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ABSTRACT ARTICLE HISTORY
Count data occur widely in many bio-surveillance and healthcare Received 15 January 2022
applications, e.g. the numbers of new patients of different types of ~ Accepted 8 August 2022
infectious diseases from different cities/counties/states repeatedly KEYWORDS

over time, say, daily/weekly/monthly. For this type of count data, Hot-spots detection;
one important task is the quick detection and localization of hot-  gati0-temporal model;
spots in terms of unusual infectious rates so that we can respond tensor decomposition;
appropriately. In this paper, we develop a method called Poisson CUSUM; Poisson regression
assisted Smooth Sparse Tensor Decomposition (PoSSTenD), which not

only detect when hot-spots occur but also localize where hot-spots

occur. The main idea of our proposed PoSSTenD method is articu-

lated as follows. First, we represent the observed count data as a

three-dimensional tensor including (1) a spatial dimension for loca-

tion patterns, e.g. different cities/countries/states; (2) a temporal

domain for time patterns, e.g. daily/weekly/monthly; (3) a categorical

dimension for different types of data sources, e.g. different types of

diseases. Second, we fit this tensor into a Poisson regression model,

and then we further decompose the infectious rate into two com-

ponents: smooth global trend and local hot-spots. Third, we detect

when hot-spots occur by building a cumulative sum (CUSUM) control

chart and localize where hot-spots occur by their LASSO-type sparse

estimation. The usefulness of our proposed methodology is vali-

dated through numerical simulation studies and a real-world dataset,

which records the annual number of 10 different infectious diseases

from 1993 to 2018 for 49 mainland states in the United States.

1. Introduction

Count data are frequently seen in many real-world applications in fields such as biosurveil -
lance (see [7]), epidemiology and sociology (see [52]). Usually, the count data are collected
from multiple data sources and from many spatial locations repeatedly over time, say,
daily, monthly, or annually. For instance, the daily number of people infected by some
types of diseases in 50 states in the United States. We call this type of data as multivari-
ate spatio-temporal count data, which has three domains: (1) the spatial domain recording
the locations, (2) the temporal domain recording the time, and (3) the categorical domain
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recording the different types of data sources. When such count data are non-stationary over
time, there are two standard research areas: one is model fitting and prediction, and the
other is the detection of global/system-wise changes, seeing the classical statistical process
control (SPC) or sequential change-point detection literature.

In this paper, we investigate a new research area of multivariate spatio-temporal count
data by focusing on the detection and localization of hot-spots. Here, the hot-spots are
defined as the anomalies/outliers in term of infectious rates occurring in the temporal,
spatial, or categorical domains. There are a couple of subtasks: the hot-spots detection aims
to detect when hot-spots occur (in the temporal domain) and the hot-spots localization
aims to localize where hot-spots occur (in the spatial and categorical domain).

It is informative to point out that there are two kinds of anomaly detection for mul-
tivariate data: one is global-level change (e.g. the first-order changes), and the other is
local-level hot-spots (e.g. second-order changes). The former is the focus of the classical
SPC or sequential change-point detection methods, whereas the latter is the main interest
of this paper. Here we assume that local-level hot-spots have (1) spatial sparsity, i.e. the
local changes are sparse in the spatial and categorical domains; (2) temporal consistency,
i.e. the local changes last for a while once they occur.

In the remainder of this section, we present the literature review in Section 1.1 and
articulate our proposed method and our contribution in Section 1.2.

1.1. Literature review

In this subsection, we review the existing literature on hot-spots detection based on three
types of count data: univariate, multivariate, and multivariate spatio-temporal.

For univariate count data, i.e. when we observe the data of the form {y;};—1,
¥t € N (a set of non-negative integers) denoting the observed count data at time ¢, there
are mainly four methods to detect hot-spots: (1) time series based method (see [21]); (2)
control charts based method by using the likelihood functions, such as the camulative sum
(CUSUM) control chart (see [15]) and exponentially weighted moving average (EWMA)
control chart (see [15]); (3) scan statistics based method (see [27]), including both the
frequentist scan statistics (see [28]) and Bayesian scan statistics (see [33]); (4) Poisson
process-based method that is often combined with Bayesian methods (see [20]).

For multivariate count data, i.e. when we observe the data of the form {y;t}i—1... ni=1,..T
with y; € IN, there are mainly three methods widely-used hot-spots detection: (1) control
chart based method, including CUSUM or EWMA control charts (see [29]); (2) Pois-
son process based method (see [43]); (3) hidden Markov model (HMM) based method
(see [8]).

For multivariate spatio-temporal count data, i.e. when the observed data are of the form
¥iit € N that denotes the observed count data over the i-th spatial location for the j-th type
of disease at time t with i=1,...,ny,j=1,...,np,t =1,..., T, research on hot-spots
detection is rather limited, although there are three types of closely related methods devel-
oped for other purposes or other contexts: (1) scan statistics for anomalous clusters, (2)
tensor decomposition for Gaussian data, and (3) change point detection for global changes.
Since our paper deals with multivariate spatio-temporal count data, below we will provide
a more detailed review of these three methods.
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For the scan statistics based method, it was first developed in the 1960’s (see [32]) and
later extended by [25] to detect anomalous clusters in spatio-temporal data. The main idea
of scan statistics is to detect the abnormal clusters by utilizing a maximal log-likelihood
ratio. It is worth noting that the scan statistics-based method is a parametric method that
assumes the data distributions are known. For instance, authors of [41] assumes the nega-
tive binomial distribution, [26] investigate the Poisson distribution. A limitation of the scan
statistics is that it assumes that the background is independent and identically distributed
(i.i.d.) or follows a rather simple probability distribution, which might not be suitable to
handle non-stationary spatio-temporal data.

For the tensor decomposition-based detection, one representative is [46] for Gaussian
data, and below is the main idea. First, it assumes that the raw data follows the normal
distribution and then decomposes it into three components: global trend mean, local hot-
spots, and residuals. Then, it uses the Tucker decomposition (see [18]) to decompose the
first two components. Finally, it detects the hot-spots by monitoring the model residu-
als. Similar ideas can also be found in elsewhere, for example, [45]. The limitation of this
method is that it does not consider the effect of population size and the normal distribution
is clearly inappropriate for count data, especially those small values. Another representative
is [11], where the authors first assume the count data follows the Poisson distribution and
then decompose the Poisson mean by canonical polyadic decomposition (CPD) (see [18]),
and finally localize the hot-spots by small p-values. The limitation of this approach is that
it does not remove the global trend mean from the raw data, which leads to its incapacity
to detect the local hot-spots. Besides, it can only realize the hot-spots localization, and the
analysis of the detection delay is not reported.

For the change-point detection framework, there are two related categories, the Least
Absolute Shrinkage and Selection (Lasso) based methods and dimension reduction based
methods. For the Lasso-based change-point detection method, one of the existing research
representative is [53]. Note that Lasso has been demonstrated to be an effective method for
variable selection to address sparsity issues for high-dimensional data in the past decades
since its developments in [42], and thus it is natural to apply it to detect sparse changes in
high-dimensional data (see [50,53,54]). While the sparse change of Lasso is similar to the
hot-spots, unfortunately, as our extensive simulation studies will demonstrate, the Lasso-
based control chart is unable to separate the local hot-spots from the non-stationary global
trend mean in the spatio-temporal data. For the dimension reduction-based method, the
representative is [10]. The main idea of this type of method is that it first uses prin-
cipal component analysis (PCA) or other dimension reduction methods to extract the
features from the high-dimensional data, and then it combines the reduced dimension
information with change-point models to detect the hot-spots. For other dimension-
reduction-methods, please see [6,10,36] for more details. The drawbacks of the dimension
reduction-based method are the restriction of the change-point detection problem and the
failure to consider the spatial sparsity and temporal consistency of hot-spots.

1.2. Overview of our proposed method and its contributions

The essential idea of our proposed method is to combine the tensor decomposition-based
method and the Lasso-based method over the multivariate spatio-temporal data. Mathe-
matically speaking, the multivariate spatio-temporal data can be a tensor of order three,
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which is a multi-dimensional array, i.e. } € R™"*"*"_ Here n; is the number of the spa-
tial locations, n, is the number of different diseases or variates, and n3 is the number of
time points. In our proposed method, we assume the tensor ) comes from the Poisson
distribution and then consider the additive model that decomposes its Poisson rate into
two components: (1) smooth but non-stationary global trend mean, and (2) sparse local
hot-spots. Next, we fit the raw data with a penalty function, i.e. a Lasso type penalty to guar-
antee the spatial sparsity of hot-spots. This allows us to not only detect when the hot-spots
happen over the temporal domain (i.e. hot-spots detection problem) but also localize where
and which types/attributes of the hot-spots occur if the change happens (i.e. hot-spots
localization problem). We term our proposed decomposition method as Poisson-assisted
Smooth Sparse Tensor Decomposition (PoSSTenD).

It is useful to highlight the novelty of our proposed method as compared to those exist-
ing methods on multivariate spatio-temporal count data. First, our proposed PoSSTenD
method takes into account of the effect of population size to focus on the anomalous infec-
tious diseases rates or Poisson rates, which is important in many real-world applications.
Second, our proposed PoSSTenD method can detect hot-spots when the global trend of
the spatio-temporal data is dynamic (i.e. non-stationary or non-i.i.d). That is, our method
is robust no matter whether the global trend is decreasing, stationary, or increasing, in the
sense that it can detect hot-spots with positive or negative local mean shifts on top of the
global trend of raw data. In comparison, existing SPC or change-point detection methods
often assume that the background is i.i.d. and focus on detecting the anomalies under the
static and i.i.d. background. Finally, while our paper focuses only on the tensor of order
three arising from our motivating application in 10 annual infectious diseases in the U.S,,
our proposed hot-spots method can easily be extended to the tensor of order d (d > 3), as
we can simply add corresponding dimensions and bases in the tensor analysis. The capa-
bility of extending to high-dimensional tensor data is one of the main advantages of our
proposed PoSSTenD method.

We would like to clarify that our contribution lies in the hot-spots detection and local-
ization, instead of model fitting/prediction of the multivariate spatio-temporal count data.
For the fitness of the count data, there are lots of well-established methods. One widely
used one is the generalized linear regression model (see [16, Chapter 3]). Another popular
method is the time series models such as Autoregressive Moving Average (ARMA). In this
paper, we will not compare our proposed PoSSTenD method to these methods, because
our objective is to detect and localize hot-spots, rather than model fitting.

The remainder of this paper is as follows. In Section 2, we introduce and visualize a
motivating dataset. In Section 3, we present our proposed PoSSTenD method, discuss how
to estimate model parameters from data, and describe how to use our proposed PoSSTenD
method to detect and localize hot-spots. Our proposed method is compared with several
benchmark methods in Section 4, demonstrating its usefulness through extensive simula-
tions. The application of our proposed method in the dataset (described in Section 2) is
reported in Section 2.

2. Motivating example & tensor background

In this section, we provide a detailed description of our motivating dataset, and some tensor
background to help readers better understand our method in Section 3.
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2.1. Motivating example

Our motivated data are from CDC on the number of annual new cases infected by 10 dif-
ferent diseases of 49 mainland US states from 1993 to 2018. The 10 infectious diseases
are (1) mumps, (2) legionellosis, (3) tuberculosis, (4) syphilis, (5) shigellosis, (6) pertussis,
(7) hepatitis A, (8) hepatitis B, (9) rabies, (10) malaria. The dataset is publicly avail-
able in https://www.cdc.gov/mmwr/mmwr_nd/index.html (for data from 1993 to 2015)
and https://wonder.cdc.gov/nndss/nndss_annual_tables_menu.asp (for data from 2016 to
2018). For illustration, we present the a selected subset of this dataset in Table 1, where the
states are listed in alphabetical order.

Mathematically, we can organize the above motivating dataset into a tensor of order
three, i.e. Y € RMXMXM where n; = 49 is the number of states, n; = 10 is the number
of diseases, and n3 = 26 is the number of observed years. For this tensor of order three ),
its (i, , t)-th entry, i.e. ); ;; is the number of people get infected by the j-th type of disease
in the i-th state i in year t.

To better capture the character of the data )/, we provide some data visualization plots
in Figure 1. In Figure 1(a), we show the bar plot for the total number of affected subjects
for these ten different diseases. Here the j-th bar represents the j-th type of disease and the
height of j-th bar is the value of 3"/', 37* | V. In Figure 1(b), we plot the cumulative
number of infected subjects of 49 states in a map, where the color of the i-th state is decided
by the total value 2;21 > 121 Vij+ and alarger value leads to a deeper color. From this plot,
we find that generally speaking, California, Texas, and New York observe a larger number
of infected subjects as compared with other states, possibly due to a large population size.
In Figure 1(c), we display a time series plot, where the x-axis is the year and the y-axis is
the logarithm of the value of )"}, E}Z] Vijt fort =1,2,...,n3. We can see that, there
is a trough from 2000 to 2010, but the number of infected people has an increasing trend
otherwise.

2.2. Tensor background

In this subsection, we present necessary tensor notations and tensor algebra so as to help
readers understand our proposed methodology in Section 3.

First, for the notations throughout the paper, scalars are denoted by lowercase letters
(e.g. 8, y), and vectors are denoted by lowercase boldface letters (8, y), whose i-th entry is
denoted by the subscript (6}, y;). Matrices are denoted by uppercase boldface letter (0, Y),
whose (i, j)-th entry is denoted by the subscript (®;, Y;;). Tensors are denoted by curlicue
letter (1%, )). For example, an K-dimension tensor is represented by ## € R1* >k where
I represent the mode-K dimension of # for k = 1,...,K. Its (i1, 43, . ..,ig)-th entry is
denoted by the subscript (9, i, __ix»> Vi1 is.....ix)-

Next, we introduce the definition of slice in tensor. The slice is a two-dimensional
section of a tensor by fixing all but two indices. Let us take a 3-dimension tensor ) €
R™M>M2XM a5 an example. Its horizontal, lateral, and frontal slides are denoted by V;..(Vi =
L...,n),Vi(Vj=1,...,mp), and Vs (¥t = 1,...,n3), respectively. A visualization of
the aforementioned three types of slides are available in Figure 3 of [51].

Finally, we introduce the Tucker decomposition. It can be regarded as an extension of
singular value decomposition (SVD) in the matrix. Mathematically, it decomposes a tensor
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) (b)

(c)

=2t s dsansa canmn

(a
Figure 1. Data visualization of our motivating dataset. (a) bar plot of 10 diseases. (b) map of 49 states.
(c) time series of 26 years.

Y e Rmxmx.-X"d into a product of a ‘core tensor’ C and several matrices By, . . ., Bg which
correspond to different core scalings along each mode, i.e.

YV=Cx1B;ix2B3... x4Bg

where x, is the mode-n product for any n = 1,...,d (see [51, Section 2]). And the core
tensor C is of dimension C & [RP1*P2%---*Pd The matrix B; is of dimension B; € R"*Pi for
anyi = 1,...,d.In most of the applications, we assume the matrices By, .. ., B are known
(see [44,45,47]). The high-level criterion to select By, . . . , B are listed as follows. If the data
Y has a smooth pattern on mode-n, then one can use the either spline basis (see [14,47])
or Gaussian kernel (see [47]) for By,. If the data ) has no prior information on mode-n,
then one can use the identity matrix for B, (see [51]). And we call min{p1,pa,....ps} as
the rank of the Tucker decomposition (see [23]).

3. Our proposed method

In this section, we present our proposed PoSSTenD method, including the optimization
algorithm for the model parameter estimation, and statistical procedures for hot-spots
detection and localization.

The structure of this section is organized as follows. Subsection 3.1 develops our pro-
posed method. Subsection 3.2 describes the parameters estimation and the algorithm to
solve the estimation problems. Subsection 3.3 discusses the procedure to detect and localize
the hot-spots.

3.1. Model

In this subsection, we present the mathematical model of our proposed PoSSTenD method.
For better illustration, we take the motivating dataset described in Section 2 as an exam-
ple, which is a tensor of order three, i.e. } € R"*™*"_ The (i,j,t)-th entry of } is the
number of people who are infected by the j-th type of disease in the i-th state in year .
Since the number of infected patients is count data, we assume that it follows the Poisson
distribution:

Yijt ~ Poisson(Rj,:Nij) W)

where R;j; is the infectious rate of the j-th type of disease in the i-th state in year f, and
N denotes the corresponding population size, fori =1...n,j=1...n,t=1...n3.
5 sp g pop J
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In our simulation studies and case study, we assume that the population size Njj; is the
same over different disease type j, although they can be different under other scenarios, e.g.
when certain diseases will affect certain sub-populations depending on gender, age, race,
etc.

In our paper, we are interested in detecting and localizing the hot-spots in infectious rate
Rijt, and thus we further decomposed the logarithm of the infectious rates into two com-
ponents: the smooth global trend mean 4; j+ and the local hot-spots H; ;. Mathematically,
it is an additive model:

log(Rijt) = Uijt + Hijts )

where U+ and H; j ¢ are the (i, j, t)-th entry of tensors i and H € R"*"2*", respectively.
For the first component — the global trend mean U € R™M*"™*" _ we apply Tucker
decomposition for dimension reduction of tensors, i.e.

U = Um x1 Bm1 X2 Bm2 x3 B3, (3)

where B,,; € R">P1, B, , € R"*P2, B, 3 € R™*P3 are the pre-assigned basis describing
the within-state correlation, within-disease-type correlation, and within-year correlation
in U, respectively. For the selection of B, 1, B, 2, B, 3, we postpone its discussion at the
end of this subsection. The operators x1, x3, x3 are the mode-n product reviewed in
Section 2.2 with n = 1, 2, 3. These three mode-n products are used to model the between-
dimension correlations in 4. The tensor 1, € RP1*P2%P3 is an unknown tensor parameter
to be estimated.

For the second component — local hot-spots H € R"1*"2>X" _ we apply the similar
Tucker decomposition as in Uf:

H = U x1 Bpy x2 Bpy x3 By3, 4

where the ¥, € R71*%2*% js the unknown parameter to be estimated and basis By; €
R™>491, By, € R"*92, By, 3 € R"*% are pre-assigned matrices describing the within-
state correlation, within-disease-type correlation, and within-year correlation in H,
respectively. The suitable choices of these bases will be discussed in more details in
Section 4. The operators x j, X3, x3 are the mode-n product used to model the between-
dimension correlations in H.

By combining (1), (2), (3), (4), we summarize our method as

Vijt ~ Poisson(R;;:Njj )

log(Rijr) = Om X1 Bm1 X2 Bmz X3 Bm3)ijt + (On x1 Bry x2 Bio x3 Bua)ije
where (O, X1 Byt X2 Bz X3 Bm3)ijits (O X1 By x2 Bpa x3 Bp3)ij: denote the
(i,j,t)-th entry in tensor ¥, x; By X2 By X3 B3, 0 x1 Bpy x3Bpa x3 Bps €
R™M*"2X13  respectively.
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This tensor representation allows us to develop computationally efficient methods for
estimation and prediction. Under tensor algebra, the above model can be rewritten as

y~Poisson(r ® n)

log(r) = (Bm,1 ® Bm2 ® Bm3) 0m + (Bn1 ® Bra @ Bp3) 0 o
Here vectorsy,r,n € R™"™" g, € RP1P2P3 9, € R119%D are the vectorized form of tensor
V. RN € Ruxmxns g e RP1IXP2XP3 ), € RU1*%2%43, respectively. The operator © is
the Hadamard product, i.e. the output of r @ n is a vector of length n;n;n;, whose i-th
entryis r; x n; with r;, n; as the i-th elements of vector r, n, respectively. The operator ® is
the Kronecker product whose mathematical definition can be found in [48,51]. Besides, the
operator ~ means that the i-th entry of y follows the Poisson distribution with parameter
rinjforanyi =1,...,nyn2n3.

In the reminder of this subsection, we articulate the selection of basis for global trend
mean By, 1, Bm,2, B 3, and basis for local hot-spots B, 1, By, 2, By, 3, particularly in our case
study.

For the selection of By, 1, B2, B3, given )’s smooth pattern, we use the cubic B-spline
basis with 8, 7, 7 knots in the x-direction (spatial domain), y-direction (disease-categorical
domain) and z-direction (temporal domain). This selection strategy is also adopted in
Section 6 of [47], and the above three sets of knots are reasonable in our case study. In gen-
eral, a smaller number of knots may result in the loss of detection accuracy, and a larger
number of knots will lead to the selection of normal regions with large noises. As pointed
out by [40], as long as the number of knots is sufficiently large to capture the variation of
the background, a further increase in knots will have little effect due to the regulation of
smoothness. After verifying the above three sets of knots by generalized cross validation
(GCV), as suggested by [40], we find they are sufficient large to capture the variation of the
global trend mean. Other choice of By, 1, By 2, B 3 is welcomed, for example, the Gaussian
kernel basis (see [47,51]). In this paper, we will use the B-spline basis for illustration of our
proposed PoSSTenD method. Given the above selection of By, 1, Bin.2, Bm 3, the rank of the
Tucker decomposition of I is min{py, p2, p3} = 4.

For the selection of By 1, Bp,2, B3, we set them as the identity matrices, due to the fol-
lowing two reasons. First, there is no prior information about the hot-spots distribution,
which makes identity matrices a reasonable choice. Second, we aim at detecting sparse
hot-spots. If one in interested in detecting clustered hot-spots, then a spline basis is a bet-
ter choice (see [45, Section 3.4]). Given the above selection of By, By, 3, By 3, the rank of
the Tucker decomposition of H is min{ny,#5, 13} = 10 in the our case. This rank is not
reduced much, because we do not want to lose much information considering the hot-spots
detection accuracy.

3.2. Estimation and optimization

This subsection discusses the parameter estimation of our proposed PoSSTenD method.
We will first formulate the parameter estimation as an optimization problem in Subsec-
tion 3.2.1, and then develop an efficient algorithm to solve this optimization problem in
Subsection 3.2.2.



10 &) Y.ZHAOETAL

3.2.1. Estimation of the model parameters
To estimate the two unknown vector 8, € RP1P2P3 g, ¢ R11928 it is natural to first con-
sider the maximal likelihood estimating (MLE) method. We begin with the likelihood
function

ninans

LOm0p) = [] (uryie ™y,
i=1

where n;, r;, y; are the i-th elements of vector n,r,y € R™"" respectively. Accordingly,
the log-likelihood function of (8,,,8}), i.e. £(8,,,601) = log L(#,,,0}) can derived as

HinIN3 nynang
€Om01) = ) yilog(miri) — nir; —log(yi!) o« Y yilog(r;) — miri,
i=1 i=1

where o is done by removing the constant unrelated to (8,,,8). If we denote the
(O 0p) := Y 111" y;ilog(r;) — n;r; then by plugging (5) in, we have
HyHM3
EOm00) = Y ¥i Bubm + Byy); — niePréntBulii,
i=1
By denoting the i-th row of matrix By, By asx/ , 2],
equation as

respectively, we can rewrite the above

n
COmb) =Y 5 (xjgm + zjoh) _ el Omrt2T04)
i=1

where n = nynyn3. Given the above log-likelihood function, on the one hand, we would
like to minimize it with respect to 8,,,8;. On the other hand, we would like to detect
the hot-spots with sparsity. Considering the trade-off between the maximization of a log-
likelihood function £*(8,,0}y) and the detection of sparse hot-spots 8}, we propose to
estimate the model parameter (#,,,#}) under the penalized likelihood ration framework,
which yields the following Lasso-type optimization problem:

ninzn3

FOmOn = Y [~ (X 0m+2708) +me® om0 1o loglly. (©)

=1

Here the first term is the negative log-likelihood function and the second term is a £; reg-
ularization term, which gives sparsity of the hot-spots estimators. The parameter A > 0
trades off the minimization of the negative log-likelihood function and the sparsity of the
estimators, and is often chosen by cross-validation of the training data.

3.2.2. Optimization algorithm
In this subsection, we discuss the optimization algorithm to minimize the objective func-
tion F(#,,,0p) in (6). The main tools we use to minimize F(@,,,0}) is the Iteratively
Reweighted Least Square (IRLS) method (see [12, Chapter 4.4]) and the Fast Iterative
Shrinkage Threshold algorithm (FISTA) (see [1]).

The proposed optimization algorithm is an iterative algorithm with two loops: the outer-
loop for updating 8, and the inner-loop for updating #;. The optimization procedure is
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Figure 2. The pipeline of our algorithm to minimize F(8 ,, @) with respect to &, 8.

50 42
]
48 ] 40
8 g 38
2 46; -
5] I
:g 5 36
a4 3
-9 8. 34r
ey 32
— & —fitted popularization of Alabama — & —fitted popularization of Oregon
40 —s#—observed popularization of Alabama 30 : —s#—observed popularization of Oregon
1990 1995 2000 2005 2010 2015 2020 1990 1995 2000 2005 2010 2015 2020
year year
(a) (b)

Figure 3. Population and estimate in Alabama and Georgia during 1993-2018. (a) Alabama. (b) Oregon.

visualized in Figure 2 and described as follows. We begin with the initial point (8%, 6}{0)).
Then, in the first outer-loop, we minimize F(6,,, 9}!0)) with respect to 6, by the IRLS
algorithm. In this way, we update 8, from 82 to 82 Next, we minimize F(8{}, 8,) with
respect to 8}, by the FISTA algorithm, which allows us to update 8 from 0}10) to 9}:) . The
iteration of the FISTA algorithm is called the inner-loop under the first outer-iteration.

The above outer-loop and inter-loop will be repeated until the convergence. The detailed
pseudo-code is summarized in Algorithm 1.

Algorithm 1: Pseudo-code of the optimization algorithm in our proposed PoSS-
TenD method.
Input: y,n € R"M™" B, € R™M™M Xpipaps By € RMMMXq1293 ) ~ (),
Output: The estimator of #,,, 83, noted as 3,,,,?;,.
i Initialization 80,0
2 Outer Iteration:
3 update @, from ng_l) to Gg? by the IRLS algorithm

4 Inner Iteration:

5 update 8, from 9}3‘_ D to Bgc) by the FISTA algorithm
6 end

7 end

In the reminder of this section, we discuss the detailed implementation of the IRLS
algorithm and FISTA algorithm, as shown in the aforementioned Algorithm 1.
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First, the implementation of the IRLS algorithm to estimate the parameter of the global
trend mean #,, is summarized in Proposition 3.1.

Proposition 3.1: In Algorithm 1, given (6};‘_1],93_1)), one can update 0},}? by IRLS
algorithm, i.e.

ok — (XTWX)_I XTW [xag’;—” + W (y- y("—”)] .

p=1

Here the matrix X" is of dimension p1pap3 x nynyn3. And its i-th column, denoted as x;, is

the transpose of i-th row of matrix By,. The matrix W € R™M™MM>XMMN js g diggonal matrix.

k—1 k—1
T‘?En )_H;_rg;l ]

And its (i, i)-th entry is nje™i ). The vectory is of length nynyn3, whose i-th entry

(k=) T plk—1)
is y;. The vector y(k_l) is of length ninynz. And its i-th entry is nfe(xfTa"‘ +2]0} ), where
z] is the i-th row of the matrix By,
Proof: The proof of the above proposition is shown in Appendix 1. =

Next, we discuss the implementation of the FISTA algorithm to estimate the parameter
of the local hot-spots 8. Suppose in the k-th iteration, we already get the iterative esti-
mator ﬂgf) by Proposition 3.1. Given that, we can updating 8} from 02‘_1) to ﬂgc) by the
minimizing the following optimization problem with respect to 6:

n
Tod 1270
F("ﬁ’?"’h)ZZ[—yf (X?ﬂi,’f)ﬂ?eh)me("* 5 ")]Huahul. @)
] h(®p)

8(0p)

Essentially speaking, the above optimization problem is an optimization problem with a £;
regularization term. There is a large body of literature available on the analysis of it, where
both researchers in optimization research and statistics devote to it.

In optimization research, one well-known method is the Iterative Shrinkage Thresh-
old Algorithm (ISTA) proposed by [9], where they approximate g(#p) by its second-order
Taylor expansion. For the Hessian matrix, to speed up the algorithm, they approximate
it by a diagonal matrix, whose diagonal entry is the maximal eigenvalue of the Hessian
matrix. After the quadratic approximation of the objective function, a proximal mapping
is used, where the soft-thresholding operator can be easily applied. [9] is a representative
of this type of method, and the early foundational work of proximal gradient descent can
be found in [2]. As the techniques mature, they became widely used in several different
fields. As a result, they have been referred to by a diverse set of names, including proxi-
mal algorithm, proximal point, and so on. In the survey of [38], it can be seen that, many
other widely-known methods - including, Majorization-Minimization (MM) and Alter-
nating Direction Method of Multipliers (ADMM) - also fall into the proximal framework.
Following [1,9] proposes another algorithm called FISTA, which can be regarded as an
accelerated version of [9]. The main difference between ISTA and FISTA is that FISTA uses
more historical information, i.e. FISTA takes advantage of the gradient of the previous two
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estimators, while ISTA only uses the gradient of the previous one estimator. Accordingly,
the convergence rate of FISTA is O(1/k?) iterations, which is faster than O(1/k) achieved
by ISTA (see [49]).

In statistics, researchers also do lots of works. One of the well-known methods is pro-
posed by [13] with an R package called glmnet. The main tool used is the coordinate descent
algorithm. The coordinate descent method has been proposed several times for the opti-
mization with £, regularization term, e.g. see discussions in [13] and its convergence rate
is O(1/k) (see [49]).

After comparing the existing algorithm to solve (7), we select FISTA in our paper due to
its faster convergence. The detailed implementation of the FISTA algorithm can be found
in the following proposition.

Proposition 3.2: In Algorithm 1, given (9};‘],9?—1) ), one can update 0y, from 9}3‘_1) to
Bf(,k] by the FISTA algorithm. The updating scheme of the FISTA algorithm is summarized
as follows. For a fixed k > 0, and any s = 0, 1, . . ., one has

ad
th)[s] =S (ar[s] - Wg(afﬁ),a[s])/hlﬂ)
m

R (1 +4/1 +4t§) /2

gl — p®I 4 B 1 (ggc)[sl _ ﬂgc)[s—l]),
.
s+1

where 020 1 s the iterative estimator of 8, after s inner loops under the k-th outer loops. The
function S(-,-) is a thresholding function, i.e. S(x,a) = (x — a)1{x > a} + (x + a)1{x <
—a) for any x € R and a > 0. The vector a*! is an auxiliary vector and is initialized as Gik_n.
The hyper parameter t; and L can be initialized as t; = 1 and set as the maximal eigenvalue

. 2 ;
of the matrix —2—g(8y,), respectively.

By combining Propositions 3.1 and 3.2, we update 8, and @, iteratively until conver-
gence. We summarize the details of our algorithm for parameter estimation as follows:

3.3. Hot-spots detection and localization

In this subsection, we discuss the detection and localization of the hot-spots. For the ease
of presentation, we first discuss the hot-spots detection, i.e. detect when a hot-spot occurs
in Subsection 3.3.1. Then, in Subsection 3.3.2, we consider the localization of the hot-spots,
i.e. determine which states and which type of diseases are involved for the detected hot-
spots.

3.3.1. Hot-spots detection

To detect when the hot-spots occur, we propose to monitor the time series of the Pear-
son residuals of count data, (y;(A) — fts(A))//#s(A), over time t = 1,...,n3. If it has a
shift toward the direction of the estimated hot-spots hy, then it is highly likely that there
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Algorithm 2: Estimation of ©®,,, ®; by IRLS & FISTA algorithm.

Input: y,n € R"™" B, € RM™MmxPi2p3 B, ¢ RMMMXQUQE ) . (), 1.
Output: The estimators of @,,, O, noted as O, Op,.
Initialization t; = 1, @(0) 9(0)

2 » Outer-Tteration: 4 for k=0,1,2,3,...,Kdo
0 K
3 W = diag(et QU(}”LZIT@U(J e""1"2"39'('"]+1ﬂ1"2n3 e ])
K K
4 y(k) - (exl ka)+zT9(k) g ,,1"2"38( ]+Zﬂ1"2"39£ ])T

" p® —X@(k)+W 1§ —y®)
s | %) — xTwx)"IXTwy®
= ﬁ(k][ﬂ] @(k)

1 (k)
8 alll = Gh

9 =1

10 1> Inner-Iteration: 4 fors=1,2,..., Sdo

" 0P = 5@l — 73-g(©f*",al)/L,A/L)
12 tir1 = (14 /1+42)/2

i 2ot = @l 1 11 (@l _ g®ls-1))

14 end

s 9£k+1) _ @gc)[s]

16 end

17 @m — 9},{0
18 6;1 = G)}lK)

is a hot-spot. Mathematically speaking, we develop a control chart based on the following
hypothesis test problem:

Ho: re(A) =0vs. Hy : re(d) = 8hy(A) (8 > 0), (8)

where r;(1) = y;(A) — i;(1) is the residual after removing the global trend mean under
the penalty parameters A and the vector it; (1) = vec(a:r(l)),ﬁr(l) = vec(ﬁ::f(k)) are the
estimated global trend men and local hot-spots in ¢-th year. Here, we add (1) to emphasize
that, ﬁ,(l),ﬁf (1) are the global trend mean and local hot-spots estimation under penalty
parameter A respectively.

The motivation of the above hypothesis test is articulated as follows. When there are no
hot-spots, the residual r;(1) is exactly the model noises. However, when hot-spots exist,
the residual r; includes both hot-spots and noises. By including the hot-spots information
of h;(1) in the alternative hypothesis, we hope to provide a direction in the alternative
hypothesis space, which allows one to construct a test with more power (see [53]).

Next, we construct the likelihood ratio test in the above-mentioned hypotheses testing
problem. By [17], the test statistics monitoring upward shift is

PFO) =hf W) () / VR TR ()
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where E:r (1) only takes the positive part of e (1) with other entries as zero, because our
objective is to detect positive hot-spots. The superscript ‘+” emphasizes that we aim at
detecting upward shift. In other words, we focus on the hot-spots that have increasing
means, partly because increasing infectious rates are generally more harmful to the soci-
eties and communities. If one is also interested in detecting decreasing mean shifts, one
could modify it by using a two-sided test.

It remains to discuss how to choose A suitably in our test. We propose to follow [53] to
calculate a series of Pf(l) under different combination of A € I' = {A(), ..., 1)} and
then select the A with the largest power. The final chosen test statistics, denoted as ﬁf(lf),
can be computed by

)

+ +
B+ 1) — max P BB 0))

rer o Var(Pf(r)

where E(P} (1)), Var(P; (1)) respectively are the mean and variance of P (1) under H
(e.g. for phase-I in-control samples). Here Af € I' is the penalty parameter maximizing the
above equation.

With the test statistic available, we detect when hot-spots occur based on the widely
used Cumulative Sum (CUSUM) Control Chart (see [30,35]). At each time ¢, we recursively
compute the CUSUM statistics as

W, = max{0, W}, + P () — d*), (10)

with the initial value W,", = 0, where d* is a constant and can be chosen according to the
degree of the shift that we want to detect. Then we declare that a hot-spot might occurs
whenever W;" > L for some pre-specified control limit L.

Note that the CUSUM statistics W;" leads to the optimal control chart to detecting a
mean shift from pg to w3 = 2d* — p for normally distributed data (see [30]). When the
data are not normally distributed, the optimality properties might not hold, but it can still
be a reasonable control chart. Also, it is important to choose the control limit L in the
CUSUM control chart suitably, and the detailed discussion will be presented in Section 4
for our simulation studies and in Section 5 for our case study.

3.3.2. Hot-spots localization

In this subsection, we discuss how to localize the hot-spots if the CUSUM control chart
in (10) raises an alarm at year t*. In other words, we want to determine where and
which infectious rates may account for the hot-spots. To do so, we propose to utilize the
matrix H.p (A¢+), which is the hot-spots estimation in t*-th year. If the (i, ], t*)-th entry in
Hops (A¢+) is non-zero, then we declare that there is a hot-spot for the j-th type of disease
in the i-th state at the t*-th year.

The mathematlcal procedure to derive ’H 4+ (As+) is as follows. First, 'H,(}Lp) is the ten-
sor format of h(kt*) = Bhﬂ;, (A#), where Bh (Ap) is the minimizer in (6) with penalty
parameter as As+. Second, H .+ (A+) is the t*-th frontal slices of H(lp)

It is possible that this approach might lead to a relatively high false positive rate (FPR),
since some non-zero entries might not be statistically significant. Two possible ways to
improve our approach are (1) to conduct the significant test, or (2) to set up a pre-specified
threshold and only keep the positive entries that are larger than the threshold. In our paper,
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we use the second approach, i.e. set up a pre-specified threshold for hot-spots localization.
As for the selection of the threshold, there are several choices:

o Hard-thresholding: if the (i,j,£*)-th entry in the refined estimation of hot-spots
Heps (M) = ’ﬁ;;rt (lf*):ﬂ_{ﬁ;;r* (A¢#) > hpara} is larger than zero, then we declare there
is a hot-spot in the j-th type of disease in the i-th state at the t*-th year.

e Soft-thresholding: if the (i,j,¢*)-th entry in the refined estimation of hot-spots
Hpe(Aps) = max{ﬁ:p (Ag+) — hgoft, 0} is larger than zero, then we declare there is a
hot-spot in the j-th type of disease in the i-th state at the t*-th year.

e Order-thresholding: if the (i,j,£*)-th entry in the refined estimation of hot-spots
H.pe(hpe) = ﬁ::rt (Ap)1 {ﬁ::ri (Ap+) = horder,r} is larger than zero, then we declare there
is a hot-spot in the j-th type of disease in the i-th state at the t*-th year. Here hgger s is
the r-th largest order statistics of {'ﬁ; s (M) 1 V(i j), s.t. 'H,-,j,p (Ap) > 0}

In this paper, for simplicity, we use the order-thresholding as an illustration, since it has
been used in other contents, such as outlier detection (see [31]), testing problem (see [22]),
etc..

4. Monte Carlo simulations

In this section, we report the numerical simulation results of our proposed method as well
as its comparison with several benchmark methods in the literature. To better present our
results, we divide this section into several subsections. Subsection 4.1 includes the data
generation mechanism for our simulation studies, and Subsection 4.2 presents the bench-
mark methods for the comparison purpose. The performance of hot-spots detection and
localization are reported in Subsection 4.3.

4.1. Data generation mechanism

This subsection describes the data generation mechanism we use in the numerical studies.
In our simulation, the (i, j, f)-th entry of tensor ) € R *"2%" jg generated as follows:

{ Vijt ~ Poisson(NjjRijr)

Rijt=02+81{t>r1}1 {(“’j) = S} "

In the first line of the above generative model, YV, Nijs Rijs is the (i,5,1)-th entry of
tensor Y, N, R € R™>*™X" whose physical meaning is the number of infected patients,
the population size, and the infectious rate in the i-th state in year t under the j-th type of
disease, respectively. In this simulation, to match the dimension of or motivating dataset,
we set ny = 49, n; = 10, n3 = 26.

In the second line of the above generative model in (11), the parameter § measures
the magnitude of the hot-spots. In our paper, we use § = 0.05 as the small hot-spots and
8 = 0.2 as the large hot-spots. The reasons we declare § = 0.05 (§ = 0.2) as small (large)
hot-spots is that, the average Kullback-Leibler divergence (see [24]) is 0.3474 (4.6388). And
1{x € A} is an indictor function, i.e. 1{x € A} = 1ifx € A and 1{x € A} = 0 otherwise.
The first indictor function 1{f > t} means that the hot-spots only happens after the 7-th
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year. And in our paper, we set T = 15. The second indictor function 1{(i,j) € S} means
that the hot-spots only occurs in certain spatial location set S. In our paper, S is randomly
sampled without replacement in each simulation and the number of elements of S only
accounts for 10% of the total number of elements of ¥, . ;.

It remains to discuss how to model the population size Nj;;. We propose to follow
the common practice to model the curve of the population growth by the logistic model
(see [37]):

bij1
1 + exp[—(t — &;;2)/ i3]

Nijt = + €ijt (12)

where E(e;j1) = 0 and Var(e;j;) = o2. Here ¢; ;.1 indicates an asymptotic upper limit of
population size in the i-th state, ¢;;, is the middle point of the S-shaped curve in the i-th
state, and ¢;; 3 is the scale adjustment of time periods in the i-th state.

In our numerical studies, we consider two scenarios for the population size /: (1) the
population size with increasing trend and (2) the population size with decreasing trend.
In the above two scenarios, we assume one state share the uniform characteristic in the
population over different type of diseases, i.e. ¢;j,1 = Pijp,1, Piji2 = Pijp.2> Piji3 = Dijo3
and Njj, + = Nijj, foranyji # jp. In our paper, we first fit (12) to the observed population
sizes in our motivating dataset by a nonlinear least-squares method (we treat year 1993 as
time 1, and the population sizes are in the units of 10,000). Using the mathematical software
Matlab R2018b, the estimated parameters for the logistic model (12) are summarized in
Appendix 2. Figure 3 plots the actual observed population sizes and the estimated growth
curve in New Mexico during 1993-2018. From the plot, one sees that the two curves are
close to each other, implying that the logistic model is reasonable in our application.

In our simulation, we will consider the following two extreme scenarios of the pop-
ulation sizes, depending on whether the population size in all states are increasing or
decreasing. This might be unrealistic, but can indicate the performance in more prac-
tical scenarios, where the population can be the interested study group, such as specific
age/gender/race sub-groups.

e There is an increasing trend in the population. The increasing population is gener-
- dij1 - B i diia)Visesti
ated from Njj; = TEE N e + €ijt, where {(¢ij1, ij2, $ij3)} is estimated by
fitting the real-world population into (12).
e There is a decreasing trend in the population. The decreasing population is generated
- bij1/aij B B o B i i
from M,},t = Trexpl(—952)/957] +1+¢€ijp where {(¢1,},1: ¢!,},2!¢t,},3)} is estimated by
fitting the real-world population into (12). Here the parameter {a;;} is necessary to make
sure that the simulated initial population size is the same as the observed value.

4.2. Benchmark methods

In this subsection, we present the description and implement of five benchmark or baseline
methods that will be used to compare with our method.

The first benchmark method is the scan statistics method in [34], which is a Bayesian
extension of Kulldorff’s scan statistic and we denote it as NMC-scan-stat’. The reason for
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us to choose NMC-scan-stat is that it has large power to detect clusters and the fast run-
time [34]. In our paper, we use the R function called scanbayesnegbin() from the package
scanstatistics. Because scanbayesnegbin() can only handle one type of disease one time, we
apply scanbayesnegbin() to ten diseases separately and set the probability of an outbreak
as 0.02/10. Because scan-statistics-based method does not give the clear calculation of
average run length under the in-control status (ARLy) and ARL;, so we can only use the
probability of an outbreak as 0.02/10 to define the control limit to achieve similar ARL,
with other benchmarks.

The second benchmark method is the smooth sparse decomposition method proposed
by [46], and we denote it as YPS-SSD’. The YPS-SSD method assumes the raw data (or
the raw data after transformation) follows normal distribution and decompose it into the
functional mean, sparse anomalies, and random noises. Then YPS-SSD detect the hot-
spots by monitoring the model residual through Shewhart control chart. Although the
main idea in YPS-SSD looks similar to our proposed PoSSTenD, there are two signifi-
cant difference. The first difference is that, YPS-SSD focus the normal distributed tensor,
while our PoSSTenD method focus on the Poisson distributed tensor. In other words,
YPS-SSD ignore the effect of the population size, and aims at detecting the hot-spots in
the number of infected events. However, for our PoSSTenD method, we take the pop-
ulation size into consideration and target on detecting the hot-spots in infectious rates.
The second difference is that, YPS-SSD utilizes Shewhart control chart to monitor the
hot-spots, which is not sensitive to the small hot-spots. Yet, our proposed PoSSTenD
method uses CUSUM control chart, which has more capability to detect small hot-spots.
For the selection of basis in YPS-SSD and our PoSSTenD method, we use the same basis
for a fair comparison, i.e. B,,; € R"™*P1, B,,, € R™*P2, B, 3 € R™*P3 are B-spline basis
with order 3 and over equally spaced knots {1, 8,15,...,50}, {1,9.1667,17.3333,...,50},
{1,9.1667,17.3333, . . ., 50}, respectively (see [19]) and By, 1, By, , By, 3 are all set as identity
matrix.

The third benchmark method is the Lasso-based method proposed by [53] and we
denote it as ZQ-Lasso’. The main idea of ZQ-Lasso is to integrate the multivariate Expo-
nentially Weighted Moving Average (EWMA) charting scheme. Under the assumption that
the hot-spots are sparse, the Lasso model is applied to the EWMA statistics. If the Maha-
lanobis distance between the expected response (the Lasso estimator) and observed values
is larger than a pre-specified control limit, temporal hot-spots are detected, with non-zero
entries of the Lasso estimator are declared as spatial hot-spots. For the control limits and the
penalty parameters of the Lasso-based method, we use the same criterion as our proposed
PoSSTenD method.

The fourth benchmark is the dimension-reduction method proposed by [10], and we
denote it as ‘DBS-PCA’. The DBS-PCA method uses PCA to extract a set of uncorrelated
new features that are linear combinations of original variables. Note that DBS-PCA fails to
localize the spatial hot-spots, and it can only detect the temporal change-point when the
PCA-projected Mahalanobis distance is larger than a pre-specified control limit. For this
control limit, we set it by using the same criterion as our proposed PoSSTenD method. In
both our simulations and case study, we select three principle components, since they can
explain more than 90% cumulative percentage of variance (CPV).

Finally, the fifth benchmark is the traditional T? control chart (see [39]) method and we
denote it as “T?". The control limit of T? is set by using the same criterion as our proposed
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Figure 4. The ARL, plot of our proposed PoS5TenD method, and the three benchmark methods, i.e.
YPS-SSD method, ZQ-Lasso method and DBS-PCA method. (a) population with an increasing trend. (b)
population with a decreasing trend.

PoSSTenD method. Since the T2 control chart method is a well-defined method, we skip
the detailed description, and more details can be found in [39].

4.3. Simulation results

In this subsection, we compare our proposed PoSSTenD method with five benchmark
methods with the focus on the performance of hot-spots detection in Section 4.3.1 and
localization 4.3.2. The five benchmark methods are NMC-scan-stat method proposed by
[34], YPS-SSD proposed by [46], ZQ-Lasso proposed by [53], DBS-PCA proposed by [10],
and the traditional Hotelling T? control chart reviewed in [39]. All simulation results below
are based on 1000 Monte Carlo replications.

4.3.1. Comparison of hot-spots detection

In this section, we compare the performance of hot-spots detection, i.e. the detection delay
after the occurrence of hot-spots. The criterion we use is ARL;. Because ARL; measures
the delay after the change occurs, the smaller the ARL;, the better detection performance.
The comparison results are visualized in Figure 4 (the numerical numbers to generate this
plot are available in Appendix 3).

For our proposed PoSSTenD method (marked with blue), it has a small ARL; no larger
than 4.2780 under both two scenarios. This indicates that the PoSSTenD method can pro-
vide a rapid alarm after the hot-spots occur, even if there are increasing or decreasing global
trends. This good performance is mainly due to its ability to remove the global trend and
capture the small hot-spots by the CUSUM control chart.

For the NMC-scan-stat method, it is hard to estimate the exact ARL; because it focuses
on the hot-spots localization, not sequential change point detection. So we will not report
its ARL;.

For the YPS-SSD method (marked with red), it can successfully detect hot-spots when
there is an increasing trend in population. For example, its ARL; is around 2 when § = 0.05
and there is an increasing trend in population. However, when the hot-spots are small and
there is a decreasing trend in population, then YPS-SSD has very limited power to detect
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the hot-spots. For example, its ARL; is around 11 when § = 0.05 and there is a decreasing
trend in population. If ARL; =~ 11, it is bad, because it means the YPS-SSD method is
unable to detect any hot-spots among a total of 26 years with hot-spots occurrence after
the 15-th year. This is because YPS-SSD targets on the detection of hot-spots among the
number of infectious people, rather than the infectious rates. So when the hot-spots are
small and there is a decreasing trend in population, the numbers of infectious people have
a very stable trend, which makes it difficult for YPS-SSD to detect the hot-spots.

For ZQ-Lasso (marked with pink), it has a relatively larger ARL;. For example, its ARL;
is around 9 when there is an increasing trend in the population. And its ARL, is above 9
when delta < 0.15 and there is a decreasing trend in the population. This is not surprising
because ZQ-Lasso is unable to separate the global trend and local hot-spots.

For the DBS-PCA method (marked with green), its ARL, is also large compared with
other methods. Specifically, its ARL; is above 8 for both two scenarios. And the T?> method
fails to detect the hot-spots in all scenarios within the entire n3 = 26 (simulated) years. The
reason for the unsatisfying results of DBS-PCA and T? is that they are designed based on
the global mean change, which cannot take into account the non-stationary global mean
trend and the sparsity of the hot-spots.

In conclusion, our proposed PoSSTenD method has short detection delay, no mat-
ter there is increasing/decreasing population trend. Yet, for the other benchmarks, their
detection performance is not robust to the population trend. Especially when there is a
decreasing population trend, they all have relatively long detection delays.

4.3.2. Comparison of hot-spots localization

In this section, we compare the performance on hot-spots localization. The evaluation
criterion are: (1) precision, defined as the proportion of detected hot-spots that are true
hot-spots; (2) recall, defined as the proportion of the hot-spots that are correctly identi-
fied; (3) F-measure, a single criterion that combines the precision and recall by calculating
their harmonic mean. In this paper, we classify a overall good method if it has a high pre-
cision, together with a high recall and a high F-measure. The localization performance of
the compared six methods is available in Table 2.

For our proposed PoSSTenD method, its localization performance is satisfactory no
matter the population size is increasing or decreasing over time. For instance, when the
population size is decreasing over time and § = 0.2, our method has 81.13% precision,
54.52% recall, and 64.41% F-measure, which outperforms the benchmark methods. The
only weakness of our proposed PoSSTenD method is that it has a relatively high false pos-
itive rate when & is small. For example, its precision, recall, and F-measure are 46.10%,
15.55% and 23.25% when § = 0.05 and the population is increasing. Though the above
performance is not excellent, it is still satisfying given the challenging to detect sparse
hot-spots among high-dimensional data, let along there are time-varifying global trend
mean.

For the NMC-scan-stat method, it has much lower precision than our proposed PoS-
STenD method. For example, its precision, recall and F-measure are 2.50%, 26.69% and
4.51% when § = 0.2 and the population is decreasing. Its limited power is mainly caused
by the property of scan statistics, which tends to detect clustered hot-spots. Accordingly,
the NMC-scan-stat method detects fewer hot-spots and misses true hot-spots. It is worth
noting that the precision/recall/F-measure might be overestimated for the NMC-scan-stat
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Table 2. Hot-spots detection and localization performance by five methods: our proposed method,
NMC-scan-stat, YPS-SSD, ZQ-Lasso, DBS-PCA and T? under the population with neural growth and
positive hot-spots.

Population with increasing trend Population with decreasing trend

4 =0.05
Methods Precision Recall F-measure ARL, Precision Recall F-measure ARL4
PoSSTenD 0.4610 0.1555 0.2325 2.0150 0.3393 0.1945 0.2470 42780
(0.0775) (0.0257) (0.0381) (1.4610) (0.1638) (0.0937) (0.1187) (3.6105)
NMC-scan-stat 0.0113 0.1193 0.0203 - 0.0110 0.1134 0.0198 -
(0.0144) (0.1655) (0.0256) ) (0.0141) (0.1575) (0.0253) ()
YPS-SSD 0.4184 0.1176 0.1836 1.1806 0.0000 0.0000 0.0000 11.0000
(0.0678) (0.0190) (0.0296) (0.5138) (0.0000) (0.0000) (0.0000) (0.0000)
ZQ-Lasso 0.9926 0.1003 0.1822 9.0609 0.0000 0.0000 0.0000 11.0000
(0.0168) (0.0013) (0.0023) (1.0593) (0.0000) (0.0000) (0.0000) (0.0000)
DBS-PCA - - - 10.7515 - - - 10.0200
- - - (0.6330) - - - (2.0995)
T - = - 11.0000 - - = 11.0000
- - - (0.0000) - - - (0.0000)
=102
PoSSTenD 0.7530 0.3165 0.4453 1.0000 0.8113 0.5352 0.6441 1.0000
(0.0614) (0.0269) (0.0351) (0.0000) (0.0539) (0.0428) (0.0420) (0.0000)
NMC-scan-stat 0.0211 0.2289 0.0381 - 0.0250 0.2669 0.0451 -
(0.0162) (0.1985) (0.0287) ) (0.0176) (0.2034) (0.0312) -)
YPS-SSD 0.5664 0.1617 0.2515 1.0010 0.9376 0.2436 0.3866 1.5630
(0.0678) (0.0194) (0.0299) (0.0316) (0.2136) (0.0563) (0.0889) (2.1750)
ZQ-Lasso 0.9971 0101 0.1836 9.0730 0.8990 0.0899 0.1635 2.4990
(0.0083) (0.0016) (0.0027) (1.0406) (0.3015) (0.0301) (0.0548) (2.9734)
DBS-PCA - - - 10.7330 - - - 8.6920
- - - (0.7939) - - - (3.6631)
T2 = = = 11.0000 = = & 11.0000
- — - (0.0000) - - - (0.0000)

3 The above results are based on 1000 simulations.

method: we record all the Monte Carlo runs, even if it is a false alarm because scan-stat
fails to report ARL;.
For the YPS-SSD method, it has a high false positive rate in all scenarios, especially

when the magnitude of hot-spots is small (§ = 0.05). For example, its recall are 24.36%
when § = 0.2 and the population is decreasing. Besides, we notice that its precision, recall,
and F-measure are all zero when § = 0.05 and there is a decreasing trend in population.
This is because that the YPS-SSD method fails to detect when the hot-spots occur, and thus
fails to further localize where the hot-spots occur.

For the ZQ-Lasso method, it has high precision when the population is increasing, or
8 = 0.2. However, it also has high false positive rate. For example, its precision, recall, F-
measure are 99.71%, 10.11% and 18.36 when § = 0.2 and the population is increasing. We
don’t think its performance is overall good, since it has unsatisfactory performance in the
sense of small recall. The physical meaning of the 99.71%-precision and 10.11%-recall is
that, the ZQ-Lasso method detects almost ‘everywhere’ as hot-spots, so it has around 100%
precision. However, as shown in Section 4.1, there are only 10% of them are true hot-spots,
so the recall is 10%. In practice, it is not preferred because it gives too much false alarm.
The aforementioned unsatisfactory performance is due to two reasons. First, ZQ-Lasso
lacks the ability to separate the global trend mean and local hot-spots, so ZQ-Lasso tends
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Figure 5. Comparison of true hot-spots and hot-spots detected by our PoSSTenD method and YPS-55D
method under the decreasing population size and large hot-spots § = 0.2. (a.1) true. (a.2) PoSSTenD.
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to localize all states as hot-spots which cause lots of false alarm. Second, ZQ-Lasso aims at
hot-spots localization of the number of infectious people, instead of infectious rates. Thus,
when there is an increasing trend of the population, ZQ-Lasso mistakenly regards it as the
potential hot-spots in the number of infectious people.

For the DBS-PCA and T? methods, their localization performance is not reported since
they can only detect when hot-spots occur and are incapable to localize where hot-spots
occur.

Moreover, we visualize the hot-spots localization results from one Monte Carlo sim-
ulation in Figure 5 under the scenario when § = 0.2 and population is decreasing over
time. Different rows refer to different types of disease. And we select the first five disease
as representative. In the first column, the blue states are the true hot-spots (true positive),
whereas the white states are the normal states (true negative). In the second, third, and
fourth columns, the red states are the detected hot-spots (true positive + false positive) by
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our proposed PoSSTenD method, NMC-scan-stat, and YPS-SSD method respectively. Dif-
ferent color represents how likely it is hot-spots: the darker red, the more likely it is. From
Figure 5, we can see that the NMC-scan-stat method tends to detect clustered hot-spots,
however, there is no clear pattern for the hot-spots detected by our proposed PoSSTenD
method and YPS-SSD method. The difference between our proposed PoSSTenD method
and the YPS-SSD method is that we have a lower false positive rate and a higher true pos-
itive rate. This is because that, our proposed PoSSTenD method is designed to detect and
localize hot-spots in the infectious rate, which is aligned with the data generation mech-
anism introduced in Section 4.1. However, the YPS-SSD method detects and localizes
hot-spots in the number of infectious people, which leads to an inaccurate localization
in our simulations.

In conclusion, our proposed PoSSTenD method has satisfying localization performance
no matter the population is increasing or decreasing. For the other benchmarks, they either
have relatively high false positive rate, or high false negative rate, or lack the ability to local-
ize the hot-spots. Besides, they are also not robust to the population trend, especially when
there is an increasing population trend.

4.3.3. Validation of model fitness

In this section, we demonstrate that our proposed PoSSTenD method leads to a reason-
ably well estimation for the global trend mean. The criterion we use is the Squared-Root
of Mean Square Error (SMSE). Table 3 shows the SMSE of the PoSSTenD, and YPS-SSD
method. We do not report the SMSE of the other baseline methods (NMC-scan-stat,
ZQ-Lasso, DBS-PCA, and T?), becasue they cannot model the global trend mean. It is
clear from Tables 3 that, our proposed PoSSTenD method performs well in terms of the
background fitness in both two scenarios.

5. Case study

In this section, we apply our proposed PoSSTenD method to the infectious disease dataset
described in Section 2. There are only two missing values, and we handle them by the
mean imputation with a reasonable assumption that they are missing at random. If one
encounters the missing-not-at-random case, one can use the methods in [3-5]. After the
missing data is addressed, we use PoSSTenD for hot-spots detection and localization and
compare its performance with other benchmarks as in Section 4.2.

First, we compare the performance of the detection delay. For all the methods, we set the
control limits so that the average run length to false alarm constraint ARLy = 50 via Monte
Carlo simulation under the assumption that data from the first 15 years are in control. For
the setting of the parameters and the selection of basis, they are the same as that in Section 4.
For our proposed PoSSTenD method, we build a CUSUM control chart utilizing the test
statistic in Section 3.3.1, which is shown in Figure 6. From this figure, we can see that the
hot-spots are detected in 2017 by our proposed PoSSTenD method. For the benchmark
methods for comparison, we also use YPS-SSD (see [46]), ZQ-Lasso (see [53]), DBS-PCA
(see [10]) and T? (see [39]) to our motivating dataset and summarize the performance of
the detection of a hot-spots in Table 4. Note that the value in Table 4 is the first year that

.....

SSD, and ZQ-Lasso all raise alarms of hot-spots in the year 2017, while other benchmarks
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Figure 6. Control chart of our proposed method.

Table 4. Detection of change-point year in infectious rate dataset.

Methods PoSSTenD NMC-scan-stat YPS-SSD ZQ-Lasso DBS-PCA T2
Year when an alarm is raised 2017 - 2017 2017 None None

Notes: The label ‘Year when an alarm is raised’ is first year that raises alarm, i.e. min;_pgpg__ 2018t : Wf' = L}, where Wr+
is the CUSUM statistics defined in Equation (10), and L is control limits to achieve the average run length to false alarm
constraint ARLy = 50 via Monte Carlo simulation under the assumption that data from the first 15 years are in control.

fail to detect any hot-spots (we do not represent the hot-spots year of NMC-scan-stat, as
it does not report the hot-spots). While nobody knows the ground truth when hot-spots
occur in this real-world dataset, our numerical simulation experiences suggest that year
2017 is likely a hot-spot.

Next, after the temporal detection of hot-spots, we need to further localize the hot-spots
in the sense that we need to find out which state and which type of disease may lead to the
occurrence of the temporal hot-spot in 2017. Because for the baseline methods, DBS-PCA
and T? can only realize the detection of temporal changes, and ZQ-Lasso declares all states
as hot-spots, we only show the localization of spatial hot-spots by our proposed PoSSTenD
method, NMC-scan-stat and YPS-SSD method in Figure 7. In Figure 7, one row is one type
of disease and we select three types of diseases as representatives, i.e. mumps, syphilis, and
pertussis. The first column is the raw data of the number of infected people in 2017, the
second, third, and fourth columns are the hot-spots localized by our proposed PoSSTenD
method, NMC-scan-stat, and YPS-SSD method, respectively. It can be seen from Figure 7
that, our proposed PoSSTenD method realizes more sparse hot-spots localization. Given
the simulation results in Section 4, our proposed PoSSTenD method has very high preci-
sion, recall, and F measure, we can declare that these states are highly likely to be hot-spots.
For NMC-scan-stat, it trends to localize clustered hot-spots, which has a very low recall.
For YPS-SSD, since it has relative lower precision and recall than our method, there are
more false-alarm than our method. This is reasonable for us to conclude that, our method
has better performance in hot-spots localization than the selected benchmarks.
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Figure 7. Hot-spots detection result of mumps, syphilis and pertussis in 2017 by our proposed PoSS-
TenD method (second column), NMC-scan-stat (third column) and YPS-SSD method (last column). The
first column is the raw data of the number of infected people of mumps, syphilis and pertussis in 2017.
(a.1) 2017 raw data. (a.2) PoSSTend. (a.3) NMC-scan-stat. (a.4) YPS-SSD (b.1) 2017 raw data. (b.2) PoSS-
Tend. (b.3) NMC-scan-stat. (b.4) YPS-SSD (c.1) 2017 raw data. (c.2) PoSSTend. (c.3) NMC-scan-stat. (c.4)
YPS-SSD.
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Appendices
Appendix 1. Proof for Proposition 3.1

Proof: According to Newton-Raphson method, we update from BH:H_I) to Gg“) as follows:
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) and matrix W is a diagonal matrix whose
e(x;rﬂ f.,’,(_ b +Z‘T

(k1)
(i,i)-th entry is n; %) So we can rewrite Equation (A1) as follows:
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where n = X0 4 W-1(y — y). O

Appendix 2. Estimation results for the logistic model of population size in
Section 4

o

Appendix 3. Table to generate Figure 4
In this section, we present the table to generate Figure 4 in Table A2.
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Table A2. ARL; of our proposed Po55TenD method, YPS-SSD method and ZQ-Lasso under population
with decreasing trend.

Fitting error § =0.05 8 = 0.075 8§ =01 8 =0125 =015 §=0175 d=02
Population with increasing trend
PoSSTenD 2.0150 1.3500 1.0780 1.0140 1.0010 1.0000 1.0000
(1.4610) (0.6049) (0.3000) (0.1175) (0.0316) (0.0000) (0.0000)
YPS-SSD 1.1806 1.0830 1.0350 1.0160 1.0080 1.0030 1.0010
(0.5138) (0.3259) (0.2093) (0.1542) (0.1093) (0.0547) (0.0316)
ZQ-Lasso 9.0609 9.0000 9.0620 9.0730 9.0670 9.0820 9.0730
(1.0593) (1.1096) (1.0580) (1.0162) (1.0704) (1.0865) (1.0406)
DBS-PCA 10.7515 10.7360 10.7090 10.7220 10.7340 10.7620 10.7330
(0.6330) (0.7778) (0.8666) (0.7832) (0.7442) (0.8295) (0.7939)
population with decreasing trend
PoSSTenD 42780 1.5580 1.0500 1.0000 1.0000 1.0000 1.0000
(3.6105) (1.1908) (0.2357) (0.0000) (0.0000) (0.0000) (0.0000)
YPS-SSD 11.0000 10.9900 10.8300 9.6910 6.2810 3.2390 1.5630
(0.0000) (0.3162) (1.2620) (3.2690) (4.8147) (3.9708) (2.1750)
ZQ-Lasso 11.0000 11.0000 11.0000 10.9550 9.6600 5.7020 2.4990
(0.0000) (0.0000) (0.0000) (0.6383) (3.3238) (4.7103) (2.9734)
DBS-PCA 10.0200 9.6900 9.2750 8.7720 8.6040 8.5750 8.6920
(2.0995) (2.6342) (3.0684) (3.4392) (3.6128) (3.6477) (3.6631)

2 The above results are based on 1000 simulations.



