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The active quickest detection problem with unknown postchange Received 8 November 2022
parameters is studied under the sampling control constraint, where Revised 2 February 2023
there are p local streams in a system but one is only able to take  Accepted 21 February 2023
observations from one and only one of these p local streams at each
time. instant. The objective is to raise a correct alarm as quickly as Active sampling; asymptotic
posmb]e once the changg occurs subject to both false alarm and optimality; change point
sampling control constraints. Here we assume that exactly one of  etection: CUSUM

the p local streams is affected, and the postchange distribution

involves unknown parameters. In this context, we propose an effi-

cient greedy cyclic sampling-based quickest detection algorithm and

show that our proposed algorithm is asymptotically optimal in the

sense of minimizing the detection delay under both false alarm and

sampling control constraints. Numerical studies are conducted to

show the effectiveness and applicability of the proposed algorithm.

KEYWORDS

1. INTRODUCTION

In the big data age, active quickest detection problems in multistream data have a wide
range of applications in quality control, surveillance or security, etc. Under a general
setting, there are p data streams available in a system, and at some unknown time an
event might occur and affect some local streams in the sense of changing the distribu-
tion of its data. Depending on how we access the data, the problems can be divided
into two distinct scenarios: the passive change point problem where one passively
collects the data and the active change point problem where one is able to actively select
the observed data, often with some certain kind of sampling rate constraint.

The passive change point problem and its extension have been well studied in the lit-
erature. The classical version of this problem is the case where one monitors p = 1 local
stream, and many well-known procedures have been developed; see Page (1954), Pollak
(1987), Lai (1995), Lorden and Pollak (2008), to name a few. For a review, see books
such as Poor and Hadjiliadis (2008) and J. Chen and Gupta (2012). In recent years,
research into monitoring p > 2 local streams in a passive setting has received extensive
attention. Mei (2010) used the sum of local cumulative sum (CUSUM) statistics as the
global statistic and Y. Xie and Siegmund (2013) suggested a mixture likelihood ratio
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approach. Later, Chan (2017) developed asymptotic optimality theory for large-scale
independent Gaussian data streams. For more extensions on the passive monitoring of
multiple data streams, see J. Li (2020), who developed nonparametric methods for
change detection in high-dimensional data, and Y. Chen and Li (2019), who considered
the scenario when each local stream has its own change point. Also see Tartakovsky
et al. (2014), Liu et al. (2019) and Wu (2020) for more related contents.

Research is rather limited for active quickest detection problems when monitoring
p > 2 local streams under the sampling control constraint where one needs to decide
which local stream is to be observed at each and every time step. This topic was first
studied as early as 1963 by Shiryaev with a radar system rotating to observe exactly one
out of p possible directions. Though Shiryaev proposed a useful algorithm, there was no
asymptotically optimal theorem until Xu, Mei, and Moustakides (2020, 2021) developed
the first of its kind under the simplest scenario when there is exactly only one affected
local stream and the postchange distribution is completely specified. It is worth men-
tioning that there are some work which focus on the methodology without any kind of
asymptotic optimality, see Liu et al. (2015) and Xie et al. (2021). Recently, Fellouris and
Veeravalli (2022) considered a more general setting when the postchange distribution
belongs to a finite prespecified set. It remains an open problem to investigate the setting
when the postchange distribution involves unknown parameters that might have infin-
itely many possible values.

In this article, we study the active quickest detection problem with unknown postchange
parameters when there is only one affected local stream under the sampling constraint
that we are allowed to observe one and only one of the p local streams per time step. We
develop an efficient algorithm named greedy cyclic sampling-cumulative sum (GCS-
CUSUM) where the postchange distributions are unknown. Conceptually, our proposed
algorithm alternates two different sampling policies: one is the greedy sampling policy that
observes the local stream that may, and is progressively more likely to, contain the change,
and the other is the cyclic sampling policy that switches to the next local stream if no
local stream involves a local change. Our main contribution is to prove that even with the
sampling rate of 1/p at each time step subject to the average run length to false alarm
constraint of y, the proposed GCS-CUSUM algorithm has the remarkable property of
having the same detection delay performance up to first order as the oracle procedure
that knew which stream is affected when the dimension p = o(logy) and y — oc.

We need to point out that this work is a nontrivial extension of our previous work in
Xu, Mei, and Moustakides (2021) where the postchange distributions are completely
specified. Under our current setting, the postchange distributions involve unknown
parameters, and it is highly nontrivial to develop asymptotically optimal theorems with
the unknown postchange parameters using existing online or active quickest detection
techniques. The main reason is that information might be lost when sequentially esti-
mating the parameters and switching among different streams. To overcome such diffi-
culty, we borrow the tools from Lorden and Pollak (2008) to address the unknown
postchange parameters and combine them with those in Xu, Mei, and Moustakides
(2021) to incorporate the uncertainty of estimating unknown postchange parameters
and the adaptive nature of the sampling policy. We feel that our work is a solid step
forward on the active quickest detection problem under sampling control and will shed
new light for future research.
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It is also useful to point out that the sampling control has been extensively studied in
two other well-known problems: the multiarmed bandit problems and sequential
hypothesis testing. See Lai (1987), S. Li et al. (2019), Tsopelakos, Fellouris, and
Veeravalli (2019), among others. In those contexts, all observations will provide some
information for decision making. Here we should emphasize that our setup of sequen-
tial change point detection problems under sampling control poses new challenges
because observation does not provide information to the quickest detection unless it is
taken from the affected stream after the change occurs.

The remainder of the article is organized as follows. In Section 2, we state the math-
ematical formulation of our problem and review some existing methods. In Section 3,
we present our proposed algorithm, and in Section 4 we provide its theoretical proper-
ties. Numerical studies are presented in Section 5 to illustrate the performance proper-
ties of our proposed algorithm, and we present the proof of the main theorem in
Section 6. Finally, we conclude our article in Section 7.

2. PROBLEM FORMULATION AND BACKGROUNDS

For a better presentation, we divide the current section into two parts. In Subsection
2.1, we present the mathematical formulation of our problem, and in Subsection 2.2 we
review several existing methods.

2.1. Problem Formulation

Suppose there are p statistically independent local streams in a system, and denote by
X! the observation from the ith local stream at time ¢, for i=1,...,p and t =1,2,....
Let fy(x) = exp (0x — /(0)) be the probability density/mass function of a one-parameter
exponential family of distributions. Note that this includes many widely used distribu-
tions such as the Gaussian distribution, gamma distribution, and binomial distribution,
and it also allows us to investigate the case when there are uncountably many possible
values for postchange parameters. Initially, the system is under control and the data
{Xi} from the ith stream are independent and identically distributed (i.i.d.) with the
density fy,(X), independent of i. At some unknown time t =1, a triggering event
occurs to the system and affects exactly one of its p streams, say, the ith, in the sense of
changing its local distribution to a new unknown postchange density fy,(X). Specifically,
if the ith local stream is affected,

{ exp (Qox —Y(bp)), if t<r< (2.1)

Xp o~ exp (0ix —y(0:)), if t >,

t
whereas for all other unaffected local streams, j # i, X~ fo,(x) = exp (Oox — Y(0y)) all
t > 0 when j # i. Here we consider in detail the one-sided change point problem, where
it is assumed that 0y is known and 0; > 0y for the given ith affected data stream. In
particular, the impact of the change can be different for different streams, and we
denote by 0; the possible postchange parameters if the ith data stream is affected.

Let us now discuss the sampling control constraints. To be rigorous, define a
sequence of sampling indices {R,} with R, € {1,...,p}, where R; is a random variable
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and {R, = m} means that we will sample the mth local stream at time instant t. Under
our sampling constraint, we are allowed to access only one of these p local streams at
each time t, and this can be expressed as

Lg=1) + -+ Lr=p =1 for all times t =1,2,..., (2.2)

where 1, denotes the indicator function of the event A.

In the active quickest detection problem under sampling control, an algorithm con-
sists of two components: one is the sampling policy in the sense of dynamically choos-
ing {R;} at each and every time instant ¢ subject to the sampling constraint in (2.2),
and the other is the decision policy that is defined as the stopping time T with respect
to the observed data sequence {X;ZR‘}tzl. Note that the sampling decision R, depends
only on those observed data up to time t — 1, and the stopping time {T = ¢} means
that we raise an alarm at time .

Following the classical minimax formulation for quickest detection proposed by
Pollak (1985), we are interested in finding a procedure ({R:},_, ., T) that minimizes
the worst-case detection delay conditioned on that we stop after the change time t,

Dy(T) = sup EL[T —¢|T > ¢]. (2.3)
t>0

for any i = 1,2, ...,p when the ith local stream is affected by the change, subject to the
average run length to false alarm constraint

ELlTl>y>1. (2.4)

Here Pj(-),E![-] denote the probability measure and the corresponding expectation
induced by the change occurring at the ith local stream at time 7 =t and P (+), Ex[]
denote the probability measure and the corresponding expectation induced by the
change occurring at oco.

2.2. Review of Existing Methods

Let us now review some existing research that is related to our problem. First, under
the unrealistic scenario where we had the true knowledge on the index i of affected
data stream and the postchange parameters fp,, it is natural to always sample the ith
stream—that is, R; = i for all t—and utilize the well-known CUSUM procedure to raise
an alarm at time

Torace(A) = inf{t > 1: W] > A}, (2.5)
where W/ is the CUSUM statistics recursively defined as
fulX)
o, (X0)
and the initial value Wé = 0; see Moustakides (1986). Here the threshold A is chosen to
satisfy the average run length to false alarm constraint y in (2.4). We use Topce tO

emphasize that this CUSUM procedure makes an oracle assumption of known affected
local streams and known postchange distribution.

W! = max{W;',0} + log

for t >1 (2.6)
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Note that it is highly nontrivial to develop an efficient algorithm under our setup due
to two challenges. The first, probably easier, one is that the postchange distributions are
unknown. This challenge has been tackled when monitoring p =1 local stream in
Lorden and Pollak (2008). Their main idea is to estimate the postchange parameter 0;

by the average of recent observations 0, after the candidate change point and update
the local statistics as in the classical CUSUM statistic. The local statistics W, can be
defined as in the recursion (2.6) with 0; replaced by @t)i; that is,

fo,, (XD
Jo,(XP)

This yields Lorden and Pollak’s procedure, resulting in

Wi = max{Wiﬁl,O} + log

Tip(A) = inf{t >0:W! > A}. 2.7)

The second, probably more fundamental, challenge is that the index i of the true
affected local stream is unknown, and thus it is unclear how to choose sampling indices
{R;} suitably to detect the change quickly. A naive sampling idea is to sample each local
process purely cyclically—that is, R, = tmodp + 1R, = tmodp + 1 for all time instants
t=1,2,..—and each local stream is visited only once during each p time instant.
Combing this cyclic sampling policy with Lorden and Pollak’s procedure in (2.7) yields
the following quickest detection algorithm:

Teyeic(A) = inf{t >0: max{th, - Wf} > A}, (2.8)

where W:(i =1,...,p) is only updated when R, = i. In the sequel we will refer to (2.8)
as the cyclic algorithm with the purely cyclic sampling policy.

Clearly, the purely cyclic algorithm in (2.8) seems to be inefficient, because it might
spend too much time on those p — 1 unaffected local streams. To the best of our know-
ledge, no efficient algorithms have been developed in the quickest detection literature to
simultaneously address these two challenges of unknown postchange distribution and
unknown index of affected local streams.

3. OUR PROPOSED ALGORITHM

In this section, we present our proposed algorithm, denoted by Tgcs, based on the
GCS policy. At a high level, we propose to sample one stream until we are confident in
deciding whether a local change has occurred or not. If we detect a local change, then
we stop and raise a global alarm. If we decide there is no local change or we have
sampled from the same stream for a long time, then we switch to sample from another
stream. We repeat these steps until we raise an alarm.

For better presentation, the current section is divided into three subsections: in
Subsection 3.1 we define local statistics, which will be the cornerstone of our algorithm.
We propose the GCS policy in Subsection 3.2 and the decision policy in Subsection 3.3.
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3.1. Local Statistics

For the sake of clarity, we define two sets of local monitoring statistics, W; and W;, for
the ith local stream at time t. The former is used to update the observed data, and the
latter also takes into account a possible switch to sampling different data streams.

Let us first define the local statistics W; When the ith local stream is observed, we update
its local statistics based on Lorden and Pollak’s procedure in (2.7). When the ith local stream
is not observed, we treat it as missing data and the corresponding log-likelihood ratio of

missing data as 0. Mathematically, at each time instant ¢ = 1,2, ..., let 0;.; be the estimate
of the postchange parameter for the ith stream at time ¢, which will be defined later, and the

local statistics Wi can be defined recursively as

£, (XD

fo,(X3)

max {W,_,,0}, if i# Ry 3.1)

- ~ Ja, ,.(Xi)
max {W, ,0} + log fe’ X0
0 t

Wi = max{Wﬁfl,O} + 1ji—g,log

lf i:Rt,

with the initial values Wf) =0foralli=1,..,p.

As for the postchange parameter estimators 0:., by (3.1), we only need to pay atten-
tion to the sampled local stream and thus adopt the same idea as in Lorden and
Pollak’s procedure (2.7). To be more concrete, at time instant ¢, assume that we sample
at the ith stream. Denote by M(t) the total time instants in which we have consecutively
sampled at the ith stream, which can be recursively updated as

_ M(t_ 1)+1, lf Rt:Rtfl
M(r) = { 1. otherwise (3.2)

Here we propose to estimate the postchange parameter based on the observed data
from the ith stream during the time period of + — M(t) + 1 to t — 1, because we save
the data at the time instant t for quickest detection, not for parameter estimation. One
natural idea is to consider the method of moments estimator of the distribution

t—1 i
éMOM o lp /:th(t)JrlX/
t,i - 1 M(t) _ 1 5>

where we define 0/0=—o0 and /,(-) is the inverse function of ¥/'(-). However, it turns
out that the proposed method of moments estimator is unable to handle the case when
the magnitude of change is extremely small (i.e., 0; is close to 0p), and we need to
define a constant ¢ that indicates the smallest magnitude of change—that is, 0; > ¢ >
0y for any given ith affected stream. Also, due to technical issues, we need to define an
additional constant { that indicates the largest magnitude of change; that is, 0; < { for
all i. It is worth mentioning that for Gaussian mean change cases, the upper bound of
change { can be removed. Mathematically, our proposed estimator for the ith stream at
time ¢ is defined as
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. DI,y
0 :min{C,max{é,lpl(/M(t;A(:M)}}, (3.3)

Next, we define the local statistics Wi as a modification of W; by taking into account
of possible switch of sampling different data streams. At each time instant t, if we pro-
pose to switch to sampling a different stream at time ¢ + 1—that is, R;4; # Ry, —then
we switch all local statistics back to 0. Mathematically,

Wi { 0,’ if Rt+l/:Rt) (34)

r i

W!’ lf Rt+1 - Rt'

for all i=1,..,p and time t. In addition, at each time instant, we will further reset

Wi = W; after updating its value from W§71 in (3.1) and before updating the values at
time ¢ + 1.

3.2. Greedy Cyclic Sampling Policy

Here we adopt the GCS policy with a twist of avoiding sampling a local stream for too

long. On one hand, if the local statistics W; of the streams being sampled are positive,
then we should continue to sample the same stream, and if it becomes zero, then we
should switch to sampling new local stream. On the other hand, if we sample the same
stream for a very long time but the corresponding local statistics are positive but small
values, then it might suggest that there is no strong evidence for this stream involving
changes, and we might want to explore new local streams.

To start with, we introduce a controlling parameter g, which was first introduced in
Lorden and Pollak (2008) and can be thought of as the maximum consecutive time we
can tolerate staying in the same stream. In our results below, we set g = g(A) = Ce™
for some constant C € (0,00) and € € (0, %)

Now we are ready to define our sampling policy. If Wf’ > 0 and M(t) < q(A), then
we adopt the GCS policy by continuing sampling the same local stream; for example,
Riy1 = R;. Otherwise, we will switch to sampling the next stream, because we need to
avoid sampling the local stream whose local statistic value is zero or staying for too
long. Mathematically, we define the sampling index R,y as

[r if W' >0 and M(t) < q(A), (3.5)
q

Rip = R
Ry mod p+1 if W,” <0 or M(t) > g(A),

with the initial value R; randomly picked from {1,...,p}.

3.3. Decision Policy

Our proposed decision policy Tgcs is inspired by the prior knowledge that there is only
one stream that changes, and we thus propose to raise an alarm at

Tocs(A) = inf{t > 0 : max Wt > A}, (3.6)

1<i<p
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for some prespecified constant A. Combining the local statistics, sampling policy, and deci-
sion policy, our proposed algorithm defined by Tgcs can be summarized in Algorithm 1.

Algorithm 1. Our proposed algorithm Tgcs.

1. Randomly pick R, from {1, ..., p} and initialize W, = 0 for i = 1, ..., p.
2. for each time t do
3. Sample the stream R;.
4. Update the accumulated t1me M(t) as in (3.2).
5. Update the local statistics W fori=1,...,p as in (3.1).
6. Update the samphng index Rt+1 as in (3. 5) and the local statistics W as in (3.4).
7. if max1<,<PW > A then
8. Raise an alarm at Tgcs(A) = .
9. end if 4 '
10. Reset the local statistics W, = W, for i = 1, ..., p.
11. end for

4. ASYMPTOTIC OPTIMALITY

In this subsection, we will investigate the theoretical properties of our proposed algo-
rithm Tges in (3.6). First, let us make some standard assumptions from the quickest
detection literature. We assume that Kullback-Leibler information numbers are positive
and finite for all i = 1,2, ...,p :

(A1) : 10, 0;) = J Io J;’gg fn(X)dX > 0,
)

Jo(X
Joy(X)

Moreover, we assume that the second-order moments of log-likelihood ratios are
bounded away from oo.

(A2) : J(0o,0;) = J ( ?088> fo,(X)dX > 0,
)

pn = [ (1

Now we are ready to present the theoretical properties of our proposed algorithm.
The following theorem summarizes the nonasymptotic properties of our algorithm on
the average run length to false alarm and detection delay for any threshold A > 0.

1(0,‘, 9()) = J IOg fg ( )dX > 0,

) fo.(X)dX > 0,

Theorem 4.1. For our proposed algorithm Tgcs in (3.6), we have
Exo[Tocs] > e (4.1)

Moreover, its detection delay satisfies

(Tgcs) + Gy IOgA + Cl\/_ A+ Czp (42)

- I(H,,Ho)
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as A — oo for any i € 1,...,p. Here Cy, Cy, C, are constants depending only on the dis-
tributions, not on A and p.

The rigorous proof of Theorem 4.1 will be postponed to Section 6. As one of our
reviewers pointed out, the constant C, in relationship (4.2) serves as an important role
in the detection delay. It can be regarded as time “wasted” looking at each unaffected
stream, and once the dimension grows larger, that wasted time can be significant and
deteriorate the detection delay performance of our proposed algorithm. More discus-
sions can be found at the end of the section.

By Theorem 4.1, the following corollary establishes the first-order asymptotic opti-
mality properties of our proposed algorithm Tgcs in (3.6) in the quickest detection
framework when the average run length to false alarm constraint y in (2.4) goes to oo.

Corollary 4.1. Let A = logy; then our proposed algorithm Tgcs(A) in (3.6) satisfies both
the false alarm constraint in (2.4) and the sampling control constraint in (2.2). Moreover,
for each i =1, ...,p, its detection delay satisfies

Di(Tges) — DY < Cylog logy + Ci/ logy + Cop, (4.3)

where D{™® is the oracle detection delay achieved by assuming that the index of the
affected stream and the postchange parameters are completely specified:

orc _logy
10, 00)

+ G (4.4)

and Cs is a constant that only depends on the distributions, not on 7y and p.
It is useful to add some remarks.

(I) Note that relationship (4.3) holds for every p and y. On one hand, our pro-
posed algorithm Tgcs has the same detection delay of the oracle or CUSUM

procedure up to O(«/logy) when p is fixed as y — oo or when p=

O(s/ log y). On the other hand, when p is large but y is moderately large, the
additional term Cjlog logy + C;y/logy + C,p can be comparable to or even

larger than D{™, and thus the performance of our proposed algorithm will be
much worse than the oracle or CUSUM procedure. This is not surprising for a
high-dimensional setting, because the sampling control in (2.2) is too restrictive
for large p and we should not be able to detect the change quickly if we only
sample one out of p local streams at each time instant. In other contexts, we can
evaluate the constants Cp, C;, and C, to see the effects of the dimension p on
the performance of our proposed algorithm; see also Wang and Mei (2015) for
similar contexts. It remains an open problem to develop a general asymptotic
optimality theory for high-dimensional streams under the sampling control.

(2)  As one of our reviewers correctly pointed out, the nonattainability of the oracle
bound under large p can be explained from another viewpoint. To decide
which stream is the most likely to have the change, a minimum average num-
ber of samples must be taken from each stream before zeroing in on that
stream. When the dimension p is large, additional wasted time on the p —1
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unaffected stream is significant compared to the oracle bound and thus our
proposed algorithm is not asymptotically optimal.

(3)  We use Pollak’s criterion for measuring the worst-case delay, and it is well known
that one alternative criterion is Lorden’s criterion, proposed in Lorden (1971):

D(T) = supesssup E,[(T —t)"|F,], (4.5)

t>0

where F; is the filtration of the information up to time t. Though Pollak’s criter-
ion and Lorden’s criterion are asymptotically equivalent when monitoring i.i.d.
data streams with known pre- and postchange distributions, they are very different
under our context with sampling policies. In particular, Lorden’s criterion involves
the” ess sup” over all possible sampling policies, and the main technical difficulty
occurs when we are sampling on the unaffected data streams but somehow with
large local statistics Wlt, in which case it might take a long time to switch from
this unaffected local stream to the other streams. Though we are able to establish
the asymptotic optimality theories under Pollak’s criterion, it remains an open
problem to establish asymptotic optimality theories under Lorden’s criterion.

(4) Our algorithm can be implemented much more efficiently from a computa-
tional point of view. We employ two sets of statistics: Wi in (3.1) and W; in
(3.4), where the former statistics in (3.1) are updated based on the samples and
the latter statistics in (3.4) are to reset those in (3.1) to zero when the stream is
switched. Moreover, at most one of these p statistics is nonzero, and thus we
can compress our algorithm and reduce the number of registers from p to 1 by
focusing only on this nonzero statistics.

(5) The key issue in sampling policy is how to break ties. Under our context of
only one affected data stream, any reasonable algorithm would like to sample
from the stream with the highest local statistics. This applies to our proposed
GCS-CUSUM algorithm, but the main issue is what to sample next if the local
statistics W; in (3.1) are negative for i = R, and all other p — 1 local statistics
are zero. We need to decide how to break ties. Cyclic sampling is one way to
break ties, so that we have opportunities to explore all local streams. The other
sensible way to break ties is to randomly select the index among all remaining
p — 1 local streams with a zero value. The corresponding procedure has similar
theoretical properties as our proposed algorithm, although the proofs become
more complicated. Thus, we adopt the cyclic sampling and leave random sam-
pling to break ties as a remark.

5. NUMERICAL STUDIES

In this section, we conduct simulation studies to demonstrate the performance proper-
ties of our proposed algorithm Tgcs. Below we consider two types of numerical exam-
ples: in Subsection 5.1 we perform Monte Carlo simulations to compare the
performance of Tgcs against some benchmarking algorithms, and in Subsection 5.2 we
study its application on a hot-forming process.
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5.1. Comparison of Tqcs against Ty

In our first simulation, we consider two choices on the number p of local streams: p =
2 or p = 10. For each choice of p streams, we consider two different distributions f; one
is a normal distribution and the other is an exponential distribution. Because of space
limitations, we only present the homogeneous setting (i.e., prechange f3, = f and post-
change fy, = g for any i = 1,..., p).

e  Mean shift in normal distribution from 0 to x > 0.5.
e  Mean shift in exponential distribution from 1 to 4 > 2.

In each case, we set the false alarm constraint y = 50,000. For our proposed algo-
rithm Tgcs(A) and the purely cyclic method Teyaic(A) in (2.8), we first use the bisection
method to find a suitable threshold A to attain the false alarm constraint and then
simulate the worst-case detection delay under different postchange scenarios where the
change occurs to the pth stream (because our algorithm starts to sample at the first
stream). After obtaining the detection delay for p = 2,10, we estimate the parameter C,
in relationship (4.2) by calculating the difference of these two delays and dividing it by
the difference of dimension.

Table 1 reports the detection delay of our proposed algorithm Tgcs and the cyclic
algorithm Tygic in (2.8). In addition, we report the oracle detection delay of the
CUSUM procedure in (2.5) and the ratio C,/oracle delay, which denotes the impact of
increasing dimension p. All numerical results are based on 50, 000 Monte Carlo runs.
From the tables, it is clear that our proposed algorithm Tges is much better than the
naive method Tyqic and can reduce the detection delay by at least 25% when p = 2 and
50% when p = 10. In other words, compared to naive purely cyclic sampling, our pro-
posed GCS policy can lead to a significant improvement on the detection delay
performance.

Moreover, our results show that as the dimension p increases from p =2 to p = 10,
the detection delays of both our proposed algorithm Tgcs and the purely cyclic method
Thaive in (2.8) increase significantly. The detection delay will increase by 20% to 40% of
the oracle delay when the dimension p increases by 1. We conjecture that the oracle

Table 1. Comparison of detection delays.

v = 50000 p=2 p=10

u Oracle G, /Oracle (%) Cyclic Tacs Cyclic Tacs
0.5 61.87 29.00 144.01 90.56 701.23 234.10
0.75 29.62 25.73 64.13 39.07 308.52 100.06
1.0 17.20 27.76 36.45 22.65 174.67 60.85
1.25 11.35 30.69 23.40 15.46 112.12 4333
1.5 7.93 37.54 16.60 11.21 80.28 35.03
y = 50000 p=2 p=10

A Oracle C,/Oracle (%) Cyclic Tacs Cyclic Tacs
2.0 26.78 28.93 57.50 39.62 286.09 101.60
2.25 19.39 30.77 41.58 28.78 206.86 76.52
2.5 15.18 33.21 32.17 22.49 159.72 62.83
2.75 12.06 38.15 25.59 17.40 126.66 54.21
3.0 9.84 42.28 21.49 14.76 105.10 48.05

Top table: normal distribution. Bottom table: exponential distribution.
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bound of the CUSUM procedure is unattainable for high-dimensional monitoring under
sampling control, but we are unable to provide a rigorous proof.

5.2. Hot-Forming Process

In this subsection, we will evaluate the performance of GCS-CUSUM algorithm based
on a hot-forming process. A Bayesian network (BN) for the hot-forming process was
identified by J. Li and Jin (2010) and a physical illustration is shown in Figure 1.

The linear Gaussian parameterization of a BN is assumed to be known:

card(PA(i))

pX) =Y p(PAL), )u(Xpa i) + Vi (5.1)
k=1

where PA(i) denotes the parents of node i, p(PAx(i), 1) is called the path coefficient (the
number annotated on the arc of the BN), and V; ~ N(0, 1) represents the random noise
that cannot be described by the linear model and is assumed to be independent of
XpAk(i) and V,'(j ;é i).

For any stopping time T in the hot-forming process, we consider two performance
metrics: one is the detection performance D;(T) when the ith node is affected by the
change and the other is the sampling ratio (SR) of the node where the change is
detected. Mathematically, if a change is detected on the jth node at time T, then the SR
of the stopping time T is defined as

T
_ 2= Mri)

SR(T) T

(5.2)

where R, is the index of the observed node at time 7.

In this example, we consider the situation when there is only a single mean shift
occurring at some variable in the hot-forming process. The mean shift will propagate
and dilute along the BN (e.g., a mean shift in X, with 4, = 1 will result in a mean shift
in X; with u; = 0.522). The detailed settings are summarized as follows:

e In the in-control state, X; ~ N(u(X;),1) and the mean u(X;) satisfies the BN
structure in Figure 1 and relationship (5.1) for i = 1,2,3,4,5.

BHF BHF

S Binder

Binder

Workpiece

Figure 1. BN structure and physical illustration of a hot-forming process.
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e The postchange mean is set to u = 0.5 and the potential affected nodes are
X1, X5, X3, X4, X5. For each case, we calculate the detection delay and SR in (5.2)
of TGCS and TRD-

e The path coefficients are set to p(2,1) = 0.574,p(3,1) = 0.335,p(4,2) = 0.493,
p(4.3) = 0.688,p(5,2) = 0.325.

e The false alarm control constraint y = 5000.

Table 2 summarizes the detection delay and the sampling ratio of our proposed algo-
rithm Tges and the random sampling algorithm Tgg. All numerical results are based on
20,000 Monte Carlo runs. From the tables, it is clear that our proposed GCS-CUSUM
algorithm is more efficient than the random sampling algorithm and can reduce the
detection delay by at least 50%. Moreover, Table 2 shows that the GCS-CUSUM algo-
rithm is focused and always spends more than 50% of the time on one node. Compared
to the random sampling algorithm, our proposed algorithm gains more information
from one affected node and thus can detect the change more quickly.

6. PROOF OF THE MAIN THEOREM

In this section, we provide the rigorous proof for Theorem 4.1. The proof is divided
into two parts: in the first part, we study the false alarm relationship (4.1), and in the
second part we study the detection delay relationship (4.2).

6.1. False Alarm Relationship

Let us begin with the proof of false alarm relationship in (4.1), which is the easier one.
The key idea in proving (4.1) is to construct a new stopping time T.(A) such that
Ex[T+(A)] < Ex[Tges(A)] for all thresholds A and prove that T.(A) satisfies the false
alarm constraint in (2.4). Mathematically, T, (A) is defined as

T*(A):inf{tzlzs* ZHf"}RXR’” _eA}. 6.1)
O

It is easy to verify that logS; > max{W:, ..., W'} for all times ¢ and thus E.[T.(4)] <
Ex[Tces(A)] holds for any threshold A. Note that {S; — ¢} is a P- martingale with
zero expectation, and applying the optional sampling theorem obtains that

Evo[Tacs] = Exo[T.] = E [ST.] > €. (6.2)

Table 2. Comparison of detection delay and sampling ratio.

7 = 5000 Detection delay Sampling ratio

Affected node Teyeic Tacs Teyiic (%) Tocs (%)
X 315.75 138.60 20.00 56.17
X2 315.02 138.94 20.00 56.87
X3 318.09 152.97 20.00 52.41
X4 314.61 133.97 20.00 57.90

Xs 312.71 159.19 20.00 50.15
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6.2. Detection Delay Relationship

Consider now the detection delay relationship in (4.2). Below we write the log likeli-
hood ratio as

og (20
Joy(X)
The main idea in proving (4.2) is to present an equivalent definition of our proposed

algorithm Tgcs(A) by the sequential tests. For each j(j = 1,...,p), a prototype sequential
test applied to the jth local stream is defined as

) — (6 — 00)X — ¥ (6;) + W(6o). (6.3)

= mf{t > 1t = gla) or 8= S (0 - )X, — (@) +(00) ¢ <o,A>}. (6.4)
/=1

with the estimator 9/

i X
0, = min{C, max{é,lpl (%) }} (6.5)

For notational simplicity, here we use the same notation 0, for different sequential tests
T/ and omit the subscript ;.

Define the sequence {T,},m =1,2,..., of sequential tests applied to each local
stream. Then it is clear that each T,, has the same distribution as a particular prototype
sequential probability ratio test T/. In addition, if we define (a stopping time) K to be
the first time the sequential test T,, of the local stream being tested crosses the upper
boundary A, then our proposed stopping time Tgcs can be written as the sum

K
TGCS:T1+T2+"'+TK:ZTWL- (6.6)
m=1

Without loss of generality, we assume that the change occurs to the pth local stream
at change time 7 =k, and we are monitoring the ith (i.e., Ry = i) local stream when
the change occurs. To better characterize the sequential test on the ith stream when the
change occurs at time © = k, we define

e M(k): the total time instants in which we have consecutively sampled at the
stream when the change occurs (the ith stream) up to time k.

o S(k)= ZI;:ka(k) .1 X} is the sum of observations on the ith stream within the
window [k — M(k) + 1, k].

o Gk)= Z’;:ka(k)H(((A)/ — 00)X} — (0,) +¥(6y)) is the local statistic on the
ith stream at time k.

e T,(A): the sequential test on the ith stream after the change occurs.

TL(A) =inf{t —k:t>k+1,t —k+ M(k) = q(A) or S, & (—G(k),A — G(k))},
(6.7)
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where S , = S e (07 = 00)XE — (0,) +¥(0o)) and 0, is defined as

0, = min{{,’, max{é, v, (S(k)];(;lki ;_ o L‘f’ = ) } } (6.8)

Here we use the notation 0, to distinguish it from the estimator 0,, which is not
affected by M(k), S(k).

With the definition of T}(A), we are able to write the detection delay of our pro-
posed algorithm as the sum of sequential tests. We divide the discussions into two
parts:

e  We first consider the simplest scenario when the change occurs to the pth stream
at time 7 =0 and R, is randomly set to I; that is, we start sampling from the
stream. This clearly generates a worse detection delay, because the change occurs
to the pth stream and we need to go over p — 1 unaffected stream.

B [TocsIRy = 1] = B[S0 T =377 BT, Pk > m)

m=1
Q
=Q, + 0, + w‘ﬁQp +o= ! —pwp ,Ef [TGCS(A)|R1 = 1]
K 00
=B 1. =3 EmIPE > m)
=Q Q, + 2Q T
where
p—1
Wp = ﬁp Hj:l (1 —o)
p—1
Qp = BT+ BT} (1= ) -+ + B[ [ (1 - )
j=1
p—1
= Eo[T") + B[ (1= 1) - 4o+ BIT7 T [ - )
j=1

where f§, = Pﬁ(sﬁp < A) denotes the type II error probability of the sequential test T?
and o; = Poo(Sfri > A) denotes the type I error probability of the sequential test T
(i=1,...,p—1). Because 0 < o;, f; < 1, we have the following upper bound:

EPTF) 1 &

Eg[TGCS(A)|R1 = 1} < +

Eo[T7. 6.9
15 l_ﬁPj:I 6

e Then we consider the general scenario when the change occurs to the pth stream
at time 7 = k and we are monitoring the ith stream (R; = i) at the same time.
Note that if we do not detect a change on the ith stream, we will switch to the
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next stream, and this actually returns to the simplest scenario when the change
occurs at time T = 0. This can be further divided into two cases:

e If we are not monitoring the affected stream when the change occurs (i # p), the
detection delay can be written as

Dy(Tacs(A)| i #p) < ER[TL(A)] i # p. Taes > K]
+ Ef[Tges(A)|Ry = 1]

e If we are just monitoring the affected stream when the change occurs (i = p),
the detection delay can be written as

Dy(Tees(A)| i=p) < E} [Ti(A” i=p,Tges > k}
+ BrpEo[Tacs(A)|R1 = 1]

where f; , = F’i(S‘_'}erk , = A —G(k)) is the type II error probability of the sequential
test TH(A). e

If we are able to show that both D,(Tgcs(A)| i # p), Dp(Tes(A)| i = p) satisfy the

relationship (4.2), the problem is solved. It suffices to bound the detection delay

ES[Toes(A)|R; = 1] and the sequential tests T;(A) for i # p,i = p. For better presenta-

tion, below we divide the proof into two subsubsections. In the first subsubsection, we

bound the detection delay E}[Tgcs(A)|R; = 1], and in the second one we focus on the

>

sequential tests T}(A).

6.2.1. Detection Delay When Change Occurs to the pth Stream at Time t = 0

We first consider the detection delay E5[Tgcs(A)|R; = 1], which is the easier one.
Below we divide the proofs into a series of lemmas. The notation of constants is as fol-
lows: C;; refers to the constant j in Lemma i, and Cjj refers to the constant k in Lemma
ij. (Thus, Ciy; refers to a constant in Lemma 6.12.) Constants of the form C; refer to a
constant that does not appear in the lemma. When constants add up, we freely use
another constant to bound their sum.

Lemma 6.1. For any j = 1, ..., p, there exist constants Cyy, C12, C13 such that for some n >
0 and all times t,

ISy
(|25 v

> 1’]> < C11€7C12n2t, (610)

T/ x :
E l(L“Xf - lp’(e,-)) 1 < % (6.11)

t

The same relationship holds when /'(0;) is replaced by y/'(0o) and Pi,E} is replaced
by Pso, Ee.

Proof. Standard large deviations arguments.
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Lemma 6.2. For the sequential test TV in (6.4), let 3, = Pﬁ(s.’}p < A), and we have

(1—8,)A
EP[TP] <« =P/ , 12
TPl < 105, 60) + X1+ X5 + %3 (6.12)
where
™ 1/2
xS CulEf|D (0,=0,)°| | +Ca(ET) (6.13)
/=1

/=1 /=1

T° T
x; < CEf [Z (0, — Qp)2:| + CuEj [Z(W(@/) - ‘V(Qp))z] (6.14)

x; < CysAPH(T? = g(A)) (6.15)

for some constants Cy1, Cyy, Cy3, Cy4 that only depend on the parameter 0, but not on the
threshold A.

Proof. Applying Wald’s equation and optional stopping theorem obtains that

E5[S° (0, — 00)X5 — (6,) + i (65))]

Eg[TP] - I(ep’ 60)

_ B (0 = 00)XF — y(07) + 4(00))]

B 1(0,, 0o)

| B/ (0 = 00X = w(0p) +¥(0,))
1(0,, 0o)
_ BISh] | BISL (8 = 00 (6,) = (6y) + ¥(0))
1(0,,06) 1(6,, 0y)
(ST > A)A | P(Shy > A)E[S], — AlS, > A]
= 1(0,,00) 1(0,, 0o)
| BIS1((0 = 000 (0) = Y(0) +w(0))] | PO(T? = q(A) B[S |7 = q(A)]
1(0,, 0p) 1(0,, 0)

Py(Sh, > A)A
_W—l-xl + X + Xx3.

where S‘.'}p is the local statistics defined in (6.4) and x;,x;,x;, are the three correspond-
ing components in the second to last inequality.
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_ B0 — 0015, —y(O) + (0]

= 1(0,, 0y)

Bl — 0)351) | Bl 0,5%5]

=710, 0) 1(6,, 0,)

- 1/2 - 1/2
h 2 2 2 2

(88| =70 - 0rexr?| ) (8] P00 00007 )

< + +C
= 1(0,, 0o) 1(0,,00) 2

< Cy (Eg {Zil(é/ —~ ep)z] )2 4 G (BRTP]) .

Note that 0, is universally bounded by ,( defined in (3.3) and thus ES[v(0,) —
(0,)|] is bounded by a constant C,s. We omit this constant in the following proof.

For the x, term, as /" (6) > 0 for all 6, we have
B (O = 00 (0p) — w(0p) + ¥ (0,))]

X2

1(0p, 0o)
< B/ = D)W/ (6,) — '(0.))
- 1(0,, 0o)
_ B[S (0 = 0) (W' (0) — w'(6,))
- 1(0,,0o)

< CuE [Zzl(é/ - Qp)z} + CuEf [ZZI(W(@/) - l//(gp))z}
for some constants Cy; = Cyy =31(0,,0). For the x; term, note that Ef [S:’}p|TP =
q(A)] < A and thus x; < C,sAPS(T? = g(A)) for some constants Cys = 1 (0,, 0p).
Lemma 6.3. There exist constants Cs;, Csp such that
Poo [T > /] < Cyye @ (6.16)
forallj=1,...,pand / = 1,2, ....

Proof. Let 0 < u < 1, and we have

E. [eu((é/—0o)xf;—xb(é/)+1//(0o)) X/, ".,XLI] — Wb+ (1=1)00)—u (8,) —(1-u)ys(6o) (6.17)
Note that
o)
g W0 + (1 =w)bo) —wp(0) = (1 = u)(0)) = u(y'(u0 + (1 = u)) — ¥/ (6)) < —a.
(6.18)

where a = mingeps, o (—u(y'(u0 + (1 — u)0y) — y'(0))) > 0. This is because 0 < u <1
and v/ (0) is strictly increasing. Thus,

el//(“g)/ﬂl*“)90)*”#/(@’/)*(1*”)‘//(90) < o bu, (6.19)

for some constant b = a(d — 0y).
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It follows that e t0%/ s a supermartingale under P,, and we have

P[T>¢] <P[us,>0]

=P, [e“sj% > 1]

< E:)c [euSJ/]

< e—bu/Eoo [eu5i+hu/}
; e—bu/Eoo [equl—O—bu] )

Relationship (6.16) is then C3; = Eoo[e"sjl””] and Cs, = bu. O

Lemma 6.4. There exists a constant Cyy such that
E.[T] < Cu, (6.20)
forallj=1,...p.

Proof. Applying Lemma 6.3 obtains that

E.[T] = i Po(T > /) < Cyy. (6.21)
/=1

for some constant Cy;. O

Lemma 6.5. For any sufficiently large threshold A > Ao, f, = Pﬁ(s!},, < A), which is the
type II error probability of the sequential test TP(A), satisfies the lower bound

B, < Cs1, (6.22)

where 0 < Cs; < 1 is a constant that does not depend on the threshold A.
Proof. We consider the following event:

t XP
D:{’@—d/(@p) <n for all t > 1 and some 11>0.}

From relationship (6.10) in Lemma 6.1, we can verify that P}(D) > Cs, for some con-

stant Cs, > 0. Under the event D, the estimator @/ satisfies |9/ — 0,| < A for all times /
and some constant 4 = A(n) > 0. It follows that the log-likelihood ratio satisfies

(0, — 00)XE —W(0,) +W(00) > Y, = (0, — 00)XE — J|XE| — Cs3, (6.23)

where Cs; = maxg_g,|<;(¥(0) — (0p)). We choose proper 5,/ such that Eb[Y,] >0
and define the stopping time and the event as

N(A) = inf{t >0: zt:Y/ < o}
/=1 :
E = {N(A) = oo}
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If event E occurs, the relationship (6.23) implies that our summary statistics also never
return to 0. We can further prove that F"S(E) > Csy for some constant Cs4 > 0 in the
renewal theory. Now consider the third event with sufficiently large A such that
A/q(A) < EB[Y,]/2

We have
q(4)
Y)
/=1 A
PL(F) ; <——
0 "\ q(4) ~q(4)
q(4)
Y,
P =1 l_EP[Y,] Eg[Y/]
=10 oll/l| =
q(A) 2
< GCss

for some constant 0 < Css < 1 which can be derived from Chebyshev’s inequality.
Under the event D, E and F¢, we have Sﬁ'},, > A and thus

B, < 1—PH(D)PL(E)PH(FC) < Cs1. (6.24)
for some constant 0 < Cs; < 1.

Lemma 6.6. There exist constants Ce,Cg, such that for sufficiently large A > Ay and
everyr=1,2,..,

10A
1(0,, 0,)

P (TP > + r) < Cgre” . (6.25)

Proof. Let s = [I<05A00)], we define the following event for some constant 7,
P>

E:{|0/—0p| < ) for all /Zs—l—%}.

From relationship (6.10) we have Pﬁ (EC) < Cgze %" for some constant Cgs, Cgs. Similar
to Lemma 6.5, we consider a new stopping time

N.(A) :inf{t> 0: ZY/ 2A}, (6.26)
/=1

where Y, is defined in (6.23). It is easy to verify that if T’(A) > 10A/1(0,,0y) + r, then
N.(A) > 10A/I(0,,0,) + r. Moreover, it is straightforward to see that P}(N.(A) >
10A/I(0,,00) + r) is bounded exponentially in r and we can prove that there exist con-
stants Cg;, Cgy such that
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10A 104
P (TP > + r> =PH(T? > + r|E)P5(E)

1(0,, 0o) 1(0,, 0o)
+ PH(T? > 14, r|E)PH(EC)
0 1(0,, 0o) 0
<P s 204 ) L e 6.27)
- 1(0,, o) 0
10A
<Pj(N.>—— PH(EC
— 0( >I(0p,60)+r)+ 0( )
< Cgre ",
Lemma 6.7. There exist constants C;1, Cyy such that
T
Ef {ZW(‘”) - l//(ep))z} < CylogA + Cyy. (6.28)
/=1

Proof. From relationship (6.11), we obtain that there exists constant C;; such that

4112
&) -ve]” -8 l(% - w’wp)) ]

_ Crs
/=1

Moreover, we have

Eﬁ[i(d/(@/) } {i "(0,) —v'(0, )lmzf}]

/=1 /=1
<Z<EP (0) = @) (BT = £)"
mA/z(op,oo)
= > (WO~ w0 R = )"

+ Y B0 — W0 PP > )
/=10A/1(0,, 0p)+1
10A/1(0,5 05)

< Crs —Coa(/—10A/1(0,,00))11/2
< ; — +t Z/ 10A/1(0,00) 41 / — (C616 b 00)))

S C7110gA + C72.
for some constants C;; = Cy;3 and Cyy = C7310g($ (05, 00)) +2Cy3 %

Lemma 6.8. There exist constants Cg;, Cgy such that

/=1

T
E |:Z 0, — 9p)2] < Cg logA + Cs,. (6.29)
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Proof. Because 0, is universally bounded, we define p = max;<p<:)”(0) and obtain that
EG[ LW/ (0) — v/ (0,))°]

<

< 7

S C31 IOgA + ng.

TP
ES 1> (0, -0,
/=1

Lemma 6.9. There exists a constant Coy, such that
X3 S CzsApg(Tp = q(A)) < C91, (630)
for all thresholds A.

Proof. This results from relationship Lemma 6.3 directly.
Combining the results above, we have

Ey[17] 1 p-1 ;
Eg[Tocs(A)|Ry = 1] < 75—+ U EL T
1— ﬁp 1— ﬁp Z']fl
(1-B,)A
Wiy TAYRER | G
B 1—p, 1—-Cs

< A X1+ X2 + X3 Cu
- I(Qp, 90) 1— C51 1-— C51

(=1

A
< ———+ Cpy)log A + C2)\/ Ej[Tacs(A) Ry = 1] + Cz)p,
_I(Qp,60)+ (nlogA + (2)\/ o[Taes(A)[Ry = 1] + Cpp

for some suitable constants Cy) = Cs1(Ca1 + Cp3) 4 C71Cas, Ca) = Ca, Ciz) = lf—al

6.2.2. Analysis of the Sequential Tests Ti(A)

We then consider the sequential tests T;(A) on the stream being monitored (the ith
stream) when the change occurs to the pth stream at time 7 = k. We need to bound
two kinds of sequential tests:

o EP[Ti(A)| i # p,Tcs > k], where we are monitoring another stream i(i # p)
when the change occurs to the pth stream. Observations under this scenario are
under a prechange distribution.

o ENTE(A)| i =p,Toes > k], where we are just monitoring the affected stream p
when the change occurs to the pth stream. Observations under this scenario are
under a postchange distribution.

We note that Ti(A),TF(A) are completely characterized by the statistics
M(k),S(k), G(k) defined at the beginning of Subsection 6.2. The following lemmas give
the bounds on these statistics.
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Lemma 6.10. For any set A in the domain of M(k), we have
Pi(M(k) € A|TGCS > k,i #p) = Pi(M(k) € A|TGCS > ki :p) (6.31)
Similar relationship holds for S(k), G(k).. Thus, in the following contexts on these three

statistics, we will omit the conditions i # p and i = p.

Proof. Due to the random starting value of R,, P{(M(k) € A|Tgcs > k,i = j) should be
identical for any j = 1, ..., p. Relationship (6.31) is then proved.
Lemma 6.11. There exists a constant Cyy, such that

Pi(TGCS > leGCS >k — M(k)) > Ci (6.32)

for some constant Cj;; that is not related to k, A.

Proof.

Pi(TGCS < k|TGCS >k — M(k))
Poo(TGCS < M(k))
T. <M(k))

A
=T
4

A
g
0
«
v
x

(6.33)

IN
]
SNEN

<

for some constant Cyj; < 1. Here T, and §; are the sequential test and statistics defined
in (6.1). Relationship (6.32) is then proved with Cy;; = 1 — Cyy;.

Lemma 6.12. There exist constants Cy; and Ciay such that

PL(M(k) > /) < Ciype 2. (6.34)

Proof. Applying Lemma 6.3 obtains that

PL(M(k) > /) —'kD/( (k) =7)
:Z ok — Mk)—mW >0 forall m+1<t<k)

—/

| /\

P.o(T' > k— m)

R‘“§
Nilng

C31efc32(k7m)

IN

1
121€

3
Il

—Cinn/

IN
@)

for some constants Ciz;, Ci2s.
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Lemma 6.13. There exist constants Cy3; and Ci3, such that
Pi(M(k) > /|Tges > k) < Ciare @, (6.35)

Proof.
Pi(M(k) >/|Tges > k) =Py (M(k) > /|Tges > k)
= Poo(M(k) > /|Tes > k, Tees > k — M(k))
P (M(k) > /|Tges > k — M(k))
POO(TGCS > k|TGCS >k — M(k))

< G e
Cin

Thus, relationship (6.35) is proved with Cy3; = Ci21/Ci1y and Cizp = Cin.

Lemma 6.14. There exists constant Cyay such that for r = 1,2, ...,

EL[S(k)*[Tees > k] < Cua, (6.36)
Ei [G(k>4|TGCS > k] < Cia, (6.37)
S(k) Cia1
pl,_ SKk) 4 < G
= (M(k)—|—r) [Toes > k| < pral (6.38)

Proof.
E[S(k)*| Tacs > K = BL[S(k)*| Tecs > k Tacs > k — M(K)]
_ EYS(k)* | Toes > k — M(k)]
P‘;:(TGCS > k|TGCS >k — M(k))
A BIS(O)" L juguy | Tocs > k — M(K)]
Pi(TGCS > k|Tges > k— M(k))
I BICS eu X0)" = | Tocs > k — M(K)
Pi(TGCS > k|TGCS >k — M(k))
o S BT X PR > )
- Pi(TGCS > k|Tges > k — M(k))

A)—1 CCoun1/2
- Z(:o) Ci3u*(Csre C””)/
- Cin
< Cia.

for some constants Cy4; and Cyy3 that can be derived from the property of exponential

family and the fact that the summation Z u’e " is bounded. The proof of relationship
u=1

(6.37) follows the same path as the proof of (6.36) and relationship (6.38) follows dir-

ectly from (6.36).

Now we have bounded M(k), S(k), G(k) in Lemma 6.10 to Lemma 6.14, and here we
)

first consider the sequential test T{(A) when we are not monitoring the affected stream
at the change time (i # p):
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TL(A) =inf{t —k:t>k+ 1,t —k+ M(k) = q(A) or S, & (—G(k),A — G(k))},
(6.39)
where S, =) 1 (0, — 00)X, — Y (0,) +(0p)) and 0, is defined as

0, = min{g, max{é, v, (S(k)];(g’l‘r ;_ T jf“ ) }} (6.40)

The following lemma gives the bounds on T, (A) when i # p.

Lemma 6.15. For the estimator é/ defined in (6.40), there exists a constant Cys1 such
that

C151

P2(10, — 0| > ATges > k) < —
(r—k)

(6.41)

forallr =k+1,k+2,....

Proof. Due to the continuity of ¥’ and Lemma 6.14, we can select suitable 1 = 1(2)
such that

|9 -0l > )|TGCS > k)

Tt TN

(’S +X;“j:r+_ . j,jq_l — W(Oo)‘ v Lf(rk! - <Z|chs > k)
< Pf:( i};&i)—:_ . _—i—er - — /' (60)| > | Tacs > k) + ( C_15]2c>4
Sfi<XA?tﬁ:2mI‘A“@ff:i_ka” >g”¢3>é)+u?if
gﬂ(Jqﬂiijzml—wmm >Z—r?Yfkww@m@B>k>+Uﬁif

r—1—k

X o4 X
SW<kH+ )

n
> —|Tges > k
4‘ GCS )

Cis2
(r—k)*

+P;€<r7|'ﬁ (00)] >~ |TGCS > k) +
C

for some constants 7 =n(4),Cis;,Cis, that can be derived from Lemma 6.1 and
Lemma 6.14 and all r=k+ 1, k+2,.... 0
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Lemma 6.16. There exists a constant Cis; such that

E [Ti(A)[Tocs > k] < Cuar. (6.42)

Proof. We consider a new sequential test:

T (A) =inf{t —k:t>k+1, > ((0g—0,)X} +y(0,) = ¥(0)) & (—00,G(k))},

/=k+1
(6.43)
and it is clear that T;*(A) > T}(A). We claim that
i C
PL(T"(A) > r[Toes > k) < :—262 (6.44)

for some constant Cyg; and all » > 1. To prove relationship (6.44), consider the event
H={|0,—6| </ forall />k+r}.

From Lemma 6.15, we obtain that Pi(HC\TGCS > k) g% for some constant Cig;.
Under the event H, we have

(0o = 0,1, + (D) = ¥(00) = 2, = (B = 0)X, +(0) — W(00) = AX{| = max (4(0) ~ (0))
(6.45)

We select suitable / so that Ef[Z/] > 0 and

k+r

LT ()2 rTacs > K) = (32,70, (00— 0] +9(00) (00 < 606 )

<P (ZkH Z; <G(k))+PL(H | Tges > k)

=k 7=
ktr rE} [ Z/] oA Ciss
SPIIZ< /:k+1Z/S > +P§ G(k)z 5 |TGCS>k +r_3

2

k+r P
1 2y E Z, C C
Lkt iz 5] ”) 4G, G

<P’,;<

for some constant Cjg4 that can be derived from Lemma 6.14. Below we write Z, as

Zy=X;+ Y, + Cigs,

where X, = (0o — 0)X},Y, = A|X)| and Cies = () — (o) — maxyg_s<; (¥ (0) —
Y(0)). We have
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k4r P
o Z E |Z,
Pi(‘ sl g > 5 A)

r

k+r k+r P
ny.¢ /i1 Y7 ElZ,
:P‘;Q R IRl &

k+r k+r P

o0 X M Y, E [Z

/=k a /=k 4 /
§P£<\+‘—E£[X/1|+|%—E’;[m|z < )

k+r P k+r P
o X E|Z Y, E|Z,
< min {Pﬁ(lif‘kf L _EX/)| > "L A)fi(’—”‘r“ .l Z—ki A)}

< Cigee "
for some constants Cig6, C16; that can be derived from Lemma 6.1. Relationship (6.44)
is then proved and relationship (6.42) follows directly from (6.44). O

With Lemma 6.16, we are able to write the detection delay when we are not monitor-
ing the affected stream at the change time as

Dy(Tacs(A)| i #p) < ER[Ti(A)] i # p, Tacs > k] + E5[Tacs(A)[R = 1]

A
S C161 —|— I(@PTO) + C(l) 10gA + C(Z) \/Eg[TGCS(A”Rl = 1] + C(3) .

A
ST log A Eb[Tocs(A)|Ry =1
= 1(0,, 0o) +Cu log +C<z>\/ o[Tacs(A)|Ri = 1] + Cpy)

(6.46)

Consider now the second scenario when we are just monitoring the affected stream
(the pth stream) when the change occurs. The sequential test Ti (A) is defined as

THA) =inf{t —k:t >kt —k+M(k)=q(A) or S, & (—G(k),A - G(k))}, (647)
where 8, = Zt/:kﬂ((é/ — 00)X5 —(0;) + (o)) and 0, is defined by

P . P
@/ = min{C, max{é, zp“) (S<k)]\/_1'—(li§kr ;__ I __'—2({_1 ) }} (6.48)

Lemma 6.17. For the estimator é/ defined in (6.48), there exists constant Cy71 such that
Cin
(¢ —k)°

P10, — 0, > A|Tges > k) < (6.49)

forall { =k+1,k+2,....
Proof. The proof is the same as the proof of Lemma 6.15.

Lemma 6.18. Let f, , = Pi(sﬁw,k > A — G(k)), and we can write E{[T}|Tccs > k| as
(1 - ﬁp,k)A

EP|TE|T kl <
k[ ilTacs > }— 1(0,, 0y)

+ x1 + X% + X3, (6.50)
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where

1/2 1/2
k+10 ~
x1 < Cigy (Ei [Z/J_rkil(ef —0,)*| Tes > k]) + C182(Ei[T£]>

k+T0 k+17 ~
x; < CigsE} |:Z/—k:1(0/ — 0,)*| Tacs > k] + CisaE} {Z/_kil(lpl(@f) — ¥ (0,))*|Tecs > k

x3 < CigsAPL(T; = q(A) — M(k)|Toes > k)
fOT’ some constants C]gl, C132, C183, C134, C]gs.
Proof. The proof is the same as the proof of Lemma 6.2.

Lemma 6.19. There exists constant Cyo1 such that for sufficient large A > Ay and every

r=12,.., "
10
Pi (Ti >4 r|TGCS > k) <

Cio
1(0,, 0o) o

(6.51)

Proof. Let s = [1(0,5;?00)]; then we define the following event for some constant 7 :
E= {|Z)/ — 0, < 2 forall /> k+£}.

From relationship (6.49) we have Pi(EC|TGCS > k) < % for some constant Cyg,. It fol-
lows that the log-likelihood ratio satisfies

(0, — 00)X, —(0r) +Y(00) > Y, = (0, — 00)X) — AXD| — Cipa, (6.52)

where Cig3 = max|p_g,|<;((0) —¥(0o)). We choose proper 5,/ such that ERlY/] >0
and define the stopping time

N.(A) :inf{t>0:ZY/2A}. (6.53)
/=1

It is easy to verify that if TF(A) > 10A/I(6,, 0p) + r, then N,(A) > 10A/I(6,, 0y) + r.
Moreover, it is straightforward to see that PY(N.(A) > 10A/I(0,,00) + r|Tgcs > k) is
bounded exponentially in r, and we can prove that there exist constants Cq4, C95 such that

o(—p 104 oo 10A
Pk (Tk > I(OP,OO) + r‘TGCS >k| = Pk Tk > I(OP, 00)
+Pz(T£ > & + r|TGCS > k, EC)Pi(EC‘TGCS > k)
1(0p, 0)

10A

1(0,, 00)

+ r|TGCS > k, E) Pi(E‘TGCS > k)

<P} (Ti > +1{[Tees > k, E) +PL(E[Taces > k)

10A
< Pi N, >——+ r\TGcs >k)+ Pi(EC‘TGCS > k)
10, 00)

(6.54)
for some constant Cjo;. O
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Lemma 6.20. There exist constants Cyg1, Cagp such that

P
k+T,

ER] D (W(0,) =¥/ (6,)*Tacs > k| < CorlogA + Capa. (6.55)
/=k+1

Proof.

P
k+T?

E; |:Z/—k+1(¢/(é/) —¥'(0,))*|Tecs > k]

<E

="

[ S 41 (D,) = 9 (0,)) Tocs > k}

< B SN 0 (B,) — §/(60,)) s > k}

<E

I S(k) + X0+ +X0_ 2
k+q(A) k+1 /-1
i ( M(k) :L [—1-k ‘/’/(917)> | Tocs > k

< 2{5{ [ k+q(4) (S(k) — MKW (0,) >2 N (Zﬁ‘_‘kﬂ XE— (£ —1—k)y/'(0,) >2

(RN M)+ —1—k M(k)+/—-1—k

Toes > k] }

for some constants Cyg;, Cypo that can be derived from Lemma 6.1 and Lemma 6.14.

< Cyoilog A + Copp

Lemma 6.21. There exists constant Cyyy such that

211
PP(Th = q(A) — M(k)|Tges > k) < —— (6.56)
q(4)
for all sufficiently large threshold A > A,.
Proof.
A A
PLT] = a() ~ MWTacs > 1)< PE(T2 =1 Tacs > k) + P (06) = T2 Toes > )
C212 C213
< +
q(A)’  q(A)*
S C‘le3
q(4)
for some constant Cy11, Ca12, Cy13. O

With these lemmas, we can write the detection delay when we are just monitoring
the affected stream at the change time as
Dy(Tacsli = p) = B4 [ToTocs > k| + B, (B4 Tees(A) R = 1]

(1 - ﬁp,k)A
= "1(0,,00)

<_4 + Cs)log A + Ci6)1/Dy(Ties) + C
_I(GP,HO) (5) 10g (6) r(1Ges (7)P>

+x1 4% + x5+ B, EQ[Tacs (A)[Ry = 1] (6.57)
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for some suitable constants Cs), C), C(7). Relationship (4.1) follows directly by combin-
ing relationships (6.46) and (6.57).

7. CONCLUSIONS

In this article, we consider the active quickest detection problem with unknown post-
change parameters, where there are p local streams in a system but one is only able to
take observations from one of these p local streams at each time instant. We propose an
efficient GCS-based quickest detection algorithm under sampling control constraint,
whose main idea is to keep monitoring one stream until we are confident to switch or
raise an alarm. Our proposed algorithm is shown to have first-order asymptotic opti-
mality in the sense of minimizing detection delay when the false alarm constraint y
goes to infinity and p = o(logy). Numerical studies are conducted to show the effect-
iveness and applicability of the proposed algorithm.

There are a number of interesting problems that have not been addressed here. In
practice, one may be interested in the more general scenario when there are s > 1
affected data streams and we are allowed to sample from g > 1 streams per time step.
Our conjecture is that we are still able to achieve asymptotic optimality results when
q > s, but are unable to do so if g < s. Another research direction would be to consider
monitoring the system based on a linear projection of the complete data. The sparse
structure of the changes might help us to detect the change in high-dimensional data
with only a low-dimensional projection. Therefore, this article is just the beginning of
further investigation.
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