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ABSTRACT
Multistage sequential decision-making occurs in many real-world
applications such as healthcare diagnosis and treatment. One con-
crete example is when the doctors need to decide to collect which
kind of information from subjects so as to make the good medi-
cal decision cost-effectively. In this paper, an active learning-based
method is developed tomodel the doctors’ decision-making process
that actively collects necessary information from each subject in a
sequential manner. The effectiveness of the proposed model, espe-
cially its two-stage version, is validated on both simulation studies
and a case study of common bile duct stone evaluation for pediatric
patients.
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1. Introduction

The multistage sequential decision-making occurs in many real-world applications when
one wants to make accurate, efficient, and cost-effective decisions. For instance, it has
been applied for addressing the trade-off between audit costs and expected overpayment
recovery [8], or optimal investments in multiple projects based on experts’ evaluations
[10,11,19,23,25], etc. In recent years, active learning can be integrated with multistage
sequential decision-making model [9,16,24]. Active learning is a special case of machine
learning in which a learning algorithm can interactively query a user or some other
information source to label new data points with the desired outputs [22].

In this paper, motivated by the need to assist the doctors to make reliable diagnostic
decisions and treatment recommendations in a cost-effective and convenient manner, we
propose to develop an active learning-basedmultistage sequential decision-makingmodel.
Our specific motivating example is as follows. Gallstone are solid particles that can form
from cholesterol, bilirubin, and other substances within the gallbladder. These densities
are often benign when localized to the gallbladder, but can cause pain, infection, and
liver damage when they become stuck in the common bile duct (CBD) and impede the
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flow of bile into the digestive tract. A stone that becomes impacted in the CBD can be
difficult to detect definitively, but its presence requires a procedural intervention, either
intraoperative cholangiogram (IOC) or endoscopic retrograde cholangiopancreatography
(ERCP). In particular, IOC is a safer but less efficient procedure to clean the stone. Mean-
while, the ERCP procedure is more efficient but carries the risk of complications, as it
requires anesthesia and might lead to pancreatitis, infection, and bleeding. As a result, it
is imperative to ensure that the ERCP procedure is only performed when there is a stone
definitively obstructing the duct. This is particularly true in children [7]. Thus, it is impor-
tant is to definitively predict the presence of a CBD stone in a child with high accuracy and
specificity.

From the machine learning or statistical viewpoint, this seems to straightforward: one
would use the historical or training data to determine those informative features that yield
to high modeling accuracy and robust performance, and then recommend to collect as
many informative features as possible from each subject. Unfortunately, from the clinical
or medical viewpoint, this is an open problem, as it is often more time-consuming and
more expensive to collect those more informative features, which might not be available
when the doctors need to make a timely decision. For instance, in our real data set of the
CBD stone evaluation application, from the machine learning or statistical viewpoint, the
computed tomography (CT) scan would provide the most accurate prediction in the sense
of being consistent with the outcome of the procedures IOC or ERCP. However, the major-
ity (around 95%) of pediatric patients in our real data sets did not take the CT scan, partly
due to the long waiting time and high cost, and partly due to the radiation-induced cancer
risk of CT scan. Indeed, it is gradually noted [13] that children who have a CT scan are
slightly more likely to develop cancer later in life. Also when a CT scan detects the pres-
ence of a CBD stone, one still needs the intervention procedure such as IOC or ERCP to
remove the stone. Thus based on the current technology and medical understanding, the
CT scan might not be a good approach for the prediction of a CBD stone from the clinical
or medical viewpoint.

Indeed, as compared to many standard machine learning and statistical applications
on computer sciences or engineering, the data sets on the CBD stone and many other
biomedical applications are actually from active learning. To be more concrete, the med-
ical doctors would follow their expertise and intuition to start those simpler and cheaper
laboratory tests, and then ordered to collect more informative and more expensive fea-
tures if needed. In other words, different subjects will have different explanatory variables,
and we essentially deal with incomplete data. In the literature, the are many widely-used
methods dealing with incomplete data, such as simple deletion on feature or record,
mean/median/mode/zeros substitution, regression imputation, last observation carried
forward, Expectation-Maximization (EM) algorithm, etc. [14,17]. However, these exist-
ing methods were developed often under the crucial assumption of missing-at-random. In
our context, features or explanatory variables are not missing at random, as they are due to
the doctors’ decision.

Our proposed multistage sequential decision-making model aims to provide a new way
to handle missing-not-at-random data, and provide a rigorous machine learning and sta-
tistical foundation to understand and support the medical doctors’ decision. In this model,
some patients are allowed to take fewer examinations if their symptoms are apparent
according to early-stage features, whereas other patients will have a more comprehensive
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laboratory or imagining evaluation. This novel platform allows the healthcare provider to
actively and sequentially collect only the necessary data rather than collecting all the com-
prehensive information for all patients. As a result, the diagnostic and treatment decision
process will be faster, more convenient, and more cost effective at the population level,
while retaining significant accuracy at the individual level.

The rationale of our proposed multistage sequential decision-making model is similar
to those of classical sequential hypothesis testing and group sequential clinical trials, in
whichwewill continue to collectmore information unless we accumulate enough evidence
to make a decision for each subject. A key technical idea is to model the doctor’s decision
process on each subject via an underlying continuous latent variable, andwhether to collect
new features correspond towhether this underlying latent variable crosses certain stopping
boundaries or not. Statistically speaking, this leads to ordinal logistic regression models,
or proportional odds model [15,18,26]. It allows us to classify a subject into one of three
classifiers in a given stage: healthy or mild (‘0’), indeterminate (‘0.5’), and disease or severe
(‘1’). For those subjects in the healthy/mild (‘0’) or disease/severe (‘1’) class, there are no
need to collectmore features in the next stages, aswe are confident about the subject’s status
or treatment decision. For instance, for the CBD stone patients, we would recommend the
IOC procedure for the ‘0’ class, and the ERCP procedure for the ‘1’ class. Meanwhile, for
those subjects in the indeterminate (‘0.5’) class, we will need to collect more features in the
next stages until we can reach a medical decision.

The contribution of our work is twofold. In terms of statistical analysis, a multistage
decision-making model is proposed to fit an active learning data set that involves with
missing-not-at-random data. In terms of healthcare applications, our model is useful for
guiding the diagnostics and treatment of future patients by interactively querying a patient
to collect additional clinical data when needed [20]. This will help the doctor making rapid
efficient diagnostic decisions and treatment recommendations, especially when some fea-
tures or laboratory results are more expensive, invasive, or time-consuming to collect than
others. By recommending requisite testing to those patients in whom symptoms do not
support a definitive medical decision, the proposed process is cost-effective and reliable
at the population level. Also, the methodology and ideas are applicable to many other
real-world applications beyond biomedical sciences in which one is allowed to actively
and sequentially select a subset of explanatory variables for each subject/sample/product
among a large number of explanatory variables when making decisions.

In Section 2, the proposed model is described. Section 3 discusses the novel approach
to parameter estimation for the proposed model. In Section 4, the performance of the pro-
posedmethodology on synthetic data is reported. Finally, in Section 5, the analytical result
on real clinical data is demonstrated.

2. Our proposedmultistage sequential decision-makingmodel

In this section, we present our proposed active learning-based multistage sequential
decision-making model. For better understanding, we split into three subsections. The
high-level general framework of our proposed model is demonstrated in Subsection 2.1,
and the data presentation and organization is presented in Subsection 2.2. In Subsec-
tion 2.3, the mathematical details are presented based on the existing ordinal logistic
regression model.
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Figure 1. The framework of the proposedmultistage sequential decision-makingmodel, where K is the
number of stages, π(j)

i is the probability of patient i having disease estimated in stage j, Uj and Lj is the
cutoff points on the estimated probability in stage j, and CK is the single cutoff point in the last stage, K.

2.1. General framework

The proposed multistage sequential decision-making model is shown in Figure 1. At
the high-level, the features of a subject’s clinical data are classified into several different
stages according to the relevant cost, invasiveness, time, subject’s willingness to participate,
etc. The earlier stages should involve those features that are patient-friendly, inexpensive,
though potentially less informative. The latter stages could include those features that are
more time-consuming, expensive, unpleasant, but potentially provide more information
about the medical conditions of the subject. In this paper, we assume that the medical doc-
tors will decide the number of stages andwhich features can be included in each stage based
on their expertise.

To be more concrete, assume there are K stages in the decision making. For each inter-
mediate stage, it involves two cutoff values, (Lk,Uk) for k = 1, . . . ,K − 1, whereas the final
stage includes a single cutoff valueCK . At k-th stage, based on the cumulative observed fea-
tures or data, an ordinal logistic regression model, which will be discussed in more details
in Subsection 2.3, is applied as the classifier to estimate the probability of having disease
for each subject. Denote such probability by π

(k)
i for the i-th subject at the k-th stage. At

each intermediate stage, and there are three possible outcomes for the i-th subject:

• If π
(k)
i < Lk, the subject will be labeled as healthy/mild (‘0’) and might undergo those

less efficient but safer procedure such as IOC;
• If π(1)

i ≥ Uk, the subject will be labeled as disease/severe (‘1’), and might be proceeded
for the risky but more efficient intervention such as ERCP;

• If π
(1)
i ∈ [Lk,Uk), the subject will be labeled as indeterminate (‘0.5’) and be moved to

the next stage to collect more features for better diagnostics.

Meanwhile, for the finalK-th stage, there is a single cutoff valueCK , and it can be thought
of as the special case of the intermediate stage with LK = UK = CK .

In this paper, we first use the training data to estimate the parameters in our frame-
work including the ordinal logistic model and the cutoff values, which will be discussed
in Section 3. Next, when applying to a new subject in the testing data, we will arrive at a
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diagnosis and recommend treatments accordingly. In such a way, the necessary features
will be collected sequentially and actively.

2.2. Data organization

In this subsection, let us present the data format and organization. As discussed earlier, the
features are first divided into several categories, each corresponds to a certain stage in our
multistage model based on the domain knowledge of the doctors. The criteria for feature
grouping are flexible and can be adjusted according to real scenarios case-by-case: (1) For
the features inside a category, the cost of collection and the information contained therein
should be similar. For example, these features in a given category can be obtained simulta-
neously from one examination such as a blood test. (2) Each category should contain some
useful information, and excess categories should be avoided. For example, there is no need
to split each variable into one category, especially less informative variables, such as gender,
age, and race.

To illustrate the data structure or organization for the proposed model, without loss of
generality, we can take the training data as an example, and assume that it has the following
structure:

• Stage 1: {y(1)
i ; x(1)

i,1 , x
(1)
i,2 , . . . , x

(1)
i,p1} = {y(1);X(1)}, i = 1, 2, . . . ,N1,

y(1)
i ∈ {‘0′, ‘0.5′, ‘1′};

• ···
• Stage k: {y(k)

i ; x(1)
i,1 , x

(1)
i,2 , . . . , x

(1)
i,p1 ; · · · ; x

(k)
i,1 , x

(k)
i,2 , . . . , x

(k)
i,pk} = {y(k);X(k)}, i = 1, 2, . . . ,

Nk, y
(k)
i ∈ {‘0′, ‘0.5′, ‘1′};

• ···
• Stage K: {y(K)

i ; x(1)
i,1 , x

(1)
i,2 , . . . , x

(1)
i,p1 ; · · · ; x

(K)
i,1 , x(K)

i,2 , . . . , x(K)
i,pK } = {y(K);X(K)}, i = 1, 2,

. . . ,NK , y
(K)
i ∈ {‘0′, ‘1′}.

Here the subscript i denotes the i-th subject in the training data, and the superscript
(k) denotes the k-th stage. In addition, the parameter pk denotes the number of features
collected in the k-th stage, and Nk is the number of subjects who stops taking observa-
tions at the k-th stage in the training data. In other words, each subject’s data are recorded
in one and only one stage under our notation of data organization. Thus the total num-
ber of subjects in the training data is N1 + · · · + NK , whereas the number of features or
explanatory variables for a subject is adaptive, ranging from as few as p1 to as large as
p1 + p2 + · · · + pK .

2.3. Ordinal logistic regressionmodel

In this subsection, we explicitly discuss the ordinal logistic regression model, which is the
building block of the classifier in each stage in our proposed multistage model. There are
many ways to present the ordinal logistic regression model. Here we choose one presen-
tation that allows us to model the doctor’s decision process as an underlying (continuous)
latent variable Y∗ to summarize the cumulative information as a subject collects more
features or data.
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Let us begin with the (continuous) latent variable Y∗ over different stages. For the i-th
subject in the training data, we model the cumulative information at the first stage as

Y∗(1)
i = β

(1)
1 x(1)

i,1 + · · · + β
(1)
p1 x

(1)
i,p1 . (1)

Here we simplify the notation to omit the intercept coefficient, but the intercept can be
included in the model in (1) by defining a constant explanatory variable x(1)

i,1 ≡ 1 for all
subjects if we want.

When the i-th subject is assigned to collect more features in the second stage, we model
the cumulative information at the end of the second stage as

Y∗(2)
i = Y∗(1)

i + β
(2)
1 x(2)

i,1 + · · · + β
(2)
p2 x

(2)
i,p2 . (2)

In other words, the cumulative information at the second stage is based on those informa-
tion from the first stage and the new information collected at the second stage. Likewise,
for k = 1, 2, . . . ,K, the cumulative information at the k-th stage is recursively modeled as

Y∗(k)
i = Y∗(k−1)

i + β
(k)
1 x(k)

i,1 + · · · + β
(k)
pk x

(k)
i,pk . (3)

Note that under (1)–(3), the latent variable Y∗ summarizes the cumulative information.
Thuswhile different featureswill likely have differentβ values, theβ value of a given feature
is assumed to stay the same across different stages.

Next, we model the decision-making whether or not to collect new features at a given
stage based on whether the randomized version of the corresponding underlying latent
variables Y∗ cross certain cutoff values or not. To be more specific, at the end of the k-th
stage for k = 1, . . . ,K − 1, the i-th subject is classified as

Y(k)
i =

⎧⎪⎨
⎪⎩
0, if Y(k)∗

i + ε
(k)
i < L∗

k
0.5, if L∗

k ≤ Y(k)∗
i + ε

(k)
i < U∗

k
1, if Y(k)∗

i + ε
(k)
i ≥ U∗

k

(4)

for some cutoff values L∗
k and U∗

k . For those subjects who have taken observations at the
final K-th stage, they face a binary decision:

Y(K)
i =

{
0, if Y(K)∗

i + ε
(K)
i < C∗

K
1, if Y(K)∗

i + ε
(K)
i ≥ C∗

K
(5)

for a single cutoff value C∗
K .

It is useful to add a couple of comments on the proposed classifiers in (4) and (5). First,
the noises ε

(k)
i ’s are assumed to be i.i.d. with a common cumulative distribution function

(cdf) F. There are many possible choices for the cdf F of the noises such as logistic, probit,
complementary log-log, and Cauchy. In this paper, we consider the logistic distribution
with

F(t) = 1
1 + e−t for − ∞ < t < ∞. (6)

As a result, the classifier (4) is equivalent to the ordinal logistic regression model, and (5)
is equivalent to the standard binary logistic regression model.
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Second, the cutoff points {L∗
k ,U

∗
k ,C

∗
K} applying on the latent variable Y∗ are different

from {Lk,Uk,CK} applying on the probability estimation π
(k)
i in the Figure 1. Instead, the

former set needs to go through a logit transformation to get the latter as

Y∗(k)
i = log

π
(k)
i

1 − π
(k)
i

.

For simplicity, belowwe focus on the cutoff points {L∗
k ,U

∗
k ,C

∗
K} in (4) and (5) for parameter

estimation and model prediction.

3. Model parameter estimation

In this section, we discuss the parameter estimation of ourmulti-stage sequential decision-
making model in (1) – (5) based on the training data in Subsection 2.2.

On the one hand, we face an ordinal logistic regression model in each intermediate
stage and a standard binary logistic regression model in the final stage. A naive baseline
approach is then to estimate the parameters in different stages separately by assuming the
model parameters β

(k)
i ’s are independent without considering the nested structure and

potential correlations between the two adjacent stages. That is, conduct the ordinal logistic
regression model for each stage independently with existing software packages. This naive
baseline approach can be used to fit our training data, but it will lead to a non-smooth
decision process across different stages, whichmight ormight not be reasonable depending
on applications and contexts.

On the other hand, under our proposedmodel in (1)–(5), the decision-making at a stage
is based on the cumulative available features or data from all previous stages, and thus the
model coefficients share consistent common parts. For instance, in the two-stage model,
the feature data of the i-th subject in the second stage contains the feature in the first stage,
e.g.:

x(2)
i =

{
x(1)
i,1 , x

(1)
i,2 , . . . , x

(1)
i,p1 ; x

(2)
i,1 , x

(2)
i,2 , . . . , x

(2)
i,p2

}
=

{
x(1)
i ; x(2)

i,1 , x
(2)
i,2 , . . . , x

(2)
i,p2

}

and the coefficient β(1) at the first stage is part of β(2) at the second stage:

β(2) =
{
β

(1)
1 ,β(1)

2 , . . . ,β(1)
p1 ;β

(2)
1 ,β(2)

2 , . . . ,β(2)
p2

}
=

{
β(1);β(2)

1 ,β(2)
2 , . . . ,β(2)

p2

}
The corresponding medical meaning is that the doctor’s decision process is cumulative,
and the newly added features will not dramatically change the previous decision in the
sense of not affecting theweights of existing ones. Thismakes themodelmore interpretable
for doctors and patients.

It is useful tomention the number of parameters of our proposedmodel in (1)–(5) under
the general setting of the K-stage model. At the k-th stage, the number of β(k) coefficients
is p1 + p2 + . . . + pk if we assume that the intercept is part of p1 parameters at the first
stage, and the number of the cutoff value parameters are 2 at the k-th intermediate stage
(and 1 at the final stage). In particular, under this new notation, for the i-th subject who
stops at the k-th stage, the cumulative latent information in (3) at the previous r-stage can



8 H. TIAN ET AL.

be re-written as

Y∗(r)
i = β(r)	x(r)

i

for r = 1, . . . , k. Had we followed the baseline to estimate each stage separately, the total
number of parameters onewould need to estimate is

∑K
k=1(p1 + p2 + . . . + pk) + 2K − 1.

Meanwhile, under the common coefficients assumption, the total number of the β param-
eters to be estimated is only p1 + p2 + . . . + pK , and the total number of cutoff value
parameters is 2K−1, which significantly simplify the model complexity. Moreover, for a
given training data set, the common coefficients assumption will lead to a more efficient
parameter estimation in the sense of reduction the variance of parameter estimation, as it
allows us to use all observations when estimating parameters.

Below we propose to use the maximum likelihood method to estimate the parameters
in our proposed multistage model. Note that subjects are independent, and each subject
will be made a final medical decision in one and only one stage. For the given i-th subject
who makes a final decision at the k-th stage, note that it must be classified as ‘0.5’ in all
previous r-th stage for r = 1, . . . , k − 1 (k > 1). Note that when k = 1, there will be no
previous stages and thus no requirements on results from the previous stage. To be more
specific, when k>1, for a given y = 0 or 1,

P(Y(k)
i = y) = P(Y(k)

i = y and Y(r)
i = 0.5 for all r = 1, . . . , k − 1)

= P(Y(k)
i = y|Y(1)

i = · · ·Y(k−1)
i = 0.5)

×
k−1∏
r=1

P(Y(r)
i = 0.5|Y(1)

i = · · ·Y(r−1)
i = 0.5)

The good news is that while the cumulative (latent) information at the k-stage Y∗(r)
i =

β(r)	x(r)
i is dependent between different r stages, the noises ε

(r)
i ’s are independent across

different r stages under ourmodel assumption. This greatly simplify the computation of the
likelihood function.Hence, for the generalK-stagemodel, the joint log-likelihood function
for all data is:

logL (β , L,U) =
K∑

k=1

Nk∑
i=1

{
I(Y(k)

i = 0) log F
(
L∗
k − β(k)	x(k)

i

)

+ I(Y(k)
i = 1) log

[
1 − F

(
U∗
k − β(k)	x(k)

i

)]

+
k−1∑
r=1

I(Y(r)
i = 0.5) log

[
F

(
U∗
r − β(r)	x(r)

i

)
− F

(
L∗
r − β(r)	x(r)

i

)] }
(7)

where L∗
K = U∗

K = C∗
K for the final K-th stage due to the single cutoff value.

Next, let us discuss the optimization algorithm to solve (7).When there is only one stage,
i.e. when K = 1, McCullagh [1,18] presented a Fisher scoring algorithm to solve (7), and
showed that a sufficiently large sample size guarantees a unique maximum of the likeli-
hood function. Burridge and Pratt [1] showed that iterative algorithms usually converge
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rapidly to an estimator that has nice asymptotic properties. These properties allow one
to develop efficient iteratively reweighted least squares (IRLS) algorithms to compute the
MLEs. Indeed, there exist many well-developed software packages for fitting the ordinal
logistic regression model [6], e.g. polr from MASS [21], the VGAM package [27], orm
functions from the rms package [12] and brms package [5].

When estimating parameters from the joint-optimization problem in (7), we propose to
adopt the IRLS algorithm that iteratively estimates the coefficients β and the cutoff values
(L,U), see the appendix for the technical details on the two-stage model. Numerically, we
follow the framework of the existing polr() function in the package MASS in R software,
and adopt the optim() function as an optimization solver. Recall that the optim() is a func-
tion designed for general-purpose optimization based onNelder–Mead, quasi-Newton and
conjugate-gradient algorithms. In our numerical studies, when implementing the optim()

function in R, the Broyden–Fletcher–Goldfarb–Shanno algorithm (BFGS) method is cho-
sen for optimization. This is because ‘BFGS’ is an iterative quasi-Newton method for
solving unconstrained nonlinear optimization problems [3], and it appears to work best
with analytic gradients which are true in our case.

4. Simulation study

In this section, a simulation study is conducted to assess the feasibility and effectiveness of
our proposed model and methodology.

To highlight our main ideas, we focus on the two-stage model. First, a two-stage syn-
thetic dataset, {(X(1),Y(1)); (X(2),Y(2))}, is generated with prescribed coefficient β(1),β(2)

and classification threshold {L∗
1,U

∗
1 ,C

∗
2}. With the synthetic dataset andmodel parameters

as ground truth, we conduct a baseline approach and the proposed algorithm with com-
mon coefficients assumption and estimate the parameters in both stages simultaneously.
Finally, we compare the performance of the baseline method and proposed method with
respect to prediction performance, stability, model interpretability, and simplicity.

For better presentation, we split this section into two subsections. Subsection 4.1 dis-
cusses the generation of synthetic training data, and Subsection 4.2 presents the fitness of
the synthetic training data.

4.1. Synthetic data generation

Let us begin with the generation of synthetic data. Let N1 = 10, 000 denote the total
number of synthetic subjects in the training data. We design the features of patients as
follows: X(1)

1 ∼ Bernoulli(0.3), X(1)
2 ∼ N(−1, 1), X(1)

3 ∼ N(1, 1), X(1)
4 ∼ N(0, 2), X(2)

1 ∼
Bernoulli(0.4), X(2)

2 ∼ N(−1, 1), X(2)
3 ∼ N(0, 1). For the first stage, we assume it

includes the first 4 features: X(1) = {X(1)
1 ,X(1)

2 ,X(1)
3 ,X(1)

4 }. Then, three new features,
{X(2)

1 ,X(2)
2 ,X(2)

3 }, are added for the second stage, and thus the cumulative features for the
second stage are: X(2) = {X(1);X(2)

1 ,X(2)
2 ,X(2)

3 } = {X(1)
1 ,X(1)

2 ,X(1)
3 ,X(1)

4 ;X(2)
1 ,X(2)

2 ,X(2)
3 }.

Next, we generated the continuous latent variable Y∗’s from the model in (1) – (3)
without intercepts, and the β coefficients are designed as β1 = β2 = β3 = β4 = 2 and
β5 = β6 = β7 = 4. The noises ε(k)’s are generated i.i.d. from the Logistic(0, 1) distribution
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that has location parameter 0 and the scale parameter 1. Note that if the error term ε fol-
lows logistic regression with other parameters, the estimation of β , L, and U can be scaled
according to the inherent model assumption in the probability formation in (4) and (5).

Finally, the observed response variables Y ’s in the training data are generated from (4)
and (5) based on the continuous latent variableY∗. The cutoff value parameters in our sim-
ulation are chosen as L∗

1 = −2.2,U∗
1 = 2.2, and C∗

2 = 0.5. Here these cutoff values yield to
U1 = F(2.2) = 0.9 and L1 = F(−2.2) = 0.1. We feel that 0.9 and 0.1 could be reasonable
cutoff points on the probability of having diseases in Figure 1.With these pre-defined clas-
sification cutoff values, the latent variables Y(1)∗ can be stratified into 3 and 2 categories
at the first and second stages, respectively, the corresponding observed label Y(k)

i can be
obtained according to (4) and (5).

In our simulation studies, we adopt the Monte-Carlo method and run the data genera-
tion and parameter estimation 100 times, so as to provide reliable statistical inference.

4.2. Performance assessment

In this subsection, we fit our proposed multi-stage sequential decision-making model to
the synthetic training data, and compare its performance with other methods.

Our proposed method is to estimate the model parameters via MLE, which is realized
by the optim() optimizaion solver in R that solves the optimization problem in (7). Our
focus is to evaluate the mean and the standard deviation of the parameter estimation as
well as the accuracy and stability of prediction.

For the purpose of comparison, we also consider the baseline approach that treats the
data in two stages separately: a standard ordinal logistic regression is applied to data in the
first stage via polr() function in the MASS package in R, and a standard logistic regression
is applied on data in the second stage via the glm() function in R. Note that these two
different R functions, plor() and glm(), are used to handle the ordinal response with three
categories and binary responses, respectively.

The comparison of the mean coefficients estimated from the two methods is visual-
ized in Figure 2. Clearly, the coefficients estimated from the two methods are similar and
both coincide well with ground truth, indicating that both methods have little or no bias
when estimating parameters, proving the effectiveness of both methods on estimating. To
quantify the subtle difference, we can utilize the (cumulative) mean square error (MSE),∑k

�=1
∑p�

j=1(β̂
(�)
j − β

(�)
j )2, to measure the distance between the estimated coefficients and

the ground truth for all p1 + · · · + pk β coefficients at the k-th stage. For the 4 coeffi-
cients in stage 1, the MSE of the estimation from the baseline method and the proposed
method are 7.62 × 10−6 and 2.25 × 10−6, respectively. Likewise, in stage 2, the MSEs of
all 7 coefficients for the baseline method and the proposed method are 0.0011 and 0.0003,
respectively. We also conducted t-tests on the estimations of all 7 coefficients by all 3 mod-
els: with critical p-value = 0.01, only the baseline model in stage 2 gives the statistically
different mean estimations from the ground truths of feature {X(1)

1 ,X(1)
3 }, although this

model seems to have some advantage on feature X(2)
2 in Figure 2(b). This indicates the

improved estimation properties of the proposed methods onmean coefficients estimation.
Figure 3 shows the standard deviation (std) of coefficients estimation from the meth-

ods. It can be seen that the standard deviation of estimation from the proposed method is
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Figure 2. Mean coefficients estimation comparison among ground truth (black line), mean coefficients
estimated frombaseline approached individually (blue and yellow line), andmean coefficients estimated
from proposed method jointly (red line). (a) for 4 β coefficients in stage 1 and (b) for 3 β coefficients in
stage 2. This plot demonstrates that both methods have little bias on parameter estimation.

Figure 3. Standard deviation of coefficients estimation from two methods.

significantly smaller than those from baseline methods in both stages. This is an important
advantage of the proposedmethod since it supports the statistical efficiency of the proposed
method. To better quantify this advantage for different parameters in different stages, for a
given individual parameter βj, the relative efficiency of the proposed method with respect
to the baselinemethod is defined as e(T1,T2) = var(T2)

var(T1) . Such relative efficiency for all seven
features are plotted in Figure 4, where T1 and T2 represent the estimates for seven βj’s in
the proposed method and baseline method, respectively. It can be seen that the relative
efficiency of the estimates in the first stage is very large, e.g. as high as 19.38. Meanwhile,
for the estimate for the β coefficients in the second stage, there are some improvements in
statistical efficiency, as the smallest relative efficiency is around 1.62. This implies that the
statistical efficiency of the parameter estimation in the proposedmethodology is improved
as much as 1838% in the first stage and as much as 62% in the second stage. The reason
behind this improved performance is straightforward: all available data are used by the
proposed method in the parameter estimation, whereas only observed data in each stage
is used for the parameter estimation in each stage.
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Figure 4. Relative efficiency of the proposed method with respect to the baseline method.

For the estimation of cutoff points, the baseline method and the proposed method give
the mean estimations as {−2.201, 2.192, 0.536} and {−2.199, 2.197, 0.506}, respectively.
And the standard of deviation of the estimations by the baseline and proposed methods
are {0.061, 0.064, 0.178} and {0.057, 0.062, 0.119}, respectively. Compared with the ground
truth, {−2.2, 2.2, 0.5}, both methods are functional, yet the proposed approach yields a
lower mean deviation and standard deviation.

Hence, from the parameter estimation viewpoint, the proposed 2-stage model provides
a more efficient estimation since it involves all data in the parameter estimation. This is
because of less number of model parameters and more observations to estimate the model
parameters.

Furthermore, we also apply our proposed method to predict the testing data set, and
compare its performance with the baseline method. Figure 5 shows the mean prediction
metrics for prediction for two stages with coefficients estimated from the two methods
respectively. The evaluation metrics include sensitivity (Sensi.), specificity (Speci.), pos-
itive predictive values (PPV), negative predictive values (NPV), and balanced accuracy,
precision, recall, F1 value, prevalence, detection rate (Detec. Rate), detection prevalence
(Detec. Prev.), and balanced accuracy (Bal. Accu). From the predictive performance com-
parison in Figure 5, there is no significant difference between the proposed method and
baseline method for the first stage prediction, as we can see that the blue and black lines
are too close to each other to distinguish them from each other visually. Meanwhile, the
proposed method has a significant advantage for the prediction at the second stage with
almost higher values in every criterion, especially the prevalence, and detection rate, and
detection prevalence.

5. Case study

In this section, we apply our method to the real clinical data set in [7] on the presence of a
CBD stone for pediatric patients mentioned in the introduction.

For this data set, there are 316 pediatric patients who underwent either IOC or ERCP
procedure that provides a ground truth whether a CBD stone is present or not. In addition,
each pediatric patient also collects some explanatory variables or features before the IOC
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Figure 5. Mean predictionmetrics for 2 stageswith coefficients estimated frombaseline approach indi-
vidually (blue and green line), and coefficients estimated from proposed method jointly (red and black
line). Note that the blue and black lines are too close to each other to distinguish them from each
other visually. The red line is almost higher than the green line in every dimension, demonstrating the
advantages of the proposed method.

Table 1. Descriptive statistics for demographic, laboratory, and imaging data in case
study.

CBD stone present No CBD stone present p-value

Total patients 120 196
IOC 81 196
ERCP 39 0
Age (yrs) 13.8 ± 3.3 13.6 ± 3.6 0.883
Female 81(67.5%) 123(62.8%) 0.400
BMI (kg/m2) 25.7 ± 8.0 24.5 ± 8.7 0.125
Hemolytic disease 23(19.2%) 49(25.0%) 0.270
Total bilirubin (mg/dL) 5.6 ± 8.3 2.6 ± 5.2 < 0.001
ALT (U/L) 258.5 ± 195.8 132.9 ± 146.2 < 0.001
AST (U/L) 153.3 ± 135.6 87.9 ± 110.6 < 0.001
Lipase (U/L) 578.4 ± 1516.9 268.4 ± 517.8 0.538
Amylase (U/L) 113.6 ± 197.8 119.3 ± 190.9 0.011
GGT (U/L) 296.0 ± 202.0 232.5 ± 216.1 0.024
Alkaline phosphatase (U/L) 247.1 ± 189.6 179.7 ± 98.1 0.014
CBD diameter (mm, by US) 7.4 ± 3.8 5.6 ± 3.8 < 0.001
Presence of CBD stone (US) 11(13.4%) 3(3.1%) 0.012
CBD diameter (mm, by MRI) 9.3 ± 3.8 8.3 ± 2.6 0.420
Presence of CBD stone (MRI) 28(54.9%) 10(19.6%) 0.041

or ERCP procedure. There are two categories of features. One is the demographic variables
and routine laboratory test results such as age, gender, body mass index (BMI), hemolytic
disease, total bilirubin, alanine transaminase (ALT), aspartate transaminase (AST), lipase,
amalyse, gamma-glutamyl transferase (GGT), alkaline phosphatase. The other is the four
imaging features including CBD diameter and the presence of CBDS by both ultrasound
(US) and magnetic resonance imaging (MRI) examinations. While all 316 patients have
observed features from the first category, only 189 of them have imaging data from the US
andMRI examinations. The descriptive statistics were calculated for all variables of interest
in Table 1.
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Figure 6. Coefficients comparison between coefficients obtained from 2methods for features in stages
1.

Now we fit this data set by a two-stage sequential decision-making model, so that we
can learn the doctor’s decision process. There are N1 = 316 − 189 = 127 subjects who
only have the features from the first category, and there are N2 = 189 subjects who have
the features from both categories. Here we assume that if a patient has available features in
the second category, such patient would be labeled in the class of ‘0.5’ at the first stage. This
is because the doctor is unsure about the patient’s disease status and thus recommends to
collect imaging data for further diagnostic interventions. In other words, for this real data,
which kinds of features are collected for each patient is decided by the doctor’s knowledge
and experience, and the features are notmissing at randombut deliberately interferedwith.

Figure 6 visualizes the coefficients for features in the first category estimated by base-
line approach and proposed, respectively. It can be seen that with the baseline approach,
the coefficients estimated by the two individual models are similar to each other for most
features, (X2, . . . ,X11), but significantly different for X1. In the proposed two-stage model,
the coefficients estimated for all features seem to resemble a weighted average of the coeffi-
cients obtained from baseline individual models. Moreover, the estimated cutoff values are
Û∗
1 = 4.183, L̂∗

1 = 0.751, and C∗
2 = 2.680. Transforming back to the cutoff values on prob-

ability estimation π
(k)
i in Figure 1, we get Û1 = 0.985, L̂1 = 0.679, and Ĉ2 = 0.936. This

suggests that the doctors seem to be comfortable to recommend the safe IOC procedure,
but are very cautious when recommending the risky ERCP procedure unless there is an
overwhelming evidence on the presence of the CBD stone.

Given the parameters estimated by the proposed two-stagemethod, when a new patient
arrives, we canmimic the doctor’s decision byfirst recommending the patient undergo rou-
tine laboratory tests to collect those features in the first category, and then predicting the
class Ŷ(1) accordingly. Based on the estimated cutoff values L̂1 and Û1, the patient will be
labeled as mild (‘0’), severe (‘1’), or indeterminate and proceeded to the next stage (‘0.5’).
When the patient’s status is indeterminate, additional US and MRI examinations are rec-
ommended to collect imaging data. In other words, only necessary data are actively learned
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for each patient, and the medical decisions are made sequentially. If the patient is classified
as ‘1’ by our model, we would recommend an expedited intervention with ERCP, a high-
risk procedure for pediatric patients that treats problems of the bile and pancreatic ducts.
If the patient is classified as ‘0’ by our model, we would recommend the safer IOC pro-
cedure. This simplifies and expedites the diagnostic and intervention process, so that one
can reach a solid medical decision in a cost-effective and objective way. Additionally, we
can easily extend the two-stage model to the multi-stage model by increasing the number
of stages and adjusting the features in each stage, especially if new efficient diagnostic tests
are available.

6. Conclusion and discussion

In this paper, a multistage sequential decision-making model is developed to actively col-
lect necessary diagnostic data for each subject. It allows the doctors, patients and their
families to adaptively collect features and data to reach reliable healthcare clinical deci-
sion in a cost-effective way. The usefulness of our proposed method is illustrated in the
simulation study and a real case study on the pediatric CBD stone patients.

This research provides a new direction in medical diagnosis and treatment by develop-
ing an multi-stage sequential decision-making model to actively observe those necessary
features or data in a cost efficient way. There are several important topics for future research
that are related to this work. First, the current research chooses the list of possible features
based on the doctor’s domain knowledge, and use the MLE to estimate the model param-
eters. Further studies can be done by adding more possible features at each stage and by
adding the L1 regularization term for feature or parameter selection of the model.

Second, in healthcare or medical settings, the penalty for mis-diagnosis or mis-
treatment can vary dramatically. In particular, false-positive detection may lead to excess
intervention or unnecessary procedures that are risky and harmful, whereas false-negative
detection may result in missed or delayed treatment. For such scenarios, we might put
weighted penalties on different types of mis-classification. When fitting the training data,
we can modify the objective function from the log-likelihood function in (7) to the
empirical risk function with penalties: minβ ,L,U [− logL(β , L,U) − C1

∑
i I(ŷi = 0, yi =

0.5 or 1) − C2
∑

i I(ŷi = 1, yi = 0 or 0.5)], where the C1 and C2 denotes the costs for
false-negative and false-positive detection, respectively. Gradient-based optimization algo-
rithms can then be developed based on the surrogate objective function that smooths out
the 0-1 loss function I(ŷ! = y).

Finally, our model and method is applicable to a broad range of sequential decision-
making scenarios when the dimension of the feature is high-dimension but it is infeasible
to collect all features simultaneously. In such a case, our method allows one to utilize
active learning to observe or collect required information tomake robust and cost-efficient
decision.
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Appendix

Appendix 1. Likelihood and gradient for two-stagemodel

In this appendix, we provide a detailed explanation on the computation of the gradient of the
likelihood function for two-stage model.

To simplify the notation, denote by G1,j the subset of subjects whose is classified as the class ‘j’
at the first stage for j = 0, 0.5 and 1, and denote by G2,j the same at the second stage for j = 0 or
1. Since only those subjects who are classified as ‘0.5’ (intermediate) will take observations at the
second stage, we have G1,0.5 = G2,0 ∪ G2,1.

Under this new notation, the log-likelihood function can be re-written as:

logL (β , L,U) =
∑
i∈G1,0

log F
(
L∗
1 − β(1)	x(1)

i

)

+
∑

i∈G1,0.5

log
{
F

(
U∗
1 − β(1)	x(1)

i

)
− F

(
L∗
1 − β(1)	x(1)

i

)}

+
∑
i∈G1,1

log
{
1 − F

(
U∗
1 − β(1)	x(1)

i

)}

+
∑
i∈G2,0

log F
(
C∗
2 − β(2)	x(2)

i

)

+
∑
i∈G2,1

log
{
1 − F

(
C∗
2 − β(2)	x(2)

i

)}
.

It is important to note that for those features observed at the first stage, the corresponding β coeffi-
cients occur in all five terms in the log-likelihood function. This implies that its estimation uses all
observations from all subjects, and thus it has a smaller variance than that of the baseline method
which only uses the data from the first stage. Meanwhile, for those features observed at the second
stage, the corresponding β coefficients occur in the last two terms for the observations in the second
stage. This explains why the estimation of the β parameters in the second stage is similar to those of
the baseline method in our simulation studies.

These facts allow us to easily to compute the derivatives of the log-likelihood function with
respect to the β coefficient parameters. In particular, for those β coefficients for the features in the
first stage, say, β(1)

m form = 1, . . . , p1, we have:

∂ logL (β , L,U)

∂β
(1)
m

=
∑
i∈G1,0

−x(1)
i,mf

(
L∗
1 − β(1)	x(1)

i

)
F

(
L∗
1 − β(1)	x(1)

i

)

+
∑

i∈G1,0.5

−x(1)
i,m

[
f
(
U∗
1 − β(1)	x(1)

i

)
− f

(
L∗
1 − β(1)	x(1)

i

)]
F

(
U∗
1 − β(1)	x(1)

i

)
− F

(
L∗
1 − β(1)	x(1)

i

)
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+
∑
i∈G1,1

x(1)
i,mf

(
U∗
1 − β(1)	x(1)

i

)
1 − F

(
U∗
1 − β(1)	x(1)

i

)

+
∑
i∈G2,0

x(2)
i,mf

(
C∗
2 − β(2)	x(2)

i

)
F

(
C∗
2 − β(2)	x(2)

i

)

+
∑
i∈G2,1

x(2)
i,mf

(
C∗
2 − β(2)	x(2)

i

)
1 − F

(
C∗
2 − β(2)	x(2)

i

)
Here f (t) = F′(t) is the probability density function of the logistic distribution function F(t) in (6).
Likewise, for those β coefficients for the features in the second stage, say, β(2)

m form = 1, . . . , p2, we
have:

∂ logL (β , L,U)

∂β
(2)
m

=
∑
i∈G2,0

x(2)
i,mf

(
C∗
2 − β(2)	x(2)

i

)
F

(
C∗
2 − β(2)	x(2)

i

) +
∑
i∈G2,1

x(2)
i,mf

(
C∗
2 − β(2)	x(2)

i

)
1 − F

(
C∗
2 − β(2)	x(2)

i

) .
As for the derivatives of the log-likelihood function with respect to three cutoff value parameters,
L∗
1,U

∗
1 andC

∗
2 , note that each cutoff value parameter occurs in exactly two terms in the log-likelihood

function.

∂ logL (β , L,U)

∂L∗
1

=
∑
i∈G1,0

f
(
L∗
1 − β(1)	x(1)

i

)
F

(
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)

+
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∂ logL (β , L,U)
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∂ logL (β , L,U)

∂C∗
2

=
∑
i∈G2,0
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(
C∗
2 − β(2)	x(2)

i

)
F

(
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) .
Clearly, we can also easily continue to compute the second-order or high-order derivatives if we
want.

Given these derivatives, it is straightforward to implement either the (first-order) gradient
descent algorithm that has a general form of

θnew = θold + λ
∂ logL (θ)

∂θ

∣∣∣
θOld

,
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or the second-order Newton-Raphson algorithm that has a general form of

θnew = θold −
[∂2 logL (θ)

∂θ∂θT

]−1 ∂ logL (θ)

∂θ

∣∣∣
θOld

.

In our simulation studies and case study, we recursive apply the gradient descent algorithm to our
model and training data. When convergence, we obtain the desired parameter estimates of our
proposed model.


