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Under suitable assumptions, some recently developed quantum algorithms can estimate the ground-
state energy and prepare the ground state of a quantum Hamiltonian with near-optimal query complexities.
However, this is based on a block-encoding input model of the Hamiltonian, the implementation of which
is known to require a large resource overhead. We develop a tool called quantum eigenvalue transforma-
tion of unitary matrices with real polynomials (QETU), which uses a controlled Hamiltonian evolution
as the input model, a single ancilla qubit, and no multiqubit control operations and is thus suitable for
early fault-tolerant quantum devices. This leads to a simple quantum algorithm that outperforms all pre-
vious algorithms with a comparable circuit structure for estimating the ground-state energy. For a class
of quantum spin Hamiltonians, we propose a new method that exploits certain anticommutation relations
and further removes the need to implement the controlled Hamiltonian evolution. Coupled with a Trotter-
based approximation of the Hamiltonian evolution, the resulting algorithm can be very suitable for early
fault-tolerant quantum devices. We demonstrate the performance of the algorithm using IBM QISKIT for
the transverse-field Ising model. If we are further allowed to use multiqubit Toffoli gates, we can then
implement amplitude amplification and a new binary amplitude-estimation algorithm, which increases the
circuit depth but decreases the total query complexity. The resulting algorithm saturates the near-optimal
complexity for ground-state preparation and energy estimation using a constant number of ancilla qubits

(no more than three).
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I. INTRODUCTION

Preparation of the ground state and estimation of the
ground-state energy of a quantum Hamiltonian have a
wide range of applications in condensed-matter physics,
quantum chemistry, and quantum information. To solve
such problems, quantum computers promise to deliver
a new level of computational power that can be signif-
icantly beyond the boundaries set by classical comput-
ers. Recently developed quantum algorithms in [1] can
perform these tasks with near-optimal query complexity
under suitable conditions. Despite exciting early progress
on noisy intermediate-scale quantum (NISQ) devices [2],
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it is widely believed that most scientific advances in
quantum sciences require some version of fault-tolerant
quantum computers, which are expected to be able to
accomplish much more complicated tasks. On the other
hand, the fabrication of full-scale fault-tolerant quan-
tum computers remains a formidable technical challenge
for the foreseeable future and it is reasonable to expect
that early fault-tolerant quantum computers share the fol-
lowing characteristics: (1) the number of logical qubits
is limited; and (2) it can be difficult to execute cer-
tain controlled operations (e.g., multiqubit control gates),
the implementation of which requires a large number of
non-Clifford gates. Besides these, the maximum circuit
depth of early fault-tolerant quantum computers, which
is determined by the maximum coherence time of the
devices, may still be limited. Therefore it is still impor-
tant to reduce the circuit depth, sometimes even at the
expense of a larger total run time (via a larger number
of repetitions). Quantum algorithms tailored for early
fault-tolerant quantum computers [3—10] need to properly
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take these limitations into account and the resulting
algorithmic structure can be different from those designed
for fully fault-tolerant quantum computers.

To gain access to the quantum Hamiltonian H, a stan-
dard input model is the block-encoding (BE) model, which
directly encodes the matrix H (after proper rescaling) as
a submatrix block of a larger unitary matrix Uy [11,12].
Combined with techniques such as linear combination of
unitaries (LCU) [13], quantum signal processing [14], or
quantum singular-value transformation (QSVT) [15], one
can implement a large class of matrix functions of H on
a quantum computer. This leads to quantum algorithms
for ground-state preparation and ground-state energy esti-
mation with near-optimal query complexities to Uy [1].
The block-encoding technique is also very useful in many
other tasks such as Hamiltonian simulation, the solution of
linear systems, preparation of the Gibbs state, and com-
putation of Green’s function and the correlation functions
[11,14,16—18]. However, the block encoding of a quantum
Hamiltonian (e.g., a sparse matrix) often involves a rela-
tively large number of ancilla qubits, as well as multiqubit
controlled operations that lead to a large number of two-
qubit gates and long circuit depths [15], and is therefore
not suitable in the early fault-tolerant setting.

A widely used alternative approach for accessing the
information in H is the time-evolution operator U=
exp(—itH) for some time t. This input model is referred
to as the Hamiltonian-evolution (HE) model. While Hamil-
tonian simulation can be performed using quantum signal
processing for sparse Hamiltonians with optimal query
complexity [14], such an algorithm queries a block encod-
ing of H, which defeats the purpose of employing the
HE model. On the other hand, when H can be efficiently
decomposed into a linear combination of Pauli operators,
the time-evolution operator can be efficiently implemented
using, e.g., the Trotter product formula [19,20] with-
out using any ancilla qubit. This remarkable feature has
inspired quantum algorithms for performing a variety of
tasks using controlled time evolution and one ancilla qubit.
A textbook example of such an algorithm is the Hadamard
test. It uses one ancilla qubit and the controlled Hamilto-
nian evolution to estimate the average value Re (y|U|yr),
which is encoded by the probability of measuring the
ancilla qubit with outcome 0 [see Fig. 1(a)]. The num-
ber of repeated measurements of this procedure is O(e~2),
where € is the desired precision. Assume that the spectrum
of the Hamiltonian H is contained in [n, 7 — n] for some
n > 0.If [¥) is the exact ground state of H, we can retrieve
the eigenvalue as A = arccos(Re (|U|¥)). By allowing a
series of longer simulation times of ¢ = d for some inte-
ger d, this leads to Kitaev’s algorithm, which uses only
loge~! measurements, at the expense of increasing the
circuit depth to O(e~!) [see Fig. 1(b)]. The total simula-
tion time is therefore O(e~! Ioge‘l), which reaches the
Heisenberg limit [21-24] up to a logarithmic factor.

When the input state |¢) (prepared by an oracle Uj) is
different from the exact ground state of H, denoted by |y},
there have been multiple quantum algorithms using the cir-
cuit of Fig. 1(b) or its variant to estimate the ground-state
energy [7,25-27]. Let y be a lower bound of the initial
overlap, i.e., |(¢g|¥g)| = y. It is worth noting that all
quantum algorithms with provable performance guaran-
tees require a priori knowledge that y is reasonably large
(assuming black-box access to the Hamiltonian). Without
such an assumption, this problem is QMA hard [28-31].
Candidates for such |¢g) include the Hartree-Fock state
in quantum chemistry [32,33] and quantum states pre-
pared using the variational quantum eigensolver [34-36].
Some techniques can be used to boost the overlap using
low-depth circuits [9]. Furthermore, algorithms using the
circuit of Fig. 1(b) typically cannot be used to prepare the
ground state. With the time-evolution operator as the input,
one can use the LCU algorithm to prepare the ground state
[37,38], thus reducing the number of ancilla qubits needed
to implement the block encoding of the Hamiltonian. Note
that LCU requires additional ancilla qubits to store the
coefficients and, as a result, cannot be implemented using
O(1) qubits.

We show that both the ground-state preparation and the
energy estimation can be solved by (repeatedly) preparing
a quantum state of the form [y ) o f (H) |¢o), where [ is
a real polynomial approximating a shifted sign function.
A main technical tool developed in this paper is called
quantum eigenvalue transformation of unitary matrices
with real polynomials (QETU), which allows us to pre-
pare such a state |{/y) by querying U = e~ using only
one ancilla qubit and does not require any multiqubit con-
trol operation (Theorem 1). The circuit structure [Fig. 1(c)]
is only slightly different from that in Fig. 1(b). The QETU
technique is closely related to concepts such as quantum
signal processing (QSP), quantum eigenvalue transforma-
tion, and QSVT. The relations among these techniques are
detailed in Appendix A. The information of the function f
of interest is stored in the adjustable parameters {¢;}, called
phase factors. To find such parameters, we need to iden-
tify a polynomial approximation to the shifted sign func-
tion and then evaluate the phase factors corresponding to
the approximate polynomial. Most QSP-based applications
construct such a polynomial approximation analytically,
which can sometimes lead to cumbersome expressions and
suboptimal approximation results. We provide a convex-
optimization-based procedure to streamline this process
and yield the near-optimal approximation (see Sec. IV).
Both the QETU technique and the convex-optimization
method can be useful in applications beyond ground-state
preparation and energy estimation.

The computational cost is primarily measured in terms
of the query complexity, i.e., how many times we need
to query U and U in total, and we also analyze the
additional one- and two-qubit gates needed, such as the
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After a proper rescaling, the n-qubit circuit U implements e and the Hadamard test circuit [(a), short time evolution]

estimates Re (yr|e ' |y). Repeating the controlled evolution d times, the circuit shown in (b) estimates the average value of a long
time evolution Re (y|e—*@ |yr). For a very general class of functions f, the QETU circuit shown in (c) can approximately prepare a
normalized quantum state f (H) |) / ||f (H) |¥)|| with approximate success probability p = || (H) |¥)||?, by interleaving the forward
(U) and backward (U") time evolution with some properly chosen X rotations in the ancilla qubit.

single-qubit-rotation gates, and the two-qubit gates needed
to implement the n-qubit reflection operator. In our algo-
rithms, the number of additional gates has the same scaling
as the query complexity or involves an n factor, where n
is the system size. We measure the circuit-depth require-
ment in terms of query depth: the number of times we
need to query U in one coherent run of the circuit. Note
that this term is not to be confused with the circuit depth
for implementing the oracle U, which we do not consider
in this work. This metric reflects the circuit-depth require-
ment faithfully because in our algorithm, in one coherent
run of the circuit, the number of queries to Uy is also upper
bounded by this metric and the additional circuit depth
needed for additional gates is upper bounded by this metric
up to a factor of O(n).

Besides the query depth, we also focus on whether
multiqubit control needs to be implemented. Algorithms
such as amplitude amplification and amplitude estimation
[39] can be used to reduce the total query complexity but
they also need to use (n + 1)-bit Toffoli gates (specifi-
cally, an n-qubit reflection operator with respect to the zero
state |0")), which can be implemented using O(n) two-
qubit gates and one ancilla qubit [40]. These operations
are referred to as “low-level” multiqubit control gates.
Some other quantum algorithms may require more com-
plex multiqubit control operations as well as more ancilla
qubits. For instance, the high-confidence quantum-phase-
estimation (QPE) algorithm [41—43] requires a circuit to
carry out the arithmetic operation of taking the median
of multiple energy-measurement results, which can require
poly(n) two-qubit gates and ancilla qubits. Such operations
are referred to as “high-level” multiqubit control gates.

To solve the ground-state-preparation and energy-
estimation problem, we propose two different types of
algorithm, with two different goals in mind. For the first
type of algorithm, which we call the short-query-depth
algorithm, we only use QETU to prioritize reducing the

quantum resources needed. No multiqubit controlled oper-
ation is involved. For the second type of algorithm, which
we call the near-optimal algorithm, we optimize the total
query complexity by using amplitude amplification and a
new binary amplitude-estimation algorithm (Lemma 12).
Such algorithms only use low-level multiqubit control
operations. Both types of algorithms only use a small
number of ancilla qubits (no more than two or three).

For ground-state energy estimation, surprisingly, even
though the total query complexity of the short-query-depth
algorithm does not have the optimal asymptotic scaling,
it still outperforms all previous algorithms with the same
ancilla qubit number constraint [7,44—46], in terms of
total query complexity (see Table I). Most notably, in this
setting, we achieve a quadratic improvement on the y
dependence, from O(y~*) to O(y~2) [the notation O(g)
means O[g poly log(g)] unless otherwise stated]. More-
over, the circuit depth from the previous state-of-the-art
result is preserved in our algorithm. Numerical comparison
(see Fig. 4) demonstrates that our algorithm outperforms
QPE, not only in terms of the asymptotic scaling but also
the exact nonasymptotic number of queries for moder-
ately small values of y. Our near-optimal algorithm takes
this advantage even further, matching the best known
query-complexity scaling in Ref. [1] (which saturates the
query-complexity lower bound).

For ground-state preparation, the only other algorithm
that can use at most constantly many ancilla qubits is
the QPE algorithm with a semiclassical Fourier transform
[47]. Compared to this algorithm, our short-query-depth
algorithm has an exponentially improved precision depen-
dence and a guadratically improved y dependence, from
Oy~ to O(y~?), while maintaining the same circuit
depth. The near-optimal algorithm further improves the
dependence to O(y~!). A comparison of the algorithms
for ground-state preparation can be found in Table 1I. We
remark that here we consider the case where we know a
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TABLE I. A comparison of the performance of quantum algorithms for ground-state energy estimation in terms of the query
complexity, the query depth, the number of ancilla qubits, and the level of multiqubit control (abbreviated as “MQC” in the table)
operations needed. y is the overlap between the initial guess |¢) and the ground state and € is the allowed error. “HE” denotes the
Hamiltonian-evolution model (assuming no ancilla qubits) and “BE” for the block-encoding model. The sharper estimate for estimat-
ing the ground-state energy using the quantum-eigenvalue-estimation algorithm (QEEA) is given in Ref. [7, Appendix C]. We assume
that Ref. [1] uses m ancilla qubits and that the high-level MQC operation is due to the block encoding of H.

Query Query Number of Need Input

depth complexity ancilla qubits MQC? model
This work (Theorem 4) 6(6_1) 6(6_1 ¥ 2 O No HE
This work (Theorem 5) 6(6_1}/_1} 6(6_1}/_1) O Low HE
QPE (high confidence) [41-43] O™ O y2) O(poly log(y e~ 1)) High HE
QPE (semiclassical) [44,45] O y2) Oy o) No HE
QEEA [7,46] O™ Oy o) No HE
GTC19 (Theorem 4) [37] 6(6_3’&}’_1} 5(6‘3”2}/_[} O(log(e 1) High HE
LT20[1] Oy Oy m+ O(log(e™")) High BE
LT22[7] O™ Oy o) No HE

parameter u such that A < u —A/2 <pu+A/2 <Ay,
as in Theorem 6. If no such p is known, we first need to
estimate the ground-state energy to precision O(A) and
the resulting algorithm is discussed in Theorem 13. If the
ground-state energy is known a priori, then the algorithm
in Ref. [48] may yield a similar speed-up for preparing
the ground state, but such knowledge is generally not
available.

In the above analysis, specifically in Tables I and II,
we compare with algorithms the complexity of which can
be rigorously analyzed under the assumptions of a good
initial overlap (and spectral gap for ground-state prepara-
tion). We do not compare with heuristic algorithms such
as the variational quantum eigensolver [34-36]. There are
also algorithms that are designed with different but simi-
lar goals in mind, such as the quantum algorithmic cooling
technique in Ref. [49], which can estimate an eigenvalue
A; belonging to a given range [th,lf] (assuming that all
other eigenvalues are away from this range). Then, the

TABLE IL

total run-time scaling is 5(}/‘4), where y is the over-
lap between the initial guess and the target eigenstate [49,
Theorem 2]. The same technique can also be used to esti-
mate the expectation value of an observable associated
with the target eigenstate, without coherently preparing the
target eigenstate.

For certain Hamiltonians, QETU can be implemented
with the standard Hamiltonian evolution rather than the
controlled version. Note that “control-free” only means
that the Hamiltonian evolution is not controlled by one or
more qubits but control gates that are independent of the
Hamiltonian can still be used. In Ref. [50], the control-
free setting for an n-qubit time evolution is achieved
by introducing an n-qubit reference state, on which the
time evolution acts trivially. The algorithm also requires
the implementation of the controlled n-qubit SWAP gate
and therefore has a relatively large overhead. There are
other control-free algorithms proposed in Refs. [7,51,52]
for energy and phase estimation via the measurement of

A comparison of the performance of quantum algorithms for ground-state preparation in terms of the query complexity,

the query depth, the number of ancilla qubits, and the level of multiqubit control (abbreviated as “MQC” in the table) operations
needed. y is the overlap between the initial guess |¢y) and the ground state, A is a lower bound of the spectral gap, and 1 — € is the
target fidelity. “HE” denotes the Hamiltonian-evolution model (assuming no ancilla qubits) and “BE” the block-encoding model. Here,
we assume that an upper bound of the ground-state energy is known (¢ in Theorem 6). The algorithm in Ref. [37] (GTC19 in the table)
requires precise knowledge of the ground-state energy. We assume that Ref. [1] uses m ancilla qubits and that the high-level MQC
operation is due to the block encoding of H.

Query Query Number of Need Input

depth complexity ancilla qubits MQC? model
This work (Theorem 6) O oA~y o) No HE
This work (Theorem 11) 6(9_1}/_[) @(A"y") [@]e))] Low HE
QPE (high confidence) [41-43] O™ oAy O(polylog(A~'y~te 1)) High HE
QPE (semiclassical) [44,45] Oa~ly2) oA~y o) No HE
GTC19 (Theorem 1) [37] Oa-tyh Oty O(log(A™") + loglog(e™1)) High HE
LT20[1] Oa-tyh Oty m High BE
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certain scalar expectation values as the output. In par-
ticular, such algorithms cannot coherently implement a
controlled time evolution and are therefore not compati-
ble with the implementation of QETU. In this paper, we
exploit certain anticommutation relations and structures of
the Hamiltonian to propose a new control-free implemen-
tation. In the context of QETU, the algorithm does not
introduce any ancilla qubit and requires a small number of
two-qubit gates that scales linearly in n. We demonstrate
the optimized circuit implementation of the transverse-
field Ising model under the control-free setting. To the
extent of our knowledge, this circuit is significantly sim-
pler than all previous QSP-type circuits for simulating
a physical Hamiltonian. We show the numerical perfor-
mance of our algorithm for estimating the ground-state
energy estimation in the presence of tunable quantum error
using IBM QISKIT.

II. QUANTUM EIGENVALUE TRANSFORMATION
OF UNITARY MATRICES

Given the Hamiltonian-evolution input model U=
e we first demonstrate that by slightly modify-
ing the circuit for the Hadamard test in Fig. 1(b),
we can approximately prepare a target state [Yr) =
SFH) ) /I (H) |¢) | efficiently and with controlled
accuracy for a large class of real functions f. Specifically,
this requires alternately applying the controlled forward
time-evolution operator U, a single qubit X rotation in the
ancilla qubit, and the controlled backward time-evolution
operator U' [see Fig. 1(c)]. This circuit does not store the
eigenvalues of H either in a classical or a quantum register
and the information of the function f* of interest is entirely
stored in the adjustable parameters @o, @1, ¢2,..., @42
These parameters form a set of symmetric phase fac-
tors (@g, @1, %2, - - - » ©2, @1, @) € R4 used in the circuit
Fig. 1(c). The symmetry of the phase factors is the key to
attaining the reality of the function f of interest.

Theorem 1: (QETU). Let U=e" with an n-qubit
Hermitian matrix H. For any even real polynomial
F(x) of degree d satisfying |F(x)| <1,Vxe[—1,1],
we can find a sequence of symmetric phase factors
@, = (po,@1,....01,.00) € R4 such that the circuit in
Fig. 1(c) denoted by U satisfies ({0| @ [,)U(|0) ® I,) =
F (cos(H/2)).

The proof of Theorem 1 is given in Appendix B. It
is worth mentioning that the concept of “qubitization”
[12,15] appears very straightforwardly in QETU. Let the
matrix function of interest be expressed as f (H) = (f o
2)(cos(H/2)), where g(x) = 2arccos(x). Therefore, we
can find a polynomial approximation F(x) so that

sup  |(f 0g)(x) —F(x)| <e. (1

x€[01in:Fmax]

Here, 0min = €0S(Amax/2) and max = c0S(Amin/2), respec-
tively [note that cos(x/2) is a monotonically decreasing
function on [0,7]]. This ensures that the operator norm
error satisfies

101 ® L)U(I0) @ I,) —f (H)|| < e.

The implementation of U = e~ corresponds to a Hamil-
tonian simulation problem of H at time # = 1. In practice,
we can use the Trotter decomposition to obtain an approx-
imate implementation of U without ancilla qubits, i.e.,
we can partition the time interval into r steps with 7 =
r~! and use a low-order Trotter method to implement an
approximation to U, s e~ Then,

U=e "~ (U,). 2)

In line with other works in analyzing the performance of
quantum algorithms using the HE input model [7,44—46],
in the discussion below, unless otherwise specified, we
assume that U is implemented exactly and that the errors
are due to other sources such as polynomial approxima-
tion, the binary search process, etc. We refer readers to
Appendix C for the complexity analysis of QETU when U
is implemented using a pth-order Trotter formula, as well
as its implication in the ground-state energy estimation.

III. GROUND-STATE ENERGY ESTIMATION AND
GROUND-STATE PREPARATION

In this section, we discuss how to estimate the ground-
state energy and to prepare the ground state within the
QETU framework. The setup of the problems is as fol-
lows. We assume that the Hamiltonian H can be accessed
through its time-evolution operator e#. The goal is (1)
to estimate the ground-state energy and (2) to prepare the
ground state. For the first task, we assume that we have
access to a good initial guess |¢p) of the ground state,
ie., | {(do|to) | = ¥, where |yp) is the ground state. For
the second task, we need the additional assumption that
the ground-state energy A is separated from the rest of the
spectrum by a gap A. These assumptions are stated more
formally in the definitions below.

Definition 2: (ground-state energy estimation). Suppose
that we are given a Hamiltonian H on n qubits, the spec-
trum of which is contained in [n, r — n] for some 5 > 0.
The Hamiltonian can be accessed through a unitary U =
e . Also suppose that we have an initial guess |¢g) of
the ground state |y) satisfying | (¢o|vo) | = y. This ini-
tial guess can be prepared by U;. The oracles U and U; are
provided as black-box oracles. The goal is to estimate the
ground-state energy Ao to within additive error €.

Definition 3: (ground-state preparation). Under the same
assumptions as in Definition 2 and with the additional
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assumption that there is a spectral gap of at least A sep-
arating the ground-state energy Ao from the rest of the
spectrum, the goal is to prepare a quantum state [P} such
that | (olto) | > 1 —e.

We primarily focus on ground-state energy estimation.
This is because once we have the ground-state energy,
preparing the ground state can be done by applying an
approximate projection, which can be directly performed
using QETU. We consider two settings: the short-query-
depth setting and the near-optimal setting. In the first
setting we prioritize lowering the query depth (and hence
the circuit depth) and in the second setting we prioritize
lowering the query complexity (and hence the total run
time). Our results for the two settings are stated in the
following theorems.

Theorem 4: (ground-state energy estimation using
QETU). Under the assumptions stated in Definition 2, we
can estimate the ground-state energy to within additive
error €, with probability at least 1 — ¥, with the following
cost:

(1) 5(6‘1}»'_2 log(®~")) queries to (controlled-)U and
O3 poly log(e_lﬁ_l)) queries to Uy
(2) One ancilla qubit
3) O(e'y—2log(®~")) additional one-qubit quantum
g q q
gates
(4) O(e 'log(y ™)) query depth of U

Note that here, using the short-query-depth algorithm,
we do not need to use extra two-qubit gates beyond what
is needed in (controlled-)U.

Theorem 5: (near-optimal ground-state energy estimation
with QETU and improved binary amplitude estimation).
Under the assumptions stated in Definition 2, we can esti-
mate the ground-state energy to within additive error ¢,
with probability at least 1 — ©, with the following cost:

(1) 5(6‘1}»'_] log(®~")) queries to (controlled-)U and
Oy! poly log(e_lﬁ_l)) queries to Uy

(2) Three ancilla qubits

(3) Omy'log(e™19~!) + e 1ylog(® 1))
additional one- and two-qubit quantum gates

) O(e'y~log(®¥~")) query depth of U

To the best of our knowledge, this is also the first
algorithm that can estimate the ground-state energy with
O(y~'e~!) query complexity using only a constant num-
ber of ancilla qubits.

We can see from the two theorems stated above that the
trade-off between the query depth and the query complex-
ity, which is also shown in Table I: the short-query-depth
algorithm has a O(y -2) dependence on y, which is subop-
timal. This is compensated by the fact that the query depth

is only logarithmic in y, which can be significantly smaller
than that required in the near-optimal algorithm. A similar
trade-off exists for the ground-state-preparation algorithms
(Theorems 6 and 11), as shown in Table II.

We first discuss in Sec. III A the quantum algorithms to
solve these tasks with short query depth. As a side note,
when the initial state is indeed an eigenstate of H, Theorem
4 also directly gives rise to a new algorithm for perform-
ing QPE using QETU that achieves the Heisenberg-limited
precision scaling (see Sec. 111 B). Finally, assuming access
to (n + 1)-bit Toffoli gates, Sec. 111 C describes the quan-
tum algorithms for solving the ground-state-preparation
and energy-estimation problems with near-optimal com-
plexity.

In Secs. III A-1II C, we mostly describe the algorithms
to solve these tasks and state the results as lemmas and the-
orems along the way. We believe that this can help readers
to grasp the whole picture better. An exception is the proofs
of Theorems 4 and 5, which are presented as formal proofs.

A. Algorithms with short query depths

Let us first focus on the ground-state-preparation prob-
lem. We first consider a simple setting in which we assume
knowledge of a parameter p such that

MSp—A22<p+AJ2 <A, 3)

where A; is the first-excited-state energy. We need to find
a polynomial approximation to the shifted sign function

I, x=<u,
Ox —p) = 0, x>pu

and the polynomial should satisfy the requirement in
Theorem 1. To this end, given a number 0 <c < 1, we
would like to find a real polynomial f (x) satisfying

&) —cl<e, Vxemu—Aa/2: |f®)<e
Vxelu+A/2,7 — 1. @)

As is discussed in Sec. 1V, it is preferable to choose ¢ to
be slightly smaller than 1 to avoid numerical overshoot-
ing. Compared to ¢ = 1, this has a negligible effect in
practice and does not affect the asymptotic scaling of the
algorithm. Taking the cosine transformation in Theorem
| into account, we need to find a real even polynomial

satisfying
|F(x) —c| <€,

X € [O-min, J—];

IFx)| <€,
xe[-L1], (5

X € [J+s rJ'ma:l(]-;

IFx)l <1,
where

K TFA)/2 _m—n o
O'i_cosT, Omin = COS 3 ,O’max—COSE-

(6)
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Here, we use the fact that cos(-) is a monotonically
decreasing function on [0, /2].

To find such a polynomial F'(x), we may use the result
in Ref. [53, Corollary 7], which constructs a polyno-
mial of degree O(A~!loge™!) for c=1 and any u €
[n,r — n]. This algorithm first replaces the discontinuous
shifted sign function by a continuous approximation using
error functions (we need to shift both horizontally and
vertically and symmetrize to obtain an even polynomial)
and then truncates a polynomial expansion of the result-
ing smooth function. The construction is specific to the
shifted sign function. Its implementation relies on mod-
ified Bessel functions of the first kind, which should be
carefully treated to ensure numerical stability especially
when A is small. In Sec. IV, we introduce a simple convex-
optimization-based method for generating a near-optimal
approximation, which does not rely on any analytic com-
putation. The convex-optimization procedure can be used
not only to approximate the shifted sign function but also
to find polynomial approximations in a wide range of set-
tings. The process of obtaining the phase factors can also
be streamlined using QSPPACK [54]. The details of this pro-
cedure are described in Sec. IV and an example of the
optimal approximate polynomial is given in Fig. 2.

We can then run the QETU circuit to apply f(H) =
F(cos(H /2)) to an initial guess [¢o). If |¢p) has a nonzero
component in the direction of the ground state |y), then
S (H) will preserve this component up to a factor ¢ ~ 1 but
will suppress the orthogonal component by a factor € &~ 0,
thus giving us a quantum state close to the ground state.
This procedure does not always succeed due to the nonuni-
tary nature of f(H) and consequently we need to repeat it
multiple times until we get a success. The number of rep-
etitions needed is O(y ~2 log(¥#~!)) to guarantee a success
probability of at least 1 — . The result is summarized in
Theorem 6.

Theorem 6: (ground-state preparation using QETU).
Under the same assumptions as in Definition 3, with the
additional assumption that we have p satisfying Eq. (3),
we can prepare the ground state up to fidelity 1 — e, with
probability at least 2 /3, with the following cost:

(1) 6(}/‘2 A~'log(e")) queries to (controlled-)U and
O(y~2) queries to U;

(2) One ancilla qubit

(3) O(y~*A~"'log(e~")) additional one-qubit quantum
gates

(4) O(A~"'log(e~'y 1)) maximal query depth of U

Again, using the short-query-depth algorithm, we do not
need to use extra two-qubit gates beyond what is needed
in (controlled-)U. We can repeat the procedure multiple
times to make the success probability exponentially close

to 1. In this algorithm, to be more precise than the O nota-
tion used in Theorem 6, we need O(y 2A~! Iog(y‘le_l))
queries to U. There is a logarithmic dependence on y !
because we need to account for subnormalization that
comes from postselecting measurement results when ana-
lyzing the error. The success of the above procedure is
flagged by the measurement outcome of the ancilla qubit.

For ground-state energy estimation, our strategy is to
adapt the binary search algorithm in Ref. [1, Theorem §]
to the current setting. In order to estimate the ground-state
energy with increasing precision, we need to repeatedly
solve a decision problem.

Definition 7: (the fuzzy-bisection problem). Under the
same assumptions as in Definition 2, we are asked to
solve the following problem: output 0 when A9 <x —h
and output 1 when Ay = x + h.

Here, the fuzziness is in the fact that whenx — A < A <
x + h, we are allowed to output either 0 or 1. This is, in
fact, essential for making this problem efficiently solvable.
Solution of the fuzzy-bisection problem will enable us to
find the ground-state energy through binary search. We
discuss the details in the proof of Theorem 4.

To solve the fuzzy-bisection problem, we need a real
even polynomial F(x) satisfying the following:

c—€ <F(x)<c+€,

IFo)l <€,

x € [cos((x — h)/2),1]
x € [0,cos((x + h)/2)].

For asymptotic analysis, we can use the approximate
sign function from Ref. [53, Corollary 6] and the degree
of F(x) is O(h~'log(e'~")). With a choice of F(x)
that satisfies the above requirements, if Ag > x + A, then
|F(cos(H/2)) I¢o) | < €’;if Ao <x — h, then

1F(cos(H/2)) I¢po) Il = [IF (cos(Ao/2)) Io) Il = (c — €y

Therefore, after choosing €’ = yc/[2(y + 1)], to solve
the fuzzy-bisection problem, we only need to distinguish
between the following two cases: ||F(cos(H /2)) |¢o) || <
€ =yc/[2(y + D]or |[F(cos(H/2)) |¢o) || = (c — ")y =
(¥ +2)yc/[2(y + 1)]. These two cases are well sepa-
rated, because

(y+2ye _ye _ye
b+ 200+ 20

Hence these two quantities are separated by a gap of order
€2(y), which enables us to distinguish between them using
a modified version of amplitude estimation, as is discussed
later. A block encoding of F(cos(H /2)) can be constructed
using QETU, which we denote by Upy;:

(0] ® 1) Upo (10) ® I,) = F(cos(H /2)). (8)

Because of the estimate of the degree of F(x), Upw;j here
uses O(h™! log(y_l)) queries to U = e All we need to
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do is to distinguish between the following two cases:

_ . _ye
1((0] & I Uproj(I @ Up)(|0) [0") ]| < X+

(¥ +2)yc

0l @ DU, (I @ Up)(J0) [0M)]| = ———.
1401 & I) Uproj (I @ Up)(10) [0"D)]I = IO
This problem can be generalized into the following binary
amplitude-estimation problem.

Definition 8: (binary amplitude estimation). Let W be a
unitary acting on two registers (one with one qubit and
the other with n qubits), with the first register indicating
success or failure. Let A = [|[({0] ® I,) W(]0) |0™))|| be the
success amplitude. Given 0 < y; < y;, provided that 4 is
either smaller than y; or greater than y», we want to cor-
rectly distinguish between the two cases, i.e., output 0 for
the former and 1 for the latter.

In the context of the fuzzy-bisection problem in
Definition 7, we need to choose W = Upj(I @ Uy), y1 =
ve/l2(v + D], 2= (v +2)yc/[2(y + 1]. Note that
v2/vi = ¥ + 2 = 2 and therefore henceforth we only con-
sider the case where for some constant ¢’ we have
n/nzc.

Now we can use Monte Carlo sampling to estimate
A = [|({0] ® L,)W(|0) |0™))]|. We estimate how many sam-
ples are needed to distinguish whether 4 > 3, or 4 < y,.
We implement W|0) |0") and measure the first qubit and
the output is a random variable, taking a value in {0, 1},
following the Bernoulli distribution and its expectation
valueis 1 — A%. We denote p1 = 1 — yZ andpy = 1 — y4.
We generate N; samples and check whether the average is
larger than p12 = (p1 + p2)/2 (in which case we choose to
believe that 4 < y1) or smaller than p;/; (in which case we
choose to believe that A > y,). By the Chernoff-Hoeflding
theorem, the error probability is upper bounded by

max {e—D(Puzllm)Ns,e—D(PuzILm)NsL 9)

where

D(x||y) = xlog(x/y) + (1 —x) log[(1 —x)/(1 — y)]

is the Kullback-Leibler divergence between Bernoulli dis-
tributions. Direct calculation, using the fact that » > ¢y,
shows that D(py||p1), D(p1,2llp2) = Q(ylz). Therefore,

to ensure that the error probability is below ', we only
need to choose N, such that e_g"(”lz‘“'r‘J < 1%'. Thus we obtain
the scaling of N; = (9(}/1_2 log(®'~')). From the above
analysis, we have the following lemma.

Lemma 9: (Monte Carlo method for solving binary
estimation). The binary amplitude-estimation problem in
Definition 8, with the additional assumption that there
exists constant ¢’ > 0 such that y;/y) > ¢, can be solved

correctly with probability at least 1 — &' by querying
W (’3(}»‘1_2 log(®'~")) times and this procedure does not
require additional ancilla qubits besides the ancilla qubits
already required in W. The maximal query depth of W is
o).

Lemma 9 enables us to solve the fuzzy-bisection prob-
lem stated in Definition 7. With the tools introduced above,
we can now prove Theorem 4.

Proof of Theorem 4. We solve the ground-state energy-
estimation problem by performing a binary search and
at each search step we need to solve a fuzzy-bisection
problem, which we know can be done from the above dis-
cussion. Below, we discuss how the binary search works,
i.e., why repeatedly solving the fuzzy-bisection problem
can help us find the ground-state energy. For simplicity
of the discussion, we set n = /4 in Definition 2, i.e.,
the spectrum of the Hamiltonian is contained in the inter-
val [ /4,3m /4]. In each iteration of the binary search, we
have I and r such that / < A9 < r. In the first iteration,
we choose I = /4 and r = 3n /4. With [ and r, we want
to solve the following fuzzy-bisection problem: output 0
when Ag < (2/ + r)/3 and output 1 when Ao = (I + 2r)/3.
In other words, we letx = (I+r)/2and h = (r — )/6 in
Definition 7. After solving this fuzzy-bisection problem, if
the output is 0, then we know that / < A9 < (/ + 2r)/3 and
therefore we can update r to be (I 4 2r)/3. Similarly, if the
output is 1, we can update / to be (2/ + r)/3. In this way,
we obtain a new pair of / and r such that / < Ag < r and
r — I shrinks by 2/3.

The values of / and r will converge to A from both sides
and therefore when r — [ < 2¢, Ag will be within € distance
from (/4 r)/2, thus giving us the ground-state energy
estimate that we want. This will take [log3ﬂ(ne—1/2)]
iterations, because r — [ shrinks by a factor 2/3 in each
iteration and the initial value is /2.

In our context, we need to perform a binary ampli-
tude estimation at each of the O(Iog(e‘l)) steps to solve
the fuzzy-bisection problem and therefore to ensure a
final success probability of at least ¢ we need to choose
Y =00/ log(e‘l)) in Lemma 9. Since y; = yc/[2(y +
1)] = Q(y), as discussed immediately after we introduce
Definition 8, each time we solve the binary amplitude-
estimation problem we need to use W = Upj(I @ Uy) for
O(y‘z(log(ﬁ“]) + log log(e_]))) times. Note that each
Uproj requires using U = e for O(h™! Iog(y‘l)) times.
Adding up for h that decreases exponentially until it is of
order €, we can obtain the estimate for the cost of estimat-
ing the ground-state energy, as stated in Theorem 4. |

B. QPE revisited

As an application of the ground-state energy-estimation
algorithm using QETU, let us revisit the task of
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performing QPE. Assuming access to a unitary U = e~"#
and an eigenstate |/) such that U |¢) = e~ |y), the goal
of the phase estimation is to estimate A to precision €. This
can be viewed as the ground-state energy-estimation prob-
lem with an initial overlap y = 1. Although A may not be
the ground-state energy of H, other eigenvalues of H do
not matter because the initial state has zero overlap with
other eigenstates.

In order to estimate A, we can repeatedly solve the
fuzzy-bisection problem in Definition 7 and this gives
us an algorithm that is essentially identical to the one
described in the proof of Theorem 4. As a corollary to
Theorem 4, the phase-estimation problem can be solved
with the following cost that achieves the Heisenberg limit.

Corollary 10: (phase estimation). Suppose that we are
given U = e g quantum state V) such that U|yr) =
e ™ |y), where A € [n,m —n)] for some constant n >
0. We can estimate )\ to precision € with probability
at least 1 — 19 using O(e~'log(¥~")) applications to
(controlled)U and its inverse, a single copy of |Y), and
O(G_](Iog(ﬁ_l) + log log(e‘l))) additional one qubit
gates.

It may require some explanation as to why we only need
a single copy of |¢) rather than repeatedly apply a circuit
that prepares |¥). This is because |y} is an eigenstate and
consequently will be preserved up to a phase factor in the
circuit depicted in Figure 1(c). Therefore, it can be reused
throughout the algorithm and there is no need to prepare it
more than once.

C. Algorithms with near-optimal query complexities

With a block-encoding input model, Theorems 6 and
8 in Ref. [1] are near-optimal algorithms for prepar-
ing the ground state and for estimating the ground-state
energy, respectively. In this section, we combine QETU
with amplitude amplification and a new binary amplitude-
estimation method to yield quantum algorithms with the
same near-optimal query complexities. For amplitude esti-
mation, we avoid using quantum Fourier transform, as it
would require an additional register of qubits. Instead, we
use a procedure described in Appendix D based on QETU.
Unlike previous near-term methods for amplitude esti-
mation [26,55] that typically rely on Bayesian inference
techniques and thus require knowledge of a prior distribu-
tion, our method does not require such prior knowledge.
One could also adapt the QFT-free approximate count-
ing algorithms in Refs. [56,57] to the amplitude-estimation
problem but our approach in Appendix D is better tailored
for the QETU framework.

We need to use amplitude amplification to quadratically
improve the y dependence in Theorem 6 and to achieve the
near-optimal query complexity for preparing the ground

state in Definition 3 (assuming knowledge of w). Let us
first study the number of ancilla qubits needed for this
task. For amplitude amplification, we need to construct
a reflection operator around the initial guess |¢p). This
requires implementing 2 |0") (0" — I, which is equivalent,
using phase kickback and Pauli-X gates, to implementing
an (n + 1)-bit Toffoli gate:

1" (1" oy + I — 1M (1") 1.

This (n + 1)-bit Toffoli gate can be implemented using
O(n) elementary one- or two-qubit gates, on n + 2 qubits
[40, Corollary 7.4]. Note that this can be a relatively costly
operation on early fault-tolerant quantum devices. We need
two ancilla qubits to implement the reflection operator but
one of them can be reused for other purposes. The reason
is as follows: one ancilla qubit is the one that o, acts on
conditionally in the (n + 1)-bit Toffoli gate. This one can-
not be reused because it needs to start from |0) and will be
returned to |0). The other qubit, however, can start from
any state and will be returned to the original state, as dis-
cussed in Ref. [40, Corollary 7.4], and therefore we can use
any qubit in the circuit for this task, except for the n + 1
qubits already involved in the (n 4 1)-bit Toffoli gate. Note
that in Theorem 6 we have one ancilla qubit that is used for
QETU. This qubit can therefore serve as the ancilla qubit
needed in implementing the (n + 1)-bit Toffoli gate. Thus
we only need two ancilla qubits in the whole procedure.
To summarize the cost, we have the following theorem.

Theorem 11: (near-optimal ground-state preparation with
QETU and amplitude amplification). Under the same
assumptions as in Definition 3, with the additional assump-
tion that we have . satisfying Eq. (3), we can prepare the
ground state, with probability 2 /3, up to fidelity 1 — € with
the following cost:

(1) 5(}/‘1/_\_] log(e~1)) queries to (controlled-)U and
O(y~") queries to Uy

(2) Two ancilla qubits

3) Omy—'A~! log(e‘l)) additional one- and two-
qubit quantum gates

4) O(y—'A=1og(e™)) query depth for U

Note that we can repeat this procedure multiple times to
make the success probability exponentially close to 1.

For ground-state energy estimation, in the algorithm
described in the proof of Theorem 4, our short-query-
depth algorithm has a O(y~2) scaling because of the
Monte Carlo sampling in the binary amplitude estimation
(Definition 8) procedure. Here, we improve the scaling to
O using the technique developed in Ref. [1, Lemma
7]. The technique in Ref. [1, Lemma 7] uses phase esti-
mation and requires O(log((y2 — ¥1)~1)) = O(log(y 1))
ancilla qubits. In Appendix D, we propose a method
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to solve the binary amplitude-estimation problem using
QETU, which reduces the number of additional ancilla
qubits down from O(Iog(y‘l)) to two. The result is
summarized here.

Lemma 12: (binary amplitude estimation). The binary
amplitude-estimation problem in Definition 8 can be
solved correctly with probability at least 1 — ' by query-
ing W O((y2 — 1)~ log(®'~")) times and this procedure
requires one additional ancilla qubit (besides the ancilla
qubits already required in W).

The key idea is to treat the walk operator in amplitude
estimation as a time-evolution operator corresponding to a
Hamiltonian and this allows us to apply QETU to extract
information about that Hamiltonian.

As a result of this new method to solve the binary
amplitude-estimation problem, the ground-state energy-
estimation problem can now be solved using only three
ancilla qubits: one for QETU and two others for binary
amplitude estimation.

With these results, we can now analyze the cost of
ground-state energy estimation in the near-optimal setting
and thereby prove Theorem 5.

Proof of Theorem 5. We adopt the same strategy of per-
forming a binary search to locate the ground-state energy,
as used in Theorem 4. The main difference is that instead of
using Monte Carlo sampling to solve the binary amplitude-
estimation problem, we now use QETU to do so, with the
complexity stated in Lemma 12.

We now count how many times we need to query U =
e in this approach. Each time we perform binary ampli-
tude estimation, we need to use Upyo; for O(y ~! log(¥'~1))
times to have at least 1 — 1%’ success probability each time.
We need to perform binary amplitude estimation for each
step of the binary search and there are in total (f)(log(e_l )
steps. Therefore, to ensure a final success probability of
at least 1 — ¢, we need to choose ¥ = @ (¥/ log(e_])).
At the kth binary search step, Upyj uses U= e for
O((3/2)F log(y_])) times. Therefore, in total we need to
query U, up to a constant factor

Mogs (e~ /2)]

D> G/ logly ™y og@ )

k=0

= O(G_l}’_l log(y_l)( log(t?_l) + log log(e_])))

times. This query complexity agrees with that in Ref. [1,
Theorem 8] up to a logarithmic factor.

When we count the number of additional quantum gates
needed, there will be an n dependence, which comes from
the fact that we need to implement a reflection operator
2101y (0"+!| — I each time we implement Uy in the
binary amplitude-estimation procedure (see Appendix D).

These reflection operators require 5(}1}/‘1 log(e_]ﬁ?_l))
gates. We also need Oyt log(t?‘l)) additional quan-
tum gates that come from implementing QETU. Combin-
ing the two numbers, we obtain the number of gates as
shown in the theorem. |

When preparing the ground state, the parameter p in
Theorem 11 is generally not known a priori. For exactly
solvable models or small quantum systems, despite the
ability to simulate them classically, one might still want to
prepare the ground state and in such cases p is available. In
the general case, to prepare the ground state without know-
ing a parameter p as in Theorem 11, we can first estimate
the ground-state energy to within additive error O(A), and
then run the algorithm in Theorem 11. This results in an
algorithm with the following costs.

Theorem 13: Under the assumptions stated in Definition
3, we can prepare the ground state to fidelity at least 1 — ¢,
with probability at least 1 — &, with the following cost:

(1) 6(A‘1y_1 poly log(e~'9~1)) queries to
(controlled-)U and O(y~!polylog(A~'e~191))
queries to Uy

(2) Three ancilla qubits

3) Omy'log(A~le 191 + A~ ly—Tlog(e~'91))
additional one- and two-qubit quantum gates

(4) O(A~'y~! polylog(e~'9~1)) query depth of U

IV. CONVEX-OPTIMIZATION-BASED METHOD
FOR CONSTRUCTING APPROXIMATING
POLYNOMIALS

To approximate an even target function using an even
polynomial of degree d, we can express the target polyno-
mial as the linear combination of Chebyshev polynomials
with some unknown coefficients {c;}:

df2
F(x) =) Tu)cx. (10)
k=0

To formulate this as a discrete optimization problem, we
first discretize [—1,1] using M grid points [e.g., roots
of Chebyshev polynomials {x; = —cos(j /M — 1)};’51].
One can also restrict them to [0,1] due to symmetry.
We define the coefficient matrix, 4y = T (x;), k=
0,...,d/2. Then, the coefficients for approximating the
shifted sign function can be found by solving the following
optimization problem:

max
Xj €[omax,0+]

min max { |F(xj) — c| ,

max
fexd [

Xj ElOmin,0—

JFel]
st. Fy) =) dwcr,  |[Fx)| <c,
k

LM -1 (11)
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This is a convex-optimization problem and it can be solved
using software packages such as CvX [58]. The norm con-
straint |F(x)] <1 is relaxed to |F(xj)| < ¢ to take into
account that the constraint can only be imposed on the
sampled points and the values of |F'(x)| may slightly over-
shoot on [—1, 11\{x; }J‘:":B]. The effect of this relaxation is
negligible in practice and we can choose ¢ to be suffi-
ciently close to 1 (for instance, ¢ can be 0.999). Since Eq.
(11) approximately solves a min-max problem, it achieves
the near-optimal solution (in the sense of the L* norm)
by definition both in the asymptotic and preasymptotic
regimes.

Once the polynomial F'(x) is given, the Chebyshev coef-
ficients can be used as the input to find the symmetric
phase factors using an optimization-based method. Due
to the parity constraint, the number of degrees of free-
dom in the target polynomial F(x) is d := [(d + 1)/2].
Hence F(x) is entirely determined by its values on d
distinct points. We may choose_these points to be x; =
cos ((2k — 1)/4dr), k= 1,...,d, which are the positive
nodes of the Chebyshev polynomial T,3(x). The problem
of finding the symmetric phase factors can be equivalently
solved via the following optimization problem:

®* =arg min  F(d),
d‘-'e[—u,rr)‘ﬂ'l,
symmetric.

d
1
F(@) == lgtw®) — Fol,

k=1

(12)

where
g(x., d)) — Re[(Ole@gzeiamoos(x)Xeiqb|Zeiarccos(x)X

.. eifﬁd—lzeiamcos{x})(e@dzm)]_

The desired phase factor achieves the global minimum of
the cost function with F(®*) = 0. It has been found that
a quasi-Newton method to solve Eq. (12) with a particular
symmetric initial guess

®° = (7/4,0,0,...,0,0,7/4) (13)
can robustly find the symmetric phase factors. Although
the optimization problem is highly nonlinear, the success
of the optimization-based algorithm can be explained in
terms of the strongly convex energy landscape near ®°
[59]. The numerical results indicate that on a laptop com-
puter, CVX can find the near-optimal polynomials for d ~
5000. Given the target polynomial, the optimization-based
algorithm can find phase factors for d ~ 10000 [54]. This
should be more than sufficient for most QSP-based appli-
cations on early fault-tolerant quantum computers. The
streamlined process of finding near-optimal polynomials
and the associated phase factors has been implemented in
QSPPACK [60].

As an illustrative example of the numerically optimized
min-max polynomials, we set n =0.1,u=10,A =
0.4,M = 400,c = 0.999. This corresponds to oy, =
0.0500,0_ = 0.8253,04 = 0.9211,0max = 0.9997.  The
resulting polynomial and the pointwise errors with d =
20 and d =80 are shown in Fig. 2. We remark that
the polynomial is reconstructed by means of the numer-
ically optimized phase factors using QSPPACK and hence
takes the error in the entire process into account. We find
that the pointwise error of the polynomial approximation
satisfies the equioscillation property on each of the inter-
vals [Oyin, 0_1,[0, Omax]. This resembles the Chebyshev
equioscillation theorem of the best polynomial approxima-
tion on a single interval (see, e.g., Ref. [61, Chapter 10]).
Figure 3 shows that the maximum pointwise error on the
desired intervals converges exponentially with the increase
of the polynomial degree.

More generally, to find a min-max polynomial approxi-
mation to a general even target function A(x) on a set 7 C
[—1, 1] satisfying |h(x)| < ¢ < 1,x € Z, we may solve the
optimization problem

min max |[F(x;) — h(x;
min  max |F(y) — h(y)|

st. F(x) = ZAjkas |F(xj)| =6
k

Vi=0,....M — 1. (14)
We also remark that even though QETU only concerns
even polynomials, the same strategy can be applied if the
target function 4 is odd or does not have a definite parity.

V. NUMERICAL COMPARISON WITH QPE FOR
GROUND-STATE ENERGY ESTIMATION

In this section, we compare the numerical perfor-
mance of our ground-state energy-estimation algorithm in
Theorem 4 with the QPE algorithm implemented using
semiclassical Fourier transform [47] to save the number of
ancilla qubits, as done in Refs. [44,45]. We evaluate how
many queries to U = e~ are needed in both algorithms
to reach the target accuracy € < 10~3. The Hamiltonian
H used here has a randomly generated spectrum and is a
200 x 200 matrix. The initial state |¢p) is guaranteed to
satisfy | {(¢o|¥0) | = y with a tunable value of y. In our
algorithm, the number of queries is counted by adding up
the degrees of all the polynomials we need to implement
using QETU.

Figure 4 shows that to achieve comparable accuracy, our
algorithm uses significantly fewer queries than quantum
phase estimation, in terms of both the asymptotic scaling
(improves from y~*to y~2) as well as the actual number
of queries for moderately small values of y. In Fig. 4, the
error of our method is computed by running the algorithm
in Theorem 4 on a classical computer and comparing the
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output with the exact ground-state energy and we show in
the figure the mean of the absolute error in multiple tri-
als. In our method, we need to determine the polynomial
degree needed for each binary search step (or each time
we solve the fuzzy-bisection problem in Definition 7). This
polynomial degree is determined by running the algorithm
in Sec. IV and selecting the smallest degree that provides
an error below the target accuracy. In our numerical tests,
we require the approximation error to be below 103, so

100
.
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1072 \rﬂ\
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FIG. 3. The exponential convergence of the maximum point-
wise error on [Omin, o] U [0y, omax | With respect to the increase
of the polynomial degree obtained by the convex-optimization
method.

that it is much smaller than the squared overlap. The error
of QPE is computed by sampling from the exact energy-
measurement output distribution, which is again simulated
on a classical computer, and comparing the output with
the exact ground-state energy. We also compute the abso-
lute error for QPE in multiple trials and take the mean in
Figure 4. The mean absolute errors in Fig. 4(b) show that
the advantage of our algorithm does not come from a loose
error estimate for QPE, since our algorithm reaches the
target precision (€ = 5 x 10~ in this case) consistently
and QPE does not achieve a higher precision than our
algorithm.

VI. CONTROL-FREE IMPLEMENTATION OF
QUANTUM SPIN MODELS

In this section, we demonstrate that for certain quan-
tum spin models, the QETU circuit can be simplified
without the need of accessing the controlled Hamiltonian
evolution.

Consider a Hamiltonian H that is a linear combination
of poly(n) terms of Pauli operators. Note that two Pauli
operators either commute or anticommute. Hence for each
term in the Hamiltonian, we can easily find another Pauli
operator K that anticommutes with this term. More
generally, we assume that H admits a grouping

4

g — Zhg)‘

s=1

£
H:Z‘HUJ, (15)
j=1
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FIG. 4. A comparison of the performance of the algorithm in Theorem 4 and the single-ancilla qubit quantum phase estimation using
a semiclassical Fourier transform [44,45,47]. (a) The number of queries of U needed to reach target precision € = 5 x 10~%, 10~3, and
2 x 1073 for different values of y. The gray dashed line and dotted line show y —* scaling and y 2 scaling, respectively. Both axes are
in logarithmic scale. (b) The mean absolute error achieved by the two algorithms for target accuracy € = 5 x 1074,

where each hY) is a weighted Pauli operator. For each
J» we assume that there exists a single Pauli operator K;
that anticommutes with HY), i.e., K;HVK; = —H"). The
number of groups £ is poly(n) in the worst case but for
many Hamiltonians in practice, £ may be much smaller.
For example, it may be upper bounded by a constant (see
examples below).

Conjugation of the Pauli string on the time-evolution
operator flips the sign of the evolution time, ie.,
Kieo ™K, = ™" Since the time evolution of each
Hamiltonian component is the building block of the Trot-
ter splitting algorithm, the time flipping gives a simple
implementation of the controlled time evolution without
controlling the Hamiltonian components or their time evo-
lution. To implement the controlled time evolution, it
suffices to conjugate the circuit implementing the time evo-
lution with the corresponding controlled Pauli string. Sup-
pose that W;(7) =~ U; (1) := e THY s the quantum cir-
cuit approximately implementing the time evolution using
Trotter splitting. Then, K;W;(t)K; = W;(—t) approxi-
mates the reversed time evolution using the same split-
ting algorithm. This allows us to use Corollary 17 (see
Appendix B), which simplifies the circuit implementation
of QETU.

To illustrate the control-free implementation, let
us consider the transverse-field Ising model (TFIM),
for instance, the Hamiltonian of which takes the
form

n—1 n
Hryppy = _ZZij—H —gZX} : (16)
=1 =1
\..J_.v_.t\-._{v._.f
o HO
TFIM TFIM

Here, g > 0 is the coupling constant. Note that a Pauli
string

K=Y1@LH03ZL®--- (17)

anticommutes with both components of the Hamiltonian,
namely KH%%MK = _HTUF)M for j =1 and 2. There-
fore, conjugation of the Pauli string K on the time-
evolution operator flips the sign of the evolution time, i.e.,

Ke-"HiamK = ¢ivHfim for j =1 and 2. In the sense of
Eq. (15), we have £ = 1. As a consequence, for the TFIM,
Fig. 1(c) is equivalent to the circuit in Fig. 5 in which
the controlled time evolution is implicitly implemented by
inserting controlled Pauli strings.

It should be noted that the controlled Pauli string only
requires implementation of controlled single-qubit gates,
rather than the controlled two-qubit gates of the form
e "%%+1 (note that the Hamiltonian involves two-qubit
terms of the form Z; Z; 1). If the quantum circuit conceptu-
ally queries the controlled time evolution 4 times, the sim-
plified circuit only inserts 2d controlled Pauli strings in the
circuit. In this case, when implementing W(%) using sev-
eral Trotter steps, the controlled Pauli strings only need to
be inserted before and after each W(%) but not between the
Trotter layers. This simplified implementation gives the
quantum circuit in Fig. 5(b). Note that in the general case
where controlled Pauli strings are inserted in between Trot-
ter layers, the number of controlled Pauli strings required
for the implementation is O(d£r), where r is the number of
Trotter steps to implement each time-evolution operator.
The simplified quantum circuit in Fig. 5(b) only uses 2d
controlled Pauli strings. Therefore, this simplified imple-
mentation significantly reduces the cost when the number
of Trotter step r is large.

In contrast to the TFIM, in which all Hamilto-
nian components share the same anticommuting Pauli
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(a)
¢ eiTHTRIM 0
0 e~ HTEmM

W{(—r) 0 °
0 11'[.-])

FIG. 5. The simplified quantum circuit for simulating the TFIM Hamiltonian using QETU. (a) The controlled time evolution of the
TFIM Hamiltonian without directly controlling the Hamiltonian. (b) The simplified circuit for implementing QETU. The evolution
operator W(—%) can also be implemented as W(%) conjugated by Pauli X operators (see Fig. 7).

string, the control-free implementation of a general spin
Hamiltonian may require more Pauli strings. For example,
the Hamiltonian of the Heisenberg model takes the form

n—1 n—1
HHeisenberg = - ZJ;:X}AG‘+1 - Zu{v}} I’_rH_
ji=l1 ji=1
(llT
Heisenberg
n—1
- :ZZ.
j=1
HI?e]lsenberg

Let us consider two Pauli strings, K1 =Z1 @ L QL3 ®
Li®--- and K = X1 QL R®X3® 4 ®---. Then, we
have the anticommutation relations K;H, ( K, =

Heisenberg
(1) 2) 2)
_HHelsenberg and KZHHelsenbergK HHelsenberg Therefore,

)
tH, .
conjugating each basic time evolution e ' Heisenberg j —

1, 2 by controlled K or K3, respectively, we can implement
the controlled time evolution without directly controlling
Hamiltonians or the corresponding time-evolution oper-
ators. This corresponds to £ = 2 in Eq. (15). Unlike the
implementation for the TFIM, the controlled Pauli strings
cannot be canceled between each Trotter layer. There-
fore, the simulation of a Heisenberg model requires addi-
tional controlled Pauli gates compared to that in the TFIM
simulation.

Other types of quantum Hamiltonians may also be
mapped to spin Hamiltonians to perform control-free time
evolution using the anticommutation relation. Consider
the one-dimensional Fermi-Hubbard model of interacting
fermions in a lattice:

HFH_—,LLZ Z jgcj,g—l—uztc chc 16isd

i=loe(tl}

—tZ Z ( oCi+lo +

j=1loe{t,l}

‘+],¢rcf|0)=

where c s and ¢; 5 (o € {1, |} = {0, 1}) are creation and
anmhllatlon operators for different fermionic modes, p is
the chemical potential, u is the on-site Coulomb repulsion
energy, and f is the hopping energy. The equivalent spin
Hamiltonian can be derived by applying a Jordan-Wigner
transformation (see, e.g., Ref. [62]), which gives (up to a
global constant)

HFH,qublts = (_u - )Z E + u E Z,DZ
j=1 e<|0, 1]
(1 (2)
FH.qubits HFH,quhils
_tz Z ( o Yje T % +1ﬂ}3} 0)
j=1 a<{0,1}
(3)
HFHqulLS

where the subscript (j, o) denotes the jth qubit on the o'th
chain, and £, := X ; Y. Let Ki = @ o X0, K2 =

(®1-1%10) @ (®)_1111)-and Ks = (&)=vn(Zr0 @ 1))
® (®j=0dd(lj,0 ® I;,1)) be three Pauli strings. Then,
we have the anticommutation relations &;ngﬂ‘qubhsk} =

ngﬂ qubits for j = 1,2,3. Thus, control of the time evo-
lution of the spin-1/2 Fermi-Hubbard model can be imple-
mented by controlling these Pauli strings. The above con-
struction can also be generalized to two-dimensional (2D)
Fermi-Hubbard models. Note that direct Trotterization
of the 2D Fermi-Hubbard model following the Jordan-
Wigner transformation leads to nonoptimal complexities
and the complexity can be improved via fermionic swap
networks [63]. The control-free implementation of these
more complex instances will be our future work.

For simplicity of implementation, the energy estima-
tion can be derived from the measurement frequencies of
bit strings using the standard variational quantum eigen-
solver (VQE) algorithm (see, e.g., Ref. [34]). We state the
algorithm for deriving energy estimation from measure-
ment results in Appendix E for completeness. Using the
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TABLE III. The system-dependent parameters for different
numbers of system qubits n.

n I A

2 0.7442 1.2884
4 03926 0.5851
6 0.2887 0.3773
8 0.2394 0.2788

a_ C1 (5] 4

1.5708 0.5301
1.5708 0.3003
1.5708 0.1703
1.5708 0.0965

Ot
0.9988 0.7686 0.1824
0.9988 0.9419 0.0909
0.9988 0.9717 0.0605
0.9988 0.9821 0.0453

control-free implementation and VQE-type energy estima-
tion, the implementation of the ground-state preparation
using QETU can be carried out efficiently on quantum
hardware.

VIL. NUMERICAL RESULTS FOR THE TFIM

Despite the potentially wide range of applications of
QSP and QSVT, their implementation has been lim-
ited by the large resource overhead needed to imple-
ment the block encoding of the input matrix. To our
knowledge, QSP-based quantum simulation has only been
implemented for matrices encoded by random circuits
[64—66]. Using QETU and control-free implementation
in previous section, we show that the short-depth ver-
sion of our algorithm for ground-state preparation and
energy estimation can be readily implemented for cer-
tain physical Hamiltonians. Our implementation has a very
small overhead compared to the Trotter-based Hamiltonian
simulation and the circuit uses only one- and two-qubit
gate operations. We demonstrate this for the TFIM via

IBM QISKIT. To demonstrate the algorithm, we prepare the
ground state of the Ising model with a varying number of
qubits n and the coupling strength is set to g = 4. In the
quantum circuit, we set the initial state to [0} |}, where
[¥in) = [0") and the additional one qubit is the ancilla qubit
on which X rotations are applied. To simplify the numer-
ical test, we compute the value of © and A by explicitly
diagonalizing the Hamiltonian. For each Hamiltonian evo-
lution U in the QETU circuit, the number of Trotter steps
is set to ¥ = 3. We list system-dependent parameters and
the initial overlap y = |{¥in|¥o)| for different numbers of
system qubits n in Table III. According to the analysis in
Sec. VII, it is sufficient to measure two quantum circuits to
estimate the ground-state energy of the TFIM. Each quan-
tum circuit in the numerical experiment is measured with
10° measurement shots and we independently repeat the
numerical test 30 times to estimate the statistical fluctua-
tion. To emulate the noisy quantum operation, we add a
depolarizing error channel to each gate operation in the
quantum circuit, where the error of single-qubit gate oper-
ation and that of the two-qubit gate operation are set to
raplz/ 10 and rgpl, respectively. Assuming the digital error
model (DEM), the total effect of the noise can be written as

Oexp = UDEMOexact + (1 - aDEM)g(Qinput)

and the noise channel £ (Qinput) can be modeled as a global
depolarized error channel [67] with circuit fidelity apgm.

n=4 n==,8
g 2 T i g °
w w 4 w w
> > 7.5 r'"r.' > 2 -10
g 8 g 8
o o =10.0 ] o
c c = c
@ L w w -20
-] T =12.51 o -]
i = c c c
2 3 _15.0] SSEE— 3
E) o e o & —30
10 20 0 25 50
deg d deg d
— - N | = 20 _ 10!
gp 8, 10% g0 o
o w by paiies | W5 " 10°
1 1 1' 1 10° 1
B 2 : T T 10-1 L
iy o 1072 W £ w10 Wi
|/ 7\
J 1071 10-2 et
10 20 10 20 0 20 0 25 50
deg d deg d deg d deg d
—— rgpe=10"2 4 rgpp=10"7 —— rg=10"* —— rgu,=10"" —— noiseless exact

FIG. 6. Estimation of the ground-state energy of the TFIM model using QETU. Each marker labels the data simulated with a given
depolarizing error rate rapi;. The dashed line is the exact ground-state energy EX of the spin system. In each column, the number
of qubits n is shown. The (red) right triangles denote the data computed from the best polynomial approximation by the convex-
optimization solver, which only include the approximation error and are independent of quantum noise. The error bar denotes the

standard deviation estimated from 30 repetitions.
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Given n and d, the numbers of single- and two-qubit gates
involved in the quantum circuit are
ngi1 =dmr+1)+1 and ngr=d((n—1)r+2n).
(18)

Therefore, the circuit fidelity can be modeled as

Fdplz \ "g.1 n
*DEM = (1 B %) (1 )

The numerical result is presented in Fig. 6. The conver-
gence of the noiseless data to the exact ground-state energy
suggests that the energy can be computed accurately when
d is modest (10 ~ 30). The statistical fluctuation, quanti-
fied by the standard deviation derived from 30 repetitions,
is on the order of 10~2 and is not visible in the top panels.
When simulating in the presence of the depolarizing noise,
the numerical results suggest that accurate estimation of
the energy requires rgpl; to be 10~ or less. This require-
ment is beyond the noise level that can achieved by current
NISQ devices. Therefore we expect that QETU-based
algorithms are more suited for early fault-tolerant quan-
tum devices. For the TFIM, the spectral gap A decreases
as the number of qubits increases. Therefore, the degree of
the polynomial also needs to be increased to approximate
the shifted sign function and to prepare the ground state to
a fixed precision (see Fig. 6).

VIII. CONCLUSIONS

In this work, we develop algorithms for preparing the
ground state and for estimating the ground-state energy
of a quantum Hamiltonian suitable on early fault-tolerant
quantum computers. The early fault-tolerant setting lim-
its the number of qubits, the circuit depth, and the type
of multiqubit control operations that can be employed.
While block encoding is an elegant technique for abstractly
encoding the information of an input Hamiltonian, existing
block-encoding strategies (such as those for s-sparse matri-
ces [15,68]) can lead to a large resource overhead and can-
not meet the stringent requirements of early fault-tolerant
devices. The resource overhead for approximately imple-
menting a Hamiltonian-evolution input model is much
lower and can be a suitable starting point for constructing
more complex quantum algorithms.

Many computational tasks can be expressed in the form
of applying a matrix function f (H) to a quantum state |yr).
We develop a tool called quantum eigenvalue transforma-
tion of unitary matrices with real polynomials (QETU),
which performs this task using the controlled Hamiltonian
evolution as the input model (similar to that in quantum
phase estimation), only one ancilla qubit, and no multi-
qubit control operations. Combined with a fuzzy-bisection
procedure, the total query complexity of the resulting
algorithm to estimate the ground-state energy scales as

6(6_1}’_2), which saturates the Heisenberg limit with
target precision €. The scaling with the initial overlap
y is not optimal but this result already outperforms all
previous quantum algorithms for estimating the ground-
state energy using a comparable circuit structure (see
Table I).

The QETU technique and the new convex-optimization-
based technique for streamlining the process of finding
phase factors could readily be useful in many other con-
texts, such as preparing the Gibbs state. It is worth
mentioning that other than using shifted sign functions,
one can also use the exponential function e #H—=#D (the
same as that needed for preparing Gibbs states, with
an appropriate choice of B, u) to approximately pre-
pare the ground state. This gives rise to the imaginary-
time-evolution method. Unlike the quantum imaginary-
time-evolution (QITE) method [69], which performs both
real-time evolution and a certain quantum state tomog-
raphy procedure, QETU only queries the time evolution
with performance guarantees and therefore can be sig-
nificantly more advantageous in the early fault-tolerant
regime.

If we are further allowed to use the (n + 1)-bit Toffoli
gates (which is a relatively low-level multiqubit opera-
tion, as the additional two-qubit operations scale linearly
in n), we can develop a new binary amplitude-estimation
algorithm that is also based on QETU. The total query
complexity for estimating the ground-state Energy can be
improved to the near-optimal scaling of O(e~! l) at
the expense of increasing the circuit depth from O(G_l)
to O(e_] —1). This matches the results in Ref. [1] with a
block-encoding input model. This also provides an answer
to a question raised in Ref. [7], i.e., whether it is possible
to have a quantum algorithm that does not use techniques
such as LCU or block encoding, with a short query depth
that scales as O(G_l) and with a total query complex-
ity that scales better than O(y—*). Our short-query-depth
algorithm shows that it is possible to improve the total
query complexity to O(y ~2) while satisfying all other con-
straints. The construction of our near-optimal algorithm
(using binary amplitude estimation) indicates that it is
unlikely that one can improve the total query complexity to
O(y~") without introducing a factor that scales with y!
in the circuit depth.

The improvements in circuit depth and query com-
plexity for preparing the ground state are similar to that
of the ground-state energy estimation (see Table II). It
is worth mentioning that many previous works using a
single ancilla qubit cannot be easily modified to pre-
pare the ground state. It is currently an open question
whether the query complexity can be reduced to the near-
optimal scaling without using any multiqubit controlled
operation (specifically, whether the additional one- and
two-qubit quantum gates can be independent of the system
size n).
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In practice, the cost of implementing the controlled
Hamiltonian evolution can still be high. By exploiting cer-
tain anticommutation relations, we develop a new control-
free implementation of QETU for a class of quantum spin
Hamiltonians. The results on quantum simulators using
IBM QISKIT indicate that relatively accurate estimates for
the ground-state energy can already be obtained with a
modest polynomial degree (10 ~ 30). However, the results
of QETU can be sensitive to quantum noises (such as
gate-wise depolarizing noises). On the one hand, while
the QETU circuit (especially, the control-free variant) may
be simple enough to fit on a NISQ device, the error on
the NISQ devices may be too large to obtain meaningful
results. On the other, it may be possible to combine QETU
with randomized compilation [70] and/or error-mitigation
techniques [71] to significantly reduce the impact of the
noise, which may then enable us to obtain qualitatively
meaningful results on near-term devices [72]. These will
be our future works.

The source code for our use of IBM QISKIT is available
in the GitHub repository [73].
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APPENDIX A: BRIEF SUMMARY OF
POLYNOMIAL MATRIX TRANSFORMATIONS

In the past few years, there have been significant algo-
rithmic advancements in efficient representation of certain
polynomial matrix transformations on quantum computers
[12,14,15], which have found applications in Hamiltonian
simulation, solving linear systems of equations, and eigen-
value problems, to name a few. The commonality of these
approaches is to (1) encode a certain polynomial using a
product of parametrized SU(2) matrices and (2) lift the
SU(2) representation to matrices of arbitrary dimensions
(a procedure called “qubitization” [12], which is related to
quantum walks [74,75]). This framework often leads to a
very concise quantum circuit and can unify a large class of
quantum algorithms that have been developed in the liter-
ature [15,76]. For clarity of the presentation, the term QSP
specifically refers to the SU(2) representation. It is worth
noting that depending on the structure of the matrix and
the input model, the resulting quantum circuits can be dif-
ferent. Block encoding [12,15] is a commonly used input

model for representing nonunitary matrices on a quantum
computer.

Definition 14: (block encoding). Given an n-qubit matrix
A(N =2"),ifwecanfind o, e € R, and an (m + n)-qubit
unitary matrix Uy so that

I4—a((0" QL) Uy (10M L)l <e,  (Al)

then Uy is called an (a, m, €)-block-encoding of 4.

When a polynomial of interest is represented by QSP,
we can use the block-encoding input model to imple-
ment the polynomial transformation of a Hermitian matrix,
which gives the quantum eigenvalue transformation (QET)
[12]. Similarly, the polynomial transformation of a gen-
eral matrix (called singular-value transformation) gives the
QSVT [15]. In fact, for a Hermitian matrix with a block-
encoding input model, the quantum circuits of QET and
QSVT can be the same.

It is worth noting that the original presentation of QSP
[14] combines the SU(2) representation and a trigonomet-
ric polynomial transformation of a Hermitian matrix H and
the input model is provided by a quantum walk operator
[74]. If H is a s-sparse matrix, the use of a walk operator
is actually not necessary and QET or QSVT gives a more
concise algorithm than that in Ref. [14].

Using the Hamiltonian-evolution input model, our
QETU algorithm provides a circuit structure that is similar
to that in Ref. [14, Figure 1] and the derivation of QETU is
both simpler and more constructive. Note that Ref. [14]
only states the existence of the parametrization without
providing an algorithm to evaluate the phase factors and
the connection with the more explicit parametrization such
as those in Refs. [15,77] has not been shown in the litera-
ture. Our QETU algorithm in Theorem 1 directly connects
to the parametrization in Ref. [15] and, in particular, QSP
with symmetric phase factors [54,59]. This gives rise to a
concise way to represent real polynomial transformations
that is encountered in most applications.

The QETU technique is also related to QSVT. From the
Hamiltonian-evolution input model U = e~ we can first
use one ancilla qubit and linear combination of unitaries
to implement a block encoding of cos(H) = (U + uh /2.
Using another ancilla qubit, we can use QET or QSVT
to implement H = arccos[cos(H)] approximately. In other
words, from the Hamiltonian evolution U, we can imple-
ment the matrix logarithm of U to approximately block
encode H. Then, we can implement a matrix function
f (H) using the above block encoding and another layer of
QSVT. QETU simplifies the above procedure by directly
querying U. The concept of “qubitization” [12] appears
very straightforwardly in QETU (see Appendix B). It also
saves one ancilla qubit and perhaps gives a slightly smaller
circuit depth.
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APPENDIX B: QUANTUM EIGENVALUE TRANSFORMATION FOR UNITARY MATRICES
Let

x iv1 —x?

i1 —x? x ’

We first state the result of quantum signal processing for real polynomials [16, Corollary 10] and specifically the symmetric
quantum signal processing [59, Theorem 10] in Theorem 15.

W(x) = e @ecos@X — ( xe[-1,1]. (B1)

Theorem 15: (symmetric quantum signal processing, W-convention). Given a real polynomial F(x) € R[x], and deg
F = d, satisfying

(1) F has parity d mod 2
2) |F(x)| < 1,Vx e [-1,1]

then there exist polynomials G(x),Q(x) € R[x] and a set of symmetric phase factors ® := (¢o,P1,-..,¢1,¢0) € Ré+1
such that the following QSP representation holds:

d
iboZ iz _ [ F@) +iGx) iQ(x)«/l—xﬂ) _
P T [Pee ]_(EQ(x) e (B2)

=1

In order to derive QETU, we define

i iarccos(x)
Wa(x) = oo — (e 0 ),x e[-1,1]. (B3)

0 e—i arccos(x)

Then Theorem 16 is equivalent to Theorem 15 but uses the variable x as encoded in the W, matrix instead of the W matrix.
Theorem 16: (symmetric quantum signal processing, W,-convention). Given a real even polynomial F(x) € R[x], and
deg F = d, satisfying |F(x)| < 1,Vx € [—1,1), then there exist polynomials G(x),Q(x) € R[x] and symmetric phase
Jactors &, := (g0, @1,...,01,00) € R4 such that the Jfollowing QSP representation holds:

Us, (x) = X W (x)e X W, (x)e? ... 22X W (x) X W, (x)e™0¥

_ F(x) —0@)V1 —x2 +iG(x) _
- (Q(x)m +iG(x) F(x) ) ' B4)
Proof. Using
X = He’H (B5)
and
HW,(x)H = W(x), HW!(x)H = —e ™ W(x)e ™/, (B6)
we have
Us, (x) = (—1)¥2H { @0~ IDZ () HO1 T/ DZ 7 ) i 02— /2)Z
e OTIDZ () O —TIDZ gy () o007 } H
= (—1)2Hem/42 { STV () O =TI 7 ) 102722
e dOTIDZ () =T IDZ 7y ei(f.oo—rrH)Z} TR (B7)
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The term in the parentheses satisfies the condition of Theorem 15. We may choose a symmetric phase factor

(o, D1, . .., P1,¢0), so that

iboZ i$1Z ibhZ | iboZ i$1Z itz ap (FG) +iGx)  iQx)VT—x7
ePW(x)e® “ W(x)e' ePCW(x)e P W(x)e' = (—1) (I'Q(x)m Fx) — :'G(x)) : (B8)
We then define ¢; = ¢; + (2 — dj0)m/4 forj = 0,...,d/2 and direct computation shows that
B F(x) —0@)V1 —x2 +iG(x)
Ve, (x) = (Q(x)m +iG(x) F(x) ) : (B9)
which proves the theorem. |

Proof of Theorem 1. For any eigenstate |v;) of H with eigenvalue A;, note that span{|0) |v;),[1) |v;}} is an invariant
subspace of U, UT, X ® I, and hence of U. Together with the fact that for any phase factors ¢ and ¢,

ei@X I‘V:(x)eiqo*X Wz (JC) = eiqu (é e2iar?oos(x)) eiquX ((l) e—Zi a?ccos(x)) ’ (B]O}
we have
U10) lv;) = (Us,(cos(2;/2)) [0)) lv;) = F(cos(x;/2)) [0) [v;) + e [1) |v;) . (B1I)
Here, we use x = cos(4;/2) and
a; = Q(cos(A;/2)) sin(A; /2) + iG(cos(4A;/2)) (B12)

is an irrelevant constant according to Eq. (B4).
Since any state [) can be expanded as the linear combination of eigenstates |v;) as

W)=Y ¢ ly), (B13)
j
we have
UI0) [y =Y U 0) [u;) = 10) Y ¢;F (cos(h;/2)) [vy) + 1) | L)
j i
= 0) F(cos(H/2)) [¢r) + 1) | L), (B14)
where | L) is some unnormalized quantum state. This proves the theorem. |

Sometimes, instead of controlled U, we have direct access to an oracle that simultaneously implements a controlled
forward and backward time evolution:
el 0
V= ( 0 e_fH). (B15)

This is the case, for instance, in a certain implementation of QETU in a control-free setting. Corollary 17 describes this
version of QETU.

Corollary 17: (QETU with forward and backward time evolution). Let V be the unitary matrix given in Eq. (B15),
corresponding to an n-qubit Hermitian matrix H. For any even real polynomial F (x) of degree d satisfying |F(x)| <

1,Vx € [—1, 1], we can find a sequence of symmetric phase factors ®; := (po, ¢1,...,¢1,¢0) € R4 such that the circuit
in Fig. 7 denoted by U satisfies (0| @ I,)U(|0} @ I,) = F (cos H).
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FIG. 7. The variant of QETU with an oracle implementing the
controlled forward and backward time evolution. The implemen-
tation of V' can be carried out by conjugating ¥ with Pauli X
gates acting on the first qubit and the Pauli X gate can be first
combined with the phase rotation as €#X X = je'tet7/2X

Proof. Let |v;) be an eigenstate of H with eigenvalue A;.
For any phase factors ¢ and ¢’, using

e—i arccos(x) 0 )

ef‘ﬂX}V:(x)ei@’X Wz(x) = ei@X ( 0 eiarcoos(x)

i X eiarcoos(x) 0
x ego ( 0 e—iarocos(x) s (816}
we have
U10) lv;) = (Us,(cos ;) [0)) [v;)
= F(cos ;) |0) |vj) + o [1) |v;). (B17)

Here, x = cos 4;, and a; = Q(cos A;) sin A; + iG(cos A;).
The rest of the proof follows that of Theorem 1. |

APPENDIX C: COST OF QETU USING TROTTER
FORMULAS

If the time-evolution operator U = e~ is implemented
using Trotter formulas, we can directly analyze the circuit
depth and gate complexity of estimating the ground-state
energy in the setting of Theorems 4 and 5.

We suppose that the Hamlltoman H can be decomposed
into a sum of terms H = Zr 1 H},, where each term H,
can be efficiently exponentiated, i.e., with a gate complex-
ity that is independent of time. In other words, we assume
that each H,, can be fast forwarded [78-80]. We assume
that the gate complexity for implementing a single Trotter
step 1S GTrotter and the circuit depth required is Dryotter. For
initial state preparation, we assume that we need gate com-
plexity Ginitial and circuit depth Dipitial. A pth-order Trotter
formula applied to U = e~ with r Trotter steps gives us
a unitary operator Ugs with error

"UHIS' - U" = CTrotterr_pa

where CTrotter 15 a prefactor, for which the simplest bound is
Crrotter = O((Zr [[H, he+h. Tighter bounds in the form

of a sum of commutators are proved in Refs. [19,81] and
there are many works on how to decompose the Hamil-
tonian to reduce the resource requirement [82—85]. If the
circuit queries U, U' for d times and the desired precision
is 8, then we can choose

d x CTrotterr P =4

or, equivalently,

r=0 (max(d# Cif 577, 11). (€1
As an example, let us now analyze the number of Trotter
steps needed in the context of estimating the ground-state
energy in Theorem 4 without amplitude amplification.
When replacing the exact U with Ugs, we only need
to ensure that the resulting error in Upy; defined in Eq.
(8) is O(y). This will enable us to solve the binary
amplitude-estimation problem (see Definition 8) with the
same asymptotic query complexity. Since Uprj uses U (and
therefore Uys) at most 6(6_] log(y_])) times, we only
need to ensure

O(e™' log(y ™) x Crower™ = O().  (C2)
Consequently, we need to choose
r=0 (max(c"P iy -lip, 1)) (o))

The query depth of U'is 6(6_] log(y_])) and therefore the
circuit depth is

6 (max{cupn G—UP},—UP, Iog(y_l)}e_]DTrotter + Dinil‘ial) .

Similarly, the total number of queries to U is (9[&‘l -2

log(¥~ D] times, the total number of queries to Ur is
Oly2 polylog(e_]ﬁ?_l)], and the resulting total gate
complexity is

O (max{Ciyee™ 7y =17, 1)~y 2 G log (@)
+ ¥ 2 Ghnitiat log(3 7)) .

The analysis of the number of Trotter steps in the setting
of Theorem 5 is similar. We still want to ensure Eq. (C2),
which results in the same choice of the number of Trotter
steps ras in Eq. (C3). Combined with the query complexity
in Theorem 35, the total gate complexity is

e Py =P 1}e 'y~ Grotier log(® ")

(C4)

Trotter

+ ¥ Ginitiat log(@ ™)) .

4] (max{CUP

040305-20



QUANTUM EIGENVALUE TRANSFORMATION...

PRX QUANTUM 3, 040305 (2022)

APPENDIX D: BINARY AMPLITUDE
ESTIMATION WITH A SINGLE ANCILLA QUBIT
AND QETU

In this appendix, we discuss how to solve the binary
amplitude-estimation problem in Definition 8 using a sin-
gle ancilla qubit. We restate the problem here.

Definition 18: (binary amplitude estimation). Let W be a
unitary acting on two registers, with the first register indi-
cating success or failure. Let 4 = ||((0] @ L) W(]0) |0")||
be the success amplitude. Given 0 < y; < y,, provided
that 4 is either smaller than y; or greater than y», we want
to correctly distinguish between the two cases, i.e., output
0 for the former and 1 for the latter.

In the following, we describe an algorithm to solve
this problem and thereby prove Lemma 12. We can find
quantum states |®) and | L) such that

w(|0)10") = A10) |®) + 1 —A4%|1)

and ((0] ® I) | L) = 0. We also define

|1y = —/1—A4210) |®) + 4| L).

As in amplitude amplification, we define two reflection
operators:

Ro=Q|0) (0] —D®L, R =WQ2|0™)

(O — L, W

Relative to the basis {#(|0) |0")),|L’)} the two reflection
operators can be represented by the matrices

, ((‘J _01).

|Ws) = (W]0)107) &

242~ 1 —24/1— 42
—24/T— 42 1 —24%
Therefore, we can verify that
i |J.’))/«/5 are eigenvectors of RyR:

RoR, |Wy) = eT2aecosd) |y, )

If we use the usual amplitude-estimation algorithm to esti-
mate 4, we can simply perform phase estimation with
RyR; on the quantum state W(]0) |0")), which is an equal
superposition of |Wy):

1
w((0) 10")) = —2(|‘l’+) +[¥_)).

Nz

However, here we do something different. We view RoR;
has a time-evolution operator corresponding to some

Hamiltonian L:
RoR; = e_‘IL,

where, in the subspace spanned by {#¥(|0) [0")), |L")}, we
have

L = 2 arccos(4) |V, ) (V.| — 2arccos(4) |W_) (V_].

Then, using QETU in Theorem 1, we can implement a
block encoding, which we denote by U, of P[cos(L/2)] for
any suitable polynomial P and in the same subspace we
have

Pleos(L/2)] = P(A)(1W+) (W] + W) (¥_])
= P(4)(W10) [0") (O] (0" WF + | L") (L']).

Using QETU, we can use Monte Carlo sampling to esti-
mate the quantity

101 ® Ly YU (10) ® (W10) [0") 11> = |P(A)*. (D)

To be more precise, we can start from the state |0) |0} |0")
on n + 2 qubits, apply W to the last n + 1 qubits, then { to
all n + 2 qubits, and in the end measure the first qubit. The
probability of obtaining 0 in the measurement outcome is
exactly as described in Eq. (D1).

Now let us consider an even polynomial P(x) such that
|P(x)] < 1forx € [—1,1] and
Px)=1-8,xen,1l, P =<4, xe[0,n]
Such a polynomial of degree O((y, — ) ! log(ﬁ_l)) can
be constructed using the approximate sign function in Ref.
[53] (if we take this approach, we need to symmetrize
the polynomial through P(x) = [Q(x) + Q(—x)]/2) or the
optimization procedure described in Sec. IV. Using this
polynomial, we can then employ Monte Carlo sampling
to distinguish two cases, which will solve the binary

amplitude-estimation problem:

101 ® Ly )U(10) ® (W10) 10")) 11> = (1 — 8)%,
or [[((0] ® Ly DU(10) ® ([0} [07)) > < 8.

We can choose § = 1/4 and it takes running W and U and
measuring the first qubit each O(log(tﬁ‘_])) times to suc-
cessfully distinguish between the above two cases with
probability at least 1 — . In this, we use the standard
majority-voting procedure to boost the success probability.
Each single run of U requires O((y» — )™ H applications
of W, which corresponds to the polynomial degree. There-
fore, in total we need to apply W O((y2 — yi)~ ! Iog(t?‘l))
times.

In this whole procedure, we need one additional ancilla
qubit for QETU. Note that the (n + 1)-qubit reflection
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operator in Ry can be implemented using the (n 4 2)-qubit
Toffoli gate and phase kickback. Using Ref. [40, Corollary
7.4], we can implement the (n + 2)-qubit Toffoli gate on
(n + 3) qubits. As a result, another ancilla qubit is needed.
We have proved Lemma 12, which we restate here.

Lemma 19: The binary amplitude-estimation problem in
Definition 8 can be solved correctly with probability at
least 1 — ¥ by querying W O((y, — ) ! log(t?‘l)) times
and this procedure requires two additional ancilla qubits
(besides the ancilla qubits already required in W).

APPENDIX E: DETAILS OF NUMERICAL
SIMULATION OF THE TFIM

In the numerical simulation for estimating the ground-
state energy of the TFIM, we explicitly diagonalize the
Hamiltonian to obtain the exact ground state |yq), the
ground energy FEo, the first excited energy E;, and
the highest excited energy E,_;. We then perform an affine
transformation to the shifted Hamiltonian

T —2n

H™ = ¢1H + e, ="
cid + ¢ C1 . —E

and ¢ = n — c1 Ep.
(ED)

Consequently, the eigenvalues of the shifted Hamilto-
nian are exactly in the interval [n,m — 5], ie., Eﬁh =n
and E" | = — n. The time evolution is then e~*# "=
e T2~ which means that the evolution time is
scaled to 75" = 7¢; with an additional phase shift ¢*" =

tcy. The system-dependent parameters are then given by

1

n=s (ES" +E"), A =E" —E, and oy

_RFAP
= C0§ ——.

(E2)
We set the input quantum state to |0) [{in), where |Y,) =
[0") and the additional one qubit is the ancilla qubit for
performing X rotations in QETU. The initial overlap is
¥ = [{¥in|to)|. We list the system-dependent parameters
used in the numerical experiments in Fig. 6 in Table II1.

For completeness, we briefly introduce the algorithm for
deriving the energy estimation from the measurement of
bit-string frequencies. The energy-estimation process can
be optimized so that it is sufficient to measure a few quan-
tum circuits to compute the energy. For the TFIM, if the
ground state is |}, its ground-state energy is

n—1

Eo = (YolHremlvo) = — ) (Y012 Z; 411%0)

=1

n n—1 n
—g ) WolXlvo) = =D W —gy W
j=1 j=l1

=1

We show that the energy component ¥, ;,; and W can
be exactly expressed as the marginal probabilities readable
from measurements. Decomposing Z; Z; ;1 with respect to
eigenvectors, we have

1 1

q—'j,f-i—l = (WO'Z_;Z_;.Hllﬁo) = Z Z (—l)zf+zf+1

zj=02j+|=0

1 1
|(1’&0|zf’zf“)|2 = Z Z (—1)Fta+

zj=02z;4,=0
P (Zj,ZjJrlllh))-

Here, P (z;,241]W0) is the marginal probability measur-
ing the jth qubit with z; and the (j 4 1)th qubit with z;
under computational basis when the quantum circuit for
preparing the ground state |yp) is given. Similarly, the
other quantity involved in the energy is

W = (YolX; [Vo) = (YolH®"Z H®"|Yo) = (V' 1Z; g

1
= Z(—l)zf]P(zjh&(]q).

Zj =0

Here, P (z|¥{!) is the marginal probability measuring
the jth qubit with z; under computational basis when the
quantum circuit for preparing the ground state |y) fol-
lowing a Hadamard transformation, which is denoted as
[ ey := H®" |yy), is given.

In order to estimate the ground-state energy of the
TFIM, it suffices to measure all qubits in two circuits: the
circuit in Fig. 5(b) and that following a Hadamard trans-
formation on all system qubits. The measurement results
estimate the marginal probabilities up to the Monte Carlo
measurement error. Furthermore, their linear combination
with signs gives the ground-state energy estimate based on
the previous analysis.

The procedure for estimating the energy can readily be
generalized to other models. Consider a Hamiltonian

L g
H:ZH;,, Hk:ZkU.
k=1 Jj=1

(E3)

Here, we group the components of the Hamiltonian into L
classes and, for a fixed &, the components A ; can be simul-
taneously diagonalized by an efficiently implementable
unitary V;. The strategies of Hamiltonian grouping have
also been used in, e.g., Refs. [86,87]. We want to estimate
the expectation (Yo|H|vo), where |V} is the quantum
state prepared by some quantum circuit. Then, it suf-
fices to measure L different quantum circuits {Vj [¥q) :
k=1,...,L} and to compute the expectation from the
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measurement data by some signed linear combination.
For example, to estimate the ground-state energy of the
Heisenberg model, we can let L =3 and V; = I®", V, =
H®" and V3 = (HST)W, where H and § are the Hadamard
gate and the phase gate, respectively.
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