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from Noisy Data via Splines
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2 H. Milton Stewart School of Industrial and Systems Engineering, Georgia Tech

Abstract: We propose a two-stage method called Spline-Assisted Partial Differ-
ential FEquations-based Model Identification that can be used to identify models
based on partial differential equations (PDEs) from noisy data. In the first stage,
we employ cubic splines to estimate unobservable derivatives. The underlying
PDE is based on a subset of these derivatives. This stage is computationally
efficient. Its computational complexity is the product of a constant and the sam-
ple size, which is the lowest possible order of computational complexity. In the
second stage, we apply the least absolute shrinkage and selection operator to
identify the underlying PDE-based model. Statistical properties are developed,
including the model identification accuracy. We validate our theory using numer-
ical examples and a real-data case study based on an National Aeronautics and

Space Administration data set.
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splines, Lasso.



1. Introduction

Partial differential equations (PDEs) are widely used to model physical pro-
cesses in fields such as engineering (Wang et al., 2019), physics (Xun et al.,
2013), and biology (Lagergren et al., 2020). In these applications, there are
two classes of technical issues: the forward problem and the inverse prob-
lem. The forward problem studies the properties of functions that PDEs
determine. It has been extensively studied by mathematicians (Olver, 2014;
Wang et al., 2014). Different from forward problems, inverse problems try
to identify PDE-based models from the observed noisy data. Research on
the inverse problem is relatively sparse, and the corresponding statistical
property is notably less known. In this paper, we propose a method for
solving the inverse problem, which we refer to as a PDFE identification prob-
lem.

With the rise of big data, the PDE identification problem has become
indispensable. A good PDE identification approach offers at least the fol-
lowing two benefits. First, we can predict future trends using the identified
PDE model, conditional that such a model reflects the underlying processes.
Second, interpretable PDE models enable scientists to validate/reexamine
the underlying physical/biological laws governing the process.

We propose a new method for the PDE identification problem, called



Spline Assisted Partial Differential Equation based Model Identification (SAPDEMI).
SAPDEMI can efficiently identify the underlying PDE model from noisy

data D:

D ={(vitp,ul): ;€ (0,Xpmax) CR, Vi=0,...,M —1,
(1.1)
tn € (0, Thax) CR, Vn=0,...,N =1} € Q,

where z; € R is a spatial variable, with z; € (0, Xjpax), for i =0,1,..., M —
1, and we call M the spatial resolution. The variable ¢, € R is a temporal
variable, with t,, € (0, Thax), for n = 0,1,...,N — 1, and we call N the
temporal resolution. We use T, and X, to denote the upper bound of
the temporal variable and the spatial variable, respectively. The variable u}'

is a representation of the ground truth w(z;,t,), contaminated by the noise

that follows a normal distribution with mean zero and stand deviation o:

Wl = (g ty) e, e K N(0, ). (1.2)

7

Here, u(z,t) is the ground truth function, which is determined by an un-

derlying PDE model, and is assumed to satisfy the following equation:

gmax Pmax

Bula ) = Bt 2 3 61 [Feule.0)] +
> > BZiJj [;Tkxu(x,t)y [a%u(x,t)}j.

i"l‘jgpmax 0<k<l
4,7>0 I<qmax

(1.3)

The left-hand side of the above equation is the first-order partial deriva-

tive of the underlying function with respect to the temporal variable ¢,



and the right-hand side is the pya.cth-order polynomial of the derivatives
with respect to the spatial variable x up to the gu..th total order. For
notational simplicity, we denote the ground truth coefficient vector, 3" =
(Bios Bl By oy Bimc)s 85 B = (B, 85,85, -, B5)T, where K = 1+
(Pmax + 1) Gmax + %Qmax(QmaX + 1) (pmax — 1)! is the total number of coefficients
on the right-hand side. Noted that, in practice, the majority of the entries in
(3" are zero. For instance, in the transport equation %u(az,t) = a%u(w,t),
with any a # 0, we have only 85 # 0 and ] = 0, for any i # 3 (see Olver,
2014, Section 2.2). Therefore, it is reasonable to assume that the coefficient
B* in (1.3) is sparse.

To identify the above model, we need to overcome two technical chal-
lenges. First, the derivatives in (1.3) are unobservable, and need to be
estimated from the noisy observations. Second, we need to identify the
underlying model, which is presumably simple (i.e., sparse) .

We design our proposed SAPDEMI method as a two-stage method to
identify the underlying PDE models from the noisy data D. The first stage
is called the functional estimation stage, where we estimate all the deriva-
tives from the noisy data D, including %u(m,t), %u(x,t), and so on. In
this stage, we first use cubic splines (Shridhar and Balatoni, 1974) to fit the

noisy data D, and then we approximate the derivatives of the underlying
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function from the derivatives of the estimated cubic splines. The second
stage is called the model identification stage, where we apply the least abso-
lute shrinkage and selection operator (Lasso) (Tibshirani, 1996) to identify
the derivatives (or their combinations) that should be included in the PDE-
based models. To ensure accuracy, we develop sufficient conditions for cor-
rect identification and the asymptotic properties of the identified models.
The main tool used in our theoretical analysis is the primal-dual witness
(PDW) method (see Hastie et al., 2015, Chapter 11).

The rest of this section is organized as follows. In Section 1.1, we review
existing methods related to the PDE identification problem. In Section 1.2,

we summarize our contributions.

1.1 Literature Review

A pioneering work in identifying underlying dynamic models from noisy
data is that of Liang and Wu (2008). Their method is also a two-stage
method. In the functional estimation stage, they use a local polynomial
regression to estimate the value of the function and its derivatives. Subse-
quently, in the model identification stage, they use the least squares method.
Following this work, various extensions have been proposed.

The first class of extensions modifies the functional estimation stage of
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Liang and Wu (2008), and can be divided into three categories. (F1). In the

numerical differentiation category (Wu et al., 2012), the derivative L u(z,t)

2] w(z+Az,t)—u(x—Az,t)

is simply approximated as 5-u(v,t) ~ ( oAy , where (x + Az, t)

and (z — Az, t) are the two closest points to (z,t) in the z-domain. The
essence of numerical differentiation is to approximate the first-order deriva-
tive as the slope of a nearby secant line. Although the implementation is
easy, the approximation results can be highly biased, because its accuracy
depends greatly on Axz: a small value of Ax yields large rounding errors
in the subtraction (Ueberhuber, 2012), and a large value of Az leads to
poor performance when estimating the tangent slope using secants. Thus,
this naive numerical differentiation is not preferred owing to its bias. (F2).
In the basis expansion category, researchers first approximate the unknown
functions using basis expansion methods, and then approximate the deriva-
tives of the underlying function as those of the approximated functions.
There are multiple options for the choice of bases. The most popular basis
is the local polynomial basis (see Liang and Wu, 2008; Béar et al., 1999;
Schaeffer, 2017; Rudy et al., 2017; Parlitz and Merkwirth, 2000). Another
popular choice is the spline basis (see Wu et al., 2012; Xun et al., 2013;
Wang et al., 2019). Our proposed method belongs here. In this category,

the major limitation of existing approaches is the potentially high com-
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putational complexity. For instance, the local polynomial basis requires
computational complexity of order max{O(M?*N),O(MN?)} in the func-
tional estimation stage. However, we show that our proposed SAPDEMI
method requires only O(M N). The sample size of the dataset D is M N,
so it takes at least M N numerical operations to read D. Consequently, the
lowest possible bound, in theory, is O(M N), As achieved by our proposed
SAPDEMI method. (F3). In the machine or deep learning category, re-
searchers first fit unknown functions using machine/deep learning methods,
and then approximate the derivatives of the underlying functions as those
of the approximated functions. A popular machine/deep learning method
is the neural network (NN) approach. For instance, Srivastava et al. (2020)
use an artificial neural network (ANN). These methods are limited by po-
tential overfitting and the selection of the hyper-parameters.

The second class of extensions modifies the model identification stage
of Liang and Wu (2008). Here, existing methods fall within the framework
of the (penalized) least squares method, and we can again divide them into
three categories. (M1). In the least squares category, researchers study
ordinary differential equation (ODE) identification (Miao et al., 2009) and
PDE identification (Bér et al., 1999; Wu et al., 2012) , althrough they too

have problems with overfitting. (M2). In the fy-penalized least squares
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category, Xun et al. (2013) and Wang et al. (2019) penalize the smoothness
of the unknown function, which is assumed to be in a prescribed reproduc-
ing kernel Hilbert space (RKHS). Essentially, this method falls within the
framework of the /o-penalized least squares method. Although this method
helps to avoid overfitting by introducing the />-penalty, it has limited power
in terms of “model selection”. (M3). In the ¢;-penalized least squares
method category, Schaeffer (2017) identifies unknown dynamic models (i.e.,
functions) using the ¢;-penalized least squares method. The author pro-
vides an efficient algorithm, based on the proximal mapping method, but
does not discuss the statistical proprieties of the identified model. Recently,
Kang et al. (2019) use a similar method to that of Schaeffer (2017), and
demonstrate empirical successes. However, the derivation of the statistical
theory is still missing. Our study addresses this gap in the literature.

In addition to the f5- or ¢;-penalized least squares methods, other meth-
ods have been proposed for the model selection stage, but are not as widely
used. Here, examples include the Akaike information criterion (AIC) in
Mangan et al. (2017), smoothly clipped absolute deviation (SCAD) in Lu
et al. (2011), and hard-thresholding in Rudy et al. (2017). The first two
approaches may lead to NP-hard problems in numerical implementation.

The last one is ad-hoc, and may be difficult to analyze. Thus, we do not
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address these alternative approaches.

Although our proposed SAPDEMI method applies to the PDE model,
other nonparametric models are possible. Here, we take PDEs as an ini-
tial research project mainly because they are deterministic. Thus, we can
compare our identified model with the true model, and show the model
notification accuracy. As our initial research project, we prefer the PDE
to machine learning (ML) models (e.g., neural network, random forest),
because a PDE offers insight into the physical law. However, the ML mod-
els are usually black-box methods (Loyola-Gonzalez, 2019). We also prefer
the PDE to the time series models, because it behaves like a “continuous
version” of a time series model (Perona et al., 2000; Chen et al., 2018) at a
high level. Furthermore, we prefer the PDE to the Gaussian process (GP)
model, because the GP model restricts its response variables to follow a
Gaussian distribution (Liu et al., 2020; Wei et al., 2018). Again, although
we take the PDE as our initial research project, we are open to using the

aforementioned nonparametric models in future work.

1.2 Our Contributions

Here, we summarize the contributions of our proposed method. (1) In

the functional estimation stage, our proposed SAPDEMI method is com-
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putationally efficient. Specifically, we require computational complexity of
order O(MN), which is the lowest possible order in this stage. In com-
parison, the aforementioned local polynomial regression requires computa-
tional complexity of order max{O(M?N), O(M N?)}, which is higher. (2)
For our proposed SAPDEMI method, we establish a theoretical guarantee
of the model identification accuracy, which, to the best of our knowledge,
is a novel result. (3) We extend our method to PDE-based model identi-
fication, and compare it with ODE-based model identification. The latter
has more related work, whereas the former is not yet well understood.
The rest of the paper is organized as follows. In Section 2, we describe
the technical details of our proposed SAPDEMI method. In Section 3,
we present our main theory, including the sufficient conditions for correct
identification, and the statistical properties of the identified models. In
Section 4, we conduct numerical experiments to validate the theory from
Section 3. In Section 5, we apply SAPDEMI to a real-world case study
using data downloaded from the National Aeronautics and Space Admin-
istration (NASA). In Section 6, we conclude the paper and discuss some

future research.



2. Proposed Method: SAPDEMI

The proposed SAPDEMI method is a two-stage method for identifying
the underlying PDE model from noisy data D. The first stage is called
the functional estimation stage. Here, we estimate the function and its
derivatives from the noisy data D in (1.1), and use these as input in the
second stage. The second stage is called the model identification stage,
where we identify the underlying PDE-based model.

In our notation, scalars are denoted by lowercase letters (e.g., 3). Vec-
tors are denoted by lowercase bold face letters (e.g., 3), and its ith entry is
denoted as ;. Matrices are denoted by uppercase boldface letter (e.g., B),
and its (4, j)th entry is denoted as B;;. For the vector 8 € R?, its kth norm is

defined as || 8] :== (37, |ﬁi|k)1/k . For the matrix B € R™*" its Frobenius

norm is defined as ||B||, = \/221 > i1 |Bij|*. We write f(n) = O(g(n))
if there exists a G € RT and an ng such that |f(n)| < Gg(x), for all n > ny.

This section is organized as follows. In Section 2.1, we introduce the
functional estimation stage, and in Section 2.2, we describe the model iden-

tification stage.
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2.1 Functional Estimation Stage

In this section, we describe the functional estimation stage of our proposed
SAPDEMI method. In this stage, we estimate the functional values and
their derivatives from the noisy data D in (1.1). These derivatives include
the derivatives with respect to the spatial/temporal variable z/t. We take
derivatives with respect to the spatial variable x as an example; the deriva-
tives with respect to the temporal variable ¢ can be derived similarly.

The main tool that we use is the cubic spline. Suppose there is a cubic
spline s(z) over the knots {(x;,u}')},_o, . , satisfying the properties in
McKinley and Levine (1998): (1) s(z) € C?*[xg, zar—1], where C?|xg, 2y 1]
denotes the sets of function whose Oth, first, and second derivatives are
continuous in [z, zpr1]; (2) Forany i =1,..., M —1, s(z) is a polynomial
of degree three in [z;_1,2;]; (3). For the two end-points, xy and z_1, we

have s"(zg) = s"(zp—1) = 0, where s”(z) is the second derivative of s(x).

By fitting the data {(z;, ui") },_o, s, (With a general fixed n € {0,1,...

1}) into the above cubic spline s(z), one can solve s(x) as the minimizer of
the following optimization problem:

M-1 TM—1
=q Z wiul — s(x;)]* + (1 — oz)/ s"(z)*dz, (2.1)
=0 &

0

where the first term o SN w;[ul — s(z;))? is the weighted sum of squares
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for the residuals, and we take the weight wg = w; = ... = wy_1 = 1. In
the second term, (1 — ) "' s"(x)?dz, the function s”(z) is the second
derivative of s(x), and this term is the penalty of the smoothness. In the
above optimization problem, the parameter o € (0, 1] controls the trade-off
between the goodness of fit and the smoothness of the cubic spline. By
minimizing the above optimization problem, we obtain an estimate of s(z),
together with its first derivative s'(z) and its second derivative s”(x). If the
cubic spline approximates the underlying PDE curves well, we can declare
that the derivatives of the underlying dynamic system can be approximated

—

by the derivatives of the cubic spline s(x), that is, we have wu(z,t,) ~

— o~

s(x), Zu(z,t,) ~ s'(z), 68—;2u(x, tn) = 37(\:10) (Ahlberg et al., 1967; Rubin and
Graves Jr, 1975; Rashidinia and Mohammadi, 2008). Following a similar
procedure to obtain the derivatives with respect to the spatial variable z,

we can get the derivatives with respect to the temporal variable ¢, that is,

P

%u(xi,tn),foranyz':O,...,M—landn:O,...,N—l.

A nice property of the cubic spline is that there is a closed-form so-

lution for (2.1). First, the value of the cubic spline s(x) at the point

— e \T
{zo,x1,..., 201}, that is, 8 = (s(xg),s(xl), . s(xM_1)> , can be solved

as

5=[aW + (1 — a)ATMA] 'aWu". (2.2)
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The above closed-form estimation can be used to approximate the function

that corresponds to the underlying PDE model, that is, s ~ f

( — — —

-
w(zo, tn), w(1,tn), . u(Tpr—1, tn)> . Here, W = diag(wy, ..., wy—_1) €
RM*M ‘vector ul" = (ug, ... ,u’]@_l)T € R™ and the matrices A € RM=2)xM

and M € RIM=2)x(M=2) 4r0

1 -1 1 1
ho ho  h1 hy 0 | ’
0 L —1_1 0 0 0
A— It h1 ha ) (2-3>
1 -1 L :
0 0 0 T hpyr—3 har—3 o har—2 hpr—2
ho+h h1
07?: 1 e 0 0 0
b1 hithy  hy 0 0
M _ 6 3 6 s (24)
0 0\ O . ha=s Au-athas

respectively, with h; = 2,1 —x;, for i =0,1,... M — 2.

For the mathematical derivation of (2.2) from (2.1), and the derivation
of first- and second-order derivatives, please refer to the Supplementary
Material S2.

The advantage of the cubic spline is that its computational complexity

is only a linear polynomial of the sample size M N.
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Proposition 2.1. Given the data D in (1.1), if we use the cubic spline in
(2.1) in the functional estimation stage, the computation complexity is of

order

max{O(pmax M N), O(K?)},

where ppay is the highest polynomial order in (1.3), M/N is the spa-

tial/temporal resolution, and K is the number of covariates in (1.3).

The proof can be found in the online Supplementary Material S10.1.

As suggested by Proposition 2.1, when pyay, K < M, N (which is often
the case in practice), it only requires O(M N) numerical operations in the
functional estimation stage. This is the lowest possible order of complexity
in this stage, because M N is exactly the sample size of D, and reading the
data is a task of order O(M N). Therefore, it is very efficient to use a cubic
spline, because its computational complexity achieves the lowest possible
order of complexity.

By way of comparisons, we discuss the computational complexity of the
local polynomial regression, which is widely used in the literature (Liang
and Wu, 2008; Bar et al., 1999; Schaeffer, 2017; Rudy et al., 2017; Parlitz
and Merkwirth, 2000). This computational complexity is
max{O(M?N), O(MN?),O(pmax M N), O(K?)}, which is much higher than

ours for a generalized polynomial order py... Specifically, if one restricts
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the local polynomial regression method to the same order as that of the

cubic spline, its computational complexity is
max{O(MN), 0(MN2),0(K*)}.

which is still higher than that of the cubic spline method in Proposition 2.1.
The related proposition and proof are available in Supplementary Materials
S10. We summarize the pros and cons of the cubic spline and the local

polynomial regression in Table 1.

Table 1: Pros and cons of the cubic spline and the local polynomial regres-
sion in the functional estimation stage (assume that ppax, max, K < M, N)

Method | Cubic spline Local polynomial regression

Pros Computational complexity is O(M N) | Derivatives up to any order

Cons If higher-than-2 order is required, | Computational complexity is

need extensions beyond cubic splines. | max{(M?N), O(MN?)}

2.2 Model Identification Stage

In this section, we discuss the model identification stage of our proposed
SAPDEMI method. In this stage, we identify the PDE model in (1.3).
Note that the model in (1.3) can be regarded as a linear regression model

with a response variable that is the first-order derivative with respect to the
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Ou(x,t)
ot

temporal variable ¢, that is, , and the covariates are the derivative(s)
with respect to the spatial variable z, including %u(wi, tn), %u(xi, ta), -,

Pmax
(88—;2u(xi, tn)> . Because we have M N observations in the data set D in

(1.1), the response vector is of length M N:

_ Ju(zxo,to u(znrr—1,to u(rp—1tN 1) \ T
Viu = (=5, ..., TR ) Rl ) (2.5)

and the design matrix is of dimension M N x K:

X = (=0, x0, ..., %0, x0, .., XN )T e RMNXE . (2.6)
For the above design matrix X, its (nN +i+ 1)st row is X" = (1, uw(Zi, tn),
— — —— 2 — Pmax T
%u(xia tn)a 36_;2u(37u tn)a (u(x“ tn)) IR (%u(‘ru tn)) ) . The K com-

ponents of X} are candidate terms in the PDE model. Note that all of the
derivatives listed in (2.5) and (2.6) are estimated from the functional esti-
mation stage described in Section 2.1.

Next, we use the Lasso to identify the nonzero coefficients in (1.3):
~ [ N 5
B=argmin s — |[Vou - X8I, +A18]), (2.7

where A\ > 0 is a turning parameter that controls the trade-off between the
sparsity of 3 and the goodness of fit. Given the ¢; penalty in (2.7), B is
sparse, that is, only a few of its entries are likely to be nonzero. Accordingly,

we can identify the underlying PDE model as

—u(z,t) =x"B, (2.8)



Pmax T
where x = <1, u(z,t), Zu(z,t), 8‘9—;2u(x, 1), (u(z, 1), ..., (8‘9—;14(3:, t)) ) €
RX. To solve equation (2.7), one can use the coordinate descent method
(Beck and Tetruashvili, 2013; Tseng, 2001); see the online Supplementary

Material S4.

3. Theory on Statistical Properties

The theoretical evaluation is performed from two aspects. (S1). First,
we check whether our identified PDE model contains derivatives that are
included in the “true” underlying PDE model. This is called the support set
recovery property. Mathematically, we check whether supp(,@) C supp(8"),
where ,@ is the minimizer of (2.7), B8 is the ground truth, and supp(3) = {i :
B; #0, Vi,1 <i< K}, for a general vector 3 € R¥. However, the support
recovery depends on the choice of the penalty parameter \: a large value of
A leads to supp(B) = () (empty set), whereas a small value of X results in a
nonsparse [A‘} A proper selection of A hopefully leads to the correct recovery
of the support set recovery, that is, we have supp(,@) C supp(3*). We

discuss the selection of A to achieve the above goal in Theorem 3.1. (S2).

Second, we are interested in an upper bound of the estimation error of our

Bs — B

, where S = supp(37),

[e.e]

estimator. Specifically, we consider

and the vectors B s and B are subvectors of ,75' and 3", respectively, and
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contain only elements with indices that are in S. An upper bound of the
above estimation error is discussed in Theorem 3.2.
This section is organized as follows. In Section 3.1, we present the

conditions for the theorems. In Section 3.2, we state two theorems.

3.1 Conditions for the Theorems

In this section, we introduce the conditions we use for our theorems. We be-
gin with three frequently used conditions in ¢;-regularized regression mod-
els. These conditions provide sufficient conditions for exact sparse recovery
(see Hastie et al., 2015, Chapter 11). Subsequently, we introduce three
conditions that are widely used in cubic spline-based functional estimation

(see Silverman, 1984, (2.5)-(2.8)).

Condition 3.1 (Mutual Incoherence Condition). For some incoherence pa-
rameter (1 € (0,1] and P, € [0, 1], we have P (HX;XS(XEXS)_lﬂoo <1l—p)>

P, , where the matrix Xse is the complement of Xs.

Condition 3.2 (Minimal Eigenvalue Condition). There exists some con-
stant Cin > 0 such that Ay, (ﬁXEX‘g) > Chin, almost surely. Here,
Apin(A) denotes the minimal eigenvalue of a square matrix A € R"*". This
condition can be considered a stronger version of the invertibility condition

(see Hastie et al., 2015, Chapter 11).
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Condition 3.3 (Knots c.d.f. Convergence Condition). Suppose the se-
quence of the empirical distribution function over the design points a =
g < ... < xp-1 = b, with different sample size M, is denoted as Fy(x),
that is, we have Fy/(z) = +; Zij\io_l 1{z; < x}. Then, there exists an ab-
solutely continuous distribution function F' on [a,b] such that Fy, — F
uniformly as M — 4o00. Here, 1{A} is the indicator of event A. A similar
condition holds for the temporal variable: suppose the sequence of the em-
pirical distribution function over the design points @ =ty < ... < ty_1 = b,
with different sample size N, is denoted as Gy(x). Then, there exists an

absolutely continuous distribution function G' on [a, b] such that Gy — G

uniformly as N — +o00.

Condition 3.4 (Knots p.d.f. Convergence Condition). Suppose the first
derivatives of the functions F' and G (defined in Condition 3.3) are denoted

as [ and g, respectively. Then we have

0< inf f< sup f<+oo and 0< inf ¢g< sup g < +o0o,

[0,xnr—1] [0,z nr—1] [to,tn—1] [to,tn—1]

and f and ¢ also have bounded first derivatives on [zg, xar-1], [to, tn—1]-

Condition 3.5 (Gentle Decrease of Smoothing Parameter Condition). Sup-
pose that ((M) = supy,, ,,, ,) [Famr—F|. The smoothing parameter « in (2.1)

depends on M in such a way that a — 0 and a~"/4¢(M) — 0 as M — +oc.
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A similar condition also holds for the temporal variable.

3.2 Main Theory

In the first theorem, we develop the lower bound of A to realize the correct

~

recovery of the support set, that is, S(3) C S(8").

Theorem 3.1. Given the data in (1.1), suppose the conditions in Lemma
56.1 and Corollary S6.1 (see the online Supplementary Material S6) hold,
as do Condition 3.1 - 3.5. If we take M = O(N), then there exists a

constant &, y > 0 that is independent of the spatial resolution M

lullLoe ()
and the temporal resolution N. Thus, if we set the cubic spline smoothing
parameter with the spatial variable z in (2.1) as a = O ((1 + M_4/7)_1> ,

set the cubic spline smoothing parameter with temporal variable ¢ as & =

@) ((1 - N_4/7)71> , and set the turning parameter

VK log(N)
A>E(o, HUHLOO(Q))W (3.1)

to identify the PDE model in (2.7), for some r € (O7 %), with sufficient large

N, then with probability greater than P, — O (Ne_Nr), we have S(,/B\) C

Pl
S(B). Here, K is the number of columns of the design matrix X in (2.7),

and p and P, are defined in Condition 3.1.

The proof of the above theorem can be found in the Supplementary
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Material S10, along with several lemmas, the conditions of which are stan-
dardized in cubic splines. The above theorem provides the lower bound of
A to realize the correct recovery of the support set. As indicated by (3.1),
the lower bound is affected by several factors. First, it is affected by the
temporal resolution N: as N increases, there is greater flexibility in tuning
the penalty parameter \. Second, the lower bound in (3.1) is affected by
the incoherence parameter p: if p is small, then the lower bound increases.
This is because a small g means that the feature variable candidates are
similar to each other. This phenomenon is called multicollinearity. In this
case, we have a very limited choice in terms of selecting A\. However, we
cannot increase the value of i, because this is decided by the data set D (see
Condition 3.1). Third, the lower bound in (3.1) is affected by the number
of columns of the matrix X. If its number of columns is very large, then it
requires a larger A to identify the significant feature variables from among
potential feature variables.

Note too that the probability P, — P’ converges to P, as N — +o0.
This limiting probability P, is determined by the data D (see Condition
(3.1)). Thus, when N is very large, our proposed SAPDEMI method can

realize S(B) C S(B") with probability close to P,.

In the second theorem, we develop an upper bound for the estimating
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error.

Theorem 3.2. Suppose the conditions in Theorem 3.1 hold. Then with
probability greater than 1 — O(Ne ") — 1, there exists an N > 0, such

that when N > N, we have

|Bs -8

log(NV)
U= VK Cin (\/Ecg(a,HuHLoo(Q))W + /\) ,

where K is the number of columns of the matrix X, & :={i : 57 # 0, Vi =
1,..., K} and the vectors ,B’ s, and B% are subvectors of ﬁ and 3%, respec-
tively, that contain only those elements with indices that are in §. The

theorem shows that when N — 400, the error bound convergences to 0.

The proof can be found in the Supplementary Material S10. The pre-
vious theorem shows that the estimation error bound for the f,-norm of
the coefficient error in (3.2) consists of two components. The first compo-
nent is affected by the temporal resolution N and the number of feature
variable candidates K. As N — +oo, this first component converges to
zero without an explicit dependence on the feature variable selected from
(2.7). The second component is VEC i \. When N increases to +oo, this
second component also converges to zero. This is because, as stated in The-
orem 3.1, when N — +o00, the lower bound of A\, which realizes the correct

support recovery, converges to zero. Thus, the accuracy of the coefficient



estimation improves as we increase N.

By combining Theorems 3.1 and 3.2, we find that when the minimum
absolute value of the nonzero entries of 3" is sufficiently large, with an
adequate choice of A\, we can guarantee the exact recovery. Mathematically,
when mines [(8%)i] > VK Cin (\/R%(a,llullmo(n))% + /\> , where (8%);
refers to the ith element in the vector B35, we have a correct signed support
of B This helps when selecting the penalty parameters A. In addition, the
plot of the solution paths helps with the selection of the penalty parameters

A; see Section 4.

4. Numerical Examples

We conduct numerical experiments to verify the computational efficiency
and the statistical accuracy of our proposed SAPDEMI method.

Our examples are based on (1) the transport equation, (2) the inviscid
Burgers’ equation, and (3) the viscous Burgers’ equation. We select these
three PDE models as representatives, because they all play fundamental
roles in modeling physical phenomena and demonstrate characteristic be-
haviors of a more complex system, such as dissipation and shock formation
(Haberman, 1983). In addition to wide applications, they cover a wide

range of categories, including the first-order PDE, second-order PDE, lin-
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ear PDE, and nonlinear PDE, which cover most of the PDEs frequently seen
in practice. Furthermore, the difficultly of identifying the above PDE mod-
els increases from the first example—the transport equation—to the last
example—the viscous Burgers’ equation. We set ppax = 2 and @uax = 2
in (1.3) for the three numerical examples (see the full formula of the full
model in the Supplementary Material S11), that is, we identify the PDE
model from the full model.

In terms of computational efficiency, the results of these three examples
are the same, so we present only the result for the first example. We also
verify Conditions 3.1 - 3.5 for the above three examples. The details of the

verification are provided in the Supplementary Material S12.

4.1 Example 1: Transport Equation

The PDE problem studied in this section is the transport equation. It is
a linear first-order PDE model. Given its simplicity and straightforward
physical meaning, it is widely used to model the concentration of a sub-
stance flowing in a fluid at a constant rate, For example, it can model a

pollutant in a uniform fluid flow that is moving with velocity a (Olver, 2014,
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Section 2.2):

Su(z,t) = alu(z,t), V0 <2< Xpax, 0 <t < T
u(z,0) = f(z).

Here, a € R is a fixed nonzero constant, known as the wave speed. In this

section, we set a = —2, f(z) = 2sin(4x), Xpmax = 1 and Tyay = 0.1. Given

these settings, there is a closed-form solution, u(z,t) = 2sin(4x — 8t).

The dynamic pattern of the above transport equation is visualized in
Fig. 1, where the subfigures (a), (b), and (c) show the ground truth and
noisy observations under ¢ = 0.05 and o = 0.1, respectively. The figure
shows that a larger noise results in the shape of the transport equation

being less smooth, potentially leading to additional difficulties in the PDE

model identification.

2 = ‘ 2
—~ / N — / \”\«
£0 \ Eo N\

0 05 1 o 0.5 1
x xTr xr

(a) truth (b) o =0.05 (c)o=0.1

Figure 1: Noisy/True curves from (4.1) (M = N = 100).

First, we consider the computational complexity of the functional esti-
mation stage. We select the local polynomial regression as a benchmark,

and visualize the number of numerical operations of the two methods in
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Fig. 2, where the x-axis is log(M) or log(N), and the y-axis is the loga-
rithm of the number of numerical operations. In Fig. 2, two scenarios are
discussed: (1) M is fixed as 20, and N varies from 200 to 2000; and (2) N is
fixed as 20, and M varies from 200 to 2000. Fig. 2 shows that, as M or N
increases, so does the number of numerical operations in the functional esti-
mation stage. We find that the cubic splines method needs fewer numerical
operations, compared with the local polynomial regression. Furthermore,
a simple linear regression of the four lines in Fig. 2 shows that in (a),
the slope of the cubic spline is 0.9998, and as N goes to infinity, the slope
gets get closer to one. This validates that the computational complexity
of the cubic splines-based method is of order O(N) when M is fixed. The
result in (b) is similar. Thus, we numerically verify that the computational
complexity of the cubic spline method is of order O(M N). Similarly, for a
local polynomial, we can numerically validate its computational complexity,
which is max{O(M?N), O(M N?)}.

We now verify numerically that with high probability, our SAPDEMI
can correctly identify the underlying PDE models. From the formula of
the transport equation in equation (4.1), we know that the correct feature

0

variable is 7-u(z,t), and that other feature variables should not be identi-

fied. We discuss the identification accuracy under different sample sizes and
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(a) fixed M =20  (b) fixed N =20
Figure 2: Computational complexity of the cubic spline and a local poly-

nomial.

magnitudes of noise. We find that the accuracy stays at 100%. To explain
the high accuracy, we plot the solution paths in Fig. 3 under different o,
namely, ¢ = 0.01,0.1,1. From Fig. 3, we can increase A\ to overcome this

difficulty, and thus achieve a correct PDE identification.

Coefficient
Coefficient

Coefficient

105 100

(a) 0 =0.01 (b) o =0.1 (c)o=1
Figure 3: Solution paths in the transport equation under different ¢ and

M = N =100. The otation u, is a simplification of Zu(z,t).

4.2 Example 2: Inviscid Burgers’ Equation

In this section, we investigate the inviscid Burgers’ equation (see Olver,

2014, Section 8.4), which is representative of a first-order nonlinear PDE



4.2 Example 2: Inviscid Burgers’ Equation

and is used frequently in applied mathematics, such as fluid mechanics,
nonlinear acoustics, gas dynamics, and traffic flow. This PDE model was
first introduced by Harry Bateman in 1915, and later studied by Johannes
Martinus Burgers in 1948 (Whitham, 2011). The formula of the inviscid

Burgers’ equation is listed below:

)
Su(z,t) = —iu(z,t)Zu(z,t)
u(z,0) = f(x) 0<z<X,ax > (4.2)
u(0,8) = wu(l,t) =0 0 <t < Thnax

where we set f(z) = sin(272), Xpax = 1 and Thax = 0.1. Fig. 4(a), (b),
and (c) show the ground truth and noisy observations under o = 0.05 and

0.1, respectively. Compared with our first example (transport equation in

2 2 ‘ 2
. A SN - R
=0 X UK}%\&/ =0 %
- S =7 N
2 2 | 2
0 0.5 1 0 0.5 1
xr x

0 0.5 1
T

u(z,-)

(a) truth (b) o =0.05 (c) o =0.1

Figure 4: Noisy/True curves from (4.2) (M = 50, N = 50).

(4.1)), the inviscid Burgers’ equation can be regarded an extension from the
linear transport equation to a nonlinear transport equation. Specifically, if
we set a in (4.1) as a = —Lu(z,t), then (4.1) is equivalent to (4.2). In

the literature, this PDE model is considerably more challenging than the
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linear transport PDE in (4.1): the wave speed in (4.1) depends only on
the spatial variable x, whereas the wave speed in (4.2) depends on both
the spatial variable x and the size of the disturbance u(z,t). Given the
complicated wave speed in (4.2), it can model more complicated dynamic
patterns. For example, larger waves move faster, and overtake smaller,
slow-moving waves.

In this example, SAPDEMI correctly identifies with an accuracy above
99% (see Fig. 8(a)). The effect of o is also reflected in Fig. 5, where the

length of the A-interval for correct identification decreases as ¢ increases.

0

-0.5

Coefficient

Coefficient

Coefficient

-1
1072 10°

(a) o = 0.01

Figure 5: Solution paths in the inviscid Burgers’ equation under different
o and M = N = 100. Here u and u, are simplifications of u(x,t) and

%u(w, t), respectively.

4.3 Example 3: Viscous Burgers’ Equation

In this section, we investigate the more challenging viscous Burgers’ equa-

tion (see Olver, 2014, Section 8.4), which is a fundamental second-order
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semilinear PDE. It is frequently employed to model physical phenomena in
fluid dynamics (Bonkile et al., 2018) and nonlinear acoustics in dissipative

media (Rudenko and Soluian, 1975). For example, in fluid and gas dynam-

ics, we can interpret the term Vaa—;u(x, t) as modeling the effect of viscosity

(Olver, 2014, Section 8.4). Thus, the viscous Burgers’ equation represents a

version of the equations of the viscous fluid flows, including the celebrated

and widely applied Navier-Stokes equations (Whitham, 2011):

p

duled)  — Ly, t) Lux, t) + vpu(z, t)
w(z,0) = f(z) 0<2 < Ny » (43)
L U(O,t) = U(].,t):() OStSTmax

where we set f(z) = sin®(4mz) + sin®(272), Xpax = 1, Tax = 0.1 and
v = 0.1. Fig. 6 shows the corresponding curves, where (a), (b), and (c)
are the ground truth and noisy observations under ¢ = 0.05 and o = 0.1,

respectively.

u(z, )
Do o Do

(a) true (b) o =0.05 (c)o=1

Figure 6: Noisy/True curves from (4.3) (M = 50, N = 50).

Compared with the previous two PDE models (transport equation in
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(4.1) and inviscid Burgers’ equation in (4.2)), the above PDE is more com-
plicated and challenging. This is because the viscous Burgers’ equation
involves not only the first-order derivative, but also the second-order deriva-
tives. Our simulations provide sufficiently complicated examples.

Based on Fig. 8(b), we conclude that with high probability, our pro-
posed SAPDEMI can correctly identify the underlying viscous Burgers’
equation, for the following reasons. When M = N = 200 or 150, the accu-
racy stays above 90% for all levels of o € [0.01,1]. When M = N = 100,
the accuracy is above 70% when o € [0.01,0.5], and reduces to 50% when
o = 1. This makes sense, because as shown in Fig. 7, when o increases
from 0.01 to 1, the length of the A-interval for correct identification de-
creases, making it more difficult to realize a correct identification. Thus, if

we encounter a very noisy data set D, a larger sample size is preferred.

Coefficient

Coefficient
Coefficient

(a) o0 =0.01 (b) 0 =0.5 (c)o=1
Figure 7: Solution paths in the viscous Burgers’ equation under different
o and M = N = 100. The notation u,, and uu, stand for u(z,t)2Lu(z,t)

and 83—;7,@(3:, t), respectively.
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Figure 8: Curves of successful identification probability.

5. Case Study

In this section, we apply SAPDEMI to a real-world data set that is a subset
of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations
(CALIPSO) data set downloaded from NASA. The CALIPSO reports the
monthly mean of temperature in 2017 at 34°N and 110.9418 meters above
the Earth’s surface over a uniform spatial grid from 180°W to 180°E, with
equally spaced 5° intervals. The missing data are handled either by direct
imputation or by using the instrument methods Chen et al. (2018, 2021);

Chen and Fang (2019); Chen et al. (2018).

observations
Coefficient

-60 . . .
-200 -100 0 100 200

(a) observed temperature  (b) solution path

Figure 9: Visualization and identification of the CALIPSO data.



The identified PDE model (N = 12, M = 72), reasonably speaking, is

au(m,t) = a%u(w,t) +b <%u(w, t)) ) (5.1)

where the values of @ and b can be estimated using a simple linear regres-
sion on the selected derivatives, that is, Zu(z,t) and (%u(m,t))Q. The
linear regression suggests reasonable values of a = —0.2505 and b = 1.7648.
Note that we focus on identification, that is, identifying %u(x,t) and
(aa—;u(x, t))2 from many derivative candidates, rather than estimating the
coefficients. Therefore, we use a = —0.2505 and b = 1.7648 as a reference.

Because the CALIPSP is a real-world data set, we do not know the
ground truth of the underlying PDE model. Here we provide some jus-
tifications. First, from the solution path in Fig. 9(b), the coefficients of
Lu(z,t) and <§—;2u(x,t)>2 remain nonzeros under A = 0.05, whereas the
other coefficients are all zero. Second, the identified PDE model in (5.1)
fits well to the training data (see Fig. 10 (a.1)-(a.3)). Third, the identified
PDE model in (5.1) predicts well in the testing data (see Fig 10 (b.1)-(b.3)).

Thus, our proposed SAPDEMI method performs well in the CALIPSO data

set, beacuse it adequately predicts the feature values in 2018.



(a.1) observed 2017 temp  (a.2) fitted 2017 temp  (a.3) 2017 residual

(b.1) observed 2018 temp (b.2) predicted 2018 temp (b.3) 2018 residual

Figure 10: 3D surface plots of the temperatures in 2017/2018.

6. Conclusion

We have proposed an SAPDEMI method for identifying underlying PDE
models from noisy data. The proposed method is computationally efficient,
and we derive a statistical guarantee on its performance. We realize there
are many promising future research directions, including, but not limited to,
incorporating a multivariate spatial variable (x € R? with d > 2) (Haber-
mann and Kindermann, 2007), and the interactions between spatial and
temporal variables. In our paper, we aim at showing the methodology to
solve the PDE identification, so we skip discuss the above future research

and our paper should provide a good starting point for these further re-
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search.

Supplementary Material

There is an online supplementary material for this paper, which includes
(1) lemmas to derive the main theory; (2) numerical details of the figures in
the simulation; (3) proofs and other technical details which is not covered

in the main body of the paper due to the page limitation.
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