
Received: 14 June 2022 Revised: 8 May 2023 Accepted: 15 May 2023

DOI: 10.1002/nla.2511

R E S E A R C H A R T I C L E

CP decomposition for tensors via alternating least squares
with QR decomposition

Rachel Minster1 Irina Viviano2 Xiaotian Liu1 Grey Ballard1

1Department of Computer Science, Wake
Forest University, Winston-Salem, North
Carolina, USA
2Clinical & Translational Science
Institute, Wake Forest University School
of Medicine, Winston-Salem, North
Carolina, USA

Correspondence
Rachel Minster, Department of Computer
Science, Wake Forest University,
Winston-Salem, NC, USA.
Email: minsterr@wfu.edu

Funding information
National Science Foundation,
Grant/Award Number: CCF-1942892

Abstract
The CP tensor decomposition is used in applications such as machine learning
and signal processing to discover latent low-rank structure in multidimensional
data. Computing a CP decomposition via an alternating least squares (ALS)
method reduces the problem to several linear least squares problems. The stan-
dard way to solve these linear least squares subproblems is to use the normal
equations, which inherit special tensor structure that can be exploited for com-
putational efficiency. However, the normal equations are sensitive to numerical
ill-conditioning, which can compromise the results of the decomposition. In this
paper, we develop versions of the CP-ALS algorithm using the QR decomposi-
tion and the singular value decomposition, which are more numerically stable
than the normal equations, to solve the linear least squares problems. Our algo-
rithms utilize the tensor structure of the CP-ALS subproblems efficiently, have
the same complexity as the standard CP-ALS algorithm when the input is dense
and the rank is small, and are shown via examples to produce more stable results
when ill-conditioning is present. Our MATLAB implementation achieves the
same running time as the standard algorithm for small ranks, and we show that
the new methods can obtain lower approximation error.

K E Y W O R D S
canonical polyadic tensor decomposition, CANDECOMP/PARAFAC, multilinear algebra,
numerical stability, tensors

1 INTRODUCTION

The CANDECOMP/PARAFAC or canonical polyadic (CP) decomposition for multidimensional data, or tensors, is a pop-
ular tool for analyzing and interpreting latent patterns that may be present in multidimensional data. One of the most
popular methods used to compute a CP decomposition is the alternating least squares (CP-ALS) approach, which solves a
series of linear least squares problems.1-3 To solve these linear least squares problems, CP-ALS uses the normal equations,
which are well known to be sensitive to roundoff error for moderately ill-conditioned matrices. We propose to use a more
stable approach, where we solve the linear least squares problems using the QR decomposition instead.

Consider the standard linear least squares problem with multiple outputs, that is, minX ||AX − B||F . The normal
equations for this problem are A⊤AX = A⊤B. Given the compact/thin QR decomposition A = QR, the more numerically

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited and is not used for commercial purposes.
© 2023 The Authors. Numerical Linear Algebra with Applications published by John Wiley & Sons Ltd.

Numer Linear Algebra Appl. 2023;e2511. wileyonlinelibrary.com/journal/nla 1 of 17
https://doi.org/10.1002/nla.2511

https://orcid.org/0000-0001-9369-4029
http://creativecommons.org/licenses/by-nc/4.0/
http://wileyonlinelibrary.com/journal/NLA
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnla.2511&domain=pdf&date_stamp=2023-06-05

2 of 17 MINSTER et al.

stable solution is computed from RX = Q⊤B. When A is tall and skinny and B has few columns, the normal equations
approach has about half the cost of the QR-based approach because the dominant costs are computing A⊤A and the
QR decomposition, respectively. However, if B has many more columns than A, then the dominant costs are those of
computing A⊤B and Q⊤B, which are equivalent when Q is formed explicitly. In this case, the QR-based approach is
more numerically stable and requires practically no more computation compared to the normal equations approach.
Furthermore, for rank-deficient problems, the QR-based approach can be cheaply extended to use the singular value
decomposition (SVD) to solve the least squares problem, computing the minimum norm solution among the set of
solutions with equivalent residual norm.

As we describe in more detail in Section 2, when solving linear least squares problems within CP-ALS, A corresponds
to a Khatri–Rao product of factor matrices, and B corresponds to the transpose of a matricized tensor. In this case, the
number of columns of A is the rank of the CP decomposition, and the number of columns of B corresponds to one of the
tensor dimensions. The normal equations are particularly convenient within CP-ALS because the Khatri–Rao structure of
A can be exploited to compute A⊤A very efficiently, and thus, even for large ranks, the dominant cost is computing A⊤B,
whose transpose is known as the matricized-tensor times Khatri–Rao product (MTTKRP). The MTTKRP is a well-studied
and well-optimized computation because of its importance for the performance of CP-ALS and other gradient-based
optimization algorithms for CP.4-7

In Section 3.1, we present a QR-based approach to solving the linear least squares problems within CP-ALS. In
order to achieve comparable computational complexity with the normal equations approach, we exploit the Khatri–Rao
structure of A in the computation of the QR decomposition as well as Q⊤B. In particular, we show that the QR
decomposition of a Khatri–Rao product of matrices can be computed efficiently from the QR decompositions of the
individual factor matrices. Using the structure of the orthonormal component Q, the computation of Q⊤B involves mul-
tiple tensor-times-matrix (Multi-TTM) products. We prove in Section 3.2 that when the rank is small relative to the
tensor dimensions, the Multi-TTM is the dominant cost, and it has the same leading-order complexity as MTTKRP for
dense tensors. Multi-TTM is also a well-optimized tensor computation, as it is important for the computation of Tucker
decompositions.8-11

When the rank is comparable to or much larger than the tensor dimensions, the QR-based approach can require
significantly more computation time than standard CP-ALS using the normal equations as computing the QR of the factor
matrices does not reduce the problem size. Both the QR decomposition and application of the orthonormal component
have costs that are lower order only when the rank is small. In this case, the numerical stability provided by QR comes at
the expense of performance.

We demonstrate the performance and accuracy of our methods using several example input tensors in Section 4. Our
MATLAB implementation of the algorithms uses the Tensor Toolbox,1 and we compare against the CP-ALS algorithm
implemented in that library. In Section 4.1, we validate the theoretical complexity analysis and show that there is no
increase in periteration costs when the rank is small, and we demonstrate with a time breakdown which of the com-
putations become bottlenecks as the rank grows larger relative to the tensor dimensions. To illustrate the differences in
accuracy, we present two sets of examples in Sections 4.2 and 4.3 that lead to ill-conditioned subproblems and show that
the instability of the normal equations can lead to the degradation of desirable features including approximation accuracy
and in some cases, convergence of the overall algorithm.

We conclude in Section 5 that using the QR-based approaches to solve the CP-ALS subproblems increases the
robustness of the overall algorithm without sacrificing performance in the typical case of small ranks. However, due
to the complexity of the algorithm and the extra computation that becomes significant for large ranks, we envi-
sion a CP-ALS solver that uses the fast-and-inaccurate normal equations approach by default and falls back on the
accurate-but-possibly-slow SVD approach when necessary. For problems that do not involve ill-conditioning, which is
the case for many tensors representing noisy data, the normal equations are sufficient for obtaining accurate solutions.
However, when ill-conditioning degrades the accuracy of solutions computed from the normal equations, we show that
it is possible to obtain the stability of the SVD with feasible computational cost.

2 BACKGROUND

In this section, we first review typical methods for solving linear least squares problems. We also discuss the relevant
information regarding tensors and the CP decomposition, focusing on the CP-ALS algorithm. We also briefly describe an
optimization approach for CP using the Gauss–Newton algorithm.

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2511 by W

ake Forest U
nivesity, W

iley O
nline Library on [23/06/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

MINSTER et al. 3 of 17

2.1 Linear least squares methods

A common approach to solve linear least squares problems is by solving the associated normal equations. When applied to
ill-conditioned problems, however, using the normal equations results in numerical instability. More numerically stable
methods to solve least squares problems include using the QR decomposition or the SVD.

Consider a least squares problem of the form

min
X

||B − XA⊤||F .

Note that the coefficient matrix appears to the right of the variable matrix rather than the left (as appears in Section 1)
in order to match the form of the CP-ALS subproblems described below. The normal equations for this problem are
XA⊤A = BA, which is equivalent to A⊤AX⊤ = A⊤B⊤. To solve this least squares problem using QR, we first compute the
compact/thin QR factorization of A = QR, so that Q has the same dimensions as A and R is square. We then apply Q to
matrix B on the right, and use the result to solve the triangular system XR⊤ = BQ for X. When the coefficient matrix A is
tall and skinny, the QR approach can be cheaply extended to use the SVD. Given the QR factorization of A, we compute
the SVD of R = U!V⊤. If we apply U to BQ on the right, we can then solve the system Y! = BQU for Y and compute
X = YV⊤. If A is numerically low rank, we can solve the system using the pseudoinverse of ! to find the minimum-norm
solution to the original problem. For more details on methods to solve linear least squares problems, see References 12-14.

2.2 Tensor notation and preliminaries

Throughout this paper, we follow the notation from Reference 15. A scalar is denoted by lowercase letters, for example a,
while vectors are denoted by boldface lowercase letters, for example a. Matrices are denoted by boldface uppercase letters,
for example A, and tensors are denoted by boldface uppercase calligraphic letters, for example X. We use the MATLAB
notation A(i, ∶) to refer to the ith row of A and A(∶, j) to refer to the jth column of A.

2.2.1 Matrix products

We define three matrix products that will appear in our algorithms. First, the Kronecker product of two matrices A ∈ RI×J

and B ∈ RK×M is denoted A⊗ B ∈ R(IK)×(JM) matrix with entries [A⊗ B](K(i − 1) + k,M(j − 1) + !) = A(i, j)B(k,!).
The Khatri–Rao product of matrices A ∈ RI×K and B ∈ RJ×K is denoted A⊙ B ∈ R(IJ)×K matrix with columns [A⊙

B](∶, k) = A(∶, k)⊗ B(∶, k) for every k = 1, … ,K. We present a property regarding the Khatri–Rao product of a product of
two matrices from equation 2.5 of Reference 16, which will be useful in a later section. Let A ∈ RK×J ,B ∈ RI×J ,C ∈ RI×K ,
and D ∈ RJ×I be four matrices. Then,

(C⊗D)(A⊙ B) = (CA)⊙ (DB). (1)

Finally, the Hadamard product of two matrices A ∈ RI×J and B ∈ RI×J is the elementwise product denoted as A ∗ B ∈
RI×J , with entries [A ∗ B](i, j) = A(i, j)B(i, j).

2.2.2 Tensor components

As generalizations to matrix rows and columns, tensors have mode-j fibers, which are vectors formed by fixing all but one
index of a tensor.

2.2.3 Tensor operations

There are two major tensor operations we will frequently use throughout this paper, namely matricization and multiplying
a tensor with a matrix. The n-mode matricization, or unfolding, of a tensor X ∈ RI1×···×IN , denoted X(n) ∈ RIn×

(∏
j≠n Ij

)
, and

the matrix X(n) is formed so that the columns are the mode-n fibers of X.

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2511 by W

ake Forest U
nivesity, W

iley O
nline Library on [23/06/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

4 of 17 MINSTER et al.

F I G U R E 1 CP decomposition of rank R for a three-dimensional tensor X.

Also useful is the TTM multiplication, or the n-mode product of a tensor and matrix. Let X ∈ RI1×···×IN and
U ∈ RJ×In . The resulting tensor Y = X ×n U ∈ RI1×···×In−1×J×In+1×···×IN , and it has entries Y(i1, … , in−1, j, in+1, … , iN) =∑In

in=1X(i1, … , iN)U(j, in). The TTM can also be computed via the mode-n matricization Y(n) = UX(n).
Multiplying an N-mode tensor by multiple matrices in distinct modes is known as Multi-TTM. The computation

can be performed using a sequence of individual mode TTMs, and they can be done in any order. In particular, we will
be interested in the case where we multiply an N-mode tensor by matrices Uj in every mode except n, denoted Y =
X ×1 U1 · · · ×n+1 Un−1 ×n+1 Un+1 · · · ×N UN . This is expressed in the mode-n matricization as

Y(n) = X(n)(UN ⊗ · · ·⊗Un+1 ⊗Un−1 ⊗ · · ·⊗U1)⊤. (2)

2.3 CP-ALS algorithm

We now detail both the CP decomposition as well as the CP-ALS approach, one of the most popular algorithms used to
compute the CP decomposition.

2.3.1 CP decomposition

The aim of the CP decomposition is to represent a tensor as a sum of rank-one components. For an N-mode tensor
X ∈ RI1×···×IN , the rank-R CP decomposition of X is the approximation

K =
R∑

r=1
$r a(1)

r ◦a(2)
r ◦ · · · ◦a(N)

r , (3)

where a(n)
r ∈ RIn are unit vectors with weight vector ! ∈ RR, and ◦ denotes the outer product. The collection of all a(n)

r
vectors for each mode is called a factor matrix, that is, An =

[
a(n)

1 a(n)
2 … a(n)

r
]
∈ RIn×R. The CP decomposition of X

can also be denoted as K = [[!;A1, … ,AN]]. A visualization of the three-dimensional version of this representation is in
Figure 1.

Using the notation Ân = An ⋅ diag(!), we can express the mode-n matricization of K as

K(n) = Ân(AN ⊙ · · ·⊙An+1 ⊙An−1 ⊙ · · ·⊙A1)⊤ = ÂnZ⊤n , (4)

letting Zn = AN ⊙ · · ·⊙An+1 ⊙An−1 ⊙ · · ·⊙A1.

2.3.2 CP-ALS algorithm

In order to compute the CP-decomposition, the CP-ALS algorithm solves a least squares problem for the matricized ten-
sors X(n) and K(n) along each mode. For mode n, we fix every factor matrix except Ân and then solve for Ân. This process is
repeated by alternating between modes until some termination criteria is met. We solve the linear least squares problem

min
Ân

||X(n) − ÂnZ⊤n ||F , (5)

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2511 by W

ake Forest U
nivesity, W

iley O
nline Library on [23/06/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

MINSTER et al. 5 of 17

using the representation in (4). The linear least squares problem from (5) is typically solved using the normal equations,
that is,

X(n)Zn = Ân(Z⊤n Zn).

The coefficient matrix Z⊤n Zn is computed efficiently as A⊤
1 A1 ∗ … ∗ A⊤

n−1An−1 ∗ A⊤
n+1An+1 ∗ … ∗ A⊤

NAN . We obtain the
desired factor matrix An by normalizing the columns of Ân and updating the weight vector !. This approach is detailed
in Algorithm 1.

Algorithm 1. CP-ALS

1: function [!, {An}] = CP-ALS(X,R) ⊳ X ∈ RI1×···×IN

2: Initialize factor matrices A1,… ,AN
3: Compute Gram matrices G1 = A⊤

1 A1,… ,GN = A⊤
NAN

4: repeat
5: for n = 1,… ,N do
6: Sn ← GN ∗ · · · ∗ Gn+1 ∗ Gn−1 ∗ · · · ∗ G1
7: Zn ← AN ⊙ · · ·⊙An+1 ⊙An−1 ⊙ · · ·⊙A1
8: Mn ← X(n)Zn ⊳ MTTKRP
9: Solve ÂnSn = Mn for Ân via Cholesky (CP-ALS) or SVD (CP-ALS-PINV) ⊳ Normal equations

10: Normalize columns of Ân to obtain An and !
11: Recompute Gram matrix Gn = A⊤

n An for updated factor matrix An
12: end for
13: until termination criteria met
14: return !, factor matrices {An}
15: end function

Note that in Line 9, the standard approach (implemented in the Tensor Toolbox1) is to solve AnSn = Mn for An using
a Cholesky decomposition, which is implemented in MATLAB using the backslash operator. An alternative method for
solving the linear system is to use the SVD, which is implemented in MATLAB using the pinv function. We call the
algorithm obtained by taking this alternate approach CP-ALS-PINV.

2.4 Gauss–Newton optimization approach

An alternate approach to ALS is to minimize the CP model “all at once” using optimization techniques. Instead of the
linear least squares problem from (5), this approach solves the nonlinear least squares problem min ||X −K||2F , subject
to factor matrices Aj with j = 1, … ,N, where K is defined in (3). Gauss–Newton attempts to minimize this nonlinear
residual by using a linear Taylor series approximation at each iteration and minimizing that function using standard linear
least squares methods. Typically, these linear least squares problems are solved via the normal equations as follows. For
residual r = vec(X −K) and J the Jacobian of r, the normal equations to be solved involve J⊤J and J⊤r. While CP-ALS
is typically fast and easy to implement, the Gauss–Newton approach is beneficial as it can converge quadratically if the
residual is small. We use the implementation of Gauss–Newton in Tensorlab2 in the experiments in Section 4. For more
details on this approach, see References 17-19.

3 PROPOSED METHODS

3.1 CP-ALS-QR algorithms

In our proposed CP-ALS approach, we incorporate the more stable QR decomposition and SVD and avoid using the nor-
mal equations. Suppose X ∈ RI1×···×IN is an N-mode tensor and we wish to approximate a solution K = [[!;A1, … ,AN]]
of rank R. The key to the efficiency of our algorithm is to form the QR decomposition of Zn using the Khatri–Rao

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2511 by W

ake Forest U
nivesity, W

iley O
nline Library on [23/06/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

6 of 17 MINSTER et al.

structure as follows. As a first step, we compute compact QR factorizations of each individual factor matrix, so that
Aj = QjRj. Then

Zn = AN ⊙ · · ·⊙An+1 ⊙An−1 ⊙ · · ·⊙A1

= QnRN ⊙ · · ·⊙Qn+1Rn+1 ⊙Qn−1Rn−1 ⊙ · · ·⊙Q1R1

= (QN ⊗ · · ·⊗Qn+1 ⊗Qn−1 ⊗ · · ·⊗Q1)(RN ⊙ · · ·⊙ Rn+1 ⊙ Rn−1 ⊙ · · ·⊙ R1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Vn

,

where the last equality comes from (1). We then compute the QR factorization of the Khatri–Rao product Vn = RN ⊙
· · ·⊙ Rn+1 ⊙ Rn−1 ⊙ · · ·⊙ R1 = Q0R0. This allows us to express the QR of Zn as

Zn = (QN ⊗ · · ·⊗Qn+1 ⊗Qn−1 ⊗ · · ·⊗Q1)(RN ⊙ · · ·⊙ Rn+1 ⊙ Rn−1 ⊙ · · ·⊙ R1)
= (QN ⊗ · · ·⊗Qn+1 ⊗Qn−1 ⊗ · · ·⊗Q1)Q0
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Q

R0⏟⏟⏟
R

. (6)

Note that Q has orthonormal columns, and R is upper triangular. The Khatri–Rao product of triangular matrices Vn has
sparse structure. The last column is dense, but the rest have many zeros. As discussed in Section 3.3.3, this sparse structure
can be exploited while implementing the QR of Vn, but our current implementation treats it as dense.

We start solving for factor matrix Ân by computing the QR of Khatri–Rao product Zn as in (6). Next, we
apply the product QN ⊗ · · ·⊗Qn+1 ⊗Qn−1 ⊗ · · ·⊗Q1 to X(n) on the right via the Multi-TTM Y = X ×1 Q⊤

1 · · · ×n−1
Q⊤

n−1 ×n+1 Q⊤
n+1 · · · ×N Q⊤

N , following (2). After computing the Multi-TTM, we form Wn = Y(n)Q0 so that we are now
solving ÂnR⊤ = Wn. Finally, we use substitution with R⊤ to compute the factor matrix Ân. We call this algorithm
CP-ALS-QR.

Another more stable way of solving ÂnR⊤ = Wn, particularly when Khatri–Rao product Zn is rank deficient, is to use
the SVD of R in addition to the QR factorization. Let R = U!V⊤ be the SVD. Our solution then becomes Ân = WnU!†V⊤.
Note that because we are utilizing the pseudoinverse on !, we can truncate small singular values and thereby manage an
ill-conditioned least-squares problem in a more stable manner. Using the SVD in this way gives us our second algorithm
CP-ALS-QR-SVD.

Both CP-ALS-QR and CP-ALS-QR-SVD are summarized in Algorithm 2, with a choice in line 10 to distinguish
between the two methods. The two algorithms are implemented in MATLAB using the Tensor Toolbox,1 and are available
here: https://github.com/rlminste/CP-ALS-QR.

Algorithm 2. CP-ALS-QR

1: function [!, {An}] = CP-ALS-QR(X,R) ⊳ X ∈ RI1×···×IN

2: Initialize factor matrices Â2,… , ÂN
3: Compute compact QR-decomposition Q2R2,… ,QN RN of factor matrices
4: repeat
5: for n = 1,… ,N do
6: Vn ← RN ⊙ · · ·⊙ Rn+1 ⊙ Rn−1 ⊙ · · ·⊙ R1
7: Compute compact QR-decomposition Vn = Q0R ⊳ Last step of QR decomposition
8: Y ← X ×1 Q⊤

1 ×2 · · · ×n−1 Q⊤
n−1 ×n+1 Q⊤

n+1 ×n+2 · · · ×N Q⊤
N ⊳ Multi-TTM

9: Wn ← Y(n)Q0
10: Solve ÂnR⊤ = Wn for Ân by substitution (CP-ALS-QR) or SVD (CP-ALS-QR-SVD)
11: Normalize columns of Ân to obtain An and !
12: Recompute QR-decomposition for updated factor matrix An = QnRn
13: end for
14: until termination criteria met
15: return !, factor matrices {An}
16: end function

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2511 by W

ake Forest U
nivesity, W

iley O
nline Library on [23/06/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://github.com/rlminste/CP-ALS-QR

MINSTER et al. 7 of 17

3.2 CP-ALS-QR cost analysis

We now analyze the computational complexity of each iteration of CP-ALS-QR and CP-ALS-QR-SVD as presented in
Algorithm 2. Recall that X has dimensions I1 × · · · × IN and the CP approximation has rank R. To simplify notation, we
assume in the analysis that I1 ≥ · · · ≥ IN .

The cost of forming the Khatri–Rao product Vn of N − 1 upper-triangular factors (Line 6) is RN + (RN−1),
assuming the individual Khatri–Rao products are formed pairwise and no sparsity is exploited. Here Vn has dimen-
sions RN−1 × R, and it has RN∕N + (RN−1) nonzeros. We treat Vn as a dense matrix here but discuss the pos-
sibility of exploiting sparsity in Section 3.3.3. Computing the QR decomposition of Vn to obtain Q0 and R in
Line 7 costs

4RN+1 + (R3), (7)

assuming Q0 is formed explicitly and again no sparsity is exploited.
The Multi-TTM is performed in Line 8 and involves the input tensor. We compute the resulting tensor Y, which

has dimensions R × · · · × In × · · · × R, by performing single TTMs in sequence; to minimize flops we perform the N − 1
TTMs in order of decreasing tensor dimension, which is left to right given our assumption above. The cost of the
first TTM is 2I1 · · · IN R, the cost of the second is 2I2 · · · IN R2, and so on. Thus, we can write the overall cost of the
Multi-TTM as

2I1 · · · IN R
(

1 + R
I1

+ R2

I1I2
+ · · · + RN−2

I1 · · · In−1In+1 · · · IN−1

)
. (8)

We apply Q0 to Y(n) via matrix multiplication in Line 9 with cost 2InRN , assuming we use an explicit, dense Q0.
Solving the linear system in Line 10 costs (InR2), with an extra (R3) cost if the SVD of R is computed for the
CP-ALS-QR-SVD method. (Note that using the more stable SVD approach to solve the linear system has no significant
impact on the overall computational complexity.) Finally, computing the QR decomposition of the updated nth factor
matrix in Line 12 and forming the orthonormal factor Qn explicitly costs 4InR2 + (R3). These costs are all summarized
in Table 1.

If the rank R is significantly smaller than the tensor dimensions, then the cost is dominated by the first TTM, which
has cost 2I1 · · · IN R from (8). In this case, the remaining TTMs are each at least a factor of R∕I1 times cheaper, and the
computations involving Q0 are cheaper than any of the TTMs, because those computational costs are independent of
any tensor dimensions. The dominant cost of CP-ALS is the MTTKRP in Line 8 of Algorithm 1, which also has cost
2I1 · · · IN R. Thus, in the case of small R, the two algorithms have identical leading-order computational complexity per
iteration.

If the rank R is larger than all tensor dimensions, then the cost of the QR of Vn given in (7) will be the dominant
cost. If the rank is comparable to the tensor dimensions, then the computation and application of Q0 in Line 9 and the
subsequent TTMs after the first may also contribute to the running time in a significant way.

T A B L E 1 Breakdown of main components in each subiteration of CP-ALS, CP-ALS-PINV, CP-ALS-QR, and CP-ALS-QR-SVD.

CP-ALS, CP-ALS-PINV CP-ALS-QR, CP-ALS-QR-SVD

Component Cost Component Cost

MTTKRP 2IN R + (IN−1R) Multi-TTM 2IN R + (IN−1R2)

Gram of factor matrices IR2 QR of factor matrices 4IR2

N/A Computing Q0 4RN+1

N/A Applying Q0 2IRN

Note: We use this breakdown in our performance experiments shown in Figure 2.
Abbreviations: ALS, alternating least squares; CP, canonical polyadic; MTTKRP, matricized-tensor times Khatri-Rao product; SVD, singular value
decomposition.

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2511 by W

ake Forest U
nivesity, W

iley O
nline Library on [23/06/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

8 of 17 MINSTER et al.

3.3 Implementation details and extensions

3.3.1 Efficient computation of approximation error

For each of the CP algorithms (Algorithms 1 and 2), we consider computing the approximation error in two ways. The
more accurate but less efficient approach is to form the explicit representation of K = [[!;A1, … ,AN]] and compute the
residual norm ||X −K|| directly. The less accurate but more efficient approach exploits the identity ||X −K||2 = ||X||2 −
2⟨X,K⟩ + ||K||2 and computes ⟨X,K⟩ and ||K|| cheaply by using temporary quantities already computed by the ALS
iterations (||X|| is precomputed and does not change over iterations).

In the case of CP-ALS (Algorithm 1), we have K(N) = ÂN Z⊤N , for ÂN = AN ⋅ diag(!) and ZN = AN−1 ⊙ · · ·⊙A1.
Then

⟨X,K⟩ = ⟨X(N), ÂNZ⊤N⟩ = ⟨X(N)ZN , ÂN⟩ = ⟨MN , ÂN⟩,

where MN is the result of the MTTKRP computation in mode N, the mode of the last subiteration. Thus, computing
the inner product between the data and model tensors requires only (IN R) extra operations. Likewise,
we have

||K||2 = ⟨ÂNZ⊤N , ÂN Z⊤N⟩ = ⟨Z⊤NZN , Â
⊤
N ÂN⟩ = ⟨SN , diag(!)GNdiag(!)⟩,

where GN = A⊤
NAN is the Gram matrix of the (normalized) Nth factor and SN is the Hadamard product of the Gram

matrices of the first N − 1 modes. Computing the norm of K thus requires only (R2) extra operations. This efficient
error computation is well known.1,20-23 Note that this approach is slightly less accurate than a direct computation: the
identity applies to the square of the residual norm, so taking the square root of the difference of these quantities limits
the accuracy of the relative error to the square root of machine precision.

We complete the efficient error computation for CP-ALS-QR (Algorithm 2) with similar cost. In this case, we have
K(N) = ÂN Z⊤N with ZN = (QN−1 ⊗ · · ·⊗Q1)Q0R. Then

⟨X,K⟩ = ⟨X(N), ÂN Z⊤N⟩ = ⟨X(N)(QN−1 ⊗ · · ·⊗Q1)Q0, ÂN R⊤⟩ = ⟨WN , ÂNR⊤⟩,

where in Algorithm 2, WN is the result of the Multi-TTM (except in mode N) and the multiplication with Q0, and thus
has dimension IN × R. Thus, the cost of this computation is dominated by that of computing ÂNR⊤, or (IN R2). We
also have

||K||2 = ⟨ÂN Z⊤N , ÂNZ⊤N⟩ = ⟨Z⊤NZN , Â
⊤
NÂN⟩ = ⟨R⊤R, diag(!)R⊤

NRN diag(!)⟩,

where RN is the triangular factor in the QR decomposition of AN . The cost of this extra computation is (R3), and thus
the overall cost is within a factor of R of the efficient error computation of CP-ALS.

3.3.2 Kruskal tensor input

The analysis of both CP-ALS-QR and CP-ALS-QR-SVD, as explained in Section 3.2, assume the input tensor is a dense
tensor. When the input tensor has special structure, the key operations can be computed more efficiently. We also imple-
mented a version of each algorithm that exploits inputs with Kruskal structure, that is, a tensor stored as factor matrices
and corresponding weights, which we use for the input in Section 4.3. Exploiting this structure is beneficial as we avoid
forming the input tensor or Multi-TTM product tensor Y, because all computations can be performed using the factor
matrices instead.

Note that the Tensor Toolbox has optimized the MTTRKP (Algorithm 1, Line 8) and Multi-TTM (Algorithm 2, Line 8)
computations for a Kruskal tensor input.24 For an N-mode Kruskal tensor X ∈ RI1×···×IN of rank R and N matrices Vj ∈
RIj×S for j = 1, … ,N, the MTTKRP

X(n)(VN ⊙ · · ·⊙ Vn+1 ⊙ Vn−1 ⊙ · · ·⊙ V1),

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2511 by W

ake Forest U
nivesity, W

iley O
nline Library on [23/06/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

MINSTER et al. 9 of 17

has cost (RS∑N
j=1Ij). This is an improvement compared to the cost of the MTTKRP in the dense case, which is on the

order of the product of the N dimensions instead of their sum. To compute a Multi-TTM product of the same Kruskal
tensor X and matrices Vj with the same dimensions as before, that is,

Y = X ×1 V⊤
1 × · · · ×n−1 V⊤

n−1 ×n+1 V⊤
n+1 × · · · ×N V⊤

N ,

the complexity becomes (RS∑j≠n Ij), assuming Y is maintained in Kruskal format.
The Kruskal structure has the added benefit of reducing the cost of computing the product Wn = Y(n)Q0 in our

QR-based algorithms (see Line 9 in Algorithm 2), as we do not need to explicitly matricize Y. Let us consider the first
mode as an example. In this case, Y is an N-dimensional Kruskal tensor with rank R and Y = [[$;B1,B2, … ,BN]], with
B1 ∈ RI1×R, Bj ∈ RR×R for j = 2, … ,N, and Q0 ∈ RRN−1×R. Then, we can write Y(1) = B1(BN ⊙ · · ·⊙ B2)⊤, treat Q0 as a
matricized tensor and compute the W = B1[(BN ⊙ · · ·⊙ B2)⊤Q0] using an MTTKRP followed by a small matrix product.
This gives us a total cost of 2(I1R2 + RN+1).

Note that the cost of these QR-based methods is exponential in N, the number of modes. This cost arises in computing
and applying Q0, which is represented explicitly. The costs of CP-ALS methods that use the normal equations are linear
in N when applied to inputs represented as Kruskal tensors. Thus, achieving better numerical stability using QR-based
methods comes at substantial computational price as N increases.

The matrix Q0, which is the orthogonal factor of a QR decomposition of a Khatri–Rao product, has internal low-rank
structure. Consider, for example, the QR decomposition QR = A⊙ B⊙ C. Mathematically, we have Q = (A⊙ B⊙ C)R−1,
assuming the matrix is full rank. Each column of A⊙ B⊙ C is a Kronecker product of three vectors, which is equivalent
to a vectorization of an order-three, rank-one tensor. Because R−1 is an upper triangular matrix, this implies that the kth
column of Q is a linear combination of k Kronecker products, which is a vectorization of an order-three, rank-k Kruskal
tensor. While it is possible to compute the QR decomposition using a Gram–Schmidt process or the Householder QR
algorithm and maintain the internal low rank structure (the CP ranks of the tensorized Householder vectors are twice
as large as the corresponding columns of Q), we are unaware of an algorithm that also maintains the numerical stability
properties of an explicit QR decomposition.

3.3.3 Other computation-reducing optimizations

As noted in Section 3.2, the Khatri–Rao product of triangular matrices Vn computed in Algorithm 2 is a sparse matrix
with density proportional to 1∕N, where N is the number of modes. This is because the ith column of Vn is a Kronecker
product of N − 1 vectors each with i nonzeros and therefore has iN−1 nonzeros. This sparsity could be exploited in the
computation of Vn (Line 6), computing its QR decomposition (Line 7), and applying its orthonormal factor Q0 (Line 9).
In particular, when using a sparse QR decomposition algorithm, there will be no fill-in (zero entries becoming nonzeros),
as every row is dense to the right of its first nonzero, and the number of flops required is a factor of (1∕N2) times that
of the dense QR algorithm. The computational savings in computing Vn and applying Q0 is (1∕N). However, the use of
(general) sparse computational kernels comes at a price of performance, so for small N we do not expect much reduction
in time and did not exploit sparsity in our implementation.

An important optimization for CP-ALS (Algorithm 1) is to avoid recomputation across MTTKRPs of the differ-
ent modes. For example, the Khatri–Rao products Zn and Zn+1 share N − 2 different factors, so the computations
of Mn and Mn+1 have significant overlap. The general approach to avoid this recomputation via memorization is
known as dimension trees, as a tree of temporary matrices can be computed, stored, and re-used for the MTTKRPs
across modes.6,20 Using dimension trees reduces the outer-iteration CP-ALS cost from N MTTKRPs to the cost of two
MTTKRPs.

Similar savings can be obtained by applying dimension trees to the set of Multi-TTM operations in CP-ALS-QR
(Algorithm 2). In this case, we exploit the overlap in individual TTMs across modes and store a different set of inter-
mediate tensors that can be re-used across modes. Dimension trees have been used for Multi-TTM before in the context
of Tucker decompositions for sparse tensors and the Higher-Order Orthogonal Iteration algorithm.10,25 As in the case
of CP-ALS, dimension trees can reduce the outer-iteration CP-ALS-QR cost from N TTMs involving the data tensor to
two TTMs. Neither of these reductions come at the expense of lower performance, so we can expect (N) speedup in
each case. For CP-ALS-QR, there are other overlapping computations that can be similarly exploited. For example, the
QR decomposition of Vn can be performed using a tree across the Khatri–Rao factors, some of which are shared across

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2511 by W

ake Forest U
nivesity, W

iley O
nline Library on [23/06/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

10 of 17 MINSTER et al.

modes, though the structure of the orthonormal factor would need to be maintained when applying it. Because the
Tensor Toolbox implementation of CP-ALS does not employ dimension trees, for fair comparison, we do not use them for
CP-ALS-QR either.

4 NUMERICAL EXPERIMENTS

In this section, we explore several examples that demonstrate the benefits of CP-ALS-QR and CP-ALS-QR-SVD over the
typical ALS approaches. Specifically, we will demonstrate the performance of our algorithms as well as show the stability
of our algorithms by considering ill-conditioned problems.

4.1 Performance results

As seen in our analysis in Section 3.2, the dominant cost for our new algorithms is the same as for CP-ALS and
CP-ALS-PINV when R is small. For large R, we see that the lower-order terms for CP-ALS-QR and CP-ALS-QR-SVD do
have an effect on the runtime. We verify the comparable runtimes for small R and examine the slowdown for large R with
a few experiments here.

We break each algorithm down to its key components and time each individually. These components are listed in
Table 1. We also include the computational complexity of the dominant parts of each algorithm for clarity, assuming an
N-way tensor with the same dimension in each mode X ∈ RI×···×I . Each row of the table represents corresponding parts
of the two different types of algorithm.

For CP-ALS and CP-ALS-PINV (Algorithm 1), the MTTKRP refers to forming Mn = X(n)Zn, see Line 8, while we
compute the Gram matrices for each factor matrix in Line 3. For CP-ALS-QR and CP-ALS-QR-SVD (Algorithm 2), the
Multi-TTM is computed when applying the Kronecker product of Qj matrices to X(n), see Line 8, and we compute the QR
factorization of each factor matrix in Line 3. Computing Q0 involves computing a QR factorization of Khatri–Rao product
Vn, see Line 7, and applying Q0 is a matrix multiplication, see Line 9. Other steps not explicitly listed include solving (by
substitution or SVD), finding the weight vector !, and computing the error. These steps are combined into the “Other”
category in Figure 2, as none represent a significant portion of the runtime for any of the four algorithms.

The three tensors we test are randomly generated cubical tensors of three, four, and five modes. The three-way tensor
has dimension 700, the four-way tensor has dimension 300, and the five-way tensor has dimension 75. We computed the
average iteration time over 10 iterations (omitting the first iteration to ensure a warm cache). The tolerance we used for
all algorithms was 10−10, and we computed the error in the efficient manner described in Section 3.3.1. The results for
these three tensors with increasing rank values are in Figure 2. For each rank value, we also report the slowdown ratio
we see between the overall runtimes of CP-ALS-QR and CP-ALS.

For all three tensors, the dominant cost per iteration is the MTTKRP for CP-ALS and CP-ALS-PINV and the Multi-TTM
for CP-ALS-QR and CP-ALS-QR-SVD. Only for high ranks do other costs, computing and applying the QR of the
Khatri–Rao product, even appear visibly in the plot. In the three-way case, all the slowdown ratios are close to 1×. This
is similar for low ranks in four and five modes, but the ratio for high ranks jumps up to 5×, with costs for computing
and applying Q0 appearing in this case. These results demonstrate that the slowdown incurred by using our QR-based
algorithms is not significant when the CP rank is small.

4.2 Ill-conditioned factor matrices

In this example, we test our algorithms on synthetic tensors constructed so that the factor matrices (and Khatri–Rao prod-
ucts of factor matrices) are ill-conditioned. We create this tensor from randomly generated factor matrices and weights so
that we are able to compare the results of our algorithms to the true solution, and we add Gaussian noise. The randomly
generated factor matrices are constructed so that we can control their condition number in the following way. Each factor
matrix is computed as Aj = Uj!V⊤, where Uj ∈ RIj×R is a random matrix with orthonormal columns, ! ∈ RR×R consists
of geometrically decreasing singular values so that the condition number of Aj is some predetermined +, and V ∈ RR×R

is an orthogonal matrix shared between all factor matrices Aj for j = 1, … ,N. Constructing our factor matrices in this
manner ensures that we can control their condition number + as well as the condition number of the Khatri–Rao product
of N − 1 factor matrices.

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2511 by W

ake Forest U
nivesity, W

iley O
nline Library on [23/06/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

MINSTER et al. 11 of 17

Three-way, n = 700

1

1.2

1.2

1.5

10 50 100 200

ALS
PIN

V
QR

QR-S
VD

ALS
PIN

V
QR

QR-S
VD

ALS
PIN

V
QR

QR-S
VD

ALS
PIN

V
QR

QR-S
VD

Rank

0

5

10

15
R

un
tim

e
(s

)

Four-way, n = 300

1
1.3

1.7

5.2

10 50 100 200

ALS
PIN

V
QR

QR-S
VD

ALS
PIN

V
QR

QR-S
VD

ALS
PIN

V
QR

QR-S
VD

ALS
PIN

V
QR

QR-S
VD

Rank

0

500

1000

1500

2000

R
un

tim
e

(s
)

Five-way, n = 75

1.4
1.6

5

5 20 50

ALS
PIN

V
QR

QR-S
VD

ALS
PIN

V
QR

QR-S
VD

ALS
PIN

V
QR

QR-S
VD

Rank

0

50

100

150

200

250

300

350

400

R
un

tim
e

(s
)

MTTKRP/TTM
Gram/QR
Compute Q

0
 (QR/SVD only)

Apply Q
0
 (QR/SVD only

Other

!

F I G U R E 2 Average runtime in seconds of a single iteration for CP-ALS, CP-ALS-PINV, CP-ALS-QR, and CP-ALS-QR-SVD for a
three-way tensor of size 700 (top left), a four-way tensor of size 300 (top right), and a five-way tensor of size 75 (bottom left). Results are
plotted for increasing rank values, and the slowdown ratio between the runtimes of CP-ALS-QR and CP-ALS is plotted above the group of
results for each rank.

For our experiments, we construct a three-way 50 × 50 × 50 tensor with rank 4 and varying condition numbers + and
noise levels ,. We compare our QR-based algorithms, CP-ALS-QR and CP-ALS-QR-SVD, to CP-ALS and CP-ALS-PINV.
We test all combinations of three different condition numbers + = 106, 108, 1010 and noise levels , = 10−6, 10−8, 10−10. This
results in different levels of ill-conditioning; the most ill-conditioned problems are where the condition numbers are high
and the noise is low. For each configuration, we run 100 trials of each algorithm to approximate a rank-4 CP factorization.
The maximum number of iterations is 500 and the convergence tolerance for change in the relative error is 10−15. We
use a tight tolerance to ensure the computed metrics reflect what is attainable by the algorithm and not an artifact of
early convergence. A random guess is used for each initialization, and each algorithm is configured with the same initial
factor matrices. We also compared all four ALS algorithms to an optimization-based CP method using Gauss-Newton
implemented in Tensorlab2 that we describe in Section 2.4, but for the condition numbers we show, this method had such
a high relative error that we do not include the results here. It is worth noting that for lower + values, the Gauss–Newton
method performed well along with all four ALS algorithms, with faster convergence for small , values. We anticipate
that the Gauss–Newton algorithm fails for higher condition numbers (+ > 104) because the Jacobian inherits the high
condition numbers of the Khatri–Rao products and the implementation solves the associated normal equations.

We present boxplots of the number of iterations and relative error over 100 trials of each algorithm in Table 2, where we
see that the combination of noise and high condition numbers affects the ill-conditioning of the problem in different ways.

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2511 by W

ake Forest U
nivesity, W

iley O
nline Library on [23/06/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

12 of 17 MINSTER et al.

T A B L E 2 Number of iterations and relative error boxplots for CP-ALS, CP-ALS-PINV, CP-ALS-QR, and CP-ALS-QR-SVD on a
50 × 50 × 50 synthetic tensor of rank 4 with three different condition numbers + for the true factor matrices and three different levels of
Gaussian noise , added.

" ⧵ # 106 108 1010

10−6

0

100

200

300

400

500

Ite
ra

tio
ns

10-10

10-8

10-6

10-4

R
el

at
iv

e
Er

ro
r

0

100

200

300

400

500

10-10

10-8

10-6

10-4

0

100

200

300

400

500

10-10

10-8

10-6

10-4

10−8

0

100

200

300

400

500

Ite
ra

tio
ns

10-10

10-8

10-6

10-4

R
el

at
iv

e
Er

ro
r

0

100

200

300

400

500

10-10

10-8

10-6

10-4

0

100

200

300

400

500

10-10

10-8

10-6

10-4

10−10

0

100

200

300

400

500

Ite
ra

tio
ns

CP-ALS

CP-ALS-PINV

CP-ALS-QR

CP-ALS-QR-SVD

10-10

10-8

10-6

10-4

R
el

at
iv

e
Er

ro
r

0

100

200

300

400

500

CP-ALS

CP-ALS-PINV

CP-ALS-QR

CP-ALS-QR-SVD

10-10

10-8

10-6

10-4

0

100

200

300

400

500

CP-ALS

CP-ALS-PINV

CP-ALS-QR

CP-ALS-QR-SVD

10-10

10-8

10-6

10-4

Abbreviations: ALS, alternating least squares; CP, canonical polyadic; MTTKRP, matricized-tensor times Khatri-Rao product; SVD, singular value
decomposition.

Overall, we observe that the number of iterations needed for convergence for the QR-based algorithms is significantly less
than either CP-ALS or CP-ALS-PINV, which reach the maximum number of iterations in almost every case. For all nine
cases, the median number of iterations for both CP-ALS and CP-ALS-PINV is 500, compared to 58 for CP-ALS-QR, and 51
for CP-ALS-QR-SVD, resulting in speedups of 8.6× and 9.8×, respectively. CP-ALS does converge more quickly in the first
row (, = 10−6), and has several outliers that converge more quickly in the first column (+ = 106), corresponding to the
more well-conditioned problems. CP-ALS-PINV, on the other hand, almost never converges in fewer than 500 iterations.
The gap between number of iterations in the standard ALS algorithms compared to our QR-based algorithms increases
with smaller , values (moving down the table).

Concerning the relative error, CP-ALS-PINV has the highest relative error of any algorithm by several orders of mag-
nitude except in the bottom right case (, = 10−10, + = 1010), which corresponds to its lack of convergence as seen in
the iterations plots. Both CP-ALS-QR and CP-ALS-QR-SVD consistently attain low relative error in each case. CP-ALS
sometimes attains that same low relative error, though at the cost of slower convergence. In the most ill-conditioned cases

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2511 by W

ake Forest U
nivesity, W

iley O
nline Library on [23/06/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

MINSTER et al. 13 of 17

(, = 10−8 to 10−10 and + = 108 to 1010), CP-ALS frequently has higher relative error than either QR-based algorithm by
several orders of magnitude, and has higher relative error than CP-ALS-PINV in the bottom right case.

Overall, we see that in ill-conditioned cases, CP-ALS-QR and CP-ALS-QR-SVD perform more stably than either
CP-ALS or CP-ALS-PINV, attaining a lower relative error in fewer iterations.

4.3 Sine of sums

We further test the stability of our QR-based algorithms on a function approximation problem considered by Beylkin
and Mohlenkamp.26 The sine of sums sin(x1 + · · · + xN) is an example of an N-dimensional function that can be approx-
imated in such a way where complexity grows linearly with N instead of exponentially. These efficient approximations
are sometimes referred to as separated representations, and they are closely related to CP decompositions. In this case,
we are simulating the numerical discovery of an efficient separated representation, as we already know it exists. That
is, given a separated representation with an exponentially large rank as input, we seek to compute a lower-rank (linear)
representation that approximates it to numerical precision. We consider this problem as it can lead to ill-conditioned least
squares problems within CP-ALS.

4.3.1 Setup

The multivariate sine of sums function sin(x1 + · · · + xN) can be discretized as a dense N-mode tensor X ∈ Rn×···×n with
xj ∈ Rn as vectors discretizing the interval [0, 2-) for j = 1, … ,N. As the sine of sums can be expressed as a sum of 2N−1

terms using sum identities for sine and cosine, we can expand all terms to obtain a rank-2N−1 representation of X, which
corresponds to an exact CP decomposition. Another exact CP representation of rank N also exists, of the form

sin
(N∑

j=1
xj

)
=

N∑
j=1

sin(xj)
N∏

k=1,k≠j

sin(xk + .k − .j)
sin(.k − .j)

,

where .j must satisfy sin(.k − .j) ≠ 0 for all j ≠ k. This rank-N representation is nonunique, and can be numerically
unstable depending on the choice of .j.

The input representations are already rank-2N−1 Kruskal tensors, and we exploit that structure in our algorithms as
discussed in Section 3.3.2. In the experiments below, we vary the number of modes N, corresponding to the number of
variables in the sine of sums function, and the dimension n of each mode, corresponding to the number of discretization
points in the interval [0, 2-). In each experiment, we consider the relative error of four algorithms, CP-ALS, CP-ALS-PINV,
CP-ALS-QR, and CP-ALS-QR-SVD, at the end of each of the first 40 iterations. We use the same random initial guesses for
the factor matrices across algorithms and a convergence tolerance of 0. We also compute the relative error ||X −K||∕||X||
directly (as opposed to the methods described in Section 3.3.1) as we need a more accurate computation of the error to
truly compare the accuracy of our algorithms.

We examine three tensors of different number of modes N and dimensions n (or size of vectors xj). In Figure 3, we plot
the relative error at the end of each iteration for all four ALS algorithms for the sine of sums tensor with four modes and
n = 128, the seven-way sine of sums tensor with n = 16, and the 10-mode tensor with n = 8. For all four plots, CP-ALS-QR
and CP-ALS-QR-SVD are able to achieve a lower relative error than CP-ALS and CP-ALS-PINV, and the gap increases
with N, more significantly for the N = 7 and N = 10 cases. For the N = 10 tensor, we use n = 8 for both cases, but use
two different random initializations to show two different types of results we obtain. For the first random initialization
(left), we see similar results to the lower-order cases, with all four algorithms converging, but the gap between the rel-
ative error for the QR-based algorithms and the normal equations-based algorithms is much larger than in lower-order
tensors. With the second random initialization (right), CP-ALS and CP-ALS-PINV do not converge to anything, while
the relative error for CP-ALS-QR and CP-ALS-QR-SVD converge normally to low values. When repeating this exper-
iment for multiple random initializations, we found that this second case was more common, occurring in four out
of five trials.

From these experiments, we can see that for ill-conditioned problems, our QR-based algorithms are more stable than
the typical algorithms in higher dimensions. For all dimensions, we are also able to attain higher accuracy than traditional
ALS algorithms.

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2511 by W

ake Forest U
nivesity, W

iley O
nline Library on [23/06/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

14 of 17 MINSTER et al.

0 10 20 30 40
Iteration number

100
R

el
at

iv
e

er
ro

r
N = 4, n = 128

CP-ALS
CP-ALS-PINV
CP-ALS-QR
CP-ALS-QR-SVD

0 10 20 30 40
Iteration number

10–15

10–10

10–5

10–15

10–10

10–5

100

R
el

at
iv

e
er

ro
r

N = 7, n = 16

CP-ALS
CP-ALS-PINV
CP-ALS-QR
CP-ALS-QR-SVD

0 10 20 30 40
Iteration number

10–10

10–5

100

R
el

at
iv

e
er

ro
r

N = 10, n = 8, First initialization

CP-ALS
CP-ALS-PINV
CP-ALS-QR
CP-ALS-QR-SVD

0 10 20 30 40
Iteration number

10–10

10–5

100

R
el

at
iv

e
er

ro
r

N = 10, n = 8, second initialization

CP-ALS
CP-ALS-PINV
CP-ALS-QR
CP-ALS-QR-SVD

F I G U R E 3 Relative error of CP-ALS, CP-ALS-PINV, CP-ALS-QR, and CP-ALS-QR-SVD on the sine of sums tensor at the end of each
iteration for four modes with dimension n = 128 (top left), and seven modes with dimension n = 16 (top right), and two different random
initializations for ten modes with dimension n = 8. The second initialization case was more common, occurring in four of five trials.

4.4 Fast matrix multiplication algorithms

Fast matrix multiplication algorithms are algorithms that perform o(n3) operations to multiply n × n matrices. Strassen’s
original algorithm27 is the most famous fast algorithm, with complexity (n2.81). There are many such algorithms,
and the optimal complexity is an open problem. Each fast matrix multiplication algorithm corresponds to an exact CP
decomposition of a three-way tensor that encodes matrix multiplication of matrices of fixed dimensions. The matrix mul-
tiplication tensor corresponding to multiplying m × k and k × n matrices has dimensions mk × nk ×mn. Computing CP
decompositions of these tensors has been a subject of research for many decades.28-31

Bini, Capovani, Romani, and Lotti32 introduced the first Arbitrary Precision Approximating (APA) algorithm for
matrix multiplication, which is designed for multiplying 3 × 2 and 2 × 2 matrices. An APA algorithm corresponds
to a parametrized CP approximation of a matrix multiplication tensor that can be tuned to achieve arbitrarily small
approximation error, but it is not an exact decomposition. APA algorithms can be much more efficient than fast algorithms
that correspond to exact decompositions, and they can be converted to exact algorithms (assuming exact arithmetic)
with only logarithmic overhead. Numerical methods for computing such CP approximations must account for the
ill-conditioning that occurs, so we consider the smallest such example to compare QR-based ALS methods with those
that use the normal equations.

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2511 by W

ake Forest U
nivesity, W

iley O
nline Library on [23/06/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

MINSTER et al. 15 of 17

T A B L E 3 Relative error and the number of iterations to converge for the matrix multiplication tensor.

Method CP-ALS CP-ALS-PINV CP-ALS-QR CP-ALS-QR-SVD

$ Error Iterations Error Iterations Error Iterations Error Iterations

10−4 5 × 10−5 3 5 × 10−5 7 5 × 10−5 2 5 × 10−5 2

10−5 5 × 10−6 5000 7 × 10−6 5000 5 × 10−6 2 5 × 10−6 2

10−6 3 × 10−4 5000 4 × 10−4 5000 5 × 10−7 2 5 × 10−7 2

10−7 4 × 10−1 5000 6 × 10−3 5000 5 × 10−8 110 5 × 10−8 174

Abbreviations: ALS, alternating least squares; CP, canonical polyadic; MTTKRP, matricized-tensor times Khatri-Rao product; SVD, singular value
decomposition.

We compare the relative error and number of iterations to converge of CP-ALS, CP-ALS-PINV, CP-ALS-QR, and
CP-ALS-QR-SVD on the matrix multiplication tensor corresponding to multiplying 3 × 2 and 2 × 2 matrices. All algo-
rithms perform similarly until the model approaches a solution that corresponds to an APA algorithm. Once close to a
true APA solution, the normal equations are either unable to converge, or they converge to an incorrect solution. To fur-
ther examine this behavior, we initialize our algorithms with a set of factor matrices close to a true solution. This solution
has factor matrices that depend on a parameter / and its reciprocal32:

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

1 0 1 0 1 0 0 0 0 0
0 0 0 / / 0 0 0 0 0
0 0 0 0 0 1 0 1 0 1
1 1 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 / /
0 0 0 0 0 1 1 0 1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

, B =

⎡
⎢
⎢
⎢
⎢
⎢⎣

/ 0 0 −/ 0 1 1 −1 1 0
0 0 0 0 / 0 0 −1 0 1
0 −1 0 1 0 0 0 0 / 0
1 −1 1 0 1 / 0 0 0 −/

⎤
⎥
⎥
⎥
⎥
⎥⎦

,

C =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

/−1 /−1 −/−1 /−1 0 0 0 0 0 0
0 0 −/−1 0 /−1 0 0 0 0 0
0 0 0 1 0 1 0 0 −1 0
1 0 0 0 −1 0 0 0 0 1
0 0 0 0 0 0 −/−1 0 /−1 0
0 0 0 0 0 /−1 −/−1 /−1 0 /−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

.

As / → 0, the approximation error decreases but the ill-conditioning increases. We depict the average relative error and
iterations to converge for different / values in Table 3, using a maximum of 5000 iterations and a tolerance of 10−12. For
the largest / value we consider, / = 10−4, all algorithms converge to equivalent relative errors in a similarly low number
of iterations. CP-ALS-QR and CP-ALS-QR-SVD converge the fastest in only two iterations. For smaller / values, neither
CP-ALS nor CP-ALS-PINV converge, while the QR-based algorithms converge in a small number of iterations, as few
as two. Additionally, our QR-based algorithms converge to a more accurate solution for the smaller / values, achieving
higher accuracy of up to seven orders of magnitude compared to CP-ALS.

5 CONCLUSIONS AND FUTURE WORK

We develop and implement versions of the CP-ALS algorithm using the QR decomposition and SVD in an effort to address
the numerical ill-conditioning to which the normal equations in the traditional algorithm are susceptible. The first version
uses a QR factorization to solve the linear least squares problems within CP-ALS. We also present the CP-ALS-QR-SVD
algorithm, which applies the SVD as an extra step in the algorithm to handle numerically rank-deficient problems. In addi-
tion to the algorithms themselves, we provide analysis of their complexity, which is comparable to that of the widely-used
CP-ALS algorithm when the rank is small. Our new algorithms prove useful for computing CP tensor decompositions with

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2511 by W

ake Forest U
nivesity, W

iley O
nline Library on [23/06/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

16 of 17 MINSTER et al.

more stability in the event of ill-conditioned coefficient matrices, and present an alternative when analyzing tensor data
for which the CP-ALS algorithm produces dissatisfactory results, or is unable to produce any result due to ill-conditioning.
These situations, shown through our numerical experiments, occur when we are looking for an exact decomposition or
where ill-conditioning is not hidden by noise. We envision our QR-based algorithms being used as part of a robust CP-ALS
solver that uses the traditional normal equations approach by default, but solves the least squares problems using QR
if any ill-conditioning is detected. We also anticipate that this approach can be applied to other methods computing CP
decompositions to improve accuracy, such as the error preserving correction method in Reference 33.

There are several potential performance improvements to pursue in future work. In situations where the target rank is
high, computing Q0, which involves a QR of a Khatri–Rao product of upper triangular matrices, becomes a more dominant
cost of the CP-ALS-QR algorithm. The Khatri–Rao product of upper triangular matrices has structure which we do not
exploit in our implementation, and which could lead to a more efficient implementation. We could also use dimension
trees to speed up our implementation of the Multi-TTM function, the major dominant cost in both new algorithms. We
currently use the Tensor Toolbox implementation but could improve the performance by reusing computations as in a
dimension tree. The Gauss–Newton algorithm we use solves the approximate linear least squares problems via the normal
equations. Another interesting direction to pursue would be to use the QR of the Jacobian to solve the least squares
problems instead to improve the stability in the presence of ill-conditioning.

ACKNOWLEDGMENTS
The authors would like to acknowledge the support provided by the National Science Foundation through the grant
CCF-1942892. This study does not have any conflicts to disclose.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ORCID
Xiaotian Liu https://orcid.org/0000-0001-9369-4029

REFERENCES
1. Bader BW, Kolda TG, et al. Tensor Toolbox for MATLAB, Version 3.2.1. 2021. Available from: www.tensortoolbox.org
2. Vervliet N, Debals O, Sorber L, Van Barel M, De Lathauwer L. Tensorlab 3.0. 2016. Available from: https://www.tensorlab.net
3. Kossaifi J, Panagakis Y, Anandkumar A, Pantic M. TensorLy: tensor learning in python. J Mach Learn Res. 2019;20(26):1–6. Available

from: http://jmlr.org/papers/v20/18-277.html
4. Ballard G, Rouse K. General memory-independent lower bound for MTTKRP. In: Proceedings of the 2020 SIAM Conference on Parallel

Processing for Scientific Computing; 2020. p. 1–11.
5. Nisa I, Li J, Sukumaran-Rajam A, Vuduc R, Sadayappan P. Load-balanced sparse MTTKRP on GPUs. In: IEEE International Parallel and

Distributed Processing Symposium (IPDPS); 2019. p. 123–133.
6. Phan AH, Tichavsky P, Cichocki A. Fast alternating LS algorithms for high order CANDECOMP/PARAFAC tensor factorizations. IEEE

Trans Signal Process. 2013;61(19):4834–46.
7. Smith S, Ravindran N, Sidiropoulos ND, Karypis G. SPLATT: efficient and parallel sparse tensor-matrix multiplication. In: Parallel and

Distributed Processing Symposium (IPDPS). IEEE; 2015. p. 61–70.
8. Ballard G, Klinvex A, Kolda TG. TuckerMPI: a parallel C++/MPI software package for large-scale data compression via the Tucker tensor

decomposition. ACM Trans Math Softw. 2020;46(2):13:1-13:31.
9. Chakaravarthy VT, Choi JW, Joseph DJ, Liu X, Murali P, Sabharwal Y, et al. On optimizing distributed Tucker decomposition for dense

tensors. In: 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS); 2017. p. 1038–1047.
10. Kaya O, Uçar B. High performance parallel algorithms for the Tucker decomposition of sparse tensors. In: 45th International Conference

on Parallel Processing (ICPP ’16); 2016. p. 103–112.
11. Smith S, Karypis G. Accelerating the Tucker decomposition with compressed sparse tensors. In: European Conference on Parallel

Processing; 2017. p. 653–68.
12. Demmel J. Applied numerical linear algebra. Philadelphia: SIAM; 1997.
13. Golub GH, Van Loan CF. Matrix computations. 4th ed. Baltimore: Johns Hopkins University Press; 2013.
14. Trefethen LN, Bau D. Numerical linear algebra. Philadelphia: SIAM; 1997.
15. Kolda TG, Bader BW. Tensor decompositions and applications. SIAM Rev. 2009;51(3):455–500.
16. Khatri C, Rao CR. Solutions to some functional equations and their applications to characterization of probability distributions. Sankhyā

Ind J Stat Ser A. 1968;30(2):167–80.
17. Singh N, Ma L, Yang H, Solomonik E. Comparison of accuracy and scalability of Gauss-Newton and alternating least squares for

CANDECOMP/PARAFAC decomposition. SIAM J Sci Comput. 2021;43:C290–311.

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2511 by W

ake Forest U
nivesity, W

iley O
nline Library on [23/06/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://orcid.org/0000-0001-9369-4029
https://orcid.org/0000-0001-9369-4029
http://www.tensortoolbox.org
https://www.tensorlab.net
http://jmlr.org/papers/v20/18-277.html

MINSTER et al. 17 of 17

18. Sorber L, Van Barel M, De Lathauwer L. Optimization-based algorithms for tensor decompositions: canonical polyadic decomposition,
decomposition in rank-(L_r,L_r,1) terms, and a new generalization. SIAM J Optim. 2013;23(2):695–720.

19. Vervliet N, De Lathauwer L. Numerical optimization-based algorithms for data fusion. Data handling in science and technology. Volume
31. Amsterdam: Elsevier; 2019. p. 81–128.

20. Eswar S, Hayashi K, Ballard G, Kannan R, Matheson MA, Park H. PLANC: parallel low-rank approximation with nonnegativity
constraints. ACM Trans Math Softw. 2021;47(3):1–37.

21. Liavas AP, Kostoulas G, Lourakis G, Huang K, Sidiropoulos ND. Nesterov-based alternating optimization for nonnegative tensor
factorization: algorithm and parallel implementation. IEEE Trans Signal Process. 2017;66:944–953.

22. Phan AH, Tichavsky P, Cichocki A. TENSORBOX: a MATLAB package for tensor decomposition; 2013. Available from. https://github.
com/phananhhuy/TensorBox

23. Smith S, Karypis G. A medium-grained algorithm for distributed sparse tensor factorization. In: IEEE 30th International Parallel and
Distributed Processing Symposium; 2016. p. 902–11.

24. Bader BW, Kolda TG. Efficient MATLAB computations with sparse and factored tensors. SIAM J Sci Comput. 2007;3(1):205–31.
25. Baskaran M, Meister B, Vasilache N, Lethin R. Efficient and scalable computations with sparse tensors. In: IEEE Conference on High

Performance Extreme Computing; 2012. p. 1–6.
26. Beylkin G, Mohlenkamp MJ. Algorithms for numerical analysis in high dimensions. SIAM J Sci Comput. 2005;26(6):2133–59.
27. Strassen V. Gaussian elimination is not optimal. Numer Math. 1969;13:354–6. https://doi.org/10.1007/BF02165411
28. Brent RP. Algorithms for matrix multiplication. Stanford: Stanford University; 1970.
29. Smirnov AV. The bilinear complexity and practical algorithms for matrix multiplication. Comput Math Math Phys. 2013;53(12):1781–95.

https://doi.org/10.1134/S0965542513120129
30. Benson AR, Ballard G. A framework for practical parallel fast matrix multiplication. Proceedings of the 20th ACM SIGPLAN symposium

on principles and practice of parallel programming. PPoPP 2015. New York: ACM; 2015. p. 42–53.
31. Fawzi A, Balog M, Huang A, Hubert T, Romera-Paredes B, Barekatain M, et al. Discovering faster matrix multiplication algorithms with

reinforcement learning. Nature. 2022;610(7930):47–53.
32. Bini D, Capovani M, Romani F, Lotti G. O(n2.7799) complexity for n × n approximate matrix multiplication. Inform Process Lett.

1979;8(5):234–5.
33. Phan AH, Tichavskỳ P, Cichocki A. Error preserving correction: a method for CP decomposition at a target error bound. IEEE Trans Signal

Process. 2018;67(5):1175–90.

How to cite this article: Minster R, Viviano I, Liu X, Ballard G. CP decomposition for tensors via alternating
least squares with QR decomposition. Numer Linear Algebra Appl. 2023;e2511. https://doi.org/10.1002/nla.2511

 10991506, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2511 by W

ake Forest U
nivesity, W

iley O
nline Library on [23/06/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://github.com/phananhhuy/TensorBox
https://github.com/phananhhuy/TensorBox
https://doi.org/10.1007/BF02165411
https://doi.org/10.1134/S0965542513120129
https://doi.org/10.1002/nla.2511
https://doi.org/10.1002/nla.2511

	CP decomposition for tensors via alternating least squares with QR decomposition
	1 INTRODUCTION
	2 BACKGROUND
	2.1 Linear least squares methods
	2.2 Tensor notation and preliminaries
	2.2.1 Matrix products
	2.2.2 Tensor components
	2.2.3 Tensor operations

	2.3 CP-ALS algorithm
	2.3.1 CP decomposition
	2.3.2 CP-ALS algorithm

	2.4 Gauss--Newton optimization approach

	3 PROPOSED METHODS
	3.1 CP-ALS-QR algorithms
	3.2 CP-ALS-QR cost analysis
	3.3 Implementation details and extensions
	3.3.1 Efficient computation of approximation error
	3.3.2 Kruskal tensor input
	3.3.3 Other computation-reducing optimizations

	4 NUMERICAL EXPERIMENTS
	4.1 Performance results
	4.2 Ill-conditioned factor matrices
	4.3 Sine of sums
	4.3.1 Setup

	4.4 Fast matrix multiplication algorithms

	5 CONCLUSIONS AND FUTURE WORK

	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES

