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Abstract: Plant traits are useful for predicting how species may respond to environmental 1 

change and/or influence ecosystem properties. Understanding the extent to which traits vary 2 

within species and across climatic gradients is particularly important for understanding how 3 

species may respond to climate change. We explored whether climate drives spatial patterns of 4 

intraspecific trait variation for three traits (specific leaf area (SLA), plant height, and leaf 5 

nitrogen content (Nmass)) across 122 grass species (family: Poaceae) with a combined 6 

distribution across six continents. We tested the hypothesis that the sensitivity (i.e., slope) of 7 

intraspecific trait responses to climate across space would be related to the species’ typical form 8 

and function (e.g., leaf economics, stature, and lifespan). We observed both positive and negative 9 

intraspecific trait responses to climate with the distribution of slope coefficients across species 10 

straddling zero for precipitation, temperature, and climate seasonality. As hypothesized, variation 11 

in slope coefficients across species was partially explained by leaf economics and lifespan. For 12 

example, acquisitive species with nitrogen-rich leaves grew taller and produced leaves with 13 

higher SLA in warmer regions compared to species with low Nmass. Compared to perennials, 14 

annual grasses invested in leaves with higher SLA yet decreased height and Nmass in regions 15 

with high precipitation seasonality. Thus, while the influence of climate on trait expression may 16 

at first appear idiosyncratic, variation in trait-climate slope coefficients is at least partially 17 

explained by the species’ typical form and function. Overall, our results suggest that a species’ 18 

mean location along one axis of trait variation (e.g., leaf economics) could influence how traits 19 

along a separate axis of variation (e.g., plant size) respond to spatial variation in climate. 20 

Key words: functional traits, grass, intraspecific trait variation, Poaceae, climate, specific leaf 21 

area, leaf nitrogen, plant height  22 
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Introduction 23 

Characteristics of individual plants (i.e., traits) can influence both their response to 24 

environmental change and their effect on climate and ecosystem processes (Suding et al. 2008). 25 

Globally, plant traits are coordinated such that three quarters of trait variation between species 26 

can be explained by a two-dimensional spectrum of plant form and function describing a species 27 

relative size and its leaf economic strategy (Diaz et al. 2016). Size-related traits, such as plant 28 

height, can reflect competitive ability, particularly with regards to light acquisition (Westoby 29 

1998). Traits of the leaf economic spectrum separate species along a continuum of conservative 30 

to acquisitive resource-use strategies, where acquisitive species are generally short-lived and 31 

have higher specific leaf area (SLA; leaf area per gram of dry leaf mass), mass-based leaf 32 

nitrogen content (Nmass), and rates of photosynthesis (Wright et al. 2004; Shipley 2006). Such 33 

traits can be predictive of where species grow and how they respond to climate. For example, 34 

low SLA species tend to be more abundant in arid environments and reduce their SLA further 35 

during drought (Reich 2014; Dwyer et al. 2014). Importantly, these traits can also vary 36 

considerably within species (up to 40% of total variation for some traits), reflecting genetic 37 

diversity and phenotypic plasticity (Kattge et al. 2011; Siefert et al. 2015). Characterizing how 38 

plant traits vary intraspecifically with climate is not only important for understanding 39 

physiological adaptations to climate change (Dong et al. 2020), but can also inform predictions 40 

of plant trait values in regions where measurements are still lacking (Sandel et al. 2021).  41 

 Here, we examine the global patterns of intraspecific trait variation and its association 42 

with climate for grasses (family: Poaceae), a species-rich and globally distributed plant family 43 

with massive ecological and economic importance (Clayton and Renvoize 1986). Grasses are a 44 

highly successful group of plants from an evolutionary perspective with ~11,500 species 45 
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worldwide (Soreng et al. 2017). They are the dominant growth form of grasslands, which cover 46 

52 million km², or roughly 40% of Earth’s terrestrial land surface (Gibson 2009), and make a 47 

significant contribution to the terrestrial carbon sink (Fisher et al. 1994; Still et al. 2003; Wigley 48 

et al. 2020). Humans are heavily dependent on grasses for food (e.g., corn, rice, and wheat), 49 

building materials (e.g., bamboo), and forage for livestock (Hodkinson et al. 2018). Despite their 50 

ecological, economic, and cultural importance (Nowak-Olejnik et al. 2020), grasses have 51 

received relatively little attention in the plant traits literature, with most analyses focusing on 52 

interspecific comparisons (Sandel et al. 2016, Jardine et al. 2020). Therefore, many of our 53 

expectations about how climate influences intraspecific variation in grass traits are informed by 54 

interspecific comparisons. 55 

Our understanding of trait responses to climate stems from analyses of spatial patterns in 56 

species mean traits along broad environmental gradients (Reich and Oleksyn 2004). For 57 

example, grass species with high Nmass often inhabit arid climates with high temperature and 58 

low precipitation (Jardine et al. 2020). This is likely because a large portion of leaf N is allocated 59 

to Rubisco (Evans 1989; Hikosaka 2004; Funk et al. 2013), and higher Rubisco content improves 60 

water-use efficiency by allowing plants to achieve higher carbon assimilation at lower rates of 61 

stomatal conductance (Wright et al. 2001). Similar spatial analyses suggest that variation in SLA 62 

is not (or only weakly) correlated with climate (Wright et al. 2004; Jardine 2020), although 63 

positive relationships between SLA and both precipitation and temperature were observed within 64 

grass species in California (Sandel et al. 2021). Taller grass species often inhabit wetter and 65 

warmer regions (Sandel et al. 2016; Jardine et al. 2020). Within species, however, grass 66 

individuals are generally taller in warmer regions, but not necessarily wetter regions (Sandel et 67 

al. 2021). A lack of a general pattern between height and precipitation within species may be due 68 
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to individuals of some grass species growing taller in dry areas where they’re supported by 69 

deeper rooting systems (Hoffman et al. 2020).   70 

While we’d expect intraspecific trait-climate relationships to generally match those 71 

observed between species, the sensitivity of traits to climate is likely highly variable among 72 

species. This could be due to genetic constraints on trait variability, interactions with 73 

neighboring biota, or differences in microclimate that mask broad environmental gradients 74 

(Westerband et al. 2021). We aimed to better understand variation in trait-climate relationships 75 

and potential modifying effects. First, we test a novel hypothesis that the strength (slope) and 76 

direction (sign) of intraspecific trait-climate relationships for a species depend on its relative 77 

location along the two major axes of the global spectrum of plant form and function (leaf 78 

economics and stature; Fig. 1). For example, if we consider two species of similar stature but on 79 

opposite ends of the leaf economic spectrum, individuals of the acquisitive species should 80 

theoretically be able to capitalize on greater resource availability in wetter areas and grow taller 81 

compared to a more conservative species. In this scenario, we would expect to observe a higher 82 

slope for the intraspecific relationship between height and precipitation for species with high 83 

SLA and leaf Nmass (Fig. 1). Second, we explored differences in trait-environment relations 84 

based on a species’ lifespan (annual vs. perennial) and photosynthetic pathway (C4 vs. C3) given 85 

the known linkages between these categorical traits and leaf economics (Still et al. 2003; 86 

Frenette-Dussault et al. 2012; Kooyers 2015). A species’ lifespan is an important determinant of 87 

resource use strategies; annuals must complete their reproductive lifecycle within a limited 88 

period of time compared to perennials, which may influence their trait expression along climate 89 

gradients. Similarly, we’d expect photosynthetic pathway to modify trait responses to climate 90 

given C4 grasses are generally more tolerant of high temperatures and drought (Still et al. 2003).  91 
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We tested these hypotheses by analyzing intraspecific relationships between commonly 92 

measured traits (SLA, Nmass, and height) and temperature, precipitation, and climate seasonality 93 

using a global trait dataset for 122 grass species. We expected individuals of a species to grow 94 

taller and have higher SLA in wetter and warmer climates (i.e., positive intraspecific trait-climate 95 

relationships for SLA and Height) (Moles et al. 2014; Jardine et al. 2020; Sandel et al. 2021). 96 

Additionally, we expected individuals in warmer and drier regions to produce leaves with high 97 

Nmass to increase water-use efficiency (i.e., negative intraspecific trait-climate relationships for 98 

Nmass) (Wright et al. 2001). Finally, we hypothesized that variation among species in the 99 

strength and direction of these intraspecific trait-climate relationships would be related to their 100 

typical form and function (Fig. 1). 101 

Methods 102 

Trait and climate data 103 

We measured traits of grasses across the Bay Area of California and obtained additional 104 

records from published papers (Appendix 1) and trait databases, including TRY (Kattge et al. 105 

2011), TTT (Bjorkman et al. 2018), BIEN (Maitner et al. 2018), BROT2 (Tavşanoğlu and Pausas 106 

2018), and AusTraits (Falster et al. 2021). For this analysis, we focus on three traits of interest: 107 

specific leaf area (SLA), plant height, and mass-based leaf nitrogen content (Nmass). All trait 108 

measurements were georeferenced with latitude and longitude coordinates. For each trait 109 

measurement, we extracted and paired the following high resolution (30 arc sec, ~1km) climate 110 

statistics from CHELSA V2.1 (Karger et al. 2017; https://chelsa-climate.org/): mean annual 111 

precipitation (MAP), mean annual temperature (MAT), precipitation seasonality (PS; the 112 

standard deviation of the monthly precipitation estimates expressed as a percentage of the mean 113 

https://chelsa-climate.org/


6 
 

of those estimates (i.e. the annual mean)), temperature seasonality (TS; standard deviation of the 114 

monthly mean temperatures), mean monthly precipitation of the warmest and coldest quarter of 115 

the year (Pwarm and Pcold, respectively), and mean monthly temperature of the warmest and 116 

coldest quarter of the year (Twarm and Tcold, respectively). 117 

To avoid over-weighting regions that were heavily sampled (i.e., parts of Europe and 118 

North America, see Fig. 2), we aggregated our trait-climate dataset by rounding latitude-119 

longitude coordinates to the nearest first decimal point and averaging climate and trait values for 120 

a species within that binned coordinate. We then subset this binned dataset to include only 121 

species for which we had at least 10 records spanning a MAP gradient of 100 mm, a MAT 122 

gradient of 2℃, and a correlation between MAP and MAT of no more than 0.8. This was done to 123 

prevent fitting models when MAP and MAT were highly collinear or when all measurements 124 

were made over a narrow range of climate values which might result in extreme slope 125 

coefficients (Sandel et al. 2021). Based on these criteria, our final global grass trait-climate 126 

dataset spanned six continents, covered all of Earth’s major terrestrial biomes, and included 127 

2,648 measurements of SLA (n= 109 species), 1,359 measurements of Nmass (n = 61 species), 128 

and 1,439 measurements of plant height (n = 66 species) (Fig. 2). 129 

Analysis 130 

 Trait data were log-transformed prior to analyses to meet assumptions of normality. For 131 

each species and trait, we ran two separate simultaneous autoregressive (SAR) models predicting 132 

trait values from climate variables using the errorsarlm() function in the spdep package (Bivand 133 

et al. 2015), with the neighborhood of a point being defined as the three nearest points. The first 134 

model included mean climate characteristics (MAP, MAT, PS, TS) while the second included 135 
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mean monthly climate of the warmest and coldest quarters of the year (Pwarm, Pcold, Twarm, and 136 

Tcold). The use of SAR models accounts for spatial autocorrelation in our data, a common 137 

phenomenon in ecology where nearby observations are more similar than would be expected by 138 

chance (Legendre 1993). These models each produced 12 trait-climate slope coefficients (3 139 

traits, 4 climate variables). Using Student t-tests, we assessed whether the mean of each SAR 140 

slope coefficients across species was significantly different from zero (Bonferroni-adjusted p-141 

values for 12 independent tests;  = 0.004).  142 

To test whether variation in intraspecific sensitivity of traits to climate could be explained 143 

by mean species traits, we ran phylogenetic generalized least squares (PGLS) regression models 144 

with the intraspecific trait-climate slope coefficients (e.g., MAP vs. SLA slope) as the dependent 145 

variable and the following mean species traits as independent variables: SLA, Nmass, height, 146 

lifespan (i.e., perennial or annual), and photosynthetic pathway (i.e., C4 or C3 photosynthesis). 147 

We used PGLS models to account for the possibility that more closely related species have more 148 

similar responses to climate than would be expected by chance (see Fig. S1 for complete 149 

phylogenetic tree). In our models, we log transformed continuous mean traits (SLA, Nmass, and 150 

Height). To simplify these global models and determine which mean traits were most important 151 

for understanding variability in the trait-climate slope coefficients, we performed an automated 152 

model selection using the dredge() function in the MuMln package (Barton and Barton 2015). 153 

We then performed model averaging on those models with a delta AICc of <2, and produced 154 

partial residual plots to visualize the effects of individual significant predictor variables on 155 

variation in the slope coefficients while also considering other components of the final model.  156 

Finally, we explored the correlation between mean continuous traits for all species used 157 

in this study (n=122) using standard major axis (SMA) regression (sma function in the smatr 158 
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package; Warton et al. 2018) and tested for trait differences based on photosynthetic pathway 159 

and lifespan using two-sample t-tests. This was done to confirm that the mean traits for our 160 

species were similarly coordinated according to global spectrum of plant form and function 161 

(Diaz et al. 2016). All statistical analyses and data visualization were performed in R (version 162 

4.2.2). 163 

Results 164 

Across the 122 grass species included in this study, mean leaf trait associations broadly 165 

met the assumptions of the global spectrum of plant form and function (Reich 2014; Diaz et al. 166 

2016). As expected, we observed a positive relationship between SLA and Nmass (R2 = 0.181), 167 

suggesting acquisitive grass species with high SLA also have high leaf Nmass (Fig. 3a). Leaf 168 

Nmass of annuals was higher than that of perennials (p < 0.01; Fig. 3b) and C3 grasses had 169 

higher Nmass than C4 grasses (p < 0.01; Fig. 3c) reflecting the higher nitrogen-use efficiency of 170 

C4 photosynthesis. We observed no significant relationship between SLA and plant height (Fig. 171 

3d). Annuals had higher SLA than perennials (p < 0.01; Fig. 3e) while SLA did not differ based 172 

on photosynthetic pathway (Fig. 3f). We observed a weak negative relationship between leaf 173 

Nmass and height (R2 = 0.036, p = 0.04, Fig. 3g). This negative relationship is perhaps due to the 174 

taller stature of C4 species (Fig. 3i) which also had lower leaf Nmass than C3 species (Fig. 3 c). 175 

Across species, the trait-climate SAR slope coefficients straddled zero and were, on 176 

average, not significantly different from zero (Fig. 4, Fig. S2). However, this was driven by 177 

similar numbers of positive and negative relationships, many of which were individually 178 

statistically significant (Table 1). Variation across species in their trait responses to mean annual 179 

climate was partially explained by a species’ typical form and function (Table S1). For example, 180 
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individuals of species with high Nmass grew taller in warmer areas (Fig. 5a). Annual grasses, 181 

short species, and those with low SLA grew shorter in regions with high precipitation seasonality 182 

(Fig. 5 b, c, and d), and perennials grew taller in regions with high temperature seasonality (Fig. 183 

5e). Species with low Nmass grew shorter in regions with high Twarm (Fig. S3). Compared to 184 

perennials, annuals grew taller in regions with high Tcold and Pwarm but low Pcold (Fig. S3). 185 

We observed similarly species-specific slope coefficients for intraspecific Nmass-climate 186 

relationships (Fig. 4, Table 1), with mean traits explaining some of the variability across species 187 

(Table S2). For example, annual grasses and tall species decreased leaf Nmass in regions with 188 

greater precipitation seasonality (Fig. 5 f and g). Species with high SLA increased Nmass in 189 

regions with high Twarm but decreased Nmass in regions with high Tcold (Fig. S3). The opposite 190 

response was observed for species with high Nmass (Fig. S3), which was surprising given the 191 

correlation between Nmass and SLA (Fig. 3). Annuals increased Nmass in regions with high 192 

Pwarm, more so than perennials (Fig. S3).  193 

Finally, both positive and negative relationships between SLA and mean climate were 194 

observed (Fig. 4, Table 1), with lifespan and leaf Nmass explaining some of this variation (Fig. 195 

5; Table S3). Species with high leaf Nmass increased SLA in warmer regions (Fig. 5h) as well as 196 

regions with low precipitation seasonality (Fig. 5j). Annuals increased SLA in areas with high 197 

precipitation seasonality and low MAT, while SLA of perennials was less responsive (Fig. 5 i 198 

and k). Compared to perennials, annuals decreased SLA more in regions with high Twarm (Fig. 199 

S3). Finally, species with high Nmass and/or low SLA increased SLA in regions with high Pwarm 200 

(Fig. S3) 201 

 202 
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Discussion 203 

Using a trait dataset for 122 globally distributed grass species, we investigated how the 204 

typical form and function of a species modifies its intraspecific trait responses to climate. On 205 

average, traits did not respond consistently to climate as both positive and negative responses 206 

were observed across species; however, some of this variation was explained by a species’ mean 207 

traits. For example, acquisitive species with high leaf Nmass grew taller and produced leaves 208 

with higher SLA in warmer regions compared to species with less nitrogen-rich leaves. 209 

Compared to perennials, annual grasses invested in leaves with higher SLA yet decreased height 210 

and Nmass in regions with high precipitation seasonality. These findings suggest that 211 

intraspecific trait responses to climate are variable (both positive and negative responses 212 

observed) but both the direction and magnitude of responses can depend on a species’ lifespan as 213 

well as its mean traits. 214 

While we expected certain grass traits would respond consistently to climate, this was not 215 

the case (Fig. 4). The lack of a consistent relationship between height and climate across grasses 216 

could be due to the variable growth strategies grasses exhibit (e.g., caespitose, rhizomatous, or 217 

stoloniferous). For example, grasses can increase aboveground biomass without growing taller if 218 

lateral spread is more advantageous (Navas et al. 2005). We also did not find support for our 219 

hypothesis that species would produce N-rich leaves in warm dry regions (Jardine et al. 2020; 220 

Sandel et al. 2021). Nitrogen in plant leaves can be allocated to a variety of processes including 221 

photosynthesis, defense against herbivory (e.g., secondary metabolites), and leaf structure (e.g., 222 

investment in cell wall proteins) (Funk et al. 2013). Thus, intraspecific variation in allocation to 223 

these processes may have masked some relationships between climate and water-use efficiency 224 

as it relates to total Nmass. Alternatively, temperature may not reflect water stress as well as 225 
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other climate variables such as vapor pressure deficit. Indeed, recent work suggests Nmass is 226 

negatively related to temperature, but positively related to vapor pressure deficit (Dong et al. 227 

2020). Our results generally corroborate previous findings that SLA is not strongly correlated 228 

with precipitation (Wright et al. 2004; Sandel et al. 2021). Interspecific variation in SLA is often 229 

better explained by temperature (Wright et al. 2004; Moles et al. 2014), such that warmer regions 230 

support grasses with higher SLA (Sandel et al. 2021). However, our analysis did not reveal 231 

consistently positive intraspecific responses of SLA to temperature either (Fig. 4). 232 

There are many reasons why mean climate statistics may not explain variation in plant 233 

traits. For instance, two sites with the same mean climate can have drastically different soil water 234 

holding capacity depending on soil texture (Noy-Meir 1973; English et al. 2005) which may lead 235 

to different trait expressions. Additionally, differences in topographical slope or aspect can alter 236 

the local temperature and soil moisture of microclimates within a landscape (Stark and Fridley 237 

2022), which may not be accounted for in the coarse climate data from CHELSA (~1 km grid). 238 

Plants may also be more responsive to antecedent precipitation and temperature than the mean 239 

climate at the time of measurement (Walter et al. 2013). And finally, canopy cover and the 240 

presence or absence of vegetation and associated competitive vs. facilitative interactions with 241 

neighboring plants can influence resource availability and an individual’s realized functional 242 

niche (Sthultz et al. 2007). These biotic and abiotic factors can alter local resource availability 243 

and plant trait expression leading to unexpected global patterns. Additionally, species vary in 244 

their potential for plastic adjustment, a major driver of intraspecific trait variability (Hoffman et 245 

al. 2020).  246 

Despite these potential caveats and the lack of consistency in trait-climate relationships 247 

across species, we did observe many significant individual positive and negative relationships 248 
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(Table 1). As we hypothesized, variation across species in the direction and strength of these 249 

slope coefficients was partially explained by a species’ typical form and function. We predicted 250 

that species with more acquisitive leaf economics traits (e.g., high Nmass and SLA) would grow 251 

taller in warmer and wetter regions (Wright et al. 2004; Shipley 2006). We found some support 252 

for this as MAT-height coefficients (and Twarm-height coefficients; Fig. S3) across species was 253 

positively correlated with a species’ mean leaf Nmass (Fig. 5a). Given that species with high 254 

Nmass are generally more water-use efficient (Wright et al. 2001), this result could indicate 255 

water-use efficient grasses have greater growth potential in areas with higher evaporative 256 

demand. Furthermore, species with high SLA grew taller in regions with higher precipitation 257 

seasonality, suggesting the height of acquisitive species is maximized in warmer regions with 258 

variable climates. Regions with high precipitation seasonality are often characterized by either 259 

winter growing seasons (e.g., Mediterranean climate) or monsoon rains (e.g., desert ecosystems) 260 

where pulse dynamics drive ecosystem properties and plant resource use strategies (Noy-Meir 261 

1973). To be successful in such an environment, many plant species adopt a drought escape 262 

strategy characterized by acquisitive traits (e.g., high SLA and Nmass) which allow them to 263 

grow quickly and take advantage of temporally scarce soil moisture resources (Kooyers, 2015). 264 

The height of such species may be maximized in highly seasonal regions where this strategy is 265 

most advantageous. Taken together, this pattern suggests a grass species’ mean location along 266 

one axis of the global spectrum of plant form and function (e.g., leaf economic traits such as 267 

Nmass and SLA) could influence how its traits along a separate axis of variation (e.g., plant size 268 

traits such as height) respond to spatial variation in climate. While the data presented in the 269 

original global spectrum of plant form and function incorporated many more species with a range 270 
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of heights (including woody species) (Diaz et al. 2016), our global grass dataset covers a large 271 

portion of the herbaceous plant functional space, at least for these three traits (Fig. 1).   272 

 Interestingly, intraspecific responses of SLA and Nmass to climate also depended on a 273 

species’ relative location along the leaf economic spectrum. For example, species with high leaf 274 

Nmass increased SLA in warmer regions (Fig. 5 h). Higher temperatures impose greater 275 

evaporative water stress (De Boeck et al. 2011), so increasing SLA may seem maladaptive. 276 

However, species with high Nmass are generally more water-use efficient (Wright et al. 2001). 277 

Therefore, the positive effect of temperature on SLA observed elsewhere (Sandel et al. 2021) 278 

may only apply to water-use efficient species that can afford to invest in higher SLA and thus 279 

greater carbon assimilation as temperature increases, while species with low Nmass decrease 280 

SLA to reduce water loss via transpiration. We also observed a positive relationship between 281 

mean Nmass and SLA-Pwarm slope coefficients, which suggests acquisitive species produce 282 

leaves with higher SLA in regions with high summer precipitation (Fig. S3). However, this same 283 

slope coefficient was negatively correlated with a species’ mean SLA, suggesting the oft cited 284 

positive effect of precipitation on SLA may be restricted to species with on average low SLA, at 285 

least for grasses. Finally, species with on average low Nmass or high SLA increased Nmass in 286 

regions with high Twarm and low Tcold (Fig. S3), implying species with high potential for 287 

evapotranspiration (high SLA) or low average water use efficiency (low Nmass) may increase 288 

Nmass to compensate for an inefficient water use strategies in temperate regions with hot 289 

summers and cold winters. This suggests functionally similar responses are achieved through 290 

either high SLA or low Nmass, which is intriguing given the positive correlation of these traits 291 

among species (Fig. 3).  292 



14 
 

We found fewer significant effects of plant height on intraspecific trait-climate 293 

coefficients. Notably, taller species grew taller and produced leaves with lower Nmass in regions 294 

with greater precipitation seasonality (Fig. 5 c and f). Plant height is indicative of both 295 

competitive vigor and biomass production in grasses (Westoby 1998; Cornelissen et al. 2003; 296 

Chieppa et al. 2020). Therefore, this result suggests competitive grass species become even more 297 

competitive, but perhaps less water-use efficient in regions with high variation in precipitation, 298 

such as desert ecosystems. It is unclear what drives this pattern; however, tall plants often have 299 

thicker roots (Garbowski et al. 2021) which may allow them to acquire more water and invest 300 

less in their N-based water use efficiency in climatically variable environments.   301 

Annual and perennial plants differed from one another in their resource use strategies and 302 

leaf economics (Fig. 3). On average, annual grasses were more acquisitive given the need for 303 

them to complete their lifecycle within one growing season. As such, we hypothesized these two 304 

functional groups would differ in their trait responses to climate. Indeed, we found the traits of 305 

annuals and perennials often responded to climate in an opposite manner, which likely explains 306 

why we observed both positive and negative trait-climate coefficients (Fig. 4). Compared to 307 

perennials, annual grasses grew taller in regions with low climate seasonality (Fig. 5) suggesting 308 

consistent resource availability is conducive to growth for these acquisitive species. 309 

Additionally, annuals grew taller in regions with relatively wet summers and/or warm dry 310 

winters, again indicative of an annual strategy benefiting from optimal growing seasons. We also 311 

found that annual species produced leaves with lower Nmass in regions with high precipitation 312 

seasonality (Fig. 5). Given that annuals were shorter in such environments, investing in less N-313 

rich leaves may simply be indicative of their slower growth rates. Finally, annual grasses 314 

produced leaves with lower SLA in regions with high summer temperature (i.e., more negative 315 
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SLA-Twarm slope coefficients than perennials; Fig. S3) and/or low precipitation seasonality (Fig. 316 

5). Reducing SLA in regions with high evaporative demand is likely a mechanism to reduce 317 

water loss (Dwyer et al. 2014), which we’d expect for both annuals and perennials, although 318 

SLA of perennials was less responsive to summer temperature. While we cannot be sure of the 319 

mechanism behind all of these trends, it is clear that the lifespan of grasses has a strong influence 320 

on how its traits respond to climate. 321 

 We also hypothesized that the traits of C4 grasses would respond to climate differently 322 

than C3 grasses. The carbon concentrating mechanism of C4 photosynthesis means C4 grasses can 323 

achieve higher water use efficiency than C3 plants, particularly at warm temperatures (Still et al. 324 

2003), which is likely to impact how species respond morphologically to climate. However, 325 

photosynthetic pathway was not a significant predictor in any of our PGLS models. The C4 326 

photosynthetic pathway has evolved multiple times across the grass family, but still shows very 327 

strong phylogenetic signal (Sage 2004). Thus, it may be difficult to separate the role of the 328 

photosynthetic pathway with other similarities due to shared descent. 329 

 Earth’s climate is rapidly changing and there is an urgent need to understand how plant 330 

species will respond. Intraspecific relationships between plant traits and climate can benchmark 331 

predictions of how individuals of a species may respond to environmental change. While many 332 

of the species-specific trait-climate relationships we explored were not significant, variation in 333 

trait-climate sensitivity (i.e., slope coefficients) across species was explained by a species’ 334 

typical form and function (e.g., SLA, Height, leaf Nmass, and lifespan). The results here provide 335 

evidence for the hypothesis that the location of a species within the global spectrum of plant 336 

form and function influences the direction and slope of its intraspecific trait-climate relationship. 337 
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However, independent studies beyond grasses are still needed to confirm and generalize these 338 

results.  339 



17 
 

References 340 

Barton, K., & Barton, M. K. (2015). Package ‘mumin’. Version, 1(18), 439. 341 

Bivand, R., Altman, M., Anselin, L., Assunção, R., Berke, O., Bernat, A., & Blanchet, G. (2015). 342 

Package ‘spdep’. The Comprehensive R Archive Network. 343 

Bjorkman, A. D., Myers-Smith, I. H., Elmendorf, S. C., Normand, S., Rüger, N., Beck, P. S., ... 344 

& Weiher, E. (2018). Plant functional trait change across a warming tundra biome. 345 

Nature, 562(7725), 57-62. 346 

Chieppa, J., Power, S. A., Tissue, D. T., & Nielsen, U. N. (2020). Allometric estimates of 347 

aboveground biomass using cover and height are improved by increasing specificity of 348 

plant functional groups in eastern Australian rangelands. Rangeland Ecology & 349 

Management, 73(3), 375-383. 350 

Clayton, W. D., & Renvoize, S. A. (1986). Genera graminum. Grasses of the world. Genera 351 

graminum. Grasses of the World., 13. 352 

Cornelissen, J. H. C., Lavorel, S., Garnier, E., Díaz, S., Buchmann, N., Gurvich, D. E., ... & 353 

Poorter, H. (2003). A handbook of protocols for standardised and easy measurement of 354 

plant functional traits worldwide. Australian journal of Botany, 51(4), 335-380. 355 

De Boeck, H. J., Dreesen, F. E., Janssens, I. A., & Nijs, I. (2011). Whole‐system responses of 356 

experimental plant communities to climate extremes imposed in different seasons. New 357 

Phytologist, 189(3), 806-817. 358 

Díaz, S., Kattge, J., Cornelissen, J. H., Wright, I. J., Lavorel, S., Dray, S., ... & Gorné, L. D. 359 

(2016). The global spectrum of plant form and function. Nature, 529(7585), 167-171. 360 

Dong, N., Prentice, I. C., Wright, I. J., Evans, B. J., Togashi, H. F., Caddy‐Retalic, S., ... & 361 

Lowe, A. J. (2020). Components of leaf‐trait variation along environmental gradients. 362 

New Phytologist, 228(1), 82-94. 363 

Dwyer, J. M., Hobbs, R. J., & Mayfield, M. M. (2014). Specific leaf area responses to 364 

environmental gradients through space and time. Ecology, 95(2), 399-410. 365 

English, N. B., Weltzin, J. F., Fravolini, A., Thomas, L., & Williams, D. G. (2005). The 366 

influence of soil texture and vegetation on soil moisture under rainout shelters in a semi-367 

desert grassland. Journal of Arid Environments, 63(1), 324-343. 368 

Evans, J. R. (1989). Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia, 369 

78(1), 9-19. 370 

Falster, D., Gallagher, R., Wenk, E. H., Wright, I. J., Indiarto, D., Andrew, S. C., ... & 371 

O’Sullivan, O. S. (2021). AusTraits, a curated plant trait database for the Australian flora. 372 

Scientific data, 8(1), 1-20. 373 



18 
 

Fisher, M. J., Rao, I. M., Ayarza, M. A., Lascano, C. E., Sanz, J. I., Thomas, R. J., & Vera, R. R. 374 

(1994). Carbon storage by introduced deep-rooted grasses in the South American 375 

savannas. Nature, 371(6494), 236-238. 376 

Frenette‐Dussault, C., Shipley, B., Léger, J. F., Meziane, D., & Hingrat, Y. (2012). Functional 377 

structure of an arid steppe plant community reveals similarities with Grime's C‐S‐R 378 

theory. Journal of Vegetation Science, 23(2), 208-222. 379 

Funk, J. L., Glenwinkel, L. A., & Sack, L. (2013). Differential allocation to photosynthetic and 380 

non-photosynthetic nitrogen fractions among native and invasive species. PloS one, 8(5), 381 

e64502. 382 

Garbowski, M., Johnston, D. B., & Brown, C. S. (2021). Leaf and root traits, but not 383 

relationships among traits, vary with ontogeny in seedlings. Plant and Soil, 460(1), 247-384 

261. 385 

Gibson, D. J. (2009). Grasses and grassland ecology. Oxford University Press. 386 

Hikosaka, K. (2004). Interspecific difference in the photosynthesis–nitrogen relationship: 387 

patterns, physiological causes, and ecological importance. Journal of plant research, 388 

117(6), 481-494. 389 

Hodkinson, T. R. (2018). Evolution and taxonomy of the grasses (Poaceae): a model family for 390 

the study of species‐rich groups. Annual plant reviews Online, 255-294. 391 

Hoffman, A. M., Bushey, J. A., Ocheltree, T. W., & Smith, M. D. (2020). Genetic and functional 392 

variation across regional and local scales is associated with climate in a foundational 393 

prairie grass. New Phytologist, 227(2), 352-364. 394 

Jardine, E. C., Thomas, G. H., Forrestel, E. J., Lehmann, C. E., & Osborne, C. P. (2020). The 395 

global distribution of grass functional traits within grassy biomes. Journal of 396 

Biogeography, 47(3), 553-565. 397 

Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., ... & Kessler, 398 

M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific 399 

data, 4(1), 1-20. 400 

Kattge, J., Diaz, S., Lavorel, S., Prentice, I. C., Leadley, P., Bönisch, G., ... & Wirth, C. (2011). 401 

TRY–a global database of plant traits. Global change biology, 17(9), 2905-2935. 402 

Kooyers, N. J. (2015). The evolution of drought escape and avoidance in natural herbaceous 403 

populations. Plant Science, 234, 155-162. 404 

Legendre, P. (1993). Spatial autocorrelation: trouble or new paradigm?. Ecology, 74(6), 1659-405 

1673. 406 



19 
 

Maitner, B. S., Boyle, B., Casler, N., Condit, R., Donoghue, J., Durán, S. M., ... & Enquist, B. J. 407 

(2018). The bien r package: A tool to access the Botanical Information and Ecology 408 

Network (BIEN) database. Methods in Ecology and Evolution, 9(2), 373-379. 409 

Navas, M. L., & Moreau-Richard, J. (2005). Can traits predict the competitive response of 410 

herbaceous Mediterranean species?. Acta Oecologica, 27(2), 107-114. 411 

Nowak-Olejnik, A., Mocior, E., Hibner, J., & Tokarczyk, N. (2020). Human perceptions of 412 

cultural ecosystem services of semi-natural grasslands: The influence of plant 413 

communities. Ecosystem Services, 46, 101208. 414 

Noy-Meir, I. (1973). Desert ecosystems: environment and producers. Annual review of ecology 415 

and systematics, 4(1), 25-51. 416 

Reich, P. B., & Oleksyn, J. (2004). Global patterns of plant leaf N and P in relation to 417 

temperature and latitude. Proceedings of the National Academy of Sciences, 101(30), 418 

11001-11006. 419 

Reich, P. B. (2014). The world‐wide ‘fast–slow’plant economics spectrum: a traits manifesto. 420 

Journal of ecology, 102(2), 275-301. 421 

Sage, R. F. (2004). The evolution of C4 photosynthesis. New phytologist, 161(2), 341-370. 422 

Sandel, B., Monnet, A. C., & Vorontsova, M. (2016). Multidimensional structure of grass 423 

functional traits among species and assemblages. Journal of Vegetation Science, 27(5), 424 

1047-1060. 425 

Sandel, B., Pavelka, C., Hayashi, T., Charles, L., Funk, J., Halliday, F. W., ... & Spasojevic, M. 426 

J. (2021). Predicting intraspecific trait variation among California's grasses. Journal of 427 

Ecology, 109(7), 2662-2677. 428 

Segrestin, J., Sartori, K., Navas, M. L., Kattge, J., Díaz, S., & Garnier, E. (2021). PhenoSpace: A 429 

Shiny application to visualize trait data in the phenotypic space of the global spectrum of 430 

plant form and function. Ecology and Evolution, 11(4), 1526-1534. 431 

Shipley, B. (2006). Net assimilation rate, specific leaf area and leaf mass ratio: which is most 432 

closely correlated with relative growth rate? A meta‐analysis. Functional Ecology, 20(4), 433 

565-574. 434 

Siefert, A., Violle, C., Chalmandrier, L., Albert, C. H., Taudiere, A., Fajardo, A., ... & Wardle, 435 

D. A. (2015). A global meta‐analysis of the relative extent of intraspecific trait variation 436 

in plant communities. Ecology letters, 18(12), 1406-1419. 437 

Soreng, R. J., Peterson, P. M., Romaschenko, K., Davidse, G., Teisher, J. K., Clark, L. G., ... & 438 

Zuloaga, F. O. (2017). A worldwide phylogenetic classification of the Poaceae 439 

(Gramineae) II: An update and a comparison of two 2015 classifications. Journal of 440 

Systematics and evolution, 55(4), 259-290. 441 



20 
 

Stark, J. R., & Fridley, J. D. (2022). Microclimate‐based species distribution models in complex 442 

forested terrain indicate widespread cryptic refugia under climate change. Global 443 

Ecology and Biogeography. 444 

Stefan, V., & Levin, S. (2018). Plotbiomes: Plot Whittaker biomes with ggplot2. R package 445 

version 0.0. 0.9001. 446 

Sthultz, C. M., Gehring, C. A., & Whitham, T. G. (2007). Shifts from competition to facilitation 447 

between a foundation tree and a pioneer shrub across spatial and temporal scales in a 448 

semiarid woodland. New Phytologist, 173(1), 135-145. 449 

Still, C. J., Berry, J. A., Collatz, G. J., & DeFries, R. S. (2003). Global distribution of C3 and C4 450 

vegetation: carbon cycle implications. Global biogeochemical cycles, 17(1), 6-1. 451 

Walter, J., Jentsch, A., Beierkuhnlein, C., & Kreyling, J. (2013). Ecological stress memory and 452 

cross stress tolerance in plants in the face of climate extremes. Environmental and 453 

Experimental Botany, 94, 3-8. 454 

Warton, D., Duursma, R., Falster, D., Taskinen, S., & Duursma, M. R. (2018). Package ‘smatr’. 455 

CRAN-Softw. R (CRAN, 2015). 456 

Westerband, A. C., Funk, J. L., & Barton, K. E. (2021). Intraspecific trait variation in plants: a 457 

renewed focus on its role in ecological processes. Annals of botany, 127(4), 397-410. 458 

Westoby, M. (1998). A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and soil, 459 

199(2), 213-227. 460 

Wigley, B. J., Augustine, D. J., Coetsee, C., Ratnam, J., & Sankaran, M. (2020). Grasses 461 

continue to trump trees at soil carbon sequestration following herbivore exclusion in a 462 

semiarid African savanna. Ecology, 101(5), e03008. 463 

Wright, I. J., Reich, P. B., & Westoby, M. (2001). Strategy shifts in leaf physiology, structure 464 

and nutrient content between species of high‐and low‐rainfall and high‐and low‐nutrient 465 

habitats. Functional Ecology, 15(4), 423-434. 466 

Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., ... & Villar, R. 467 

(2004). The worldwide leaf economics spectrum. Nature, 428(6985), 821-827.  468 



21 
 

Table 1. The number of slope coefficients from individual simultaneous autoregressive models 

that were positive or negative. The number of slope coefficients that were significantly different 

from zero (p <0.05) are shown in parentheses. MAP = mean annual precipitation; MAT = mean 

annual temperature; PS = precipitation seasonality; TS = temperature seasonality; SLA = specific 

leaf area; Nmass = mass-based leaf nitrogen content; Height = plant height. 

 

 

 

  

 SLA Nmass Height 

MAP MAT PS TS MAP MAT PS TS MAP MAT PS TS 

# Positive 60 (20) 55 (20) 58 (19) 47 (16) 31 (15) 28 (11) 34 (13) 27 (12) 38 (15) 37 (17) 33 (16) 36 (15) 

# Negative 49 (22) 54 (15) 51 (22) 62 (24) 30 (10) 33 (11) 27 (11) 34 (11) 28 (12) 29 (12) 33 (15) 30 (26) 

Total 109 (42) 109 (35) 109 (41) 109 (40) 61 (25) 61 (22) 61 (24) 61 (23) 66 (27) 66 (29) 66 (31) 66 (41) 
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Figure Descriptions 

 

Figure 1. Hypothetical framework describing how a species’ typical form and function may 

influence its intraspecific trait sensitivity to climate. The central PCA depicts a partial projection 

of the global spectrum of plant form and function sensu Diaz et al. (2016) using only the traits 

involved in the present study. The solid arrows depict the direction and weighting of vectors 

describing three traits: leaf mass per area (LMA; the inverse of SLA), leaf nitrogen content 

(Nmass) and plant height (H). The colored clouds represent high (red) and low (yellow) 

probability of species occurrence in the trait space, with contour lines indicating 0.5, 0.95 and 

0.99 quantiles. The mean traits of the 122 grass species included in this analysis are overlaid on 

the PCA as larger points colored by annual (orange) or perennial lifespan (white). These species 

are well distributed within the herbaceous plant trait space (lower left cloud). While each point 

represents the mean traits for a single grass species, there is known intraspecific variation to that 

mean, which may be driven by climate. Depicted on the left and right are hypothetical intra-

specific relationships between height and precipitation for two species of similar mean height but 

drastically different leaf economic strategies. Each point in these relationships represents an 

individual of that species along a spatial gradient of precipitation. We hypothesize that 

individuals of more acquisitive species (left panel) should be able to acquire resources more 

efficiently than conservative species (right panel) and thus grow larger where resources are more 

plentiful. The PCA was created using the PhenoSpace shiny application (Segrestin et al. 2021). 

 

Figure 2. Global distribution of grass trait measurements for (A) specific leaf area (SLA), (B) 

mass-based leaf nitrogen content (Nmass), and (C) maximum plant height. For clarity, data are 

binned with the density of measurements depicted as a gradient from low (purple) to high 
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(yellow). The number of measurements and species covered varied by trait with 2648 

measurements of SLA for 109 species, 1359 measurements of Nmass for 61 species, and 1439 

measurements of plant height 66 species. (D) Our measurements span the major terrestrial 

biomes, as defined by mean annual temperature and precipitation, but are concentrated in 

grasslands and shrublands. The Whittaker plot of biomes was produced using the plotbiomes 

package (Stefan and Levin 2018). 

 

Figure 3. Standard major axis (SMA) regressions between the log-transformed continuous traits 

of interest: specific leaf area (SLA), mass-based leaf nitrogen content (Nmass), and maximum 

plant height (panels A, D, and G). The black lines in panels A and G are the significant SMA 

regression relationships and grey bands depict bootstrapped 95% confidence intervals around 

these relationships. We did not observe a significant correlation between height and SLA (panel 

D) so no line is shown. Mean trait values (± standard errors) for perennial and annual as well as 

C3 and C4 grasses are shown in panels to the right along with p-values if significant differences 

were observed.  

 

Figure 4. Boxplots showing the distribution of the slope coefficients from simultaneous 

autoregressive (SAR) models of the form: Trait ~ MAP + MAT + PS + TS. The trait-climate 

slope coefficients from these models are grouped in panels based on the climate of interest and 

color coded based on the trait. On average, each trait-climate SAR slope coefficients is not 

significantly different from zero (Bonferroni adj p-values). This is driven by both statistically 

significant positive and negative responses to climate across species (Table 1).  
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Figure 5. The effect of a species’ mean traits on its intraspecific trait responses to climate. 

Shown are partial residual plots (or just means ± SE for categorical traits) for significant 

predictors of intraspecific trait-climate slope coefficients including: Height-climate slope 

coefficients (A-E; in blue), Nmass-climate slope coefficients (F-G; in yellow), and SLA-climate 

slope coefficients (H-K; in grey). The slope coefficients (on the y-axis in each panel) are the 

response variables in the phylogenetic generalized least squares regression models shown in 

Table S1, S2, and S3. Grey bands represent the 95% confidence interval for the partial residual 

plots.  
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