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Abstract 1 

Questions: Plant traits can predict a species’ relative abundance and its influence on ecosystem 2 

processes. However, trait expression and the relative abundance of a species are also influenced 3 

by its abiotic and biotic environment. Here, we ask whether the relationship between plant traits 4 

and relative abundance is modified by abiotic (e.g., climate and topography) and biotic factors 5 

(e.g., community taxonomic and functional diversity) across Californian grasslands. 6 

Location: San Francisco Bay Area 7 

Methods: We measured specific leaf area (SLA; leaf area / dry mass) and plant height of 19 8 

grass species (family: Poaceae) across 117 plots. We also quantified the relative abundance of 9 

each species as well as several biotic attributes of the neighboring grass community including 10 

total plant cover, species richness and evenness, community-weighted mean (CWM) traits, and 11 

functional diversity. Using multiple linear regression, we assessed whether abundance could be 12 

predicted from traits and the interactions between traits and both biotic and abiotic factors. We fit 13 

similar models predicting traits from relative abundance. 14 

Results: Grass species had higher relative abundance in plots where they were taller and had 15 

higher SLA. They were also more abundant in communities with low functional richness (FRic) 16 

and high functional evenness (FEve), perhaps because of low resource use efficiency of their 17 

neighbors and a lack of dominant grasses. Neither abundance nor plant height were associated 18 

with abiotic variables, although SLA responded predictably to precipitation according to a bell-19 

shaped curve. Grasses were taller where they were more abundant, but the impact of abundance 20 

on SLA depended on community FEve. Finally, we show strong evidence for community trait 21 

similarity, whereby an individual’s trait expression was positively correlated with the traits of its 22 

grass neighbors. 23 

Conclusions: Taken together, these results imply that traits are predictive of abundance and vice 24 

versa, and these relationships depend on biotic interactions more than climate. 25 

 26 

Key words: plant functional traits, relative abundance, grasses, specific leaf area, plant height, 27 

functional diversity, community-weighted traits, climate, species interactions  28 
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Introduction 29 

A major goal of ecological research is to understand where species occur and how 30 

abundant they are. Plant traits are key to understanding the environmental conditions under 31 

which species can exist (Diaz et al. 1998), and there is mounting evidence that traits can also 32 

predict the abundance of a species relative to co-occurring species (Reader 1998; Shipley et al. 33 

2006; Cornwell and Ackerly, 2010; Laliberte et al. 2012). Understanding these trait-abundance 34 

relationships is critical for scaling from individuals to ecosystems, as the traits of more abundant 35 

species are likely to have the greatest impact on ecosystem processes (Grime 1998). However, 36 

much of this research has focused on whether plant traits can predict the abundance of a species 37 

(Shipley et al. 2006), and not the other way around. Substantial intraspecific trait variation exists 38 

across communities (Siefert et al. 2015), which may be explained by a species’ relative 39 

abundance in that community. Moreover, both the traits expressed by a plant and its abundance 40 

at a particular location are functions of its biotic and abiotic environment. In this study, we 41 

therefore explore biotic and abiotic controls on abundance and trait expression, and the bi-42 

directional relationship between them. 43 

There are two major mechanisms by which the abundance of a species may predict its 44 

trait expression. The first is that a species’ abundance can reflect, to some degree, the intensity of 45 

intraspecific competition in a plot, which is often stronger than interspecific competition (Adler 46 

et al. 2018) and can promote certain trait expressions. The effect competition has on trait 47 

expression depends on whether a species or individual tolerates or attempts to outcompete its 48 

competitor (Novoplansky 2009). In the case of intraspecific competition, evidence suggests 49 

species more often attempt to outcompete their neighbors (Bennett et al. 2016; Rehling et al. 50 

2021). Compared to solitary individuals, for example, grasses growing in pots with a high 51 

density of conspecific individuals increased biomass allocation to roots, likely to outcompete 52 

neighboring individuals for belowground resources (Rehling et al. 2021). Among a diversity of 53 

grasses, legumes, and forbs, heightened intraspecific competition led to increased SLA, a trait 54 

associated with acquisitive resource use strategies (Bennett et al. 2016). And a recent meta-55 

analysis suggests individuals growing in monospecific stands of higher density have higher SLA 56 

and specific stem length (Postma et al. 2021). Therefore, we expect high relative abundance 57 

should promote the expression of more competitive traits such as high SLA and taller growth. 58 
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The second major mechanism arises because of a shared response of abundance and trait 59 

expression to some environmental driver. In other words, spatial variation in a species’ relative 60 

abundance may be predictive of trait variation across sites if abundance reflects the climatic 61 

suitability of a site. In this scenario, abundance would not directly influence trait values, yet the 62 

climate or other abiotic site characteristics that promote high abundance may also promote 63 

particular trait expressions. Relationships between abundance and the abiotic environment are 64 

often conceived as hump-shaped curves, where abundance is maximized in some optimal 65 

condition and declines away from that optimum (Van Couwenberghe et al. 2013). Functional 66 

traits, in turn, may show similar response curves if the trait is driven primarily by the degree of 67 

optimality of the environment, or could be more linear if the trait expression is directly driven by 68 

the environmental variable. In the latter case, we would not expect abundance to be predictive of 69 

trait expression. We know climate can partially explain spatial variation in the traits of a species 70 

(Sandel et al. 2021, Cardou et al. 2022), although there remains significant unexplained 71 

variation. And it is logical to assume that high relative abundance is indicative of greater climatic 72 

site suitability for growth/reproduction, although recent analyses disagree on whether this is 73 

empirically supported (Weber et al. 2017; Dallas and Hastings, 2018). Site suitability based on 74 

climate records alone does not account for the many biotic interactions that could influence 75 

species abundance. Furthermore, the impact these biotic interactions (e.g. herbivory, 76 

competition, fungal colonization) on relative abundance is context-dependent and can shift 77 

depending on temperature or other climatic variables (Lynn et al. 2019). Therefore, the effect of 78 

abundance on trait expression is likely dependent on both abiotic and biotic environmental 79 

conditions. 80 

The potential for biotic interactions (at least plant-plant interactions) to influence traits 81 

and relative abundance can at least partially be summarized by the taxonomic and functional 82 

composition of the neighboring community. For example, forbs growing in higher richness 83 

treatments were taller and had larger leaves with higher SLA (Lipowsky et al. 2015). Evidence 84 

suggests that this response was due to biodiversity acting as a selective pressure on trait 85 

expression rather than trait plasticity driving the response (van Moorsel et al. 2018). Species-rich 86 

communities are also more likely to contain productive dominant species (e.g., selection effect, 87 

Huston 1997) that may limit the abundance and perhaps trait expression of other individuals. 88 

Similarly, communities with low species evenness often contain dominant species that, by 89 
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definition, have high relative abundance and outcompete their neighbors (Avolio et al. 2019). 90 

Community-weighted mean (CWM) plant traits (i.e., traits weighted by relative abundances) 91 

describe the trait composition of the entire community but mostly reflect dominant species, 92 

particularly in uneven communities. The CWM of a neighboring community may be predictive 93 

of a species/individual’s trait expression if trait optima exist in certain environments (Dong et al. 94 

2020), but may also say something about the competitive nature of the environment (e.g., high 95 

abundance of tall species with large leaves). Finally, functional diversity might influence a 96 

species relative abundance and trait expression if the size of the community functional niche 97 

space, and neighboring species’ relative locations within that space, is indicative of potential 98 

functional trait overlap (Mason et al. 2005). 99 

Here, we assessed whether the relative abundance of grass species influences the local 100 

expression of two traits, SLA and plant height, in California grassland communities. We tested 101 

the hypothesis that species are taller and have higher SLA where they are more abundant, but 102 

that this depends on climate and biotic interactions. Additionally, we assessed whether local trait 103 

values predict an individual’s relative abundance (Cornwell and Ackerly, 2010). Specifically, we 104 

expected taller species with more acquisitive resource use strategies (e.g., high SLA) would be 105 

more abundant than co-occurring species. In our models, we included information about the 106 

biotic attributes of the community (e.g., taxonomic and functional diversity) as well as long-term 107 

and recent precipitation patterns because both abiotic and biotic factors are known to influence 108 

species abundance and trait expression (Novoplansky 2009; Weber et al. 2017; Lynn et al. 2019; 109 

Sandel et al. 2021). There is a need to make accurate predictions of the spatial variation in plant 110 

traits within species (Sandel et al. 2021), especially as traits such as height and SLA are 111 

incorporated into global vegetation models (Madani et al. 2018). This study may improve such 112 

models by increasing our understanding of trait-abundance relationships for grasses (family: 113 

Poaceae), an ecologically, economically, and culturally important plant family.  114 

 115 

Methods 116 

Data collection 117 

We measured traits of grasses across several grassland communities in the San Francisco 118 

Bay Area, which is characterized by a Mediterranean climate with warm, dry summers and cool 119 
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wet winters. We measured SLA and plant height in late April through early June to capture the 120 

end of the growing season. These traits represent separate axes in the global spectrum of plant 121 

form and function, one related to size and the other to resource economics (Diaz et al. 2016; 122 

Sandel et al. 2016). Overall, we sampled 19 grass species from 117 plots across four growing 123 

seasons (2017-2019, and 2021) (Appendix S1). Most of these species are relatively abundant and 124 

widespread in California grasslands (Stromberg et al. 2007). Measurements were not repeated in 125 

each plot; rather, new plots were added in each year for a total of 117 plots across the four years 126 

of measurements. Measurements in 2020 were limited due to the COVID-19 pandemic. 127 

Traits were measured on up to five arbitrarily selected individuals of each grass species 128 

present in a 5x5 meter plot. First, plant height was recorded as the distance from the ground to 129 

the base of the blade of the highest leaf (excluding flag leaves). Then, we collected the highest 130 

fully expanded, undamaged, green leaf and immediately photographed it against a white 131 

background with a reference scale bar. If necessary, a piece of plexiglass was used to hold the 132 

leaf flat during imaging. We then transported leaves back to the lab where they were oven-dried 133 

at 55-60 ℃ for at least 48 hours prior to measuring leaf dry mass. We estimated leaf area from 134 

images using ImageJ software and calculated SLA as leaf area divided by leaf dry mass. Trait 135 

measurements for a species were averaged across the plot. 136 

 Within each plot, we estimated the absolute abundance of each species present including 137 

non-grasses. Absolute abundance was estimated as binned values of aerial cover: 1% (present), 138 

5%, 10%, and all multiples of 10 up to 100%. Note, total aerial plant cover can exceed 100% due 139 

to canopy layering. Relative abundance was then estimated as the absolute abundance divided by 140 

total plant cover in a plot. For each plot, we also estimated species richness as the total number 141 

of species present, and species evenness as the ratio of Shannon’s diversity index and the natural 142 

logarithm of species richness (Pielou 1966). Finally, we calculated several indices of functional 143 

composition using the locally measured traits of the grass community. Plots were largely 144 

dominated by grasses (median relative abundance = 80%), so such measures are reflective of the 145 

larger plant community (Appendix S2). Specifically, we estimated community-weighted means 146 

(CWMs) for grass SLA and height (weighted by relative abundance), and three indices of 147 

functional diversity (Villéger et al. 2008; Laliberté et al. 2014): functional dispersion (FDis; the 148 

multivariate equivalent of mean absolute deviation in trait space), functional richness (FRic; the 149 

total volume of the 2‐dimensional functional space occupied by the community), and functional 150 
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evenness (FEve; the regularity of spacing between species within multivariate trait space). We 151 

used the dbFD function in the FD package to estimate functional diversity indices in two-152 

dimensional trait space (e.g. height and SLA combined) (Laliberté et al. 2014).  153 

To describe recent and long-term precipitation patterns, we used PRISM climate data 154 

(PRISM Climate Group, 2021). For each sampling plot, we extracted the 30-year normal for 155 

precipitation and the monthly precipitation for the 12 months preceding sampling. We call these 156 

P and P1, respectively and from them computed Pdev as P1-P, which represents whether the year 157 

prior to sampling was relatively wet (positive values of Pdev) or dry (negative values of Pdev) at 158 

a site. Despite all measurements taking place within the San Francisco Bay Area, our sites 159 

covered a strong gradient of mean annual precipitation (588-1370 mm/year). Considering the 160 

strong topographic gradients present in this region, we also record the slope and aspect of each 161 

plot, obtained from the 10 m resolution digital elevation model from the National Elevation 162 

Dataset. 163 

 164 

Data Analysis 165 

To relativize across species, we determined the plot-level deviation in trait values (SLA 166 

or Height) from the species’ mean trait value (deviation = (mean trait of a plot) - (mean trait 167 

averaged across plots)). Traits were averaged within plots before calculating the mean across 168 

plots. Positive values of trait deviation therefore indicate individuals in the plot were taller or had 169 

higher SLA relative to the species’ average trait value. We then pooled data across species and 170 

ran multiple linear regression models predicting either SLA or Height deviation from a species’ 171 

relative abundance and both abiotic and biotic plot characteristics. Species present in less than 3 172 

plots were excluded (n = 19 total species included in the analysis). Relative abundance was used 173 

instead of absolute abundance to demonstrate the degree to which the species was dominant in a 174 

plot. We included all two-way interactions between relative abundance and each of the plot 175 

characteristics to determine whether the effect of relative abundance on traits was influenced by 176 

biotic and abiotic conditions. Abiotic predictor variables included P, Pdev, slope, and northness. 177 

Northness was estimated as the cosine of aspect, where positive values indicate more north-178 

facing slopes. Biotic predictor variables included species richness and evenness, CWMs of SLA 179 

and Height, total plant cover, as well as all three indices of functional diversity (FDis, FEve, and 180 
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FRic). We also ran similar models with absolute abundance rather than relative abundance, 181 

although these models excluded total plant cover. Importantly, for each row in the dataset (plot × 182 

species combination; n = 659), we calculated plot-level CWMs (weighted by species relative 183 

abundance) and functional diversity excluding the focal species of the row (i.e., the species we 184 

were predicting trait deviation for). Therefore, CWMs and functional diversity indices represent 185 

the functional composition of the neighboring plant community. Given that FEve cannot be 186 

calculated on communities with less than three functionally distinct species, we removed 27 rows 187 

from the dataset prior to modeling due to missing values. 188 

To determine whether traits predict relative abundance, we ran similar multiple linear 189 

regression models but with arcsin-transformed relative abundance as the response variable. 190 

Abiotic variables included climate, slope, and northness. Biotic variables included species 191 

richness and evenness as well as the functional diversity of the neighboring community (FDis, 192 

FRic, and FEve calculated the same as above). Finally, we included the trait deviation from local 193 

CWMs for both height and SLA as well as all two-way interactions between trait deviations and 194 

both biotic and abiotic plot characteristics. Similar models were run for absolute abundance 195 

which excluded total cover as a predictor variable. 196 

We checked model assumptions using the check_model() function in the performance 197 

package (Lüdecke et al. 2021). When necessary, we log-transformed predictor variables to meet 198 

assumptions of normality and scaled all predictor variables to remove potential collinearities. We 199 

visualized the effects of significant predictor variables (p <  0.05) on response variables using 200 

partial residual plots produced with the visreg package (Breheny & Burchett 2017). All analyses 201 

were conducted in R Statistical Programming (version 4.1.3). 202 

 203 

Process Model 204 

 To assess the robustness of our findings, we created a community process model to 205 

simulate the effects of plant traits, competition, and community composition on a species’ 206 

relative abundance. The goal was to develop a model with known parameters affecting species 207 

abundances as a function of their functional traits and those of co-occurring species. We could 208 

then ask whether variation in these parameters could be detected using our empirical modeling 209 

approach described above. 210 
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 The model begins with a set of S species randomly arrayed in a two-dimensional space. 211 

The species coordinates in this space were drawn within a unit circle using a polar coordinate 212 

system, with a random angle (with uniform probability across the interval [0,2π]) and random 213 

radius (with uniform probability in the interval [0,1]). Each starts the simulated growing season 214 

at low abundance and grows according to an adaptation of the discrete time Lotka-Volterra 215 

competition equations (modified to allow competition among multiple species): 216 

𝑁𝑡+1 = 𝑁𝑡(1 + 𝑟(1 −
𝑁𝑡

∗

𝐾
) 217 

Where Nt represents the population size of the species at time t, and r and K represent the 218 

population growth rate and carrying capacity. Nt* represents the effective population size for the 219 

species, as follows: 220 

𝑁𝑡
∗ = 𝑁𝑡 +  ∑ 𝐶𝑖,𝑡𝑃𝑖

𝑆

𝑖=1

 221 

Where Ci,t is the abundance of the ith of S competing species, and Pi represents the proximity to 222 

the focal species in the trait space. Thus, the effective population size is the species’ own 223 

population size, plus contributions from each competing species, according to how functionally 224 

similar (proximate) these species were. Proximities were calculated according to a logistic 225 

transformation of a rescaled Euclidean distance (d) in the trait space: 226 

𝑃𝑖 =
𝑒−5(𝑑−0.5)

1 + 𝑒−5(𝑑−0.5)
 227 

 228 

The rescaling was performed on the Euclidean distances, simply dividing each distance by a 229 

factor D. This has the result of simulating intense competition when D is large (i.e., many species 230 

are in close proximity to one another) or weak competition when D is small (i.e., most species 231 

interact only weakly with their neighbors).  232 

For each simulation, we also defined an optimum X,Y position in the trait space. A species’ 233 

carrying capacity was a function of its proximity to that optimum: 234 

𝐾 = 100 + 𝑃𝑖𝐴 235 
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Where A describes how advantageous it is to be near the optimum. The K values for all species 236 

in a simulation were then rescaled to a mean of 100. 237 

After 100 time steps, we recorded each species’ final abundance and considered its x and 238 

y coordinates to be its trait values. From this, we calculated FDis, FRic, and FEve using the FD 239 

package. We also calculated a species deviation from the bivariate CWM (hereafter referred to as 240 

FUniq). 241 

We repeated the simulation 10,000 times with random draws of: species richness (S, 242 

integers with uniform probability in [3,10]), the X,Y position of the trait optimum (within the 243 

unit circle), the optimum advantage (A, uniform probability in [0,100]), and the competitive 244 

radius (D, uniform probability in [0,3]).  245 

Finally, we ran a multiple linear regression model predicting a species’ abundance from 246 

each metric of functional diversity, species richness, total plant cover, and all two-way 247 

interactions between FUniq and other predictor variables. This was done to match the empirical 248 

model as closely as possible. We included a new variable, Resource, to mimic precipitation. This 249 

was calculated from the competition scaling variable (D) as: Resource = sqrt(1/(1+D)).  250 

 251 

Results 252 

 We found that intraspecific variation in SLA across 19 California grasses was linked to 253 

an individual’s relative abundance, precipitation, and the functional composition of the local 254 

grass community. Our model explained 24% of variation in SLA deviation across plots and 255 

species (Table 1). We observed a positive relationship between SLA and community-weighted 256 

SLA whereby individuals tended to have higher SLA in plots where the local grass community 257 

(or at least the dominant species) also had high SLA (Figure 1). Notably, the focal species was 258 

excluded from estimates of CWM SLA, so these estimates represent traits of other neighboring 259 

grass species. Additionally, we observed a significant interaction between mean annual 260 

precipitation and the precipitation accumulated over the 12 months prior to trait measurements 261 

(P*Pdev; Table 1). Specifically, in dry regions, individuals had higher SLA in wet years 262 

compared to their species’ mean, but the opposite trend was observed in wet sites (Figure 2A). 263 

Finally, we observed a significant negative interaction between an individual’s relative 264 
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abundance and the functional evenness of the neighboring community (Table 1). Individuals had 265 

higher SLA compared to their species mean where they were more abundant and the local 266 

community had low functional evenness. In contrast, abundant individuals had lower SLA in 267 

communities with high functional evenness (Figure 2B). We observed similar results for models 268 

including absolute abundance rather than relative abundance (Appendix S3), with the addition of 269 

absolute cover having a significantly negative main effect on SLA deviation.  270 

Our model predicting height deviation from abiotic and biotic attributes of the sampling 271 

plot explained ~21% of trait variation (Table 1). We found that individuals were generally taller 272 

relative to their species’ mean in plots where they had higher relative abundance (Figure 3A). 273 

Additionally, individuals were taller in plots with greater total plant cover (Figure 3B) and 274 

where/when the local grass community was taller (i.e., high community-weighted plant height 275 

excluding the focal species) (Figure 3C). Notably, none of the abiotic variables (e.g., climate or 276 

topography) influenced whether an individual was tall or short relative to its species mean. We 277 

observed similar results for the model including absolute abundance (Appendix S3), with the 278 

only change being an observed positive effect of neighboring community SLA on height 279 

expression. 280 

We found that a species’ traits, as well as the functional diversity of its neighboring grass 281 

community, influenced its relative abundance. Our model explained 16% of variation in relative 282 

abundance (Table 2). Individuals had the highest relative abundance where they had higher SLA 283 

and were taller compared to their neighboring grass community (Figure 4). The significant 284 

positive interaction term suggests relative abundance is maximized with a combination of tall 285 

stature and high SLA (Table 2). Additionally, species had higher relative abundance in plots 286 

where the local grass community had low functional richness but high functional evenness and 287 

total cover (Figure 5). Community functional richness is sensitive to gradients in species richness 288 

(Mason et al. 2013), so this could be indicative of a negative effect of species richness, which did 289 

vary across plots (Appendix S2); however, species richness was not a significant predictor of 290 

relative abundance (Table 2). Notably, none of the abiotic variables (e.g., climate or topography) 291 

influenced an individual’s relative abundance in our model (Table 2). Results were generally 292 

similar for the model predicting absolute abundance from abiotic and biotic variables (Appendix 293 

S4). The major significant difference was an observed negative interaction between mean annual 294 

precipitation and recent precipitation (P*Pdev; p-value = 0.032) suggesting absolute cover of 295 
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species increases in wet years, but this has a diminishing effect the wetter a site gets. 296 

Additionally, we observed a positive interaction between SLA and topographical slope, meaning 297 

the positive effect of SLA on absolute abundance is more pronounced on steeper slopes 298 

(Appendix S4).  299 

Our process model largely supported our empirical results (Figure 6). A species' relative 300 

abundance in our simulated communities was strongly positively influenced by its trait deviation 301 

from the CWM trait. Abundance was also negatively correlated with FRic and positively 302 

correlated with FEve. The simulation model did have some differences from the empirical data. 303 

First, relative abundance was higher in plots with low species richness and low total cover, 304 

which was not the case in the empirical model. Additionally, FDis had a significant negative 305 

effect on relative abundance in simulated communities. We also found a positive effect of 306 

precipitation (i.e., resource availability) on relative abundance, although this specific variable 307 

was not included in our empirical dataset. Finally, we found that the positive effect of Funiq on 308 

abundance (i.e., trait deviation from CWM) depended on several other metrics of community 309 

composition. Specifically, we found a significant negative interaction between FUniq and FEve, 310 

species richness, and cover. This suggests being functionally different from the CWM has less of 311 

a positive influence on relative abundance in productive, species-rich communities with high 312 

functional evenness. On the other hand, we observed a significant positive interaction between 313 

FUniq and FDis, which indicates an even greater benefit of functional uniqueness on relative 314 

abundance when neighboring species are also functionally distinct.  315 

 316 

Discussion 317 

 We measured trait-abundance relationships across 19 grass species in California to see 318 

how they might be modified by abiotic and biotic interactions. Our models support previous 319 

findings that SLA and height are predictive of a species’ relative abundance (Cornwell and 320 

Ackerly, 2010). Furthermore, we found that species were more relatively abundant when 321 

growing in productive (i.e., high plant cover) communities with low functional richness, but high 322 

functional evenness. In addition, species were both taller and had higher SLA when growing in 323 

communities where their neighbors had similar traits, as inferred from community-weighted 324 

traits. Species were taller where they had higher relative abundance, but the influence of relative 325 
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abundance on SLA varied depending on the neighboring grass community's functional evenness. 326 

Climate was an important predictor of SLA variation, although biotic factors more strongly 327 

influenced the expression of both traits as well as species relative abundance. Taken together, 328 

these results imply that traits are predictive of relative abundance and vice versa, and these 329 

relationships depend on biotic interactions.  330 

 Precipitation is often not a strong predictor of SLA (Moles et al. 2014), yet we observed a 331 

hump-shaped relationship whereby grass SLA is maximized at intermediate precipitation and 332 

declines towards the extremes (Figure 2A). A positive effect of recent precipitation on SLA, as 333 

observed on the drier end of a species’ range, likely represents a water conservation strategy 334 

whereby species reduce their evaporative surface area in drier conditions (Dwyer et al. 2014). On 335 

the wet end, however, the mechanism of declining SLA with increasing precipitation is 336 

unknown. The response was largely driven by changes in leaf tissue density rather than leaf 337 

thickness (Sandel and Griffin-Nolan in review), which might indicate a reduction in leaf air 338 

space and thus increased photosynthetic performance in wetter more competitive environments 339 

(Chazdon and Kaufmann 1993). Regardless of the mechanisms controlling SLA variation, these 340 

results suggest SLA-abundance relationships will likely depend on both long-term and recent 341 

annual precipitation. 342 

Plant height was not correlated with long-term or recent precipitation, which supports 343 

previous findings of a weak effect of precipitation on both intra- and inter-specific variation in 344 

height (Siefert et al. 2015). A positive effect of precipitation on height might be expected given 345 

that taller plants are often more productive plants (Niklas and Enquist 2001) and grassland 346 

productivity is largely limited by precipitation (Churkina and Running 1998). However, grasses 347 

may invest more in horizontal growth and tiller density depending on their functional type (i.e., 348 

caespitose, rhizomatous and stoloniferous graminoids) which may complicate this relationship if 349 

stem density is more adaptive than vertical growth in certain environmental conditions (Hartnett 350 

and Fay 1998). Plant height was, however, associated with biotic variables in our models. 351 

Specifically, individuals were taller where they were more relatively abundant (Figure 3A). If 352 

relative abundance reflects the degree of intraspecific competition as we hypothesized, then this 353 

response may reflect a strategy of outcompeting other individuals of the same species via 354 

shading. However, a recent meta-analysis suggests a doubling of conspecific stand density has 355 

no significant effect on plant height (Postma et al. 2021). Alternatively, high relative abundance 356 
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may reflect greater site suitability (Weber et al. 2017) which should lead to taller growth relative 357 

to the species mean. Height was also positively associated with the total plant cover of a plot 358 

(Figure 3B), which can be viewed as a proxy for productivity, site suitability, and/or potential 359 

competition. In this case, we hypothesize that total cover is representative of site suitability and 360 

productivity, rather than competition, given its positive effect on height. 361 

While height was positively influenced by relative abundance across all plots (i.e., 362 

significant main effect; Table 1), the effect of relative abundance on SLA depended on the 363 

functional evenness of neighboring communities (Figure 2B). Functional evenness describes the 364 

degree to which species are evenly distributed within the multivariate trait space. If we assume 365 

traits reflect resource use strategies, then communities with high FEve efficiently utilize the 366 

available resources in a plot (Mason et al. 2005). In such communities, we observed a negative 367 

effect of a species’ relative abundance on SLA, which may reflect increased intraspecific 368 

competition selecting for resource conservative strategies in a community where neighbors 369 

efficiently utilize available resources. However, relative abundance had a positive effect on SLA 370 

when individuals were growing in low FEve communities. Such communities tend to have 371 

greater niche overlap, with only a few species dominating both community biomass and a certain 372 

region of the trait space (Ali et al. 2018). Therefore, high abundance may promote high SLA in 373 

these communities if such acquisitive traits help maintain dominance, although the link between 374 

traits and dominance is unclear (Avolio et al. 2019). Increased stand density and abundance of 375 

conspecific individuals generally leads to increased SLA in monocultures (Postma et al. 2021); 376 

however, our results highlight the importance of considering neighboring community functional 377 

diversity when assessing trait responses to conspecific stand density (i.e., abundance). 378 

For both height and SLA, we observed a positive effect of CWM traits on an individual's 379 

trait expression (Figure 1 and Figure 3C), suggesting species have similar trait expression as 380 

their neighbors. This supports previous observations in herbaceous communities of plant trait 381 

convergence towards optimal expression under similar environmental conditions, particularly for 382 

productivity-related traits such as SLA (Grime 2006). It also suggests an optimal trait expression 383 

exists in a given environment and the benefits of this outweigh the potential benefits of niche 384 

differentiation (Weiher et al. 1998). Alternatively, plants may converge to similar heights as their 385 

neighbors, despite the competitive advantage gained by taller stature, as a mechanism to reduce 386 
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stress caused by wind (Nagashima and Hikosaka 2011), a likely mechanism in open windy 387 

grassland habitats.   388 

Past research has confirmed that traits are predictive of a species’ relative abundance. In a 389 

coastal California woodland, for example, taller plants and those with low SLA were the most 390 

abundant, likely due to their late successional growth strategy being optimal for an ecosystem 391 

that had not recently experienced large-scale disturbance (Cornwell and Ackerly, 2010). We 392 

observed slightly different results in California grasslands - taller plants and those with high SLA 393 

compared to neighboring grasses were the most abundant (Figure 4). This likely reflects the 394 

competitive advantage of having both high SLA and tall stature in a disturbance prone 395 

ecosystem. Tall individuals with high SLA are often more competitive and shade out 396 

neighboring plants (Westoby 1998). Importantly, we not only observed significant main effects 397 

of these traits, but also a significant interaction between these two traits (Figure 4). Height and 398 

SLA are often not correlated and represent separate axes in the global spectrum of plant form and 399 

function (Diaz et al. 2016). Therefore, species do not necessarily face a tradeoff between these 400 

two traits and can invest in both tall stature and high SLA to maximize relative abundance. 401 

In addition to traits influencing abundance, functional richness and functional evenness of 402 

the neighboring community had contrasting effects on an individual’s relative abundance (Figure 403 

5A and B). Functional richness describes the overall size of the multivariate trait space in a 404 

community. Low FRic could imply available resources are not being utilized efficiently (Mason 405 

et al. 2005), although this metric does not account for unoccupied “holes” in the multivariate trait 406 

space (Legras et al. 2018). Thus, the negative effect of functional richness on relative abundance 407 

could indicate species are able to capitalize on the inefficient resource utilization of their 408 

neighbors in low FRic communities. The positive effect of FEve suggests that individuals can 409 

achieve particularly high abundance in communities where their neighbors are not overlapping in 410 

one region of the functional space. These two results could have implications for the 411 

management of invasive grasses in California and the restoration of communities with targeted 412 

functional diversity that supports high abundance of certain species but not others (Cadotte et al. 413 

2011).  414 

We also found species were more abundant in plots with high total plant cover, which can 415 

be viewed as a measure of plot productivity, but also a combined measure of potential inter- and 416 
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intraspecific competition. This positive, albeit weak, effect of total cover on relative abundance 417 

in our empirical models could be due to the target species’ abundance contributing to total cover 418 

of that plot. We further tested these relationships using a community process model with much 419 

higher sample size and observed an overwhelmingly negative effect of total cover on a species' 420 

relative abundance. This suggests high total plant cover, and thus competition, should reduce a 421 

species’ relative abundance in that plot, although this is likely context-dependent (Aschehoug et 422 

al. 2016). Importantly, this was the only major inconsistency between the observed significant 423 

effects in our empirical model and the directionality of those effects in the process model. In 424 

most respects, this model verified the efficacy of our statistical assessment in recovering known 425 

mechanistic processes. 426 

Our empirical models do not perfectly describe the biotic attributes of the communities 427 

we studied; therefore, certain results should be viewed with caution. For example, our functional 428 

diversity metrics and CWMs exclude forbs and other non-grasses, which are interacting with 429 

focal species and may influence traits and abundance, especially if deep-rooted trees and shrubs 430 

facilitate shallow-rooted grasses through hydraulic lift (Priyadarshini et al. 2016). However, our 431 

plots were heavily dominated by grasses (Appendix S2) giving us high confidence that we 432 

represented the functional qualities of the local community. Additionally, our process model 433 

(which incorporates the abundances of 100% of species in the theoretical community) largely 434 

agreed with our empirical results (Figure 6). Moreover, grasses mainly interact with neighboring 435 

grasses, at least belowground, as forbs often occupy a different rooting space (Nippert and 436 

Knapp 2007). A final caveat of our analysis is that we assume species are responding similarly to 437 

climate and community composition (i.e., no random effect of species included in our models). 438 

This is perhaps a flawed assumption, but we opted to pool species together to avoid overfitting 439 

models. 440 

 The goal of this paper was to determine how abiotic and biotic factors influence trait-441 

abundance relationships across grass species. Our empirical models suggest that traits do 442 

influence relative abundance, but that this is independent of climate. Indeed, climate had little to 443 

no influence on a species’ relative abundance while indices of functional diversity did. The 444 

process model simulations suggested that functional aspects of the neighboring community do 445 

interact with an individual’s traits to influence its abundance; thus, a higher sample size may 446 

reveal this pattern in natural ecosystems. We also considered how relative abundance influences 447 
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traits, which is less often discussed in trait-abundance literature. We found that relative 448 

abundance positively influences height, and has variable impacts on SLA depending on the 449 

functional evenness of the neighboring community. Moreover, we confirm previous findings that 450 

long-term and antecedent precipitation influence SLA, but not grass height, likely because 451 

grasses exhibit a range of vertical and horizontal stem growth strategies. Finally, we show strong 452 

support for community trait similarity, whereby an individual grass’s trait expression was 453 

positively correlated with the traits of its grass neighbors. These results suggest trait-abundance 454 

relationships are more complex than previously thought and both biotic and abiotic factors 455 

should be considered in modeling trait variability.    456 
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Table 1. ANOVA table showing results from two separate models predicting an individual 607 

plant’s SLA and Height deviation (i.e., deviation from its species mean) from biotic and abiotic 608 

characteristics of the plot. Abundance refers to relative abundance 609 

 610 

  SLA deviation Height deviation 

Predictors Estimates CI T-value p Estimates CI T-value p 

Intercept 0.013 -0.012 – 0.039 1.027 0.305 -0.003 -0.030 – 0.024 -0.212 0.832 

abundance -0.022 -0.047 – 0.002 -1.813 0.07 0.029 0.003 – 0.055 2.198 0.028 

P -0.053 -0.082 – -0.024 -3.563 <0.001 -0.009 -0.040 – 0.022 -0.585 0.559 

Pdev 0.024 -0.010 – 0.057 1.372 0.17 0.004 -0.032 – 0.040 0.225 0.822 

cover -0.016 -0.047 – 0.015 -1.017 0.309 0.05 0.017 – 0.084 2.99 0.003 

richness -0.01 -0.047 – 0.026 -0.547 0.584 -0.028 -0.067 – 0.011 -1.405 0.161 

evenness -0.004 -0.033 – 0.024 -0.287 0.774 -0.001 -0.032 – 0.029 -0.093 0.926 

CWM SLA 0.129 0.104 – 0.154 10.219 <0.001 0.022 -0.004 – 0.049 1.652 0.099 

CWM Height 0.021 -0.005 – 0.048 1.566 0.118 0.126 0.098 – 0.155 8.629 <0.001 

FDis -0.017 -0.049 – 0.014 -1.093 0.275 -0.028 -0.062 – 0.005 -1.668 0.096 

FRic 0.019 -0.015 – 0.053 1.116 0.265 0.028 -0.008 – 0.065 1.521 0.129 

FEve -0.005 -0.031 – 0.022 -0.351 0.726 0.017 -0.011 – 0.045 1.173 0.241 

northness 0 -0.026 – 0.025 -0.016 0.987 0.015 -0.012 – 0.043 1.107 0.269 

slope 0.004 -0.024 – 0.032 0.289 0.773 -0.026 -0.056 – 0.003 -1.746 0.081 

abundance*P 0.022 -0.009 – 0.053 1.393 0.164 -0.006 -0.039 – 0.027 -0.361 0.718 

abundance*Pdev -0.013 -0.042 – 0.015 -0.913 0.361 -0.019 -0.050 – 0.011 -1.235 0.217 

P*Pdev -0.034 -0.064 – -0.003 -2.158 0.031 0.014 -0.019 – 0.047 0.852 0.394 

abundance*cover 0.007 -0.025 – 0.038 0.428 0.669 -0.011 -0.045 – 0.022 -0.663 0.507 

abundance*richness -0.01 -0.045 – 0.025 -0.552 0.581 -0.006 -0.043 – 0.032 -0.305 0.76 

abundance*evenness -0.008 -0.037 – 0.021 -0.549 0.583 0 -0.030 – 0.031 0.021 0.983 

abundance*SLA -0.007 -0.031 – 0.017 -0.583 0.56 0.026 -0.000 – 0.051 1.954 0.051 

abundance*Height -0.004 -0.031 – 0.022 -0.309 0.758 0.016 -0.012 – 0.044 1.101 0.271 

abundance*FDis -0.011 -0.042 – 0.020 -0.724 0.469 -0.008 -0.041 – 0.025 -0.465 0.642 

abundance*FRic 0.006 -0.027 – 0.040 0.367 0.713 0.011 -0.025 – 0.047 0.623 0.534 

abundance*FEve -0.033 -0.060 – -0.006 -2.371 0.018 -0.002 -0.031 – 0.027 -0.11 0.912 

abundance*northness 0.025 -0.002 – 0.053 1.808 0.071 -0.019 -0.049 – 0.010 -1.292 0.197 

abundance*slope 0.008 -0.019 – 0.036 0.594 0.553 0.005 -0.025 – 0.034 0.323 0.747 

Observations 632 632 

R2 / R2 adjusted 0.243 / 0.211 0.208 / 0.174 

  611 
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Table 2. ANOVA table showing results from a multiple linear regression model predicting an 612 

individual grasses relative abundance from biotic and abiotic plot characteristics. 613 

  arcsin(Relative abundance) 

Predictors Estimates CI T-value p 

Intercept 0.3187 0.2996 – 0.3379 32.6969 <0.001 

P -0.0063 -0.0279 – 0.0152 -0.5791 0.563 

Pdev -0.0069 -0.0313 – 0.0176 -0.5524 0.581 

SLA deviation from CWM 0.0392 0.0207 – 0.0576 4.1734 <0.001 

Height deviation from CWM 0.0491 0.0295 – 0.0687 4.9233 <0.001 

northness -0.011 -0.0292 – 0.0071 -1.1962 0.232 

slope 0.0111 -0.0092 – 0.0314 1.0716 0.284 

FDis -0.0176 -0.0396 – 0.0045 -1.5642 0.118 

FRic -0.0314 -0.0557 – -0.0070 -2.5333 0.012 

FEve 0.0196 0.0000 – 0.0391 1.9684 0.049 

cover 0.0229 0.0008 – 0.0449 2.0378 0.042 

richness -0.013 -0.0380 – 0.0121 -1.0153 0.31 

evenness -0.0186 -0.0393 – 0.0021 -1.7655 0.078 

P*Pdev 0.0052 -0.0171 – 0.0275 0.4579 0.647 

P*SLA 0.0065 -0.0160 – 0.0291 0.5703 0.569 

P*Height 0.0118 -0.0112 – 0.0348 1.004 0.316 

Pdev*SLA 0.0008 -0.0195 – 0.0211 0.0761 0.939 

Pdev*Height -0.0045 -0.0275 – 0.0186 -0.3794 0.705 

SLA*Height 0.027 0.0089 – 0.0452 2.9242 0.004 

northness*SLA 0.0146 -0.0059 – 0.0350 1.3978 0.163 

northness*Height -0.0036 -0.0210 – 0.0138 -0.405 0.686 

slope*SLA 0.021 -0.0004 – 0.0425 1.9276 0.054 

slope*Height 0.0195 -0.0030 – 0.0420 1.6984 0.09 

FDis*SLA 0.0027 -0.0217 – 0.0271 0.215 0.83 

FDis*Height 0.0004 -0.0213 – 0.0222 0.0381 0.97 

FRic*SLA 0.0002 -0.0252 – 0.0257 0.017 0.986 

FRic*Height 0.0139 -0.0137 – 0.0415 0.988 0.324 

FEve*SLA -0.0127 -0.0333 – 0.0079 -1.2078 0.228 

FEve*Height 0.0009 -0.0196 – 0.0215 0.0891 0.929 

Cover*SLA 0.0124 -0.0105 – 0.0352 1.0636 0.288 

Cover*Height 0.0207 -0.0003 – 0.0417 1.9324 0.054 

Richness*SLA -0.0111 -0.0387 – 0.0165 -0.7918 0.429 

Richness*Height -0.0234 -0.0505 – 0.0036 -1.7032 0.089 

Evenness*SLA -0.0102 -0.0335 – 0.0130 -0.8638 0.388 

Evenness*Height -0.0084 -0.0289 – 0.0121 -0.8079 0.419 

Observations 632 

R2 / R2 adjusted 0.158 / 0.110 
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 614 

 615 

Figure 1. Partial residual plot showing the positive effect of community-weighted mean (CWM) 616 

specific leaf area (SLA) of the local community on SLA of the individual (presented as deviation 617 

from its species mean). Note, the CWM of the local community was calculated excluding the 618 

focal species. Individuals have higher SLA in plots where species in the local grass community 619 

also have higher SLA. 620 
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 622 
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 625 

 626 

Figure 2. Partial residual plots showing (A) the interactive effect of mean annual precipitation 627 

(m/yr) and precipitation in the 12 months prior to sampling on SLA deviation, and (B) the 628 

interactive effect of functional evenness of the local grass community and the individual’s local 629 

relative abundance on SLA deviation. 630 
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 636 

 637 

Figure 3. Partial residual plots showing the positive effects of (A) relative abundance, (B) total 638 

plant cover and (C) local community-weighted mean (CWM) height on height deviation. Note, 639 

the CWM of the local community was calculated excluding the focal species. Individuals are 640 

taller relative to their species’ mean in plots where they are more abundant, plant cover is higher, 641 

and neighboring individuals are taller. 642 

 643 
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 645 

Figure 4. Partial residual plot showing the significant (p = 0.003) positive interactive effect of 646 

trait deviations from local community-weighted mean (CWM) traits on relative abundance. The 647 

significant main effects in Table 2 suggest species are more abundant in plots where they are 648 

taller or have higher SLA than their neighboring community. The interaction term suggests being 649 

higher in both traits is associated with still higher abundance 650 

  651 
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 652 

Figure 5. Partial residual plots showing the effect of community functional diversity on an 653 

individual’s relative abundance. Individuals are more abundant in plots where the grass 654 

community is characterized by (A) low functional richness, (B) high functional richness and (C) 655 

high total plant cover. Note, all functional diversity indices were calculated for just the grass 656 

community excluding the focal grass species.  657 



30 
 

 658 

Figure 6. Results from the process model showing the estimated effects of community 659 

composition on species relative abundance. Shown are mean estimates with 95% confidence 660 

interval bands. Variables with statistically significant effects are those with confidence intervals 661 

that do not include zero (denoted with a vertical red line). Variables include FUniq: the 662 

difference between a species trait and the local CWM trait; Resource: an estimate of resource 663 

availability calculated from the competition radius in the model (resource = sqrt(1 / (1 + 664 

‘competition radius’))); FEve: functional evenness; FDis: functional dispersion; Richness = 665 

taxonomic (i.e. species) richness; Total Cover: total plant cover of the plot; and FRic: functional 666 

richness  667 


