYRK.

Beaumont et al. [7] prove sequential lower bounds for SYRK,
and they also propose a novel cache-blocking scheme in order to
obtain an optimal sequential algorithm. Their scheme is based on
triangle blocks, such as those that occur naturally on the diagonal
of a standard cache-blocking scheme for symmetric matrices. They
illustrate that for SYRK, triangle blocks exhibit a higher operational
intensity (computation-to-data ratio) than standard cache blocks
because of the symmetry of the data. Further, they show how a
symmetric matrix can be partitioned into triangle blocks so that the
entire sequential computation can achieve the higher operational
intensity and attain the constant of the lower bound. As we describe
in § 5, we use the triangle block partitioning scheme to define
a parallel distribution for 2D and 3D algorithms that attain the
constants of the parallel lower bounds. The key difference is that
our algorithms are parallel, and the triangle block partitioning is
used to define a parallel data distribution rather than sequential
cache blocks.

Algorithms for SYRK have long exploited the symmetry to re-
duce the computational cost by a factor of 2 compared to GEMM.
As mentioned earlier, Beaumont et al. [7] demonstrate that in the
sequential context, the communication cost of SYRK is a factor of
23/2 smaller than matrix multiplication, at least in theory. The main
conclusion from our work is that in the parallel case, the communi-
cation cost of SYRK is a factor of 2 smaller than GEMM. State-of-
the-art library implementations of SYRK such as ScaLAPACK [38]

392

Hussam Al Daas, Grey Ballard, Laura Grigori, Suraj Kumar, and Kathryn Rouse

or Elemental [20] do not achieve this reduction; they halve the
computation but communicate the same amount of data as GEMM
along the critical path. While our results are currently only theo-
retical and involve some assumptions on the number of processors,
we believe future work can demonstrate that they will outperform
GEMM in practice by close to that theoretical factor, whether the
time is computation or communication bound.

2 RELATED WORK

The first communication lower bounds were presented by Hong and
Kung [14] who used the red-blue pebble game to develop bounds for
many sequential computations including matrix multiplication. Ag-
garwal et al. [1] extended their matrix multiplication results to the
parallel LPRAM model and provided the first memory independent
communication lower bounds. Irony et al. [15] reproduced previ-
ous matrix multiplication bounds by applying the Loomis-Whitney
inequality [17]. Ballard et al. [3] extended the use of the Loomis-
Whitney inequality to derive bounds for any computation that can
be written as three nested loops. Dongarra et al. [13] improved the
constant for sequential lower bounds for GEMM, which was further
improved by Smith et al. [21]. Demmel et al. [12] derived three par-
allel memory-independent tight communication lower bounds for
rectangular matrix multiplication based on aspect ratios of matrices.
Al Daas et al. [2] applied constrained optimization techniques to
improve the constants for all three parallel memory independent
matrix multiplication lower bounds.

Olivry et al. [18] presented a method to automatically derive
sequential communication lower bounds for affine computations
(including SYRK) which was extended to automatically derive al-
gorithms that asymptotically achieve the lower bounds in [19].
Kwasniewski et al. [16] presented a general method to automati-
cally derive communication lower bounds for Disjoint Array Access
Programs, which they then applied to determine lower bounds for
parallel Cholesky and LU factorizations.

The automated methods just mentioned require assumptions
that prevent algorithms from taking advantage of symmetry of in-
puts or output. Beaumont et al. [7] improved the constants of com-
munication lower bounds for both sequential SYRK and Cholesky
factorization by a factor of V2 by taking advantage of symmetry.
They also provided novel algorithms that take advantage of symme-
try and reduce the I/O complexity of the previous best algorithms
by the same factor and prove that the leading terms in their new
lower bounds are tight. In separate work, Beaumont et al. [6] intro-
duced a new tiling scheme for Cholesky factorization algorithms
that takes advantage of symmetry to reduce communication.

3 PRELIMINARIES

3.1 SYRK

The SYRK computation is denoted as C = A - AT, where A is an
ny X ny matrix and C is an ny X n; symmetric matrix. Here C;; =
ZZZZ_OI AjkAjg for 0 < j < i < ny. Figure 1 depicts the iteration
space of SYRK along with projections of the data dependence. A
scalar multiplication is performed in each iteration point.

Parallel Memory-Independent Communication Bounds for SYRK

Figure 1: Iteration space of SYRK with a total of niny(n; +
1)/2 iteration points. Iteration (i, j, k) and its projections are
shown along with its symmetric partner (j, i, k) as described
in Lemma 3.

3.2 Parallel Computation Model

We consider the MPI or a — f —y model [11, 22] of parallel computa-
tion. In this model, a computation is distributed over P processors,
each of which have their own local memory and are connected to all
other processors via a fully connected network with bidirectional
links. A processor may share data with another processor by send-
ing (receiving) a message to (from) the processor over the network
which we refer to as communication. A processor can only perform
computations using data in its local memory, thus any input data
for the computation that does not reside in the processor’s memory
must be received as a message from another processor. The cost
of communication depends on two parameters « and f, where a
is the per-message latency cost, and f is the per-word bandwidth
cost. y denotes the per-operation arithmetic cost. An algorithm’s
total communication is determined by both the size of the messages,
the bandwidth cost, and the number of messages, the latency cost,
required for each processor to have a copy of its required data in
local memory. We assume that a processor can send or receive at
most one message at a time, but multiple messages between disjoint
pairs of processors may occur simultaneously as the fully connected
network assures that there is no contention on the network. As
bandwidth cost dominates overall communication when messages
are large, we seek to minimize the bandwidth cost along the critical
path which we will refer to as communication cost.

In this work, we assume that each processor has sufficient local
memory to execute each algorithm. We discuss extensions of the
lower bounds and algorithms to limited-memory regimes in §6.

Our algorithms in § 5 perform communication using ALL-TO-
A1l and REDUCE-SCATTER collectives. We assume that pairwise ex-
change algorithms are used for both collectives. These algorithms
have optimal bandwidth costs. The latency and bandwidth costs of

1

both collectives on P processors are P — 1 and (1 - P) w, respec-

tively, where w is the number of words on each processor before and
after ALL-TO-ALL or before REDUCE-SCATTER [10, 11, 22]. Each pro-

1

cessor also performs (1 - P) w computations for REDUCE-SCATTER.

We discuss the use of latency-efficient collectives in §6.

393

SPAA ’23, June 17-19, 2023, Orlando, FL, USA

3.3 Fundamental Existing Results

In this section we cover some existing definitions and results which
we will use in §4 to derive our communication lower bounds.

The first result is geometric and allows us to relate the volume
of a computation to the area of data required by it in the input
and output arrays. The Loomis-Whitney inequality [17] has seen
frequent use in the derivation of communication lower bounds for
many linear algebra computations [2, 3, 12, 15, 21].

LEmMMA 1 (Loomis-WHITNEY [17]). LetV be a finite set of points
inZ3. Let $;(V) be the projection of V in the i-direction, i.e., all points
(j, k) such that there exists an i so that (i, j, k) € V. Define ¢;(V) and
¢ (V) similarly. Then

VI < 1 (DIV2 - 16;(0)V2 - g (V)| V2

The Loomis-Whitney inequality yields the intuition that to max-
imize volume given the sizes of the projections, the set V should be
a cube, with projections that are squares. Applying this intuition to
computations with cubical iteration spaces has led to tight lower
bounds. In the case of rectangular matrix multiplication, the Loomis-
Whitney inequality alone does not give a tight lower bound when
the iteration space is not cubical, and in that scenario additional
optimization is required [2]. In the case of SYRK, the iteration space
is a triangular prism. While the Loomis-Whitney inequality applies
in this situation, it does not yield tight constants, which leads to the
gap between the automatically derived bounds of Olivry et al. [18]
and the tight bounds of Beaumont et al. [7] for the sequential case.
We present an extension of the Loomis-Whitney inequality in §4.1
allowing us to generate tight bounds for symmetric computations.

The following definitions and results enable us to solve the con-
strained optimization problem of Lemma 6 that is the crux of our
lower bound argument. For completeness of the exposition, we
follow Al Daas et al. [2] and begin by reminding the reader of the
definitions of differentiable convex and quasiconvex functions, and
the KKT conditions. We also state the lemma on the sufficiency of
KKT-conditions for optimality under certain conditions.

DEFINITION 1 ([9, EQ. (3.2)]). A differentiable function f : RY
R is convex if its domain is a convex set and for all x,y € dom f,

fy) = f(x) +(Vf(x).y - x).

DEFINITION 2 ([9, EQ. (3.20)]). A differentiable function g : R4 —
R is quasiconvex if its domain is a convex set and for allx,y € dom g,

g(y) < g(x) implies that (Vg(x),y — x) < 0.

DEFINITION 3 ([9, EQ. (5.49)]). Consider an optimization problem
of the form

min f(x) (1)

where f : R — R and g : R? — RE are both differentiable. Define
the dual variables p € R, and let J; be the Jacobian of g. The
Karush-Kuhn-Tucker (KKT) conditions of (x, p) are as follows:
Primal feasibility: g(x) < 0;

Dual feasibility: g > 0;

Stationarity: V f(x) + u - Jg(x) = 0;

Complementary slackness: pjgi(x) = 0 foralli € {1,...,c}.

subjectto g(x) <0

SPAA ’23, June 17-19, 2023, Orlando, FL, USA

LEMMA 2 ([2, LEmMMA 3]). Consider an optimization problem of
the form given in eq. (1). If f is a convex function and each g; is
a quasiconvex function, then the KKT conditions are sufficient for
optimality.

4 MAIN LOWER BOUND RESULT

In this section, we present the communication lower bound for
the SYRK computation. We focus on computing the strict lower
triangle of C, yielding a valid lower bound on the full computation.
We begin by proving an extension of the Loomis-Whitney inequality
that yields a tight constraint to relate the volume of computation
to the amount of data accessed for SYRK. We demonstrate some
additional constraints on the sizes of projections onto arrays, and
use the constraints to formulate an abstract optimization problem
which we solve using the KKT-conditions. Finally, we demonstrate
that the abstract minimization problem corresponds to minimizing
the communication for SYRK to prove the lower bound.

4.1 Fundamental New Results

We present an extension of the Loomis-Whitney inequality in the
following lemma that we use in the proof of Theorem 1 to obtain
a tight constraint. The iteration space of SYRK forms a triangular
prism, as shown in Fig. 1. The idea of the proof of the following
lemma is, given a subset of iteration points corresponding to SYRK
multiplications, to copy the points across the plane corresponding
to the diagonal of C, and then relate the volume of the points (along
with their symmetric partners) to the areas of the projections in the
3 directions using the Loomis-Whitney inequality. The symmetric
partner of a single point is illustrated in Fig. 1.

LEMMA 3. Let V be a finite set of points contained in {(i, j, k) €
Z3|j < i}. Let $;(V') be the projection of V in the i-direction, ¢;(V) =
{(, k) € Z?| there exists i € Z such that (i, j, k) € V}. Define $;(V)
and ¢ (V) similarly. Then

2|V < 1gi(V) U g5 (V)] - 2l (VIDY2.
Proor. Consider the set
V ={G,j,k) € Z%|(i,j,k) € Vor (j,i,k) € V}

and its projections. If (i, j, k) is an element of V then either (i, j, k)
is an element of V or (j, i, k) is an element of V, and so [V| < 2|V|.
If (i, j, k) is an element of V, then (j, i, k) can not be an element
of V, but both (i, j, k) and (j, i, k) are elements of V and so |V| >
2|V]. Thus |V| = 2|V|. Now, we will show that ¢;(V) = ¢;(V) =
$i(V) U ¢;(V). If (k) € $i(V), then there exists an i such that
(i,j,k) € V or (j,i,k) € V. In the first case (j,k) € ¢;(V), in the
second case (j, k) € ¢;(V), and thus $i(V) € ¢i(V) U ¢;i(V). If
(U, k) € ¢i(V) U ¢;(V), then there exists an i such that (i,j, k) €
V or (j,i,k) € V thus (i,j,k) € V and so (j,k) € ¢;(V). Hence
$i(V) U ¢j(V) S ¢i(V) and so $i(V) = ¢i(V) U ¢;(V). The same
argument shows that ¢ j(V) = ¢i(V) U ¢;(V). Finally, we show that
o (V)] = 2|¢x(V)]. If (i, j) € ¢x(V), then there exists a k such that
(i,j, k) € V. By the definition of V, (i, j, k) € V implies that j < i
and thus (j, i, k) can not be an element of V so (j, i) can not be an
element in ¢y (V). However, (i, j, k) € V implies that (i,j, k) € V
and (j,i,k) € V so for each element (i, j) € ¢ (V), (i,) and (j, i)
are different elements in ¢4 (V). Thus |y (V)| = 2|¢(V)]. Suppose

394

Hussam Al Daas, Grey Ballard, Laura Grigori, Suraj Kumar, and Kathryn Rouse

(i, j) € ¢x(V), then there exists a k such that (i, j, k) € V so either
(i,j,k) € V and (i,j) € ¢ (V) or (j,i,k) € V and (j,i) € ¢g(V).
Hence for each element (i,j) € ¢x(V), there exists an element
in ¢ (V) that is either equal to (i,) or has the two coordinates
reversed. Thus |¢; (V)| < 2|¢x (V)| and hence |¢x (V)| = 2|¢x (V).
By the Loomis-Whitney inequality (Lemma 1), we know that

V1< 19 (V)2 157211 (72,
Applying the results just shown and simplifying yields

2V] < 1$i(V) U $5(V)I@le (V)2
m}

We also prove that the nonlinear function appearing in one of
the constraints in our main optimization problem is quasiconvex.

LEMMA 4. The function go(x) = L — xfxz,for some constant L, is
quasiconvex in the positive quadrant.

ProoF. Let x,y be points in the positive quadrant with go(y) <
go(x). Then y%yz > xfxg. Applying the inequality of arithmetic and
geometric means to the values y1 /x1, y2/x2, we have

) 5 \1/3
—(2ﬂ+ﬂ) S
3\lxa x xfxg

()

Y1

as 3 and)y?i are positive. Then Vgo(x) = [-2x1x; —x?

1],and

(Vgo(x),y — x) = —2x1x2y1 + foxz - x%yz + x%xz

1
= 3x%xp (1 - - (2ﬂ + y_z)) <0
x2

3 X1
where the last inequality follows from eq. (2). Thus by Def. 2, gy is
quasiconvex in the positive quadrant. O

4.2 Lower Bounds on Individual Array Access

In the following result, we determine the minimum number of
elements from each array that must be accessed by a processor per-
forming the SYRK computation based on the number of arithmetic
operations that this processor is performing. These lower bounds
will provide additional constraints to our optimization problem
which allows us to determine all applicable lower bounds with a
unified argument.

LEMMA 5. Given a parallel algorithm that computes SYRK by
multiplying an ny X nz matrix A by its transpose using P processors,
any processor that performs at least 1/ Pth of the scalar multiplications
associated with elements in the strict lower triangle of C must access
at least niny /2P elements of A and also compute contributions to at
least n1(n1 — 1)/ 2P elements of the strict lower triangle of C.

Proor. The total number of scalar multiplications that must
be performed to compute the elements in the strict lower trian-
gle of C is n1(n1 — 1)nz/2. Consider a processor that computes at
least 1/Pth of these computations. Each element of A is involved
in ny — 1 scalar multiplications. If the processor accesses fewer
than nyny /2P elements of A, then it would perform fewer than
(n1 — 1) - nyny /2P scalar multiplications, which is a contradiction.
Finally, each element of C is the sum of ny scalar multiplications. If

Parallel Memory-Independent Communication Bounds for SYRK

the processor computes contributions to fewer than ni(n; — 1)/2P
elements of C, then it would perform fewer than ny - ny(ny — 1)/2P
scalar multiplications, which is again a contradiction. O

4.3 Key Optimization Problem

The following lemma, which we state abstractly, is the key to our
lower bound argument. In the abstract statement, x; corresponds to
the number of elements of A that the processor needs to access, and
X7 corresponds to the number of elements of C that the processor
contributes to. The first constraint comes from Lemma 3, while the
constraints on x5 come from Lemma 5 and the maximum number
of computed elements of C. We do not use the constraint on x;
that can be derived from Lemma 5 as it is not tight at any optimal
solutions. Instead, we use only the constraint that it must be positive
to simplify the optimization.

LEMMA 6. Consider the following optimization problem:

min x1 + x2

x €R?
such that
2
(nl(nl—l)nz) <2
————| < x{x2,
V2P
0 < xq,
-1 -1
ni(ng —1) < < ni(n; —1)

2P 22T
where P > 1, and ny, ny are positive integers. The optimal solution x*
depends on the relative values of the constraints, yielding three cases:

v -1
(1) ifny <ngandP < L ,thenxi‘z%ml),xgz

Vni(ni—1)

ni(ni-1)
2 El
(2) ifny > ng and P < %, then x7 = nzwlw,x; =
2
m(n—1)
2P

. ni(n;—1
%2 orifn;>ny and P > #

Vni(n-1) ny '

("1("1’;1)"2)2/3’ x; _ (m(nlgl)nz)zm.

(3) ifni<nz and P >

D=

then x7 =

Proor. By Lemma 2, we can establish the optimality of the so-
lution for each case by verifying that there exist dual variables
such that the KKT conditions specified in Def. 3 are satisfied. This
optimization problem fits the assumptions of Lemma 2 because the
objective function and all but the first constraint are affine func-
tions, which are convex and quasiconvex, and the first constraint
is quasiconvex in the positive quadrant by Lemma 4.

To begin, we rewrite our objective function and constraints in
standard notation that match Lemma 2. In particular, we rewrite the
constraints as a vector where each term corresponds to a constraint
written as a function which must take values less than or equal to
0. Let f(x) = x1 + x2 and

(nl(nrl)nz)z 2

— X7 X;
VzP 12
— —-X1
g(x) = _
m(m-1) xo
Xz — nl(nzl—l)

395

SPAA ’23, June 17-19, 2023, Orlando, FL, USA

Thus the gradient of the objective function is V f(x) = [1
the Jacobian of the constraint function is

1] and

—2Xx1X2 —xf
-1 0
]g(x) = 0 1
0 1
Case 1 (n; < ng andP < —L22—). We let
(m 2 ,—n](m_l))

x* = [nz\/nl(nl—l) n1("1—1)]
P 2

and

% P n
W = e oy~

and verify the KKT conditions. As x} is set to the boundary of
one of its constraints and x] > 0, it is clear that primal feasibility

holds. For dual feasibility, it is immediate that 7 > 0 and P <
ny

Vni(ni-1)

Complementary slackness is satisfied as the 1st and 4th constraints
are tight for x* and the dual variables y; and p3 are zero.

implies y; > 0. Stationarity may be directly verified.

Case 2 (ny1 > np and P < %) We let
2

x* = [HZW "1(;}17—1)]
0 1—n2‘/ﬁ 0]

* *

and verify the KKT conditions. As before, x; >0, and X,
to the boundary of one of its constraints so it is clear that primal
feasibility holds. To see that the dual feasibility condition holds
note that y7 > 0 and P < ny(ng - 1)/ ng implies pz > 0. Stationarity
may be directly verified. Complementary slackness is satisfied as
the 1st and 3rd constraints are tight for x* and the dual variables
uy and piy are zero.

and
% _ P3/2
k= [(nl(nﬁl))3/2nz

is set

Case 3 ((n1 < nz and P >)or(ny > ny and P >

na
Vni(n—1)
%{1)). We let

o = [(W)zm %(w)z/g]

and

4/3
* P
K [(nl(fll—l)"z)) 00 O}

and verify the KKT conditions. To verify primal feasibility we note
that the feasibility of x; may be directly verified for both sets of
conditions, and x] > 0. Dual feasibility is immediate as yj > 0.
Stationarity may be directly verified. Complementary slackness
is satisfied because the 1st constraint is tight for x* and the dual
variables pi3, p3 and pj are zero.

Note that the optimal solutions coincide at boundary points
between cases so that the values are continuous as P varies. O

SPAA ’23, June 17-19, 2023, Orlando, FL, USA

4.4 Communication Lower Bound

TurOREM 1. Consider the SYRK computation, C = A- AT, where A
has dimensions ny Xny. Any parallel algorithm using P processors that
begins with one copy of the input matrix A and ends with one copy of
the strict lower triangle of C and load balances either the computation
of the entries below the diagonal of C or the data required to compute
the entries below the diagonal of C must communicate at least

ni(ny —1)/2 +niny

w —
P

words of data where

niny | ni(ni=1) ; mny
+ == i ny <ngandP < —2—
4 2 f Vni(ni-1)
niny | ni(ni=1) ni(n—-1)
2

VP + °P if ny <niandP < "
2
(nl(nl_l)n2)2/3 ny
P Vni(ni—1)
ni(ni-1)
2

2

% if (m < ngandP >

or (ng <niandP >

ProoF. To establish the lower bound, we focus on the multiplica-
tions performed by a single processor and the amount of data that
processor requires to perform those multiplications. We restrict our
focus to the multiplications required to compute the entries below
the diagonal of C. We first verify that there exists a processor that
performs at least 1/Pth of the multiplications and starts and ends
the computation with at most 1/Pth of the total data.

If the algorithm load balances the computation of the subdiago-
nal portion of C, then every processor performs nq(ny — 1)ny /2P
multiplications and there exists at least one processor whose el-
ements of A at the start of the computation plus entries below
the diagonal of C at the end of the computation must be at most
(n1(n1 — 1)/2 + nyny)/P. If no such processor existed, then the al-
gorithm would need to start or end with more than one copy of
either A or the entries below the diagonal of C. If instead, the al-
gorithm load balances the data required in the computation of the
entries below the diagonal of C, then every processor starts and
ends the computation with a total (ny(n; — 1)/2 + nynz)/P words
of data, and there must exist at least one processor that performs at
least n1(ny — 1)ny/2P multiplications. If no such processor existed,
then the algorithm would not be able to perform all ny(ny — 1)ny/2
multiplications required to compute the entries below the diagonal
of C. In either case, there is at least one processor that starts and
ends the computation with at most (n1(ny — 1)/2 + nyny)/P words
of data and performs at least nj(n; — 1)ny/2P multiplications.

We consider the amount of data that this processor needs to per-
form its multiplications. Let F be the set of indices (i, j, k) associated
with the multiplications assigned to this processor. Each element
of F corresponds to the multiplication of the elements A(i, k) by
AT (k, j) which contributes to C(i, j). Then for every element of F,
Jj < i,and |F| = n1(ny — 1)nz/2P. We consider the projections of F
and note that ¢;(F) and ¢;(F) give the indices of the elements of A
accessed to perform the multiplications. As these sets may overlap,
the unique indices of elements of A required by the multiplications
in F are given by ¢;(F) U ¢;(F). Similarly, ¢y (F) yields the indices
of the elements of C contributed to by the multiplications indexed

396

Hussam Al Daas, Grey Ballard, Laura Grigori, Suraj Kumar, and Kathryn Rouse

by elements of F. By Lemma 3 we have

6:() U gy (PICIg (P 2 2)p) 2 D2
which we can simplify to
_ 2
191(F) U §;(P)PIg(F)] = (%) .

Clearly a projection onto an array cannot be larger than the array
itself, thus we have an upper bound constraint on the size of projec-
tion. Additionally by Lemma 5 we have a lower bound constraint

on (Pl MY < g ()] < MU=
Finally as the size of any projection or union of projections
onto an array must be non-negative, we have the constraint 0 <
| (F)U ¢;(F)|. Thus, we want to minimize |¢; (F) U ¢;(F)| + |$x (F)|
subject to the constraints above and the result follows by Lemma 6.
m]

5 OPTIMAL PARALLEL ALGORITHMS

We present in this section three algorithms that attain the lower
bounds of Theorem 1 in each of'its three cases, matching the leading
order constants exactly. We classify the algorithms as 1D, 2D, and
3D algorithms, following the terminology of Al Daas et al. [2]. If we
consider the 3D iteration space of SYRK (a triangular prism), a 1D
algorithm partitions the computation in only 1 of the dimensions,
a 2D algorithm partitions the computation in exactly 2 dimensions,
and a 3D algorithm partitions all 3 dimensions. Our 1D algorithm
(§5.1) partitions only the ny dimension, and our 2D algorithm (§
5.2) partitions the two n; dimensions. The 1D and 2D algorithms
both utilize a 1D processor grid, though their indexing schemes
differ, as the 2D algorithm uses triangle blocking (see §5.2.1) for
the distribution of C. The 3D algorithm (§5.3) uses a 2D processor
grid and also uses triangle blocking.

The choice of algorithm to attain optimality depends on the
relative sizes of ny, ny, and P. First, consider the case ny < ns. This
implies that A is short and wide and that C is a smaller matrix than
A. If P is relatively small, then the 1D algorithm is optimal. When
P is sufficiently large, we switch to the 3D algorithm to maintain
optimality. In the case that n; > ny, A is tall and skinny and C is a
bigger matrix than A. For small P, we use the 2D algorithm. When P
is sufficiently large, we again switch to the 3D algorithm to maintain
optimality. In § 5.4, we detail the values of P for switching from
1D to 3D or from 2D to 3D and show that by choosing appropriate
processor grid dimensions, we attain optimality in all cases.

Throughout this section, we use II to denote the set of all pro-
cessors, with |II| = P. For the 2D processor grid used by the 3D
algorithm, we will let P = p;p, and index processors by the pair
(k,€) e T with 0 < k < p; and 0 < ¢ < py. In the case of the
1D algorithm, we consider p; = 1 and pp = P, and in that case
processors will be indexed only by 0 < ¢ < P. In the case of the
2D algorithm, we consider p; = P and p, = 1, and in that case
processors will be indexed only by 0 < k < P. When p; > 1, we
will assume that p; = ¢(c + 1) for some prime number c. This as-
sumption is a sufficient but not necessary condition for the triangle
block distribution we use for the 2D and 3D algorithms.

Parallel Memory-Independent Communication Bounds for SYRK

5.1 1D Algorithm

In the case that ny < np and P is not too large, a 1D algorithm is
optimal. This algorithm, presented as Alg. 1, partitions the com-
putation along only the dimension of length ny. In this way, no
communication of A is required, and the only communication will
involve reducing contributions to the C matrix.

5.1.1 Data Distribution and Algorithm. The 1D algorithm requires
that A is distributed in a 1D block column fashion so that each
processor owns 1/Pth of the columns of A. We use the index ¢ € II
to specify a processor rank so that 0 < £ < P. Then assuming P
divides ny evenly, Ay is a column block of dimension ny X (nz/P).
It proceeds by performing a local SYRK on each processor with its
column block, producing a symmetric n; X ny contribution to C,
followed by a reduction to compute the final output. Algorithm 1
uses a REDUCE-SCATTER collective in order to obtain an output that
is evenly distributed across processors. The actual distribution can
be arbitrary as long as it is even, so we leave it unspecified and
denote the part of the result owned by processor ¢ at the end of the
REDUCE-SCATTER as C(0).

Algorithm 1 1D SYRK

Require: A is evenly column distributed across processor set IT
with A, the column block of A owned by processor ¢ € II

Ensure: C = AAT is evenly distributed across IT

1: function C =1D-SYRK(A, IT)

2 ¢ = MYRANK(IT)

3: C = LocAL-SYRK(A,)

4 C¥) = Repuce-ScaTTer(C, IT)

5: end function

5.1.2 Cost Analysis. We recall that «, f and y denote the latency
cost, the per-word bandwidth cost and the per-operation arithmetic
cost respectively. The computation is performed in line 3. The
dimension of Ay is n1X(nz/P), so the cost is dominated by y-n%nz /P.

The communication is performed in line 4, and the number of
entries of C is n1(n; + 1)/2. Thus, the communication cost of the
REDUCE-SCATTER (see §3.2) is

ni(ni+1)P-1

@ (P=1)+f- = -

, ®)
and we ignore the cost of the computation of the REDUCE-SCATTER
because it is dominated by that of the local SYRK.

5.2 2D Algorithm

In the case that ny > ny and P is not too large, a 2D algorithm
is optimal. Our 2D algorithm, presented as Alg. 2, partitions the
computation associated with both dimensions of length n;. In this
way, no communication of C is required, and the only communi-
cation will involve parts of A. The 2D algorithm will assume a 1D
processor grid, so that processors are indexed using 0 < k < P.
Note that we use a different index than in the 1D case to indicate a
different partition of the computation. We will assume throughout
this section that P = ¢(c + 1) for a prime c.

397

SPAA ’23, June 17-19, 2023, Orlando, FL, USA

5.2.1 Triangle Block Distribution. The key to the optimality of our
2D algorithm is the observation that the lower triangle of a sym-
metric matrix can be partitioned into triangle blocks [7]. A triangle
block is the strict lower triangle of a Cartesian product of a set of
indices with itself. For example, given a set of indices {1, 2, 3}, the
corresponding triangle block is the set of pairs {(2, 1), (3, 1), (3, 2)}.
We use this idea to distribute C as follows. For P = ¢(c + 1), we
partition C into square blocks of dimension nj/c?, which results in
¢%(c? - 1)/2 off-diagonal blocks and c? symmetric diagonal blocks.
Next, as described in more detail below, we distribute blocks to pro-
cessors so that each processor owns c¢(c — 1)/2 off-diagonal blocks
that form a triangle block of blocks. Finally, we distribute one sym-
metric diagonal block to each of ¢ processors (c processors own
no diagonal block).

The advantage of a triangle block is that a processor can com-
pute the output values of all the C blocks in its triangle block (a
set with O(c?) blocks) using only the ¢ row blocks of A with in-
dices corresponding to the triangle block. However, partitioning
the lower triangle of C blocks into triangle blocks is nontrivial.
One simple condition that guarantees a valid partitioning is that
c is a prime number, though other schemes are possible [7]. Once
C is partitioned, we let processors follow an owner-compute rule,
so that each processor performs all the computations associated
with C blocks it owns, and processors must gather the elements of
A they need to perform the computation (we define a conformal
distribution of A below).

We use the notation C;; with 0 < i,j < ¢? to specify a block of
C with dimension (n1/c?) X (n1/c%), and A; denotes a (n1/c?) X ny
block of A. To specify a Triangle Block Distribution, we define three
types of sets: Ry is a c-element set of row block indices that define
the triangle block of C blocks assigned to processor k; Dy C Ry is
a one-element (or empty) set containing the index of the diagonal
block of C that is assigned to processor k; and Q; is a (c+1)-element
set of processor ranks k such that i € Ry.. We specify these sets for
any prime c below. An example of Triangle Block Distribution is
detailed in Fig. 2 and Tab. 1.

Our specification follows the “cyclic (c,k)-indexing family" [7]
with k = c. The idea is to partition C hierarchically: we first divide
C into (n1/c) X (n1/c) zones, so that each off-diagonal zone isa ¢ X ¢
grid of blocks. Each of the first ¢? processors are assigned exactly
one block of each off-diagonal zone, and the set of blocks forms a
triangle block of blocks. Each of the last ¢ processors are assigned
all of the off-diagonal blocks within a single diagonal zone. In this
way, every processor is assigned exactly c¢(c — 1)/2 off-diagonal
blocks forming a triangle block of blocks.

We now define a helper function f; that we use in the specifica-
tions of both Ry and Dy. Letting 0 < u < cand let 0 < k < P, we
define the function f : {0,...,c =1} — {0,...,c¢® — 1} as

fie@) = (Lk/c](u—1) + k) mod ¢ + cu. (4)

We can interpret fi(u) as the row index of the block assigned to
processor k in the uth zone of the first zone column. Next we specify
the set of row block indices that defines the triangle block for a
particular processor k:

_ {{Lk/cJ}U{fk(u):O <u<o)

ifo<k<c?
ife2<k<c®+ec.

©)

{(k-=c®)c+u:0<u<c}

SPAA ’23, June 17-19, 2023, Orlando, FL, USA

3$ $9 1 I3
|
N
6y7V8Y9| 2 9 1 9 1 6
| |
| |
0Yy3Y6y10f 3 01 3 1 6 10
| |
| | |
1y4y7 V0] 4 11407 0 1 4
I I A I_ _
| | | |
2y538 V10| 5 2 15 1 8 0 10 | 5
1 1 1 1
| | | |
0Yy5Yy7)11| 6 0, 5 7 0, 7 , 5 7
A) P P — Il — - - 4 = =
| | | | |
1$3$3$11 7 1,3, 8 3,01, 8 1, 8
N T R [P | S
| | | |
Z$4$6$11 8 2,4 6 6, 4 : 2 1no o1 : 11

A

Figure 2: 2D Triangle Block Distribution of A and C with
¢ =3, P =12. Cis divided into @ off-diagonal and ¢ diag-
onal zones (the coarse partitioning). Each off-diagonal zone
has c X c blocks. Processor ranks 0 < k < P are shown in blue
to indicate ownership of a block and block indices 0 < i < c?
are shown in red. Distribution of each row block of A among
its ¢+ 1 processors is arbitrary as long as it is even. For exam-
ple, row block 6 of A is evenly distributed among processors
{0,5,7,11}.

For one of the first ¢? processors, all but the first index in Ry is
given by fi. For example, in Fig. 2 and Tab. 1, R3 = {1,3,7} and
processor 3 is assigned blocks C31, C71, Cy3. For one of the last
c processors, the set Ry is a contiguous set of indices. Note that
the indices in R correspond to the row blocks of A required by
processor k to perform the computation for its blocks of C. Finally,
the index of the diagonal block owned by processor k is the set

{3 ifo<k<c
D = {lk/cl} ifc <k<c?andk =0modc
K=Y {fi (Lk/e))} ifc <k <c?andk %0 mod c

{fc(k—cz)(k - Cz)} ifc? <k <c®+c.

We choose an assignment of diagonal blocks to ensure that Dy C Ry,
and |Dg| < 1, as this implies that no extra block of A is required
by processor k and no processor has to compute more than one
diagonal block (achieving reasonable load balance). The ith diagonal
block of the (0, 0) zone is assigned to processor rank ic except for
i = 0 for which it is assigned to processor rank ¢2. The (i + uc)th
diagonal block with u > 0 (this is the ith diagonal block in the zone
(u,u)) is assigned to the processor owning the block (i + uc, u) with
an exception if that processor rank is equal to uc. In such a case, it is
assigned to processor rank c? + u. For example, in Fig. 2 and Tab. 1,
D7 = {6}, as the 6th diagonal block falls into the 2nd row zone and
the processor of rank 7 owns the block (6, 2).

Given Ry and Dy, we can specify the Triangle Block Distribution
of C: processor k owns block C;; if i, j € R and i > j, and it owns
block C;; if i € Dy. Given a block C;; with i # j, the indices i
and j appear together in exactly one set Ry (this is because the

398

Hussam Al Daas, Grey Ballard, Laura Grigori, Suraj Kumar, and Kathryn Rouse

k| Re [Dg i Qi
0 {036 | § |[[0] {0.1,2.9
1047 | ¢ | 1] 3459
2 | {058 | & || 2] {6789
3137 | {1} || 3] {0.3.6,10}
4 | 148 | 14 || 4| {14710}
5 | {156} | 5 || 5| {2.5.8,10
6 | {238 | {2 || 6 | {0.57.11}
7 | (246 | 16} || 7 | {1.3.8,11)
8 | 257 | {7} || 8| {24,611
9 | {0,1.2} | {0}

10 | 3,45 | (3}

11 | {6,7.8} | {8}

Table 1: Row block sets and processor sets of Triangle Block
Distribution for ¢ = 3, P = 12.

triangle block scheme is “valid” [7]), and the block is owned by the
corresponding processor.

To specify the distribution of A that conforms to the Triangle
Block Distribution of C, we also define a set for the reverse index:
given a block index 0 < i < ¢?, we want to specify the set of
processors whose row block sets contain that index. We define the
helper function h; to define the sets Q;. Let0 < g < cand 0 < i < 2
and define the function h; : {0,...,c— 1} — {0,...,c%> — 1} as

hi(q) = (i — (Li/c] — 1) g) mod ¢ + cq. (7)

We can interpret h;(q) as specifying the processor assigned block
Cig (which falls in the first zone column).
Using h;, we now specify Q;:

o {ci+q:0<q<c}uU{c?}
O = (i) 0 < q < e} U (e + Life])

Note that the first ¢ blocks are members of a contiguous set of
processor ranks along with processor c?, and the remaining ¢ — ¢
blocks correspond to ranks specified by h; and one of the last ¢
processors, depending on which zone row the block falls in. For
example, in Fig. 2 and Tab. 1, Q¢ = {0, 5, 7, 11}, as processors 0, 5, 7
own blocks in the 6th block row of the first zone column, and
processor 11 owns blocks in the diagonal zone corresponding to
the 6th block row.

Given Q;, we can specify the conformal distribution of A. As
all ¢ + 1 processors with ranks in Q; will need A;, we distribute
A; evenly among them. The specific distribution of A; across the

ifo<i<e

ife <i<c?

processors of Q; is arbitrary, so we use the notation Agk) to denote
the part of A; owned by rank k € Q;.

5.2.2 Algorithm. The 2D algorithm (Alg. 2) partitions the computa-
tion according to an owner-computes rule based on the distribution
of C: if a processor owns block C;j, it computes all of the multipli-
cations associated with the entries in that block. This computation
occurs between line 15 and line 20 of the algorithm, where line 16
corresponds to computing a block within the processor’s triangle
block and line 19 corresponds to computing the diagonal block (if
assigned). Note that while the processor grid is 1D, the Triangle
Block Distribution of C partitions both rows and columns, so the
algorithm is classified as 2D.

Parallel Memory-Independent Communication Bounds for SYRK

Algorithm 2 2D SYRK

Require: |II| = P = c(c + 1) for prime ¢
Require: A is evenly subdivided into c? row blocks, and each row
block A; is evenly divided across a set of ¢ + 1 processors Q;

Ensure: C = AAT is Triangle Block distributed across I

1: function C =2D-SYRK(A, IT)

2 k = MYRank(IT)

> Gather ¢ row blocks in row block set
3: Allocate array B of P blocks, each of size

njny
c%(c+1)

4 for each i € Ry do
for each k' € Q;\{k} do

5

6: Bk’ = A(lk)

7: end for

8: end for

9 ALL-TO-ALL(B, IT)
10: for each i € R do
11: for each k' € Q;\{k} do
12: Accumulate By into A;
13: end for
14: end for

> Compute c(c — 1)/2 off-diagonal blocks
15: for each (i, j) € Ry with i > j do
16: Cij = LocaL-GEMM(A;, A;T)
17: end for
> Compute diagonal block if assigned
18: for each i € Dy do
19: C;j; = LocaL-SYRK(A;)
20: end for
21: end function

In order to perform the local computation, each processor k
must gather the ¢ row blocks corresponding to its row block set Ry.
While the processor starts the computation owning A(ik) for each
i € Ry, it must communicate with the other processors in Q; to
gather the full block A;. Because the Triangle Block Distribution is
valid, no two block row indices appear together in two Ry sets and
no two processor ranks appear in two Q; sets. Thus, each pair of
processors need to exchange data corresponding to at most one row
block of A (and a small subset of pairs of processors do not appear
in any Q; sets). Thus, the required communication pattern is an
ALL-TO-ALL collective, which is illustrated from line 3 to line 14.
Most of the pseudocode is devoted to packing and unpacking a
temporary data structure B to organize the data to be exchanged
with each processor. Note that each local block Agk) is copied ¢
times into B to be shared with processors in Q;.

5.2.3 Cost Analysis. Computation occurs on lines 16 and 19. The
dimension of every row block A; (and Aj) is ni/c? x ny. We have
|[Rk| = c for every k and |Dy| € {0,1}. Thus, the computational
cost of Alg. 2 is dominated by

cle—1) _ (n1\2 2 | |nine n’n;
Y[TZ(C—Z) n2+(c—2) nz]_y-[cz +0 C3 .

399

SPAA ’23, June 17-19, 2023, Orlando, FL, USA

As P = ¢2 + ¢, which implies ¢ = /P + 1/4 — 1/2, we have that the
leading order cost is
2 2
n{ny nin
R RCIOY
P p3/2

Note that the lack of perfect computational load balance is the result
of ¢ ~ VP processors not computing a diagonal block of C, but this
imbalance does not affect the constant in the leading order term.
The communication is performed in line 9. The number of el-
ements in B is Czrzl(:r:-zl)P = % and |II| = P. Thus, the communi-
cation cost of ALL-TO-ALL using a pairwise exchange algorithm is

nfnz
Y P—c_y

.)

a~(P—1)+ﬂ~%(1—%). (10)

As ¢ = /P + 1/4 — 1/2, the bandwidth cost of the algorithm is

e)3

5.3 3D Algorithm

In the case P is sufficiently large, we use a 3D algorithm regardless
of the shape of A. This algorithm, presented as Alg. 3, partitions
the computation along all three dimensions but uses a 2D processor
grid with dimensions p; X ps. As in the 2D algorithm (Alg. 2),
the partitioning of both dimensions of length n; assumes a 1D
processor grid indexed using 0 < k < p; and we assume p; =
c(c + 1) for a prime c. The partitioning along the dimension of
length ny is indexed using 0 < £ < py. Because we partition all
three dimensions, both A and C will require communication. The
idea of the 3D algorithm is to perform the 2D algorithm on subsets
of the computation using p; disjoint sets of processors and then
sum the results by reducing across p, disjoint sets of processors.

B- (11)

5.3.1 Data Distribution and Algorithm. The 3D algorithm performs
the 2D algorithm (based on a Triangle Block Distribution) across
each of the p slices of processors. Each slice performs SYRK using
ny/p2 columns of the input matrix A so that the final result C is the
sum of the results across the slices. Thus, the data distribution of
each slice must match the requirements of the 2D algorithm.

Algorithm 3 3D SYRK

Require: |II| = p1ps, with p; = ¢(c + 1) for prime ¢
Require: A is evenly divided into a ¢ X p; grid of blocks, and
each block A is evenly divided across a set of ¢ + 1 processors
Qi x {¢}
Ensure: C = AAT is divided according to Triangle Block distribu-
tion across p; processors, and each triangle block of blocks Cy
is evenly divided across a set of py processors I,
1: function C =3D-SYRK(A, IT)
2: (k, €) = MYRANK(IT)
3 C = 2D-SYRK(A,z,IL.z)
4 Let Cy, be the local data of C
5 Cg) = REDUCE-SCATTER(Cy, IT1,)
6: end function

SPAA ’23, June 17-19, 2023, Orlando, FL, USA

O%1§4 0%1%4 0%1%4 0 444
L (- L
2%3%4 2%3%4 2%3%4 1 4441222
L
0;2%5 O%Z%S 0%2%5 2 [0/0/0(2/'2/2(5 55
L oL Lo Lo
1%3%5 1%3%5 1%3%5 3 1/1/113/3/3]5/5/5!3/3/3
L

Figure 3: 3D Triangle Block Distribution of A and C with p; =
6 (c = 2), po = 3. Processor ranks 0 < k < p; are shown in
blue to indicate (shared) ownership of a block, and ranks 0 <
{ < ps are indicated by background colors. Row block indices
0 < i < c¢? of A are shown in red, and column block indices
0 < ¢ < py of A are shown in their corresponding colors.
Distribution of each block of A among its ¢ + 1 processors
and distribution of each block of C among its p, processors
are arbitrary as long as they are even.

As show in Fig. 3, we partition A into a grid of ¢? x py blocks
and use the notation A;, to specify a block of A with dimensions
(n1/c?) X (n2/p2). Consider processor slice £, which we denote by
IL,¢. This slice performs SYRK using input matrix A, ¢, which is the
{th block column of A, as given in line 3 of Alg. 3. In Fig. 3, each
processor slice is assigned a unique color for its block column of A.
Thus, A, ¢ must be partitioned according to the 2D algorithm across
the p; processors in IL,.¢. The result of the SYRK performed by the
(th slice will be partitioned across the p; processors according to
the Triangle Block Distribution.

To compute the final result, we sum the results across slices.
Because the intermediate results are identically distributed across
each set of p; processors, we can sum along sets of p, processors
with the same k index, denoted by IIj.,.. We let C denote the inter-
mediate result, which is distributed over a processor slice, and we
let C; denote the local data of C owned by processor with rank
k. Here Cy. consists of a triangle block of blocks, possibly along
with a diagonal block. In Fig. 3, we label each block of C with an
index, so that Cy. is the set of blocks labeled with index k. In order
to obtain an even distribution of the final output, we perform a
REDUCE-SCATTER of the local C. across each Il in line 5. We use
the notation Cf) to denote the part of C. owned by processor (k, £)
at the end of the collective, noting that the distribution over ITj.,
is arbitrary as long as it is even. This distribution of each Cy is
indicated by the multicolor distribution of blocks of C in Fig. 3.

5.3.2 Cost Analysis. Computation occurs on lines 3 and 5. The
2D SYRK is performed on matrices of dimension nj X ny/py using
p1 processors, thus the computation cost is the computation cost
of the 2D algorithm given in eq. (9), with P = p; and ny divided

400

Hussam Al Daas, Grey Ballard, Laura Grigori, Suraj Kumar, and Kathryn Rouse

n’ny
b L= +0(
vz [(Ppi/ :
SCATTER is a lower order term.
Communication of A occurs in line 3. As the 2D SYRK algorithm
is performed on a matrix of size ny X ny/ps using p; processors, the

communication cost is given by that of the 2D algorithm in eq. (10)

with P = p; and ny divided by pp: a - (p1 — 1) + S - nclpzz - Pll

Communication of C occurs in line 5. Each Ek consists of a
triangle block of blocks possibly along with a diagonal block for a
C(C] n4 +é Zj (Z} + 1) elements, and the collective

is performed over py processors. The communication cost of the

collective is dominated by a - (p2 — 1) + B - 5 1 nl (1 - i) .
Thus the total communication cost is given by

D2
a2
p1) 2¢? p2

Asc=+/p1 +1/4— 1 , this cost is approximately equal to

))

)] . The computation cost of the REDUCE-

maximum of =5~

ninz

a-O(p1 +p2)+f- (sz

2
ning 1 1 1
O(pr+p)+f-|—|1-—|+—|1-
“Opirptl (\/P1P2(Pl) 2P1(p2

Thus, the total communication costs (to leading order terms) of
Alg. 3 are given by

a-O(p1+p2)+,B-((12)

ninz 4L
VPip2 1)’
5.4 Optimal Processor Grid Selection

In order to minimize the communication costs of our algorithms, we
propose to select p; and p, based on the terms of the communication
lower bound (Theorem 1). For the sake of simplicity, we assume
that p; and p, are integers. We also assume that the numerator is
divisible by the denominator for each division expression. As the
lower bound has three cases, we discuss p; and py values for each
case separately.

Case 1:ny < ngand P < .Wesetp; = 1land py =

an(nl D

and use the 1D Algorithm (Alg. 1) for this case. The bandwidth cost
of the algorithm given in eq. (3) matches the leading term in the
lower bound exactly.

For the remaining two cases, we also assume that there exists a
prime integer ¢ such that c(c + 1) = p;.

Case2:n; >nzgand P < M .We set p; = P and pp = 1 and

use the 2D Algorithm (Alg. 2). The bandwidth cost given in eq. (11)

matches the leading term in the lower bound exactly.
ny

Vni(ni-1)
We propose to use the 3D algorithm (Alg. 3) for this case w1th
=)2/ P?/3 and p; = (g—f)Z/ P!/3. The bandwidth cost of
the algorithm (to leading order terms) is given by eq. (12), and with
these values of p; and py, it simplifies to (3/2)(nf ng/P)*/3, matching
the lower bound exactly.

Case 3: ni<nz and P > @

orni>ng and P >

m
n;

Parallel Memory-Independent Communication Bounds for SYRK

6 CONCLUSION

Theorem 1 in §4 establishes parallel memory-independent com-
munication lower bounds for parallel SYRK. The lower bound on
accessed data is cast as the solution of a nonlinear constrained
optimization problem. One of the constraints is derived by manip-
ulating the iteration space so that the Loomis-Whitney theorem
gives a constraint suitable for the non-cubic iteration space of SYRK.
The analytic solution depends on the relative sizes of the matrix
and number of processors giving rise to three cases. We present
Algorithms 1 to 3 in § 5 that each achieve a communication cost
with leading term matching one of the cases of the lower bound.

In the sequential case, Beaumont et al. [7] demonstrate that
SYRK has a higher operational intensity than GEMM, and their
I/O-optimal algorithm reduces the memory traffic by a factor of
23/2 compared to GEMM. Our algorithms are the first parallel SYRK
algorithms that reduce both the computational complexity and
bandwidth cost compared to optimal parallel GEMM as presented
by Al Daas et al. [2]. In the parallel case, both the computation and
communication are reduced by a factor of 2, so the corresponding
ratio of computation to communication matches GEMM.

Our computational model assumes sufficient memory, but the
3D algorithm may not be feasible in limited-memory scenarios.
In this case, an extension of the memory-dependent sequential
bound to the parallel case gives a tighter lower bound. We plan to
explore algorithms that attain the memory-dependent lower bound
in future work.

In the communication cost analysis, we use bandwidth-optimal
algorithms for ALL-TO-ALL and REDUCE-SCATTER that have non-
optimal latency costs. For REDUCE-SCATTER, if we consider an adap-
tation of Bruck’s algorithm for concatenation (ALL-GATHER) [10],
we can obtain both bandwidth and latency optimality for all pro-
cessor counts including non-powers-of-two. For ALL-TO-ALL, if we
consider a latency-optimal butterfly algorithm, we can reduce the
latency cost to O(log P) at the expense of a higher bandwidth cost
(by a factor of O(log P)). Because we cast our communication in
terms of ALL-TO-ALL, we cannot attain both bandwidth and latency
optimality simultaneously, but it is an open question whether a
parallel SYRK algorithm exists that attains the optimal leading order
bandwidth cost constant and optimal O(log P) latency.

We believe that our approach of manipulating the iteration space
to exploit the symmetry in SYRK can be used to obtain tight lower
bounds for other important linear algebra kernels involving a sym-
metric matrix, such as the symmetric rank-2k update (SYR2K),
symmetric matrix multiplication (SYMM), and sparse versions of
these kernels such as symmetric sparse matrix times dense matrix
and symmetric sampled dense-dense matrix multiplication.

ACKNOWLEDGMENTS

This work is supported by the National Science Foundation under
Grant No. CCF-1942892 and OAC-2106920. This material is based
upon work supported by the U.S. Department of Energy, Office of
Science, Advanced Scientific Computing Research program under
Award Number DE-SC-0023296. This project has also received fund-
ing from the European Research Council (ERC) under the European

401

SPAA ’23, June 17-19, 2023, Orlando, FL, USA

Union’s Horizon 2020 research and innovation program (Grant
agreement No. 810367).

REFERENCES

[1] A. Aggarwal, A. K. Chandra, and M. Snir. 1990. Communication Complexity of
PRAMs. Theor. Comp. Sci. 71, 1 (1990). https://doi.org/10.1016/0304-3975(90)
90188-N

H. Al Daas, G. Ballard, L. Grigori, S. Kumar, and K. Rouse. 2022. Tight Memory-
Independent Parallel Matrix Multiplication Communication Lower Bounds. In
SPAA 2022. https://doi.org/10.1145/3490148.3538552

G. Ballard, E. Carson, J. Demmel, M. Hoemmen, N. Knight, and O. Schwartz. 2014.
Communication Lower Bounds and Optimal Algorithms for Numerical Linear
Algebra. Acta Numerica 23 (2014). https://doi.org/10.1017/S0962492914000038
G. Ballard, J. Demmel, O. Holtz, B. Lipshitz, and O. Schwartz. 2012. Strong Scaling
of Matrix Multiplication Algorithms and Memory-Independent Communication
Lower Bounds. In SPAA 2012. https://doi.org/10.1145/2312005.2312021

G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. 2011. Minimizing Commu-
nication in Numerical Linear Algebra. SIAM J. Matrix Anal. Appl. 32, 3 (2011).
https://doi.org/10.1137/090769156

O. Beaumont, P. Duchon, L. Eyraud-Dubois, J. Langou, and M. Vérité. 2022.
Symmetric Block-Cyclic Distribution: Fewer Communications Leads to Faster
Dense Cholesky Factorization. In SC 2022. https://dl.acm.org/doi/abs/10.5555/
3571885.3571923

O. Beaumont, L. Eyraud-Dubois, J. Langou, and M. Vérité. 2022. I/O-optimal
Algorithms for Symmetric Linear Algebra Kernels. In SPAA 2022. https://doi.
0rg/10.1145/3490148.3538587

L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J.
Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and
R. C. Whaley. 1997. ScaLAPACK Users’ Guide. SIAM. Also available from
http://www.netlib.org/scalapack/.

S. Boyd and L. Vandenberghe. 2004. Convex Optimization. Cambridge University
Press. https://web.stanford.edu/~boyd/cvxbook/

J. Bruck, Ching-Tien Ho, S. Kipnis, E. Upfal, and D. Weathersby. 1997. Efficient Al-
gorithms for All-to-All Communications in Multiport Message-Passing Systems.
IEEE Trans. on Par. and Dist. Sys. 8, 11 (1997). https://doi.org/10.1109/71.642949
E. Chan, M. Heimlich, A. Purkayastha, and R. van de Geijn. 2007. Collective
Communication: Theory, Practice, and Experience. Conc. and Comp.: Prac. and
Exper. 19, 13 (2007). https://doi.org/10.1002/cpe.1206

J. Demmel, D. Eliahu, A. Fox, S. Kamil, B. Lipshitz, O. Schwartz, and O. Spillinger.
2013. Communication-Optimal Parallel Recursive Rectangular Matrix Multiplica-
tion. In IPDPS 2013. https://doi.org/10.1109/IPDPS.2013.80

J. Dongarra, J.-F. Pineau, Y. Robert, Z. Shi, and F. Vivien. 2008. Revisiting Matrix
Product on Master-Worker Platforms. Intl. J. Found. of Comp. Sci. 19, 06 (2008).
https://doi.org/10.1142/S0129054108006303

J. W. Hong and H. T. Kung. 1981. I/O complexity: The Red-Blue Pebble Game. In
STOC 1981. https://doi.org/10.1145/800076.802486

D. Irony, S. Toledo, and A. Tiskin. 2004. Communication Lower Bounds for
Distributed-Memory Matrix Multiplication. J. Par. and Dist. Comp. 64, 9 (2004).
https://doi.org/10.1016/j.jpdc.2004.03.021

G. Kwasniewski, M. Kabic, T. Ben-Nun, A. N. Ziogas, J. E. Saethre, A. Gaillard,
T. Schneider, M. Besta, A. Kozhevnikov, J. VandeVondele, and T. Hoefler. 2021.
On the Parallel I/O Optimality of Linear Algebra Kernels: Near-Optimal Matrix
Factorizations. In SC 2021. https://doi.org/10.1145/3458817.3476167

L. H. Loomis and H. Whitney. 1949. An Inequality Related to the Isoperimetric
Inequality. Bull. Amer. Math. Soc. 55, 10 (1949). https://doi.org/10.1090/S0002-
9904-1949-09320-5

A. Olivry, J. Langou, L.-N. Pouchet, P. Sadayappan, and F. Rastello. 2020. Au-
tomated Derivation of Parametric Data Movement Lower Bounds for Affine
Programs. In PLDI 2020. https://doi.org/10.1145/3385412.3385989

G. Olivry, A. Ioos, N. Tollenaere, A. Rountev, P. Sadayappan, and F. Rastello. 2021.
I00pt: Automatic Derivation of I/O Complexity Bounds for Affine Programs. In
PLDI 2021. https://doi.org/10.1145/3453483

J. Poulson, B. Marker, R. A. van de Geijn, J. R. Hammond, and N. A. Romero.
2013. Elemental: A New Framework for Distributed Memory Dense Matrix
Computations. ACM Trans. on Math. Soft. 39, 2, Article 13 (2013). https://doi.
org/10.1145/2427023.2427030

T. M. Smith, B. Lowery, J. Langou, and R. A. van de Geijn. 2019. A Tight I/O
Lower Bound for Matrix Multiplication. Technical Report. arXiv. https://doi.org/
10.48550/arXiv.1702.02017

R. Thakur, R. Rabenseifner, and W. Gropp. 2005. Optimization of Collective
Communication Operations in MPICH. Intl. J. High Perf. Comp. App. 19, 1 (2005).
https://doi.org/10.1177/1094342005051521

[2]

[9]

[10

(1]

(12]

(13]

[14]

[15

(17]

[18

[19

[20]

)
=

[22]

https://doi.org/10.1016/0304-3975(90)90188-N
https://doi.org/10.1016/0304-3975(90)90188-N
https://doi.org/10.1145/3490148.3538552
https://doi.org/10.1017/S0962492914000038
https://doi.org/10.1145/2312005.2312021
https://doi.org/10.1137/090769156
https://dl.acm.org/doi/abs/10.5555/3571885.3571923
https://dl.acm.org/doi/abs/10.5555/3571885.3571923
https://doi.org/10.1145/3490148.3538587
https://doi.org/10.1145/3490148.3538587
https://web.stanford.edu/~boyd/cvxbook/
https://doi.org/10.1109/71.642949
https://doi.org/10.1002/cpe.1206
https://doi.org/10.1109/IPDPS.2013.80
https://doi.org/10.1142/S0129054108006303
https://doi.org/10.1145/800076.802486
https://doi.org/10.1016/j.jpdc.2004.03.021
https://doi.org/10.1145/3458817.3476167
https://doi.org/10.1090/S0002-9904-1949-09320-5
https://doi.org/10.1090/S0002-9904-1949-09320-5
https://doi.org/10.1145/3385412.3385989
https://doi.org/10.1145/3453483
https://doi.org/10.1145/2427023.2427030
https://doi.org/10.1145/2427023.2427030
https://doi.org/10.48550/arXiv.1702.02017
https://doi.org/10.48550/arXiv.1702.02017
https://doi.org/10.1177/1094342005051521

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 SYRK
	3.2 Parallel Computation Model
	3.3 Fundamental Existing Results

	4 Main Lower Bound Result
	4.1 Fundamental New Results
	4.2 Lower Bounds on Individual Array Access
	4.3 Key Optimization Problem
	4.4 Communication Lower Bound

	5 Optimal Parallel Algorithms
	5.1 1D Algorithm
	5.2 2D Algorithm
	5.3 3D Algorithm
	5.4 Optimal Processor Grid Selection

	6 Conclusion
	Acknowledgments
	References

