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Abstract

This work was inspired by new experimental findings where we discovered a two-dimensional (2D)
material comprised of titanium-oxide-based one-dimensional (1D) sub-nanometer filaments.
Preliminary results suggest that the 2D material contains considerable amounts of carbon, C, in
addition to titanium, Ti, and oxygen, O. The aim of this study is to investigate the low-energy,
stable atomic forms of 2D titanium carbo-oxides as a function of C content. Via a combination of
first-principles calculations and an effective structure sampling scheme, the stable configurations
of C-substitutions are comprehensively searched by templating different 2D TiO, polymorphs and
considering a two O to one C replacement scheme. Among the searched stable configurations, a
structure where the (101) planes of anatase bound the top and bottom surfaces with a chemical
formula of TiC, /4,03, was of particularly low energy. Furthermore, the variations in the electronic
band structure and chemical bonding environments caused by the high-content C substitution are
investigated via additional calculations using a hybrid exchange-correlation functional.

1. Introduction

Twenty years ago, the discovery of graphene opened
the door to a new compositional and structural space
of two-dimensional (2D) materials [1]. Since then,
2D materials such as hBN [2], silicene [3], germanene
[4], 2D transition metal oxides [5] dichalcogenides
[6], and Mxenes [7], have been extensively explored
because of their unique combination of functional
properties that is different from the respective three-
dimensional (3D) bulk counterpart. One currently
generic approach for 2D materials synthesis is to
exfoliate 2D sheets from their 3D bulk precurs-
ors, which are generally layered solid crystals like
graphite, transition metal dichalcogenides, layered
oxides, and more recently, the MAX phases [8—11].
Another approach is to synthesize 2D materials
using a bottom-up approach. The latter include
chemical vapor deposition [12], on-surface reactions
both at the solid-liquid interface [13] and under
ultrahigh vacuum conditions [14, 15], and soft chem-
istry approaches [16, 17]. Among these bottom-up
approaches, soft chemistry such as sol-gel synthesis

© 2022 IOP Publishing Ltd

has shown great promise for the scalable production
with high morphological, chemical, and structural
control of the final 2D products.

The synthesis of 2D titania (TiO;) is among the
successful examples of the soft chemistry approach.
In the past, TiO, has been more extensively studied
in its 3D bulk phases, such as anatase and rutile, due
to its superior functionalities promising for a vari-
ety range of applications from photocatalysis [18]
and photovoltaics [19] to lithium, Li, and beyond
Li batteries [20, 21]. More recently, the 2D TiO,
nanosheets with atomic-level thicknesses has attrac-
ted a great deal of attention as they possess not only
the common merits of nanomaterials, such as high
surface area, high chemical activity, and intimate
binding with other component materials, but also
some outstanding electronic, optical, photochemical,
and electrochemical properties uniquely arising from
the confined atomic-level thickness [22-26]. Up to
date, two types of 2D TiO, nanosheets have been
synthesized as single-crystal nanoflakes with atomic-
level thicknesses through a soft chemistry process
[22,23,25,27]. One possesses a crystal structure
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close to that of lepidocrocite which is a layered poly-
morphic structure of bulk TiO; [23, 27]. Besides, 2D
TiO, has also been fabricated as atomic-thin nan-
oflakes with the non-equilibrium surfaces close to
the anatase (010) and rutile (001) facets [25]. Both
of these 2D structures show enlarged optical band
gaps compared to their 3D bulk counterpart and are
thus considered to be promising for applications in
photovoltaic devices with higher open-circuit voltage
[28]. Additionally, the higher conduction band edge
of the 2D TiO, is also beneficial for H, production
[23]. In addition to photovoltaic applications, the 2D
TiO, with the lepidocrocite structure is also found
to exhibit superior performance as a photoanode
for dye-sensitized solar cells relative to the commer-
cial Evonik’s P25 TiO, [25, 29]. The ultrathin TiO,
nanosheet can also serve as a 2D platform for load-
ing other low-dimensional nanostructures such as
semiconductor quantum dots and MXene to achieve
unique combinations of functionalities that are hard
to realize with single-type materials [26, 30].

Despite the variety of promising properties of
2D TiO,, its synthesis to date still involves multi-
step complex solvent reactions and self-assembly oli-
gomeric processes, which have led to issues such as
the low crystallinity of the products. As such, cost-
ineffective treatments at higher temperatures, such
as calcination or hydrothermal synthesis, is generally
required as a follow-up processes [31]. Quite recently
we discovered a simple, one pot, near ambient almost
universal process to convert carbides, nitrides, bor-
ides, silicides and, most crucially from an economic
perspective, oxides into a plethora of nanomateri-
als, from one-dimensional (1D) nanofilaments, to
2D flakes, to quantum dots [32, 33]. The common
factor in all our discoveries is the use of quatern-
ary ammonium compounds, or quats, as near univer-
sal solvents as well as templating agents. Our process
is scalable and results in high value-added materials
quite inexpensively [32, 33].

More germane to this paper, we discovered that
when powders of more than a dozen Ti-containing
precursors such as TiC, TiB,, TiN, MAX phases, sili-
cides, etc are immersed in a 25 wt% tetramethyl-
ammonium hydroxide (TMAH) aqueous solution at
50 °C or 80 °C for a few days, they are transformed
into anatase-based, C-containing, 1D nanofilaments,
nfs, ~6 x 8 A? in cross-section. Henceforth, we are
labeling these 1D materials, 1DA. Depending on post-
reaction processing the 1DA self-assemble into highly
ordered 2D flakes. The process is not restricted to
TMAH, but also other quaternary ammonium com-
pounds, or quats, such as TBAOH, TPAOH, etc. The
quat’s role is thus two-fold: almost universal solvent
and templating agent [32].

More interestingly, the 1DA has been shown-be
energy loss electron spectroscopy in a HRTEM, to
contain high contents of carbon, C, in addition to Ti
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and O. In some locations that Ti:C:O atomic ratio was
1:1:1 [33]. The presence of a significant C content is
new and departs from previously reported 2D TiO,
structures. The introduction of C atoms into a TiO,
2D lattice can be particularly useful in photocatalytic
applications because the C atoms can lead to bandgap
modifications which can improve the ability of the
material to absorb visible light [34, 35]. However, C-
containing TiO; has previously only been achieved in
3D bulk phases. As far as we are aware, our work is the
first time substantial amounts of C were realized in
low dimensional nanostructures. Therefore, despite
the extensive experimental and computational stud-
ies on pristine TiO, [17, 24, 36, 37], the effects of C
inclusions on the structural and physical properties
of TiO,-based 2D materials (henceforth referred to as
2D-TCO) remain overlooked.

There are several fundamental questions that have
to be answered for 2D-TCO materials. For instance:
does the 2D-TCO still possess the base crystal struc-
ture of C-free 2D TiO,? If yes, what are the C substitu-
tion mechanisms, such as how many O atoms need to
be replaced for each added C and which position does
the C atom prefer to occupy? What are the effects of
C substitution on the electronic band structure, such
as a similar bandgap modification effect seen in the
C-doped 3D TiO, [34, 35]2 Before proceeding much
further, it is important to note that our 2D flakes are
quasi 2D in that they are comprised of 1DA nfs. This
work is a first step towards understanding the latter.
This comment notwithstanding, the work presented
here is valid on its own, and strongly suggest that at
least some of the 2D-TCO structures we modeled are
experimentally possible.

To address these fundamental questions, herein,
we carried out first-principles calculations based on
density functional theory (DFT) to investigate the
fundamental structural and electronic properties of
the 2D-TCO sheets. Through a combination of DFT
calculations and an atomic configuration sampling
scheme, we effectively sampled the energy of multiple
possible C-substitution configurations in several 2D
TiO, template structures as a function of C concen-
tration. Based on our screening results, a low-energy,
dynamically stable 2D structure was identified. Based
on the obtained atomic structure, further DFT calcu-
lations were performed to investigate the effects of C
substitution on the electronic band structure, chem-
ical bonding, as well as the elastic properties. This
work enhances our fundamental understanding of 2D
titanium carbo-oxide nanomaterials and makes pre-
dictions as to which are stable.

2. Method

The Vienna ab-initio Simulation Package was
employed to perform the first-principles calculations
[38], using the projector-augmented wave method
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[39]. For the structural optimization calculations
we used a plane wave basis with a kinetic cutoff
energy of 400 eV and the exchange-correlation effects
treated according to the generalized gradient approx-
imation using the Perdew, Burke, and Ernzerhof
functional [40]. Brillouin zone integration was per-
formed using the Gaussian smearing method, with
a smearing width of 0.10 eV and a k-point density
of 0.1 A~! along the two directions in the 1st sur-
face Brillouin zone. A slab model with periodicity
along x and y directions was used to construct the
simulation supercells, in which a vacuum region of
15 A was added along the z-direction to eliminate
the interactions between the 2D sheet with its peri-
odic images. Structural optimization of all structures
was done by optimizing the internal coordinates
of the atoms until the residual forces were smaller
than 0.01 eV A~!. Furthermore, for each structure
the lengths of the two surface unit cell axes were
optimized using the Broyden—Fletcher—Goldfarb—
Shanno (BFGS) algorithm, as implemented in the
SciPy python library, with gradients of the unit cell
vector lengths calculated by finite differences. How
the search of low-energy configurations with C sub-
stitution in different 2D TCOs polymorphs was per-
formed is described in the main text.

Phonon spectra were calculated using the finite
difference method as implemented in the Phonopy
code. In order to impose rotational and translational
invariances, force constants were corrected according
to the Born—Huang condition and Huang invariances
[41] using the hiPhive python package [42]. The
electronic band structure and charge density of the
screened low energy structures were calculated using
the HSE06 hybrid exchange-correlation functional
[43] with an increased kinetic cutoff energy of 600 eV.
The contour plots of the differential charge density
were generated using VESTA [44].

3. Results and discussion

Whether characterized experimentally or predicted
computationally, multiple polymorphic 2D TiO,
structures, including lepidocrocite, referred to as Lepi
from this point forward [34], the 1 T phase [36], the
2D hexagonal nanosheets [37], and the 2D facets of
the (010) and (101) planes of bulk anatase (hereafter
referred to as 2DA-010 and 2DA-101), respectively
[24] have been proposed and explored. To define
a basis for our atomic structure search for TCOs,
we first performed DFT relaxation calculations on
all aforementioned polymorphic structures. The Lepi
structure was found to have the lowest ground state
energy and be dynamically stable. Additionally, we
found that the pristine, C-free 2DA-101 and 2DA-010
structures were dynamically unstable, although they
yield x-ray diffraction (XRD) spectra aligning well
with the experimental observation [33]. This implies
a crucial effect of the inclusion of C on the structural

3
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stability of 2D-TCO. Therefore, moving forward we
only considered them as the starting basis to perform
a search of the most stable structures of the general
chemical formula,

TiCAnc OZ*AHO 9 (1 )

where Ang is the amount of O removed and Anc
is the amount of C added per formula unit. To do
so, we considered the two scenarios Anc = Ang and
Anc = Ang /2. Figure 1 depicts the crystal structures
of the three 2D-TiO, employed as starting materials.
Both the respective primitive unit cells (green areas in
top row in figure 1) and the geometries of the super-
cells used in the calculations are indicated by the solid
rectangle. Notably, the 2DA-010 structure in the pure
TiO, composition is only obtained by constraining
the relative in-plane positions of the Ti atoms, oth-
erwise it transforms into the Lepi structure.

In investigating the different C content, structures
were generated by selecting O atoms in the super-
cell using a random number generator, considering
15-30 randomly generated structures for each com-
position. For, all the selected O atoms were replaced
by C atoms, while for Anc = Anp/2, one of the
two selected O atoms were replaced by C and the
other was removed from the structures. We also added
ordered structures manually as these were not likely to
be represented among the randomly generated ones.
In both scenarios, we removed different O amounts
from the structure, between Ang = 1/8 and Ang =
1. Each generated structure was structurally optim-
ized, including both the internal coordinates and
the two in-plane unit cell axes (as described in the
section 2). The most stable structures—when starting
from each of the base structures—for different Anc
and Ang, are summarized in figures S1-S6 in sup-
plemental information, SI.

In figure 2 the results are shown for the scenario
where two O atoms are replaced by one C (Anc =
Angp/2). For each composition in the plot, the energy
difference is given with respect to the most stable
structure for that composition. Firstly, for pure 2D-
TiO; the Lepi structure is the most stable one. For, the
structures with C atoms sitting in the middle—rather
than on the outside—of the Ti layers are the most
stable. However, the type of structure being the most
stable one depends on the C:O ratio. Ifa small amount
of O is substituted (Anp =1/8) a structure remin-
iscent of the Lepi structure is favored (figure 2(b)).
Here O in the central layer is replaced by a C, and an
additional O atom is removed from one of the two
surfaces. And while it appears that the 2DA-010 struc-
tures are close in energy to the Lepi ones for this stoi-
chiometry, it should be noted that all of them relax
into a structure that is close to Lepi. This is in accord-
ance with the behavior of the pure 2D-TiO; for which
the 2DA-010 optimized into Lepi if not constrained
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Figure 1. Structures of the 2D forms of TiO, considered as starting points in this study: (a) Lepi, (b) 2DA-010, and (c) 2DA-101.
For each structure, the top view and two side views are shown, the directions of which are indicated by the Cartesian coordinate
axes, where the xy-plane is in the propagation direction of the 2D structures and the z-axis is perpendicular to the 2D structures,
i.e. the stacking direction. In the top view of each structure (top row), the primitive unit cell is indicated by the green area and the
supercell used in the calculations is shown by the black frame.

(vide supra). Significantly, the 2DA-101 type struc-
tures stay in this geometry upon structural optimiza-
tion and are closer to the Lepi in energy than for pure
2D-TiOs.

Substituting a slightly higher O content (Anp =
1/4), the hierarchy between Lepi and 2DA-101
changes, such that a 2DA-101 type structure is the
most stable one. This trend, going from Lepi to 2DA-
101 upon reducing the O and increasing the C con-
tent, becomes most prominent for Ang = 1/2, for
which we find a highly ordered structure signific-
antly more stable than any other 2D material with the
same composition. In this structure, the most cent-
rally positioned O in the 2DA-101 are replaced in a
way such that one C atom substitutes for two removed
O atoms. The resulting structure closely resembles
that of 2DA-101, but with the two bottom and two
top Ti layers shifted with respect to each other. It is
also possible to construct a primitive unit cell com-
parable to that of 2DA-101 (but with different lattice
parameters). Notably, the simulated phonon spec-
trum of this structure shows that it is dynamically
stable (figure S7).

Increasing the C content further, structures based
on 2DA-101 become significantly distorted (cf figure
S3 of SI for the most stable structure based on 2DA-
101 for ) as the C atoms need to be placed in
the Ti layers, which is unfavorable. The most stable
structure for Anp =1 is based on Lepi that relaxes
into a material with local resemblance of—and the
same composition as—an O-terminated Ti,C MXene
(figure 2(e)) [45].

Now consider the scenario for which each O atom
is replaced by a C atom in the 2D-TiO; structures, i.e.
Anc = Angp. The results are summarized in figure 3.
Like the scenario with Anc = Ang/2, the general
trend is that the C atoms prefer to be in-between the
Ti layers. However, for the most stable structures two
adjacent O atoms are replaced by two C atoms such
that the C atoms sit in dimers stabilized by a covalent
bond. The trend when decreasing the amount of O is
similar up to Ang = 1/2;a Lepi type structure is most
stable for Angp = 1/8 (originating from a 2DA-010
initial structure), while the 2DA-101 type structures
are most stable for Ang =1/4 and. The structures
for Ang = 1 have an equimolar mixture of Ti, C and
O, and a structure based on 2DA-010 is found to be
the most stable one (figure 3(e)). Notably, this struc-
ture has a quite close resemblance to 2DA-010 with
the difference that one of the two Ti layers is trans-
lated in what is denoted as the x-direction in figure 2.
This structure is considerably more stable than any
other 2D material we investigated for this composi-
tion and found to be dynamically stable (figure S8).
In this structure, the C dimers interlink the Ti atoms
in one in-plane direction and the O atoms direct the
growth in the perpendicular in-plane direction.

It is found that the stable structure correspond-
ing to the formula of TiC, /4,05, (figure 2(d)), which
is referred to as the 2DA-TCO structure from this
point forward, yield a XRD pattern close to the exper-
imental observations in our previous work of 1DA
nanofilaments and their self-assembled 2D flakes
[33]. Therefore, the electronic and elastic properties
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Figure 2. Results from a screening study of 2D TCOs, by
replacing two O by one C atom from 2D-TiO, structures
resulting in materials with the formula TiCA,, /202— A,
(i.e. with Anc = Anp /2 in equation (1)), where the value
of Ang is the amount of O replaced by C, or removed, from
2D-TiO;. (a) Relative energies of the structures for each
composition (indicated by Ang value) given with respect
to the most stable structure for each composition. Each dot
represents the energy of a material, and the color indicates
which phase of 2D-TiO; it is based on prior to structural
optimization but does not necessarily reflect the final
optimized structure. (b)—(e) Top and side views of the most
stable structures for the different compositions, as
indicated.

of the 2DA-TCO structure is further investigated
using DFT calculations to provide some preliminary
results/predictions for future studies and applica-
tions. The calculations of electronic structures were
performed using a hybrid exchange-correlation func-
tional, HSE06 [43], by which a more accurate descrip-
tion of the band gap and orbital hybridization can be
expected.
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Figure 3. Results from a screening study of 2D TCOs, by
replacing one O by one C from 2D-TiO, structures
resulting in materials on the formula TiCa . O2— A,

(i.e. with Anc = Ang in equation (1)), where the value of
Ang describes amount of O replaced by C from 2D-TiO,.
(a) Relative energies of structures for each composition
(indicated by Ang value) given with respect to most stable
structure for each composition. Each dot represents the
energy of a material, and the color indicates which phase of
2D-TiO; it is based on prior to structural optimization but
does not necessarily reflect the final optimized structure.
(b)—(e) Top and side views of the most stable structures for
the different compositions, as indicated.

The total and projected electronic density of states
(DOSs) for the 2DA-101 and 2DA-TCO structures are
shown in figures 4(a) and (b), respectively. As dis-
cussed above, 2DA-101 is the parent C-free structure
of 2DA-TCO. In other words, the 2DA-TCO struc-
ture can be considered as a result of substituting every
two central O atoms with one C atom in the 2DA-101




10P Publishing

2D Mater. 10 (2023) 015019

Y-] Hu et al

~_~
(M)
~—

Total —Ti —O

Projected eDOS (a.u.)

—~
O
~—

Total —Ti —O —C

Projected eDOS (a.u.)

Energy (eV)

Wave vector

r X s Y r S

Energy (eV)

r X s Y T s
Wave vector

Figure 4. Total and projected electron density of states (DOSs) of, (a) the 2DA-101 and (b) 2DA-TCO structures. Electron band
dispersion of (c) the 2DA-101 and (d) 2DA-TCO structures. Energy axes are rescaled to shift the upper edge of the valence band to

be zero (i.e. all states below zero are occupied at 0 K).

structure. The band energy axes of the plots in figure 4
have been shifted such that the upper edge of the
valence band is at zero (i.e. only states below zero
are occupied). As shown in figure 4(a), the 2DA-
101 structure has a relatively wide bandgap of about
4.3 eV, higher than that of the bulk anatase (3.2 eV
experimentally and 3.6 eV computationally)[46]. A
comparison between figures 4(a) and (b) suggests
that the effects of C-atom substitutions on the elec-
tronic structure is relatively localized by adding a few
new electronic states in the bandgap range of the
pristine TiO, (i.e. 2DA-101). As shown in figure 4(b),
those new states mainly correspond to a large overlap
between the projected DOSs of Ti, C, and O, indicat-
ing that covalent bonds may form between the C and
Ti atoms and the nearby O atoms. A further analysis
indicates that the DOS overlap is mainly attributed
to hybridizations between the p orbitals of the C and
O atoms and the d,,, d., and dx,.,, orbitals of the Ti
atoms. Similar C effects on the band structure have
also been observed in the case of C-anion-doped 3D
anatase TiO, [35].

To further scrutinize the C effects, the electronic
band dispersions along high-symmetry directions in
the first Brillouin zone for the 2DA-101 and 2DA-
TCO structures are plotted in figures 4(c) and (d),
respectively. Consistent with the DOS results, it is
found that the C substitution does not significantly
alter the valence or conduction bands structures but
only introduces a few new states. These states are filled
at 0 K, which shifts the valence band edge up by about
2.0 eV relative to 2DA-101, narrowing the bandgap
to 2.3 eV. It is also worth noting that the existence
of inter bandgap states is also revealed in the experi-
mentally synthesized TCO nanoflakes via the UV—vis
optical absorption spectra measurements [33].

To reveal the bonding features between the C
atoms and their surrounding O and Ti atoms, we plot
the differential charge densities (Ap) in figure 5. Here
Ap is defined as the difference between the charge
densities from the self-consistent calculations and a
non-self-consistent superposition of atomic charge
densities of unbonded states. Therefore, the value of
Ap quantifies the charge transfer and redistribution
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Figure 5. Differential charge density (Ap) of the 2DA-TCO structure. (a) 3D isosurface at Ap = 4:0.009 ¢~ /A. (b) 2D contour
plot of the plane on which the C atom lie together with its nearby Ti and O atoms.
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due to the formation of chemical bonds between
atoms [47, 48]. The 3D Ap isosurface of 2DA-TCO
is shown in figure 5(a) along with the atomic struc-
ture at Ap = £0.009¢~ /A. Positive Ap is rendered
in yellow while the negative ones in blue. As shown in
figure 5(a), considerable charge transfer from the Ti
atoms to the C and O atoms is observed. To character-
ize the bonding features between those atoms in more
detail, figure 5(b) shows a 2D contour plot of Ap of
the plane on which the C atoms lie together with their
nearby Tiand O atoms. As shown in figure 5(b), after
charge transfer, the valence electrons mainly accumu-
late around the O and C atoms with a spherical-like
spatial distribution, implying an ionic characteristic
of the Ti—C and Ti—O bonds. A Bader charge analysis
was carried out to quantitatively estimate the charge
transfer among the Ti, O, and C atoms. It was found
that on average about 2.2 electrons transferred from
each Ti atom to the adjacent O and C atoms. Each O
atom averagely gained 1.2 electrons, while the average
gain of the C atoms is about 1.6 electrons. This sub-
stantial charge transfer among the Ti, O, and C atoms
confirms the strong ionic characteristic of the Ti-C
and Ti—O atomic bonds. On the other hand, a denser
accumulation of valence electrons can be found in the
interatomic regions between C and Ti, implying the
Ti—C bonds could also exhibit covalent characterist-
ics, which is consistent with the orbital hybridization
observed in figure 4(a). Additionally, a weak charge
accumulation between C and O can be observed in
figure 5(a), suggesting that in addition to the Ti-C
and Ti—O bonds, a weak covalent bond may also exist

between the C and O atoms, which accounts for the
overlap between the project DOS curves of C and O
shown in figure 4(a).

The elastic constants, ¢;;s, of the 2DA-101 and
2DA-TCO structures were obtained by DFT calcu-
lations. The results are listed in table 1. It is found
that the ¢;js of both structures satisfy the ‘Born sta-
bility criteria’ [49], indicating they are all mechanic-
ally stable. Except for cg6, the 2DA-TCO structure has
higher elastic constants than the 2DA-101 structure,
which is attributable to the formation of strong Ti—C
bonds.

The practical synthesis of the 2DA-TCO structure
discovered here could be non-trivial and warrant fur-
ther studies in the future. The bottom-up synthesis
strategy is considered to be more appropriate than
the conventional top-down approaches for 2D mater-
ials synthesis because 3D polymorphic structures
for titanium oxides are typically nonlayered. Previ-
ous attempts of synthesizing C-containing titanium
oxides have mainly been focused on 3D bulk phases
[34, 50-54], employing bottom-up like synthesis
approaches, such as chemical vapor deposition [50],
sol-gel reactions [34, 51], magnetron sputtering [52],
and hydrothermal process [53, 54]. Notably, the car-
bon contents in the products from those previous
syntheses were all quite low, at a dopant level around
1-3 at.% [50, 52, 54]. In contrast, the 2DA-TCO
structure in figure 2(d) is carbon enriched with a
composition of 9.1 at.%, possibly making those previ-
ous approaches for the synthesis of bulk C-containing
titanium oxides less promising. Alternatively, our
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Table 1. Elastic constants of the 2DA-101 and 2DA-TCO structures. Unit: GPa.
Cn Cn Ca Ces Mechanically stable
2DA-101 (TiO) 157.4 55.2 150.6 48.3 Yes
2DA-TCO (Tig012C3) 163.2 76.3 197.0 40.4 Yes

recent work [32, 33] may shed light on efficient,
large-scale, and cost-effective synthesis of TiO,-based
low-dimensional nanomaterials with high carbon
concentrations, thus promising for synthesizing the
2DA-TCO structure discovered in this study. As dis-
cussed in the section 1, it was found that 1D titanium
carbo-oxides nanofilaments can be synthesized by
immersing versatile Ti-containing nonlayered bulk
precursors in TMAH aqueous solution at 50 °C or
80 °C for a few days [33]. Nevertheless, we also admit
that a lot more research is still needed to further
understand the reaction mechanism of this new syn-
thesis approach and to correspondingly design and
optimize the synthesis conditions for the 2DA-TCO
structure theoretically discovered in this study.

4. Summary

In the present work, first-principles calculations are
carried out to study the possible inclusion of C in
2D TiO,-based structures and the resulting effects
on their electronic and elastic properties. An effect-
ive structure sampling scheme was implemented to
find low energy, dynamically stable forms of 2D TCOs
for different C substitutions for O. It is found that
an atomic structure close to lepidocrocite TiO, is
energetically favored when the substitutional con-
tent of C is relatively low (Ang < 1/8). As more O
atoms are replaced by C (1/4 < no < 1/2), the ener-
getically favorable structure switches to 2D struc-
tures that correspond to the (101) plane facets of
anatase TiO,. At the highest C investigated, viz. no =
1, the structure relaxes into a configuration with local
resemblance to—and the same composition as—O-
terminated Ti,C MXene.

The one-to-one substitution scenario results in
the formation of C-C dimers with a quite strong
covalent bond between them for which there is
scant experimental evidence. Among the searched low
energy structures, a structure templating on the (101)
plane facet of anatase TiO, (i.e. 2DA-TCO) is found
to be a possible candidate, wherein two O atoms in
the center between the two Ti layers are replaced by
one C. It is worth noting here that in that structure
the C atoms are bonded to four Ti atoms.

We find that the C-free 2D TiO, has a much wider
bandgap (~4.3 eV) compared to its bulk counter-
part, but that the C-substitution introduce new indi-
vidual electronic states in the bandgap range. Con-
sequently, the excitation energy from the C state to
the conduction band of Ti is reduced to 2.3 eV. The
analysis of differential charge density suggests that
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C-induced states mainly originate from the chemical
bonds between Ti and C atoms and the O and C
atoms, which show a mixed characteristic of ionic and
covalent bonding. The C-substitution is also found
to enhance the elastic stiffness of the 2D titanium
carbo-oxide, possibly due to the formation of Ti—C
bonds.

Lastly, we note that this work is a first step in
modeling what we actually experimentally produce:
2D flakes comprised of 1D titanium carbo-oxides
nanofilaments [33]. This comment notwithstanding,
there is little doubt that the structures that we found
are stable and thus possible. We hope this work
inspires others to look into synthesizing the novel 2D
structures predicted herein.
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