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ABSTRACT
Joint Nonnegative Matrix Factorization (JointNMF) is a hybrid
method for mining information from datasets that contain both fea-
ture and connection information. We propose distributed-memory
parallelizations of three algorithms for solving the JointNMF prob-
lem based on Alternating Nonnegative Least Squares, Projected
Gradient Descent, and Projected Gauss-Newton. We extend well-
known communication-avoiding algorithms using a single pro-
cessor grid case to our coupled case on two processor grids. We
demonstrate the scalability of the algorithms on up to 960 cores (40
nodes) with 60% parallel e�ciency. Themore sophisticated Alternat-
ing Nonnegative Least Squares (ANLS) and Gauss-Newton variants
outperform the �rst-order gradient descent method in reducing the
objective on large-scale problems. We perform a topic modelling
task on a large corpus of academic papers that consists of over 37
million paper abstracts and nearly a billion citation relationships,
demonstrating the utility and scalability of the methods.
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1 INTRODUCTION
This paper describes the �rst distributed-memory parallel algo-
rithms for the Joint Nonnegative Matrix Factorization (JointNMF)
problem [7]. JointNMF has been proposed for unsupervised learn-
ing and data mining tasks on attributed graph datasets, where data
points naturally have both nonnegative features and connectivity
(relational) information expressed by a graph [10]. This form ap-
pears in many datasets, including those arising in the analysis of
social networks, document corpora, gene regulatory networks, and
image datasets, among others. For example, consider a corpus of
scholarly documents that one wishes to cluster. The document fea-
tures might be represented by a term-document matrix with entries
derived from Term Frequency-Inverse Document Frequency (tf-idf)
scores, which are nonnegative [19]; and the citations among docu-
ments would form the edges of a graph. One might want both the
features and the graph to inform the clustering, which JointNMF
accomplishes. However, it has been di�cult to apply these algo-
rithms at more than a modest scale due to their high computational
and memory costs, thus motivating our work.

The simplest form of JointNMF is as follows. (Section 3 gener-
alizes this formulation, which our new algorithms and software
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can handle via straightforward preprocessing.) Let X 2 R<⇥=
+

be the nonnegative features matrix and S 2 R=⇥=+ a symmetric
nonnegative connections matrix with S = ST. JointNMF is a Con-
strained Low Rank Approximation (CLRA) method and a natural
extension of the popular data mining methods, Nonnegative Ma-
trix Factorization (NMF) and Symmetric Nonnegative Matrix Fac-
torization (SymNMF), to handle this type of multimodal form of
input [7, 16, 18]. It formulates the optimization problem as

min
W�0,H�0

kX �WHk2� + U
���S � HTH

���2
�
, (1)

whereW 2 R<⇥:
+ andH 2 R:⇥=+ are low-rank matrices to be found

with : ⌧ min(<,=). The hyperparameter U � 0 can be tuned to
emphasize which objective, either the features �t or connections
�t, is of more importance to the user. Fusing the two information
sources in the objective permits the use of the CLRA machinery de-
veloped for NMF and SymNMF and makes the results interpretable
without any additional preprocessing or clustering steps [8, 9].

The main sequential algorithms for JointNMF use Block Coordi-
nate Descent (BCD) [7]. They include an Alternating Nonnegative
Least Squares (ANLS) type algorithm for Eq. (1) using a regularized
approach similar to the one developed for SymNMF [18]. However,
direct optimization techniques based on Newton-like methods are
believed to have prohibitive computational and memory costs.

We investigate new parallel algorithms for distributed-memory
systems for both BCD and direct methods, namely, the ANLS vari-
ant of Du et al. [7] and two parallel direct methods Projected Gradi-
ent Descent (PGD) and Projected Gauss-Newton using Conjugate
Gradient (PGNCG) (Section 3). Unlike the inexact Gauss-Newton
method developed for SymNMF [9], PGNCG has stronger guaran-
tees for convergence while still enjoying low computational and
memory requirements. Our methods facilitate reuse of existing
algorithms and software developed for the standard NMF case. We
adopt the communication-optimal ANLS method due to Kannan et
al. and extend it to handle multimodal inputs [14].

We evaluate these methods experimentally (Section 4). Our serial
experiments highlight the superior performance of the ANLS and
PGNCG methods compared to PGD. The parallelization exercise
highlights the di�erent computational challenges that arise when
there are two large input matrices involved in the bottleneck matrix
multiplications. We explore the di�erent processor grid layouts,
optimized for multiplication with X, with S, or both, needed to
handle this case. With appropriate choices, we observe over 60%
parallel e�ciency on up to 960 cores distributed across 40 nodes.

These novel JointNMF methods permit scaling to problem sizes
that were previously computationally infeasible. For instance, we
perform topic discovery using JointNMF on a large corpus of over
37 million academic paper abstracts and 0.9 billion citation rela-
tionships for the �rst time [30, 32]. The PGNCG method achieved
a speedup of 28⇥ when scaling to 48 cores on this sparse dataset
with a memory footprint of 59GB. This initial demonstration paves
the way for new applications of JointNMF, including as a poten-
tially simpler and faster alternative to tensor-based methods for
unsupervised learning and data mining.

Table 1: Costs of certain MPI collectives.

Operation Cost

All-Gather a · log? + q · ?�1? =

Reduce-Scatter a · log? + (q + l) · ?�1? =

All-Reduce 2a · log? + (2q + l) · ?�1? =

2 PRELIMINARIES
2.1 Notation
We use bold lowercase fonts for vectors (e.g., x) and bold upper-
case for matrices (e.g., A). For A, its 8th column is a8 . A (8, :) and
A (:, 9) are also used for denoting the 8th row and 9th column of
A, respectively. Elements of A are interchangeably denoted by 08 9
and A (8, 9). A vector x or matrix X that changes during an iterative
algorithm will be represented as x(C ) andX(C ) at iteration C . We use
logical indexing for accessing elements of matrices and vectors. For
example, let A 2 R<⇥= and I = {(8, 9) : 0  A (8, 9)  1}. Then
A (I) or AI will return all the elements of A which are between
0 and 1. The comparison X � 0 is performed element-wise and
[X]+ for projection on to the nonnegative orthant. The vec(X)
operator vectorizes a matrix by stacking its columns on top of each
other. The Kronecker product between two matrices A 2 R<⇥=

and B 2 R?⇥@ is de�ned as

(A ⌦ B)8, 9 = 0d8/? e,d 9/@e1 (8�1)%?+1,( 9�1)%@+1 .

P?,@ denotes a commutation matrix that converts a column-major
vectorization of A 2 R?⇥@ to row-major, that is

P?,@vec(A) = vec
⇣
AT

⌘
.

The distributed-memory algorithms we consider here utilize the
All-Gather, Reduce-Scatter, and All-Reduce Message Passing Inter-
face (MPI) Collectives [4], whose costs are summarized in Table 1.
The costs are modelled using the MPI model with a �xed cost of
l per �op and a + q= for sending = words between two proces-
sors, where a is the per-message latency cost and q is the per-word
bandwidth cost.

Throughout the paper we assume that the ? available processors
are logically arranged in a ? = ?A ⇥ ?2 grid ⇧. Global distributed
matrices are shown with the usual bold font, like X and W, with
local matrices shown with the processor subscripts (e.g. X8 9 orWA )
The input data matrices, X and S, are 2D distributed across the grid
with W and H in conformal 1D distributions (see Fig. 1). Other
matrix distributions are mentioned when required. In Section 3,
we consider the case of using two logical grids of ? processors,
⇧ = ?A ⇥ ?2 and � = @A ⇥ @2 .

2.2 BCD for Nonlinear Optimization
BCD is an iterative process to solve an optimization problem. It
groups variables into several disjoint subgroups and iteratively
solves the variables in a subgroup keeping the others �xed. This
grouping helps when subproblems can be solved quickly or exactly.

Consider the general optimization problem for x 2 R= ,

min
x2C

5 (x) .
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Figure 1: Data distribution of the NMF matrices on a 4 ⇥ 3
processor grid. The< ⇥ = input matrix X is 2D partitioned,
whereas the factor matrices are 1D partitioned. The rows of
W are placed in row-major order and the columns of H in
column-major order across the grid. The smallest dimension
: is never split. The local portions of the matrices have the
following sizes: X8 9 is <

?A
⇥ =

?2
,W8 is <

? ⇥ : , and H9 is : ⇥ =
? .

Weassume thatC ✓ R= can be represented as the Cartesian product,
C = C1 ⇥ C2 ⇥ . . . C< , where C8 ✓ R=8 is closed and convex
with

Õ<
8=1 =8 = =. The input vector is similarly partitioned as x =⇥

xT1 xT2 · · · xT<
⇤T. The BCD method generates the next iterate

x(C+1) given the current iterate x(C ) according to the update rule

x(C+1)8 = min
z2C8

5
⇣
x(C+1)1 , x(C+1)2 , . . . , x(C+1)8�1 , z, x(C )8+1, . . . , x

(C )
<

⌘
.

This scheme uses the most recently updated values of all the �xed
blocks and ensures that the objective value never increases. The
convergence of BCD is discussed elsewhere [3, 12, 16].

2.3 Direct Optimization Overview
We use the Projected Gradient Descent and an inexact Gauss-
Newton (GN) methods for the optimization, min

x�0
5 (x). For PGD,

we use the momentum variant, which accelerates gradient descent
and dampens oscillations [26, 27]. Let p(C ) be the step taken by the
algorithm at iteration C . PGD’s updates take the form,

p(C ) = Wp(C�1) + rx 5

krx 5 k
,

x(C ) =
h
x(C�1) � _p(C )

i
+
.

Here, W � 0 is the momentum parameter and _ � 0 is the step size,
which is found via experiment. p(0) is initialized as 0.

The GNmethod minimizes a sum of squares of residual functions
of the form 5 (x) = 1

2
Õ
; A; (x)2. It starts with an initial guess x(0)

and follows the iteration:

x(C+1) =

"
x(C ) � argmin

p

���J(C )p � r(C )
���2
2

#
+
.

Here J(C ) is the Jacobianmatrix de�ned as J(C )
;@

= mA;
mx@ (x

(C ) ) and r(C )

is a vector of the residual function values A; (x(C ) ). This iteration is
performed until some stopping criteria is met. We solve the linear
least-squares problem via the normal equations. The GN method is
a second-order optimization method where the matrix JTJ acts as
an approximate Hessian matrix for 5 [3]. We can use an iterative
method, like Conjugate Gradient (CG), to e�ciently solve for p by
only applying J and JT such that,

⇣
J(C )

T
J(C )

⌘
p = J(C )

T
r(C ) = g(C ) .

The right hand side of the equation is the gradient evaluated at x(C ) .
If the least-squares problem for p is only approximately solved, the
method is known as an inexact GN algorithm.

To converge in the constrained case, i.e., x � 0, we need to
modify J(C )TJ(C ) to handle variables whose constraints are active [2].
Denote these active variables by

A =

(
8 : 0  G (C )8  n and

m5

mG (C )8

> 0

)
,

where n is a small constant. The complement of A is the set of free
variables F = {1, . . . ,=} \ A. Without loss of generality, assume

x(C ) is permuted like

"
x(C )F
x(C )A

#
. The step direction solves

⇣
J(C )

T
J(C )

⌘
F
pF = g(C )F and pA = g(C )A ,

where
⇣
J(C )TJ(C )

⌘
F
is the approximate Hessian whose rows and

columns are restricted to the ones corresponding to the free vari-
ables. Second-order information is captured for the free variables
whereas the active ones are kept �xed at the constraints. Bertsekas
shows that these scaling matrices result in p being a descent direc-
tion, andwith an appropriate step size _, such an iterative procedure
converges to a stationary point [2].

We use a variant of backtracking line search to step in a direction
that reduces the objective for both PGD and PGNCG [3, 29].

2.4 Parallel NMF Algorithms
Our implementation of JointNMF is built on top of Parallel Low-
rank Approximation with Nonnegativity Constraints (PLANC), an
open-source library for NMF [8, 14]. PLANC is designed to solve
the optimization problem

min
W�0,H�0

kX �WHk2� (2)

for dense or sparse, nonnegative input matrices X 2 R<⇥=
+ and

low-rank matrices W 2 R<⇥:
+ and H 2 R:⇥=+ with : ⌧ min (<,=).

It contains various algorithms for computing NMF, including both
BCD and direct optimization variants.
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Algorithm 1 Gram Computation
Require: ⇧ a ?A ⇥ ?2 processor grid.
Require: B 2 R?⇥:+ is row-wise distributed across the grid.
Ensure: BTB is stored redundantly on all processors.
1: function [G] = ����(⇧,B)
2: (8, 9) = M�R���(⇧) ù Processor rank
3: A = (8 � 1) ?2 + 9 ù Row-major rank
4: ĜA = BTA BA
5: G = A���R�����(ĜA )
6: end function

Algorithm 2 2D Matrix Multiplication
Require: ⇧ a ?A ⇥ ?2 processor grid.
Require: A 2 R?⇥@+ is 2D distributed across the grid.
Require: B 2 R?⇥:+ is row-wise distributed across the grid.
Ensure: BTA is column-distributed across the grid.
1: function [C] = 2D������(⇧,A,B)
2: (8, 9) = M�R���(⇧) ù Processor rank
3: A = (8 � 1) ?2 + 9 ù Row-major rank
4: 2 = ( 9 � 1) ?A + 8 ù Col-major rank
5: B̂8 = A���G�����(BA ,⇧ (8, :))
6: Ĉ9 = B̂T8 A8 9

7: C2 = R������S������(Ĉ9 ,⇧ (:, 9)) ù Column-wise
distributed

8: end function

Matrix multiplication is the computational bottleneck of NMF
with most algorithms needing to compute WTW, HHT, WTX, and
HXT. PLANC uses communication-optimal matrix multiplication
algorithms for each of these operations [1, 5], via a 2D distribution of
X over a ?A ⇥?2 grid of processors with conformal 1D distributions
for the factor matricesW and H as shown in Fig. 1. A 2D algorithm
is used to compute WTX and HXT. PLANC does not communicate
any of the data matrix elements. In the case of dense X, Kannan
et al. show that selecting ?A

?2
⇡ <

= minimizes the number of words
transferred in the multiplications [13].

The full two-block BCD algorithm for NMF is shown in Algo-
rithm 3. In each outer iteration, Line 6 in Algorithm 3, we alternately
�xH and updateW using a Nonnegative Least Squares (NLS) solver
(Line 9) and then solve for H �xingW (Line 12). The pseudocode
for the two di�erent types of matrix multiplication are shown in
Algorithm 2 and Algorithm 1. Algorithm 1 computes the Gram
matricesWTW and HHT, whereas Algorithm 2 involves multipli-
cations with the large data matrix X. Notice that the NLS updates,
Lines 9 and 12, are local and do not involve any communication.

2.5 Additional Related Work
The fusion of multiple information sources is common in CLRA.
Various formulations of fusing multiple features and connections
matrices with di�erent constraints exist for clustering [7, 21, 31, 34]
and anomaly detection [10, 22, 25]. In both settings the fusion of
information sources has been shown to be more e�ective than
working on individual portions of the data. Most of the clustering
methods are for unsupervised graph mining, however Whang et
al. [34] has also extended this approach to hypergraphs and to

Algorithm 3 Communication-avoiding parallel NMF [13]

Ensure: W,H ⇡ argmin
W�0,H�0

kX �WHk2� .

1: function [W,H] = P��NMF(⇧,X,:)
2: (8, 9) = ������(⇧) ù Processor rank
3: A = (8 � 1) ?2 + 9 ù Row-major rank
4: 2 = ( 9 � 1) ?A + 8 ù Column-major rank
5: Initialise H(0)

2
6: while C = 1, 2, . . . do ù Till some stopping condition is met.

% Compute W given H

7: GH = ����
✓
⇧T,

⇣
H(C�1)

⌘T◆

8: RH = 2D������
✓
⇧T,XT,

⇣
H(C�1)

⌘T◆

9: W(C )
A = ������

�
GH,RHA

�
ù NLS update

% Compute H given W
10: GW = ����

⇣
⇧,W(C )

⌘
11: RW = 2D������

⇣
⇧,X,W(C )

⌘
12: H(C )

2 = ������
�
GW,RW2

�
ù NLS update

13: end while
14: end function

the semi-supervised case. For more information on the di�erent
formulations, we refer the reader elsewhere [6].

The PGD and projected Gauss-Newton methods are staples of
modern optimization [3, 23] and have been used for CLRA [20, 29,
33]. In this context, we are primarily focused on the momentum
variant of PGD [26, 27] and the box-constrained version of Gauss-
Newton [2]. While these methods have been developed for general
optimization, our approach is the �rst known treatment of these
methods for JointNMF in the distributed-memory setting.

3 ALGORITHMS FOR JOINTNMF
3.1 Extending to Multiple Inputs
The most common form of JointNMF is the optimization problem
involving a single features and connections matrix, respectively
denoted X and S, as shown in Eq. (1). This formulation can be
extended to more than two inputs as follows:

min
{W1,...,W? ,H}�0

?’
8=1

W8 kX8 �W8Hk2� +
@’
9=1

U 9
���S9 � HTH

���2
�

(3)

Note that the H is common to all terms in the objective. Using this
joint formula, we are able to incorporate all the input sources at the
objective level and obtain a single embeddingmatrix. Clustering and
other data mining tasks can now work o� this single embedding.

We shall now show the equivalence between Eq. (3) and Eq. (1). In
the features term, we can combine the ? di�erent terms as follows:

?’
8=1

W8 kX8 �W8Hk2� =

�������
2666664

p
W1X1
...p

W?X?

3777775
�
2666664

p
W1W1
...p

W?W?

3777775
H

�������

2

�

=
��X̂ � ŴH

��2
�

Thus, optimizing with X̂ is the same.
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The same trick for the connection matrices is not as straight-
forward. That can be seen by induction, working �rst with two
matrices, S1 and S2. Let Y = HTH, Û = U1 + U2, and Ŝ = U1S1+U2S2

U1+U2
.

Now let us look at the di�erence Û
��Ŝ � Y

��2
� �Õ2

9=1 U 9
��S9 � Y

��2
� .

The (8, 9) entry of this di�erence can be shown to be equal to
�U1U2 (S1 (8, 9) � S2 (8, 9))2. The di�erence only depends on S1 and
S2 and not Y = HTH. Therefore, solving with Ŝ in Eq. (1) will result
in the same solution as using S1 and S2 in Eq. (3). The objective
values will di�er by a constant, which does not a�ect the solution
H. By induction, we can replace the @ inputs (U8 , S8 ) with a single

input
✓Õ@

9=1 U 9 ,
Õ@

9=1 U 9 S9Õ@
9=1 U 9

◆
.

Therefore, the original formulation, Eq. (1), is versatile enough
to handle multiple information sources via simple preprocessing,
so we can focus on this case for parallelization.

3.2 JointNMF via ANLS
Du et al. solve Eq. (1) by dropping the symmetric constraint and
using a penalty term [7]. They propose the surrogate optimization,

min
W�0,H�0,Ĥ�0

kX �WHk2� + U
���S � ĤTH

���2
�
+ V

��Ĥ � H
��2
� ,

where Ĥ 2 R:⇥=+ and V � 0 is the regularization parameter. This
formulation is motivated by a similar one for the SymNMF prob-
lem [9, 17]. It can be solved using a three-block BCD scheme, up-
dating W, Ĥ, and H in turn. The following NLS subproblems are
iteratively solved.

min
W�0

���HTWT � XT
���2
�

(4)

min
Ĥ�0

����
p

UHTp
VI:

�
Ĥ �

p
USp
VH

�����
2

�
(5)

min
H�0

�������
2666664

W
p
UĤTp
VI:

3777775
H �

266664
Xp
USp
VĤ

377775

�������

2

�

(6)

The major computations for this ANLS version of JointNMF are
the matrix calculations needed for computing the gradients. These
are the Gram calculations HHT, UHHT + VI: , and WTW + UĤĤT +
VI: and the large ones involving the input matrices HXT,UHS +
VH,WTX + UĤS + VĤ. We use the Block Principal Pivoting algo-
rithm as the NLS solver [15]. The computational cost of solving
✓ NLS problems, i.e. the multiple right hand sides, in A variables
is $

�
✓A3BAS

�
, where BAS  2A is the number of active sets ex-

plored [12]. In practice however, BAS is typically much smaller than
2A .

3.3 JointNMF via PGD
PGD is a straightforward way to address Eq. (1). The gradients with
respect to the factor matrices are

rW 5 = 2
⇣
WHHT � XHT

⌘

rH 5 = 2
⇣
WTWH �WTX

⌘
+ 4U

⇣
HHTH � HS

⌘
.

Algorithm 4 Compute Gradient

Require: C 2 R:⇥=+ is a copy of H column-wise distributed across
the grid �.

Ensure: Gradient rW 5 = 2(WHHT � XHT) 2 R<⇥: row-wise
distributed across the grid ⇧.

Ensure: Gradient rH 5 = 2(WTWH�WTX) + 4U (HHTH�HS) 2
R:⇥= column-wise distributed across the grid ⇧.

1: function [rW,rH] = C������G�������(X,⇧, S, �,W,H)
2: (8, 9) = ������(⇧) ù Processor rank
3: A = (8 � 1) ?2 + 9 ù Row-major rank
4: 2 = ( 9 � 1) ?A + 8 ù Column-major rank

% Compute rW
5: GH = ����(⇧T,HT) ù Gram redundantly stored on ⇧
6: LWA = WAGH
7: RW = 2D������(⇧T,X,HT) ù H row-wise on ⇧T

8: rWA = 2(LWA � RWA )
% Compute rH

9: GW = ����(⇧,W) ù Gram redundantly stored on ⇧
10: LH2 = (2GW + 4UGH)H2
11: RHX = 2D������(⇧,X,W)
12: RHS = 2D������(�T, ST,CT) ù C is the copy of H on �

13: RHS = ������
⇣
RHS, �,⇧T

⌘
ù Send from grid � to ⇧T

14: rH2 = (2RHX2 + 4URHS2 ) � LH2
15: end function

Let P(C )W and P(C )H be the steps taken at iteration C for the factors
W and H, respectively. Then the updates via PGD are

P(C )W = WP(C�1)W + rW 5

krW 5 k�
W(C ) =

h
W(C�1) � _P(C )W

i
+

P(C )H = WP(C�1)H + rH 5

krH 5 k�
H(C ) =

h
H(C�1) � _P(C )H

i
+
.

As in the ANLS case, the computational bottlenecks are a subset
of matrix multiplications, WTW,HHT,WTX,XHT, and HS.

3.4 JointNMF via PGNCG
To apply PGNCG to the JointNMF objective in Eq. (1), consider the
vectorized residuals,

r =

rX
rS

�
=

"
vec(X �WH)

p
Uvec

⇣
S � HTH

⌘# 2 R<=+=2
.

The Jacobian for Eq. (1) is a 2 ⇥ 2 block matrix of the form

J =

" mrX
mvec(W)

mrX
mvec(H)

mrS
mvec(W)

mrS
mvec(H)

#

= �
"
HT ⌦ I< I= ⌦ W

0
p
U
⇣⇣
I= ⌦ HT

⌘
+
⇣
HT ⌦ I=

⌘
P:,=

⌘# .
We can easily verify that 2JTr gives the gradient. Applying JTJ to

a vector x =

vec(XW)
vec(XH)

�
results in y =


vec(YW)
vec(YH)

�
. Exploiting the



ICS ’23, June 21–23, 2023, Orlando, FL, USA Eswar et al.

structure of J we get

YW = XWHHT +WXHHT

YH =
⇣
WTXWH +WTWH

⌘
+ 2U

⇣
HHTXH + HXT

HH
⌘
.

Computing the gradient requiresmultiplicationwithX and Swhereas
applying the Gramian of the Jacobian involves only< ⇥ : , = ⇥ : ,
and : ⇥ : matrices.

We drop the extra constant and work with JTr and JTJ for the
PGNCG step. First, identifying the active-set can be done indepen-
dently at every processor via checking their local portions of the
factor matrices and gradients, as follows.

AW = {(8, 9) : 0  W (8, 9)  n,rW 5 (8, 9) > 0}
AH = {(8, 9) : 0  H (8, 9)  n,rH 5 (8, 9) > 0}

The complements of the active-sets are the free variables FW and
FH. Instead of using the exact active-set with H (8, 9) = 0, a small
�xed scalar n prevents zigzagging of the solution [3]. To compute the
correct step, before starting the CG iterations wemask the gradients
as rW 5 (AW) = 0 and rH 5 (AH) = 0. When applying JTJ, we
mask the outputs YW (AW) = 0 and YH (AH) = 0. Finally, the step
directions of the active variables are set to the gradient [2, 29, 33].
We limit the inner CG solver to a maximum of BCG iterations.

Algorithm 5 Apply approximate Hessian

Require: XW 2 R<⇥:
+ row-wise distributed across the grid ⇧.

Require: XH 2 R:⇥=+ column-wise distributed across the grid ⇧.
Ensure: YW = XWHHT +WXHHT 2 R<⇥: row-wise distributed

across the grid ⇧.
Ensure: YH = WTXWH + WTWH + 2U

⇣
HHTXH + HXT

HH
⌘

2
R:⇥= column-wise distributed across the grid ⇧.

1: function [YW,YH] = A����H������(X,⇧, S, �,W,H)
2: (8, 9) = ������(⇧) ù Processor rank
3: A = (8 � 1) ?2 + 9 ù Row-major rank
4: 2 = ( 9 � 1) ?A + 8 ù Column-major rank

% Compute YW
5: GH = ����(⇧T,HT) ù Redundantly stored
6: GXH = ���������(⇧T,XT

H,H
T) ù Redundantly stored

7: YWA = XWAGH +WAGXH
8: �������������(YWA )

% Compute YH
9: GW = ����(⇧,W) ù Redundantly stored
10: GWX = ���������(⇧,W,XW) ù Redundantly stored
11: YH2 = GWXH2 + GWH2 + 2U (GHXH2 + GXHH2 )
12: �������������(YH2 )
13: end function

We compare the costs of the di�erent JointNMF algorithms in Ta-
ble 2 for dense inputsX and S. The only di�erence in the sparse case
is the computation costs of multiplication with the input matrices
(e.g.WTXwill cost 2nnz(X): instead of 2<=:). The communication
costs remain the same as only dense matrices are transmitted.

3.5 Changes from NMF and SymNMF
Di�erences in parallelization strategies for JointNMF arise from
having two large input matrices. The communication costs for the
four multiplications are given below, assuming we are working
with a ?A ⇥ ?2 grid of ? processors.1

)comm
⇣
WTX

⌘
= 2a log ? + q

✓
<:

?
(?2 � 1) + =:

?
(?A � 1)

◆

)comm
⇣
HXT

⌘
= 2a log ? + q

✓
<:

?
(?2 � 1) + =:

?
(?A � 1)

◆

)comm
⇣
ĤTS

⌘
= 2a log ? + q

✓
=:

?
(?2 � 1) + =:

?
(?A � 1)

◆

)comm (HS) = 2a log ? + q

✓
=:

?
(?2 � 1) + =:

?
(?A � 1)

◆

The total words communicated is (2<+2=):
? (?2 � 1) + 4=:

? (?A � 1),
the same as a 2Dmultiplicationwith a largematrix of size (2< + 2=)⇥
4=. Thus, a processor grid with aspect ratio ?A

?2
⇡ 2<+2=

4= = <+=
2=

will be communication e�cient, and for the PGD and PGNCG al-
gorithms, ?A?2 ⇡ 2<+=

3= .
An alternative is to logically partition the ? processors into two

grids: ? = ?A ⇥ ?2 = @A ⇥ @2 . The aspect ratio of one grid could
approximate that of X whereas the other would be closer to that of
S. Thus, we could be theoretically communication-optimal for all
matrix multiplications. However, the factor H must be duplicated
on both grids since it needs to be multiplied by both X and S. Care
must be taken to ensure that these copies of H are kept in sync.

We analyze the di�erences in the bandwidth term for the single
and double grid con�guration for the ANLS algorithm. Using the
optimal grid con�guration, ?A?2 = <+=

2= , we have ?A =
q

<+=
2=

p
? and

?2 =
q

2=
<+=

p
? . Plugging these into the bandwidth component of

the communication costs, we have

,1G =
4=: � 4

?
(?2�1) +

2<: + 2=: � 4
?

(?A�1) >
4
p
2:p
?

p
<= + =2 .

Similarly, we can get the words communicated in the two grids
case as,2G ⇡ 4:p

?

�p
<= + =

�
. Now using the 1-norm inequality in

3 dimensions, k·k2  k·k1 
p
3 k·k2, we get 1  ,1G

,2G

p
2. Thus

the two-grid con�guration always communicates less data with a
maximum savings of 41% in terms of words communicated.

Similar analysis of the PGD and PGNCG algorithms, which only
employ three large matrix multiplications, yields the ratio

,1G
,2G

=
p
3
p
2<= + =2
2
p
<= + =

.

The minimum value for this ratio is 1, obtained when< = =. Hence,
the two-grid setting always communicates less data, and we will
see minimal gains when < ⇡ =. However, when = � < we can

expect an improvement factor up to
p
3, and

q
3
2 in the < � =

scenario.

1We can eliminate an extra All-Gather term from either HS or HXT by selecting the
update order to ensure that H is updated last in every inner iteration. We ignore this
improvement in our analysis but it is straightforward to include. Doing so changes
the optimal aspect ratio to 2<+=

4= .
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Table 2: Per-iteration costs for the di�erent JointNMF algorithms for< ⇥ = and = ⇥ = data matrices and rank : .

Algorithm (Hyperparameters) Large Matmuls Messages Words Computation

ANLS (V) 4 $ (log?) $
�
:2 + (:p<= + =:)/p?

�
$
� �
4<=: + 4=2: + BAS (< + =) :3

�
/?

�
PGD (W ) 3 $ (log ?) $

�
:2 + (:p<= + =:)/p?

�
$
� �
4<=: + 2=2: + (< + =) :

�
/?

�
PGNCG (BCG) 3 $ (BCG log?) $

�
BCG:2 + (:p<= + =:)/p?

�
$
� �
4<=: + 2=2: + BCG (< + =) :2

�
/?

�

Algorithm 6 JointNMF via ANLS (two grids)

Require: ĤT 2 R=⇥:+ is row-wise distributed across grid �.
Require: C 2 R:⇥=+ is a copy of H column-wise distributed across

grid �.
Ensure: W,H ⇡ min

W�0,H�0
kX �WHk2� + U

��S � HTH
��2
� .

1: function [W,H, Ĥ] = P��JANLS(X,⇧, S, �,:,U, V)
2: (8, 9) = ������(⇧) ù ⇧ Processor rank
3: A = (8 � 1) ?2 + 9 ù ⇧ Row-major rank
4: 2 = ( 9 � 1) ?A + 8 ù ⇧ Column-major rank
5: (G,~) = ������(�) ù � Processor rank
6: D = (G � 1) @2 + ~ ù � Row-major rank
7: E = (~ � 1) @A + G ù � Column-major rank
8: Initialise H(0)

9: C(0) = ������(H(0) ,⇧T, �T)ù C is a copy of H in the � grid
10: while C = 1, 2, . . . do ù Till some stopping condition is met

% Compute W given H

11: GH = ����
✓
⇧T,

⇣
H(C )

⌘T◆

12: RH = 2D������
✓
⇧T,XT,

⇣
H(C )

⌘T◆

13: W(C )
A = ������(GH,RHA ) ù NLS update

% Compute Ĥ given W,H
14: LĤ = GH + VI:

15: MĤ = 2D������
✓
�T, ST,

⇣
C(C )

⌘T◆

16: NĤ = ������(C, �T, �) ù Swap within � grid
17: RĤD = UMĤD + VNĤD
18: Ĥ(C )

D = ������
⇣
LĤ,RĤD

⌘
ù NLS update

% Compute H given W, Ĥ
19: GW = ����(⇧,W(C ) )
20: GĤ = ����

⇣
�, Ĥ(C ) ⌘

21: LH = GW + UGĤ + VI:
22: MH = 2D������(⇧,X,W(C ) )
23: KH = 2D������(�, S, Ĥ(C ) )
24: NH = ������(Ĥ(C )

, �T, �) ù Swap within � grid
25: DHE = UKHE + VNHE
26: DH = ������(DH, �,⇧T) ù Swap from � to ⇧ grid
27: RH2 = MH2 + DH2
28: H(C )

2 = ������(LH,RH2 ) ù NLS update
29: C(C ) = ������(H(C ) ,⇧T, �T)
30: end while
31: end function

Both grid choices introduce extra communication. First, the dis-
tribution of a symmetric matrix S in a rectangular processor grid
causes the swaps to occur when incorporating symmetric regular-
ization (i.e. when the matrix product HS changes to UHS+ VH). Sec-
ond, computing the gradient of H requires additions with column-
order 1D distributedWTX and row-order 1D distributed HS. Third,
synchronizing the shared H between the grids in the double grid
case needs extra communication. It can be shown that a single
processor will need to send information to at most two other pro-
cessors and similarly receive messages from at most two others. For
example, this can be seen for communicating H by noticing that
each processor owns

l
=
?

m
or

j
=
?

k
contiguous columns of H. This

property is violated when transferring these columns to three other
contiguous processors. Thus these “swap” communications incur a
small additive cost.

4 EXPERIMENTS
4.1 Experimental Setup
TheMatlab experiments were performed on a server with two Intel®
Xeon® E5-2680 v3 CPUs and 377GB of DDR4-2,133MHz DRAM.
All distributed-memory experiments were run on the PACE Phoenix
cluster at the Georgia Institute of Technology, wherein each node is
equipped with a single Dual Intel® Xeon® Gold 6226 2.7 CPU and
between 192-768GB of DDR4-2,933MHz DRAM [24]. Each CPU
has 2 sockets each with 12 cores per socket for a total of 24 cores
per node. The implementations were compiled using GCC 8.3.0
and CMake 3.20.3. PLANC uses the Armadillo linear algebra library
for matrix representations and operations [28] and was linked to
Armadillo 11.1 for all experiments. Sparse matrix operations utilized
Armadillo’s default sparse matrix functionality, whilst OpenBLAS
0.3.13 was used for all dense operations [35]. All experiments were
run using OpenMPI 3.1.6 in the “�at” MPI setting [11], i.e. each core
is assigned to a di�erent single-threaded MPI process.

4.2 Datasets
The scaling experiments for this studywere conducted on dense and
sparse synthetic inputs. These densematrices are created as nonneg-
ative low-rank matrices by multiplying a randomly generatedW
and H. For the sparse case, we created uniformly random matrices
with a density of 0.05. All our timings are averaged over 4 di�erent
runs of 10 and 5 outer iterations for the dense and sparse cases
respectively. We use W = 0.9 for PGD as suggested by Ruder [27].
We use the default ANLS hyperparameters of U = kXk2� /kSk

2
� and

V = U max (S) as mentioned by Du et al [7]. This gives equal impor-
tance to both the features and connections objectives. For PGNCG
we found that setting the inner CG iterations (BCG) to 20 gave us
the best results in terms of minimizing the residual.
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Table 3: Convergence studies on the di�erent JointNMF al-
gorithms. The relative objective, time taken, and number of
function evaluations. The best performing method is high-
lighted in bold.

Input Algorithm Rel. Obj. Time Func. Eval.

Dense
PGD 0.5117 56.78 s 28,659.0
ANLS 0.0002 36.27 s 1,000.0
PGNCG 0.0042 22.77 s 1,288.2

Sparse
PGD 0.9587 49.62 s 11,947.6
ANLS 0.8589 55.03 s 1,000.0
PGNCG 0.8597 30.01 s 1,036.0

Y04
PGD 0.9948 420.98 s 1,716.0
ANLS 0.9028 101.41 s 100.0
PGNCG 0.8870 49.86 s 100.0

Two real world datasets were used in these experiments. Mat-
lab convergence experiments were run on a patent dataset [7].
Each patent is encoded via tf-idf and its citations generate the con-
nections matrix. We use the Y04 collection of patents which has
X 2 R8,142⇥3,242+ and S 2 R3,242⇥3,242+ . The densities for X and S are
0.0141 and 0.0041, respectively.

Large scale real world experiments were run on a subset of the
Microsoft Open Academic Graph (OAG) [36], a dataset consisting
of a uni�cation of the Microsoft Academic Graph (MAG) [30] and
ArnetMiner (AMiner) [32] academic graphs each respectively con-
taining 166,192,182 and 154,771,162 papers. From this dataset, a
subset of 37,732,477 papers with available abstracts and citation
information were selected. These abstracts were preprocessed using
stop words and stemming to form a vocabulary of 1,333 unique
words. Together this vocabulary and corpus of papers were used
to form a sparse 1,333 ⇥ 37,732,477 term-document matrix with
1,295,114,641 nonzeros, wherein each column represents a paper
as a tf-idf vector. The resulting matrix was used as the X in the
real world experiments. The symmetric graph Laplacian matrix S
was then formed from the citation graph. Each of the 966,206,008
nonzeros of the resulting 37,732,477 ⇥ 37,732,477 matrix represents
a citation between two papers. The Matrix Market �le size of the X
and S matrices were respectively 41GB and 17.5GB. The resulting
dataset is referred to as the AMinerMAG dataset from here on. Fig. 7
and Table 5 respectively contain scaling and text clustering results
from this dataset.2

4.3 Convergence Studies
We test the Matlab performance of our proposed JointNMF algo-
rithms, PGD and PGNCG, on three di�erent datasets and compare
against the ANLS version of Du et al. [7]. The dense synthetic input
consists of true low-rank inputs X = WH and S = HTH which are
perturbed by 1% Gaussian random noise. The dimensions for the
dense case were< = 1,000,= = 600, and : = 30. The sparse syn-
thetic case is a uniform random matrix for X and normal random
matrix for S generated using Matlab’s sprandsym function. The
negative values in S have their signs �ipped to become nonnega-
tive. Here the dimensions were< = 1,000,= = 600, and we choose

2Code and dataset information can be found at: https://github.com/ramkikannan/planc.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Time (s)

10�1

101

103

105

107

O
bj

ec
ti
ve

ANLS

PGD

PGNCG

(a) Convergence versus time.

0 20 40 60 80 100

No. of function evaluations

10�1

101

103

105

107

O
bj

ec
ti
ve ANLS

PGD

PGNCG

(b) Convergence versus function
evaluations.

Figure 2: JointNMF convergence for the �rst 3 seconds and
100 function evaluations of the dense synthetic run. PGNCG
displays the fastest drop in objective. ANLS steadily decreases,
eventually surpassing PGNCG around 25 seconds (out of the
graph). PGD initially decreases the objective, but plateaus
soon after.

: = 30. Both matrices have approximate densities of 0.1. Finally,
we test convergence on the Y04 patent dataset with : = 76.

We run each algorithm �ve times with di�erent random seeds.
We used 1000 and 100 outer iterations for the synthetic and Y04
datasets respectively. PGD needed 2⇥ and 10⇥more outer iterations
to reduce the objective to a reasonable amount. All the methods
are initialised with the same starting guesses W(0) and H(0) . The
average results over the runs are shown in Table 3. Apart from
relative objective and running time, we also capture the number
of times the objective is evaluated. Since PGD and PGNCG employ
a line search, they can perform more function evaluations than
the ANLS method for the same number of outer iterations. ANLS
performs one function evaluation per outer iteration.

Table 3 shows the �nal relative objective achieved by the three
algorithms. It is evident that PGD converges more slowly than
the other two methods. Regarding the rate of convergence for the
dense case in Fig. 2, while PGD is able to perform each update
quickly it is not able to decrease the objective su�ciently. This
slow rate of convergence results in a large number of function calls
and later knee points for PGD than ANLS and PGNCG. Perhaps
a more aggressive line search method might alleviate this slow
convergence of PGD. This observation suggests the use of more
accurate update methods than simple gradient descent.

It is more di�cult to distinguish between the PGNCG and ANLS.
A surprising �nding is that PGNCG runs approximately 37-51%
faster even though it performs more function evaluations than
ANLS. There are two possible explanations for this behaviour. ANLS
performs an extra large matrix multiplication per function evalu-
ation (ĤS) when compared to PGNCG, which could be expensive.
The second is that the inexact CG iterations of PGNCG might be
running faster than the exact NLS solve employed by the ANLS
method. We shall benchmark these regions in the scaling studies
since time per function evaluation is the key performance charac-
teristic in the parallel setting.

4.4 Grid Choices
Matrix multiplication consumes the majority of the time for these
methods [9, 13]. Therefore, the choice of grid layout is a crucial one
for JointNMF. First, we sweep all possible combinations of grids

https://github.com/ramkikannan/planc
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(a) Dense inputs with <
= = 4.
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(b) Sparse inputs with <
= = 4.
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(c) Dense inputs with <
= = 1
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Figure 3: Sweeping all grid con�gurations for running the ANLS variant of JointNMF on 1,024 processors. The experiment was
run on 43 nodes (1,024 cores) and the y-axis shows the ?A value for the grid chosen (with ?2 = 1024

?A
). The aspect ratio shows

which matrix will cause the bottleneck computation. The best running times are always near the middle of the heatmaps.

for 1,024 MPI processes (43 nodes) and benchmark the di�erent
matrix multiplication times for the ANLS method with a single grid
con�guration. Two di�erent aspect ratios, 4 and 1

4 , were used for
the experiments. Input dimensions< ⇥ = for the dense and sparse
cases were (1,474,560⇥368,640), (179,200⇥716,800) and (2,457,600⇥
614,400),(307,200 ⇥ 1,228,800), respectively. All experiments were
run with : = 50. The times are normalized by the number of
function evaluations and shown in Fig. 3.

Fig. 3 shows that depending on the aspect ratio, <= , we can easily
determine which input matrix, X or S, dominates the computation.
The best runtimes appear near the middle of the heatmaps away
from the degenerate 1D distributions (?A = 1 or ?2 = 1). Inves-
tigating a bit further, in Fig. 5 we can see the breakdown of the
computation and communication times for the sparse input with
aspect ratio 4. The communication times vary smoothly from the
1D to 2D distributions, with the minimum occurring when grid
dimensions mimic the inputs (see Fig. 5b). The computation times,
in Fig. 5a, are less smooth but the trend still applies. The e�ects of
grid selection on communication times (25⇥) is more dramatic than
on computation times (50%) as expected.

In theory, by adding the best possible times from Fig. 3, the
double-grid approach should outperform the single-grid one. We
run the same inputs using the best single and double grids, both
empirical from Fig. 3 and theoretical, to see if this optimization
works. Table 4 contains the di�erent grid choices and their runtimes.
The deviation from theoretically optimal to empirical best grid is
minimal in the range of 3-11% across di�erent cases even for large
matrices in Table 4.We thus use the theoretically determined double
grid for the rest of our scaling studies.

Table 4: Single versus double grids. We compare the runtime
between the empirically best grids versus the theoretically
optimal ones. The deviation in results were minimal.

Input (<= ) Label X grid S grid Time

Dense (4)

Emp X 256 ⇥ 4 - 47.20 s
Theo X 64 ⇥ 16 - 52.45 s
Emp S - 128 ⇥ 8 50.75 s
Theo S - 32 ⇥ 32 48.92 s
Emp double 256 ⇥ 4 128 ⇥ 8 51.26 s
Theo double 64 ⇥ 16 32 ⇥ 32 52.65 s

Dense (0.25)

Emp X,S and theo X 16 ⇥ 64 - 46.78 s
Theo S - 32 ⇥ 32 46.87 s
Emp double 16 ⇥ 64 16 ⇥ 64 47.16 s
Theo double 16 ⇥ 64 32 ⇥ 32 45.35 s

Sparse (4)

Emp X,S and theo X 64 ⇥ 16 - 192.22 s
Theo S - 32 ⇥ 32 202.76 s
Emp double 64 ⇥ 16 64 ⇥ 16 191.00 s
Theo double 64 ⇥ 16 32 ⇥ 32 191.16 s

Sparse (0.25)

Emp X and theo S 32 ⇥ 32 - 182.01 s
Theo X 16 ⇥ 64 - 191.88 s
Emp S - 64 ⇥ 16 204.54 s
Emp double 32 ⇥ 32 64 ⇥ 16 185.03 s
Theo double 16 ⇥ 64 32 ⇥ 32 184.14 s

4.5 Scaling Studies
Strong and weak scaling results for the three variants are shown in
Figs. 4 and 6 for both dense and sparse inputs with the same aspect
ratios as the grid choice experiments. The problem sizes for strong
scaling �ll up the memory of a single socket of the cluster. The input
sizes were (184,320⇥46,080), (23,040⇥92,160) and (384,000⇥96,000),



ICS ’23, June 21–23, 2023, Orlando, FL, USA Eswar et al.

24 25 26 27 28 29 210

MPI Processes

0.2

0.4

0.6

0.8

1.0

E
�

ci
en

cy

ANLS (D4)

PGD (D4)

PGNCG (D4)

ANLS (D 0.25)

PGD (D 0.25)

PGNCG (D 0.25)

ANLS (S 4)

PGD (S 4)

PGNCG (S 4)

ANLS (S 0.25)

PGD (S 0.25)

PGNCG (S 0.25)

(a) Parallel e�ciency.

(6x2),(4x3)

(8x3),(6x4)

(12x3),(6x6)

(12x4),(8x6)

(16x6),(12x8)

(24x8),(16x12)

(30x8),(16x15)

(36x10),(20x18)

(40x12),(24x20)

(48x15),(30x24)

(50x12),(25x24)

(60x14),(30x28)

(60x16),(32x30)

MPI Processes

0

1

2

3

4

5

6

T
im

e
pe

r
fu

nc
ti
on

ev
al

ua
ti
on

(s
)

Matmul

NLS

Gram

Reg

AllReduce

AllGather

ReduceScatter

Swap

ANLS

PGD

PGNCG

(b) Dense strong scaling (<= = 4).

(2x6),(4x3)

(2x12),(6x4)

(3x12),(6x6)

(3x16),(8x6)

(4x24),(12x8)

(6x32),(16x12)

(8x30),(16x15)

(9x40),(20x18)

(10x48),(24x20)

(12x50),(25x24)

(12x60),(30x24)

(15x56),(30x28)

(15x64),(32x30)

MPI Processes

0

10

20

30

40

50

60

T
im

e
pe

r
fu

nc
ti
on

ev
al

ua
ti
on

(s
)

Matmul

NLS

Gram

Reg

AllReduce

AllGather

ReduceScatter

Swap

ANLS

PGD

PGNCG

(c) Sparse strong scaling (<= = 1
4 ).

Figure 4: Strong scaling results for both dense and sparse inputs. Matrix multiplication is the clear bottleneck for JointNMF
with NLS times also showing up for the ANLS and PGNCG algorithms. The computations scale well at the rate of 1

? while the
communication scales at 1p

? . The sparse methods scale better than the dense case.
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Figure 5: Grid choices for the sparse case with <
= = 4. The

best performance is observed in between the 1D distributions.
The e�ects of grid selection on communication times (25⇥)
is more dramatic than on computation times (50%).
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Figure 6: Weak scaling results for both dense and sparse
inputs. The size of the matrices per MPI process is kept con-
stant. Matrix multiply times remain �at once we scale across
nodes. The NLS times should scale at the rate of 1p

? .
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Figure 7: Strong scaling results on real-world data. The �nal
speedups for ANLS, PGD, and PGNCGwere 33⇥, 25⇥, and 28⇥.

Table 5: Sample topics discovered from AMinerMAG.

Topic 1 Topic 2 Topic 3 Topic 4

ANLS

control social education acid
systems media health synthesis
design economic teaching reaction
motor society management amino
nonlinear people students acids

PGD

compound dependent condition correlated
spectrum children changing industrial
populations fold formed reliability
pathways assessed empirical grade
correlated investigate variation parameter

PGNCG

control social teaching acid
systems media education protein
design economic students activity
motor development learning synthesis
nonlinear society training dna

(48,000⇥192,000) for the dense and sparse cases respectively. Matrix-
multiplication dominates the running time with NLS coming in
second. Both these computations scale well as we see good scaling
till 10 nodes (240 cores) for both types of inputs. Past 240 processes,
we can see communication costs start showing up in the dense
timing breakdowns (see Fig. 4b) while sparse is still bottlenecked
by matrix multiplication and continues to scale (see Fig. 4c). This is
seen in the e�ciency chart in Fig. 4a, with the sparse cases scaling
till 960 processes at 60% parallel e�ciency while dense can only
achieve 20%.

Fig. 7 shows scaling results on the AMinerMAG dataset for all al-
gorithm implementations averaged over 50 iterations. The speedup
on 48 cores for the ANLS, PGD, and PGNCG implementations were
respectively 33⇥, 25⇥, and 28⇥. From this, we see the NLS,X compu-
tation (X Comp), and S computation (S Comp) dominate the runtime.
Similar to the synthetic experiments, the NLS time is particularly
high for the ANLS approach, resulting in both the proposed PGD
and PGNCG approaches being faster than it for all processor counts.

4.6 Text Clustering
To demonstrate the e�ectiveness of our implementations, we per-
formed text clustering on the AMinerMAG dataset utilizing each
algorithm, the results of which can be seen in Table 5. In each in-
stance, the algorithm was run on the AMinerMAG dataset for 100

iterations with : = 16. The top �ve keywords from four selected
topics are provided to give a general intuition for the resulting
clusters. From this we observed that all three approaches yielded
interpretable clusters, empirically supporting the validity of the
algorithms and their implementations. Furthermore, we observed
that the clusters found by the ANLS and PGNCG implementations
bore striking similarities. This can be seen in Table 5 by the overlaps
in top key words between ANLS and PGNCG for the four selected
topics. Within the context of these experiments and based upon
the conclusions drawn from Fig. 2, it is likely that both ANLS and
PGNCG converged to a reasonable solution, whilst PGD did not
converge after the 100 iterations. This may serve as an explanation
as to similarities between the clusters found by ANLS and PGNCG,
as well as their interpretability relative to those found by PGD.

5 DISCUSSION
Among these �rst distributed-memory parallel methods for JointNMF,
ANLS and PGNCG outperform the �rst-order PGD method. In the
serial setting PGD remains relatively close to the other methods
by performing a large number of inexpensive update steps (see
Section 4.3), but this advantage disappears in the distributed sce-
nario. Distinguishing between ANLS and PGNCG is more di�cult.
PGNCG performs one fewer large matrix multiplication per func-
tion evaluation but may perform more such calls during line search.

Performance was not very sensitive to the choice of logical pro-
cessor grid sizes except at extreme aspect ratios (see Section 4.4).
Nevertheless, the �exibility of the double grids is useful when one
would like to tune the local input matrix dimensions to either save
memory or exploit speci�c matrix multiply kernels.

The choice of using the Gauss-Newton method is di�cult to
justify since it is hard to determine a priori if the Hessian approxi-
mation is close to the true Hessian of JointNMF. The residuals en-
countered during the course of the PGNCG algorithm can be large,
especially in the sparse case. PGNCG performs well empirically,
suggesting other second-order methods with fewer assumptions
on the Hessian like truncated Newton or L-BFGS for JointNMF
could also prove useful. That, as well as new applications of a scal-
able JointNMF, are perhaps the most interesting avenues for future
work.
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