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ABSTRACT
The active quickest detection problem with unknown postchange
parameters is studied under the sampling control constraint, where
there are p local streams in a system but one is only able to take
observations from one and only one of these p local streams at each
time instant. The objective is to raise a correct alarm as quickly as
possible once the change occurs subject to both false alarm and
sampling control constraints. Here we assume that exactly one of
the p local streams is affected, and the postchange distribution
involves unknown parameters. In this context, we propose an effi-
cient greedy cyclic sampling–based quickest detection algorithm and
show that our proposed algorithm is asymptotically optimal in the
sense of minimizing the detection delay under both false alarm and
sampling control constraints. Numerical studies are conducted to
show the effectiveness and applicability of the proposed algorithm.
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1. INTRODUCTION

In the big data age, active quickest detection problems in multistream data have a wide
range of applications in quality control, surveillance or security, etc. Under a general
setting, there are p data streams available in a system, and at some unknown time an
event might occur and affect some local streams in the sense of changing the distribu-
tion of its data. Depending on how we access the data, the problems can be divided
into two distinct scenarios: the passive change point problem where one passively
collects the data and the active change point problem where one is able to actively select
the observed data, often with some certain kind of sampling rate constraint.
The passive change point problem and its extension have been well studied in the lit-

erature. The classical version of this problem is the case where one monitors p ¼ 1 local
stream, and many well-known procedures have been developed; see Page (1954), Pollak
(1987), Lai (1995), Lorden and Pollak (2008), to name a few. For a review, see books
such as Poor and Hadjiliadis (2008) and J. Chen and Gupta (2012). In recent years,
research into monitoring p � 2 local streams in a passive setting has received extensive
attention. Mei (2010) used the sum of local cumulative sum (CUSUM) statistics as the
global statistic and Y. Xie and Siegmund (2013) suggested a mixture likelihood ratio
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approach. Later, Chan (2017) developed asymptotic optimality theory for large-scale
independent Gaussian data streams. For more extensions on the passive monitoring of
multiple data streams, see J. Li (2020), who developed nonparametric methods for
change detection in high-dimensional data, and Y. Chen and Li (2019), who considered
the scenario when each local stream has its own change point. Also see Tartakovsky
et al. (2014), Liu et al. (2019) and Wu (2020) for more related contents.

Research is rather limited for active quickest detection problems when monitoring
p � 2 local streams under the sampling control constraint where one needs to decide
which local stream is to be observed at each and every time step. This topic was first
studied as early as 1963 by Shiryaev with a radar system rotating to observe exactly one
out of p possible directions. Though Shiryaev proposed a useful algorithm, there was no
asymptotically optimal theorem until Xu, Mei, and Moustakides (2020, 2021) developed
the first of its kind under the simplest scenario when there is exactly only one affected
local stream and the postchange distribution is completely specified. It is worth men-
tioning that there are some work which focus on the methodology without any kind of
asymptotic optimality, see Liu et al. (2015) and Xie et al. (2021). Recently, Fellouris and
Veeravalli (2022) considered a more general setting when the postchange distribution
belongs to a finite prespecified set. It remains an open problem to investigate the setting
when the postchange distribution involves unknown parameters that might have infin-
itely many possible values.
In this article, we study the active quickest detection problem with unknown postchange

parameters when there is only one affected local stream under the sampling constraint
that we are allowed to observe one and only one of the p local streams per time step. We
develop an efficient algorithm named greedy cyclic sampling–cumulative sum (GCS-
CUSUM) where the postchange distributions are unknown. Conceptually, our proposed
algorithm alternates two different sampling policies: one is the greedy sampling policy that
observes the local stream that may, and is progressively more likely to, contain the change,
and the other is the cyclic sampling policy that switches to the next local stream if no
local stream involves a local change. Our main contribution is to prove that even with the
sampling rate of 1=p at each time step subject to the average run length to false alarm
constraint of c, the proposed GCS-CUSUM algorithm has the remarkable property of
having the same detection delay performance up to first order as the oracle procedure
that knew which stream is affected when the dimension p ¼ oð log cÞ and c ! 1:

We need to point out that this work is a nontrivial extension of our previous work in
Xu, Mei, and Moustakides (2021) where the postchange distributions are completely
specified. Under our current setting, the postchange distributions involve unknown
parameters, and it is highly nontrivial to develop asymptotically optimal theorems with
the unknown postchange parameters using existing online or active quickest detection
techniques. The main reason is that information might be lost when sequentially esti-
mating the parameters and switching among different streams. To overcome such diffi-
culty, we borrow the tools from Lorden and Pollak (2008) to address the unknown
postchange parameters and combine them with those in Xu, Mei, and Moustakides
(2021) to incorporate the uncertainty of estimating unknown postchange parameters
and the adaptive nature of the sampling policy. We feel that our work is a solid step
forward on the active quickest detection problem under sampling control and will shed
new light for future research.
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It is also useful to point out that the sampling control has been extensively studied in
two other well-known problems: the multiarmed bandit problems and sequential
hypothesis testing. See Lai (1987), S. Li et al. (2019), Tsopelakos, Fellouris, and
Veeravalli (2019), among others. In those contexts, all observations will provide some
information for decision making. Here we should emphasize that our setup of sequen-
tial change point detection problems under sampling control poses new challenges
because observation does not provide information to the quickest detection unless it is
taken from the affected stream after the change occurs.
The remainder of the article is organized as follows. In Section 2, we state the math-

ematical formulation of our problem and review some existing methods. In Section 3,
we present our proposed algorithm, and in Section 4 we provide its theoretical proper-
ties. Numerical studies are presented in Section 5 to illustrate the performance proper-
ties of our proposed algorithm, and we present the proof of the main theorem in
Section 6. Finally, we conclude our article in Section 7.

2. PROBLEM FORMULATION AND BACKGROUNDS

For a better presentation, we divide the current section into two parts. In Subsection
2.1, we present the mathematical formulation of our problem, and in Subsection 2.2 we
review several existing methods.

2.1. Problem Formulation

Suppose there are p statistically independent local streams in a system, and denote by
Xi
t the observation from the ith local stream at time t, for i ¼ 1, :::, p and t ¼ 1, 2, ::::

Let fhðxÞ ¼ exp ðhx � wðhÞÞ be the probability density/mass function of a one-parameter
exponential family of distributions. Note that this includes many widely used distribu-
tions such as the Gaussian distribution, gamma distribution, and binomial distribution,
and it also allows us to investigate the case when there are uncountably many possible
values for postchange parameters. Initially, the system is under control and the data
fXi

tg from the ith stream are independent and identically distributed (i.i.d.) with the
density fh0ðXÞ, independent of i. At some unknown time t ¼ s, a triggering event
occurs to the system and affects exactly one of its p streams, say, the ith, in the sense of
changing its local distribution to a new unknown postchange density fhiðXÞ: Specifically,
if the ith local stream is affected,

Xi
t �

exp ðh0x� wðh0ÞÞ, if t � s
exp ðhix� wðhiÞÞ, if t > s,

�
(2.1)

whereas for all other unaffected local streams, j 6¼ i, Xj
t � fh0ðxÞ ¼ exp ðh0x� wðh0ÞÞ all

t > 0 when j 6¼ i: Here we consider in detail the one-sided change point problem, where
it is assumed that h0 is known and hi > h0 for the given ith affected data stream. In
particular, the impact of the change can be different for different streams, and we
denote by hi the possible postchange parameters if the ith data stream is affected.
Let us now discuss the sampling control constraints. To be rigorous, define a

sequence of sampling indices fRtg with Rt 2 f1, :::, pg, where Rt is a random variable
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and fRt ¼ mg means that we will sample the mth local stream at time instant t. Under
our sampling constraint, we are allowed to access only one of these p local streams at
each time t, and this can be expressed as

1fRt¼1g þ � � � þ 1 Rt¼pf g ¼ 1 for all times t ¼ 1, 2, :::, (2.2)

where 1A denotes the indicator function of the event A.
In the active quickest detection problem under sampling control, an algorithm con-

sists of two components: one is the sampling policy in the sense of dynamically choos-
ing fRtg at each and every time instant t subject to the sampling constraint in (2.2),
and the other is the decision policy that is defined as the stopping time T with respect

to the observed data sequence fXi¼Rt
t gt�1: Note that the sampling decision Rt depends

only on those observed data up to time t � 1, and the stopping time fT ¼ tg means
that we raise an alarm at time t.
Following the classical minimax formulation for quickest detection proposed by

Pollak (1985), we are interested in finding a procedure ðfRtgt¼1, :::,1,TÞ that minimizes

the worst-case detection delay conditioned on that we stop after the change time t,

DiðTÞ ¼ sup
t�0

Ei
t T� tjT > t½ �: (2.3)

for any i ¼ 1, 2, :::, p when the ith local stream is affected by the change, subject to the
average run length to false alarm constraint

E1 T½ � � c > 1: (2.4)

Here Pi
tð�Þ,Ei

t½�� denote the probability measure and the corresponding expectation
induced by the change occurring at the ith local stream at time s ¼ t and P1ð�Þ,E1½��
denote the probability measure and the corresponding expectation induced by the
change occurring at 1:

2.2. Review of Existing Methods

Let us now review some existing research that is related to our problem. First, under
the unrealistic scenario where we had the true knowledge on the index i of affected
data stream and the postchange parameters fhi , it is natural to always sample the ith
stream—that is, Rt � i for all t—and utilize the well-known CUSUM procedure to raise
an alarm at time

ToracleðAÞ ¼ infft � 1 : Wi
t � Ag, (2.5)

where Wi
t is the CUSUM statistics recursively defined as

Wi
t ¼ maxfWi�1

t , 0g þ log
fhiðXi

tÞ
fh0ðXi

tÞ
for t � 1 (2.6)

and the initial value Wi
0 ¼ 0; see Moustakides (1986). Here the threshold A is chosen to

satisfy the average run length to false alarm constraint c in (2.4). We use Toracle to
emphasize that this CUSUM procedure makes an oracle assumption of known affected
local streams and known postchange distribution.
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Note that it is highly nontrivial to develop an efficient algorithm under our setup due
to two challenges. The first, probably easier, one is that the postchange distributions are
unknown. This challenge has been tackled when monitoring p ¼ 1 local stream in
Lorden and Pollak (2008). Their main idea is to estimate the postchange parameter hi
by the average of recent observations ĥt, i after the candidate change point and update

the local statistics as in the classical CUSUM statistic. The local statistics ~W
i
t can be

defined as in the recursion (2.6) with hi replaced by ĥt, i; that is,

~W
i
t ¼ maxf ~Wi�1

t , 0g þ log
fĥt, iðXi

tÞ
fh0ðXi

tÞ
:

This yields Lorden and Pollak’s procedure, resulting in

TLPðAÞ ¼ inf
n
t > 0 : ~W

i
t � A

o
: (2.7)

The second, probably more fundamental, challenge is that the index i of the true
affected local stream is unknown, and thus it is unclear how to choose sampling indices
fRtg suitably to detect the change quickly. A naive sampling idea is to sample each local
process purely cyclically—that is, Rt ¼ tmodpþ 1Rt ¼ tmodpþ 1 for all time instants
t ¼ 1, 2, :::—and each local stream is visited only once during each p time instant.
Combing this cyclic sampling policy with Lorden and Pollak’s procedure in (2.7) yields
the following quickest detection algorithm:

TcyclicðAÞ ¼ inf
n
t > 0 : max

n
~W

1
t , :::, ~W

p
t

o
> A

o
, (2.8)

where ~W
i
tði ¼ 1, :::, pÞ is only updated when Rt ¼ i: In the sequel we will refer to (2.8)

as the cyclic algorithm with the purely cyclic sampling policy.
Clearly, the purely cyclic algorithm in (2.8) seems to be inefficient, because it might

spend too much time on those p� 1 unaffected local streams. To the best of our know-
ledge, no efficient algorithms have been developed in the quickest detection literature to
simultaneously address these two challenges of unknown postchange distribution and
unknown index of affected local streams.

3. OUR PROPOSED ALGORITHM

In this section, we present our proposed algorithm, denoted by TGCS, based on the
GCS policy. At a high level, we propose to sample one stream until we are confident in
deciding whether a local change has occurred or not. If we detect a local change, then
we stop and raise a global alarm. If we decide there is no local change or we have
sampled from the same stream for a long time, then we switch to sample from another
stream. We repeat these steps until we raise an alarm.
For better presentation, the current section is divided into three subsections: in

Subsection 3.1 we define local statistics, which will be the cornerstone of our algorithm.
We propose the GCS policy in Subsection 3.2 and the decision policy in Subsection 3.3.
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3.1. Local Statistics

For the sake of clarity, we define two sets of local monitoring statistics, ~W
i
t and Ŵ

i
t , for

the ith local stream at time t. The former is used to update the observed data, and the
latter also takes into account a possible switch to sampling different data streams.

Let us first define the local statistics ~W
i
t: When the ith local stream is observed, we update

its local statistics based on Lorden and Pollak’s procedure in (2.7). When the ith local stream
is not observed, we treat it as missing data and the corresponding log-likelihood ratio of

missing data as 0. Mathematically, at each time instant t ¼ 1, 2, :::, let ĥt, i be the estimate
of the postchange parameter for the ith stream at time t, which will be defined later, and the

local statistics ~W
i
t can be defined recursively as

~W
i
t ¼ max f ~W

i
t�1, 0g þ 1fi¼Rtglog

fĥt, iðXi
tÞ

fh0ðXi
tÞ

¼
max f ~Wi

t�1, 0g, if i 6¼ Rt

max f ~W
i
t�1, 0g þ log

fĥ t, iðXi
tÞ

fh0ðXi
tÞ

, if i ¼ Rt ,

8>><
>>:

(3.1)

with the initial values ~W
i
0 ¼ 0 for all i ¼ 1, :::, p:

As for the postchange parameter estimators ĥt, i, by (3.1), we only need to pay atten-
tion to the sampled local stream and thus adopt the same idea as in Lorden and
Pollak’s procedure (2.7). To be more concrete, at time instant t, assume that we sample
at the ith stream. Denote by MðtÞ the total time instants in which we have consecutively
sampled at the ith stream, which can be recursively updated as

MðtÞ ¼ Mðt � 1Þ þ 1, if Rt ¼ Rt�1

1: otherwise
:

�
(3.2)

Here we propose to estimate the postchange parameter based on the observed data
from the ith stream during the time period of t �MðtÞ þ 1 to t � 1, because we save
the data at the time instant t for quickest detection, not for parameter estimation. One
natural idea is to consider the method of moments estimator of the distribution

ĥ
MOM
t, i ¼ w1

Pt�1
l¼t�MðtÞþ1X

i
l

MðtÞ � 1

 !
,

where we define 0/0¼�1 and w1ð�Þ is the inverse function of w0ð�Þ: However, it turns
out that the proposed method of moments estimator is unable to handle the case when
the magnitude of change is extremely small (i.e., hi is close to h0), and we need to
define a constant d that indicates the smallest magnitude of change—that is, hi � d >
h0 for any given ith affected stream. Also, due to technical issues, we need to define an
additional constant f that indicates the largest magnitude of change; that is, hi < f for
all i. It is worth mentioning that for Gaussian mean change cases, the upper bound of
change f can be removed. Mathematically, our proposed estimator for the ith stream at
time t is defined as
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ĥt, i ¼ min

�
f, max

�
d,w1

�Pt�1
l¼t�MðtÞþ1X

i
l

MðtÞ � 1

���
, (3.3)

Next, we define the local statistics Ŵ
i
t as a modification of ~W

i
t by taking into account

of possible switch of sampling different data streams. At each time instant t, if we pro-
pose to switch to sampling a different stream at time t þ 1—that is, Rtþ1 6¼ Rt ,—then
we switch all local statistics back to 0. Mathematically,

Ŵ
i
t ¼

0, if Rtþ1/¼Rt ,
~W

i
t , if Rtþ1 ¼ Rt:

(
(3.4)

for all i ¼ 1, :::, p and time t. In addition, at each time instant, we will further reset
~W

i
t ¼ Ŵ

i
t after updating its value from ~W

i
t�1 in (3.1) and before updating the values at

time t þ 1:

3.2. Greedy Cyclic Sampling Policy

Here we adopt the GCS policy with a twist of avoiding sampling a local stream for too

long. On one hand, if the local statistics ~W
i
t of the streams being sampled are positive,

then we should continue to sample the same stream, and if it becomes zero, then we
should switch to sampling new local stream. On the other hand, if we sample the same
stream for a very long time but the corresponding local statistics are positive but small
values, then it might suggest that there is no strong evidence for this stream involving
changes, and we might want to explore new local streams.
To start with, we introduce a controlling parameter q, which was first introduced in

Lorden and Pollak (2008) and can be thought of as the maximum consecutive time we
can tolerate staying in the same stream. In our results below, we set q ¼ qðAÞ ¼ Ce�A

for some constant C 2 ð0,1Þ and � 2 0, 12
� �

:

Now we are ready to define our sampling policy. If ~W
Rt

t > 0 and MðtÞ < qðAÞ, then
we adopt the GCS policy by continuing sampling the same local stream; for example,
Rtþ1 ¼ Rt: Otherwise, we will switch to sampling the next stream, because we need to
avoid sampling the local stream whose local statistic value is zero or staying for too
long. Mathematically, we define the sampling index Rtþ1 as

Rtþ1 ¼ Rt if ~W
Rt

t > 0 and MðtÞ < qðAÞ,
Rt mod pþ 1 if ~W

Rt

t � 0 or MðtÞ � qðAÞ,

(
(3.5)

with the initial value R1 randomly picked from f1, :::, pg:

3.3. Decision Policy

Our proposed decision policy TGCS is inspired by the prior knowledge that there is only
one stream that changes, and we thus propose to raise an alarm at

TGCSðAÞ ¼ inf t > 0 : max
1�i�p

Ŵ
i
t � A

� �
, (3.6)
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for some prespecified constant A. Combining the local statistics, sampling policy, and deci-
sion policy, our proposed algorithm defined by TGCS can be summarized in Algorithm 1.

Algorithm 1. Our proposed algorithm TGCS:

1. Randomly pick R1 from f1, :::, pg and initialize ~W
i
0 ¼ 0 for i ¼ 1, :::, p:

2. for each time t do
3. Sample the stream Rt:
4. Update the accumulated time MðtÞ as in (3.2).
5. Update the local statistics ~W

i
t for i ¼ 1, :::, p as in (3.1).

6. Update the sampling index Rtþ1 as in (3.5) and the local statistics Ŵ
i
t as in (3.4).

7. if max1�i�pŴ
i
t � A then

8. Raise an alarm at TGCSðAÞ ¼ t:
9. end if
10. Reset the local statistics ~W

i
t ¼ Ŵ

i
t for i ¼ 1, :::, p:

11. end for

4. ASYMPTOTIC OPTIMALITY

In this subsection, we will investigate the theoretical properties of our proposed algo-
rithm TGCS in (3.6). First, let us make some standard assumptions from the quickest
detection literature. We assume that Kullback-Leibler information numbers are positive
and finite for all i ¼ 1, 2, :::, p :

ðA1Þ : Iðh0, hiÞ ¼
ð
log

fh0ðXÞ
fhiðXÞ

fh0ðXÞdX > 0,

Iðhi, h0Þ ¼
ð
log

fhiðXÞ
fh0ðXÞ

fhiðXÞdX > 0,

Moreover, we assume that the second-order moments of log-likelihood ratios are
bounded away from 1:

ðA2Þ : Jðh0, hiÞ ¼
ð �

log
fh0ðXÞ
fhiðXÞ

�2

fh0ðXÞdX > 0,

Jðhi, h0Þ ¼
ð �

log
fhiðXÞ
fh0ðXÞ

�2

fhiðXÞdX > 0,

Now we are ready to present the theoretical properties of our proposed algorithm.
The following theorem summarizes the nonasymptotic properties of our algorithm on
the average run length to false alarm and detection delay for any threshold A > 0:

Theorem 4.1. For our proposed algorithm TGCS in (3.6), we have

E1 TGCS½ � � eA: (4.1)

Moreover, its detection delay satisfies

DiðTGCSÞ � A
Iðhi, h0Þ þ C0 logAþ C1

ffiffiffiffi
A

p
þ C2p (4.2)
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as A ! 1 for any i 2 1, :::, p: Here C0,C1,C2 are constants depending only on the dis-
tributions, not on A and p.

The rigorous proof of Theorem 4.1 will be postponed to Section 6. As one of our
reviewers pointed out, the constant C2 in relationship (4.2) serves as an important role
in the detection delay. It can be regarded as time “wasted” looking at each unaffected
stream, and once the dimension grows larger, that wasted time can be significant and
deteriorate the detection delay performance of our proposed algorithm. More discus-
sions can be found at the end of the section.
By Theorem 4.1, the following corollary establishes the first-order asymptotic opti-

mality properties of our proposed algorithm TGCS in (3.6) in the quickest detection
framework when the average run length to false alarm constraint c in (2.4) goes to 1:

Corollary 4.1. Let A ¼ log c; then our proposed algorithm TGCSðAÞ in (3.6) satisfies both
the false alarm constraint in (2.4) and the sampling control constraint in (2.2). Moreover,
for each i ¼ 1, :::, p, its detection delay satisfies

DiðTGCSÞ � Dorc
i � C0 log log cþ C1

ffiffiffiffiffiffiffiffiffiffi
log c

p þ C2p, (4.3)

where Dorc
i is the oracle detection delay achieved by assuming that the index of the

affected stream and the postchange parameters are completely specified:

Dorc
i ¼ log c

Iðhi, h0Þ þ C3 (4.4)

and C3 is a constant that only depends on the distributions, not on c and p.
It is useful to add some remarks.

(1) Note that relationship (4.3) holds for every p and c: On one hand, our pro-
posed algorithm TGCS has the same detection delay of the oracle or CUSUM

procedure up to O
ffiffiffiffiffiffiffiffiffiffi
log c

p	 

when p is fixed as c ! 1 or when p ¼

O
ffiffiffiffiffiffiffiffiffiffi
log c

p	 

: On the other hand, when p is large but c is moderately large, the

additional term C0 log log cþ C1

ffiffiffiffiffiffiffiffiffiffi
log c

p þ C2p can be comparable to or even
larger than Dorc

i , and thus the performance of our proposed algorithm will be
much worse than the oracle or CUSUM procedure. This is not surprising for a
high-dimensional setting, because the sampling control in (2.2) is too restrictive
for large p and we should not be able to detect the change quickly if we only
sample one out of p local streams at each time instant. In other contexts, we can
evaluate the constants C0,C1, and C2 to see the effects of the dimension p on
the performance of our proposed algorithm; see also Wang and Mei (2015) for
similar contexts. It remains an open problem to develop a general asymptotic
optimality theory for high-dimensional streams under the sampling control.

(2) As one of our reviewers correctly pointed out, the nonattainability of the oracle
bound under large p can be explained from another viewpoint. To decide
which stream is the most likely to have the change, a minimum average num-
ber of samples must be taken from each stream before zeroing in on that
stream. When the dimension p is large, additional wasted time on the p� 1
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unaffected stream is significant compared to the oracle bound and thus our
proposed algorithm is not asymptotically optimal.

(3) We use Pollak’s criterion for measuring the worst-case delay, and it is well known
that one alternative criterion is Lorden’s criterion, proposed in Lorden (1971):

DðTÞ ¼ sup
t�0

esssup Et ðT � tÞþjF t

� �
, (4.5)

where F t is the filtration of the information up to time t. Though Pollak’s criter-
ion and Lorden’s criterion are asymptotically equivalent when monitoring i.i.d.
data streams with known pre- and postchange distributions, they are very different
under our context with sampling policies. In particular, Lorden’s criterion involves
the” ess sup” over all possible sampling policies, and the main technical difficulty
occurs when we are sampling on the unaffected data streams but somehow with
large local statistics ~W

i
t , in which case it might take a long time to switch from

this unaffected local stream to the other streams. Though we are able to establish
the asymptotic optimality theories under Pollak’s criterion, it remains an open
problem to establish asymptotic optimality theories under Lorden’s criterion.

(4) Our algorithm can be implemented much more efficiently from a computa-
tional point of view. We employ two sets of statistics: ~W

i
t in (3.1) and Ŵ

i
t in

(3.4), where the former statistics in (3.1) are updated based on the samples and
the latter statistics in (3.4) are to reset those in (3.1) to zero when the stream is
switched. Moreover, at most one of these p statistics is nonzero, and thus we
can compress our algorithm and reduce the number of registers from p to 1 by
focusing only on this nonzero statistics.

(5) The key issue in sampling policy is how to break ties. Under our context of
only one affected data stream, any reasonable algorithm would like to sample
from the stream with the highest local statistics. This applies to our proposed
GCS-CUSUM algorithm, but the main issue is what to sample next if the local
statistics ~W

i
t in (3.1) are negative for i ¼ Rt and all other p� 1 local statistics

are zero. We need to decide how to break ties. Cyclic sampling is one way to
break ties, so that we have opportunities to explore all local streams. The other
sensible way to break ties is to randomly select the index among all remaining
p� 1 local streams with a zero value. The corresponding procedure has similar
theoretical properties as our proposed algorithm, although the proofs become
more complicated. Thus, we adopt the cyclic sampling and leave random sam-
pling to break ties as a remark.

5. NUMERICAL STUDIES

In this section, we conduct simulation studies to demonstrate the performance proper-
ties of our proposed algorithm TGCS: Below we consider two types of numerical exam-
ples: in Subsection 5.1 we perform Monte Carlo simulations to compare the
performance of TGCS against some benchmarking algorithms, and in Subsection 5.2 we
study its application on a hot-forming process.
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5.1. Comparison of TGCS against Tcyclic

In our first simulation, we consider two choices on the number p of local streams: p ¼
2 or p ¼ 10: For each choice of p streams, we consider two different distributions f; one
is a normal distribution and the other is an exponential distribution. Because of space
limitations, we only present the homogeneous setting (i.e., prechange fh0 ¼ f and post-
change fhi ¼ g for any i ¼ 1, :::, p).

	 Mean shift in normal distribution from 0 to l � 0.5.
	 Mean shift in exponential distribution from 1 to k � 2.

In each case, we set the false alarm constraint c ¼ 50, 000: For our proposed algo-
rithm TGCSðAÞ and the purely cyclic method TcyclicðAÞ in (2.8), we first use the bisection
method to find a suitable threshold A to attain the false alarm constraint and then
simulate the worst-case detection delay under different postchange scenarios where the
change occurs to the pth stream (because our algorithm starts to sample at the first
stream). After obtaining the detection delay for p ¼ 2, 10, we estimate the parameter C2

in relationship (4.2) by calculating the difference of these two delays and dividing it by
the difference of dimension.
Table 1 reports the detection delay of our proposed algorithm TGCS and the cyclic

algorithm Tcyclic in (2.8). In addition, we report the oracle detection delay of the
CUSUM procedure in (2.5) and the ratio C2/oracle delay, which denotes the impact of
increasing dimension p. All numerical results are based on 50, 000 Monte Carlo runs.
From the tables, it is clear that our proposed algorithm TGCS is much better than the
naive method Tcyclic and can reduce the detection delay by at least 25% when p ¼ 2 and
50% when p ¼ 10: In other words, compared to naive purely cyclic sampling, our pro-
posed GCS policy can lead to a significant improvement on the detection delay
performance.
Moreover, our results show that as the dimension p increases from p ¼ 2 to p ¼ 10,

the detection delays of both our proposed algorithm TGCS and the purely cyclic method
Tnaive in (2.8) increase significantly. The detection delay will increase by 20% to 40% of
the oracle delay when the dimension p increases by 1. We conjecture that the oracle

Table 1. Comparison of detection delays.
c ¼ 50000 p ¼ 2 p ¼ 10

l Oracle C2=Oracle (%) Cyclic TGCS Cyclic TGCS
0.5 61.87 29.00 144.01 90.56 701.23 234.10
0.75 29.62 25.73 64.13 39.07 308.52 100.06
1.0 17.20 27.76 36.45 22.65 174.67 60.85
1.25 11.35 30.69 23.40 15.46 112.12 43.33
1.5 7.93 37.54 16.60 11.21 80.28 35.03

c ¼ 50000 p ¼ 2 p ¼ 10

k Oracle C2=Oracle (%) Cyclic TGCS Cyclic TGCS
2.0 26.78 28.93 57.50 39.62 286.09 101.60
2.25 19.39 30.77 41.58 28.78 206.86 76.52
2.5 15.18 33.21 32.17 22.49 159.72 62.83
2.75 12.06 38.15 25.59 17.40 126.66 54.21
3.0 9.84 42.28 21.49 14.76 105.10 48.05

Top table: normal distribution. Bottom table: exponential distribution.
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bound of the CUSUM procedure is unattainable for high-dimensional monitoring under
sampling control, but we are unable to provide a rigorous proof.

5.2. Hot-Forming Process

In this subsection, we will evaluate the performance of GCS-CUSUM algorithm based
on a hot-forming process. A Bayesian network (BN) for the hot-forming process was
identified by J. Li and Jin (2010) and a physical illustration is shown in Figure 1.
The linear Gaussian parameterization of a BN is assumed to be known:

lðXiÞ ¼
XcardðPAðiÞÞ

k¼1

pðPAkðiÞ, iÞlðXPA kðiÞÞ þ Vi, (5.1)

where PAðiÞ denotes the parents of node i, pðPAkðiÞ, iÞ is called the path coefficient (the
number annotated on the arc of the BN), and Vi � Nð0, 1Þ represents the random noise
that cannot be described by the linear model and is assumed to be independent of
XPAkðiÞ and Viðj 6¼ iÞ:
For any stopping time T in the hot-forming process, we consider two performance

metrics: one is the detection performance DiðTÞ when the ith node is affected by the
change and the other is the sampling ratio (SR) of the node where the change is
detected. Mathematically, if a change is detected on the jth node at time T, then the SR
of the stopping time T is defined as

SR Tð Þ ¼
PT

l¼1 1fRl¼jg
T

: (5.2)

where Rl is the index of the observed node at time l.
In this example, we consider the situation when there is only a single mean shift

occurring at some variable in the hot-forming process. The mean shift will propagate
and dilute along the BN (e.g., a mean shift in X2 with u2 ¼ 1 will result in a mean shift
in X1 with u1 ¼ 0:522). The detailed settings are summarized as follows:

	 In the in-control state, Xi � NðlðXiÞ, 1Þ and the mean lðXiÞ satisfies the BN
structure in Figure 1 and relationship (5.1) for i ¼ 1, 2, 3, 4, 5:

Figure 1. BN structure and physical illustration of a hot-forming process.
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	 The postchange mean is set to l ¼ 0:5 and the potential affected nodes are
X1,X2,X3,X4,X5: For each case, we calculate the detection delay and SR in (5.2)
of TGCS and TRD:

	 The path coefficients are set to pð2, 1Þ ¼ 0:574, pð3, 1Þ ¼ 0:335, pð4, 2Þ ¼ 0:493,
pð4:3Þ ¼ 0:688, pð5, 2Þ ¼ 0:325:

	 The false alarm control constraint c ¼ 5000:

Table 2 summarizes the detection delay and the sampling ratio of our proposed algo-
rithm TGCS and the random sampling algorithm TRS: All numerical results are based on
20,000 Monte Carlo runs. From the tables, it is clear that our proposed GCS-CUSUM
algorithm is more efficient than the random sampling algorithm and can reduce the
detection delay by at least 50%. Moreover, Table 2 shows that the GCS-CUSUM algo-
rithm is focused and always spends more than 50% of the time on one node. Compared
to the random sampling algorithm, our proposed algorithm gains more information
from one affected node and thus can detect the change more quickly.

6. PROOF OF THE MAIN THEOREM

In this section, we provide the rigorous proof for Theorem 4.1. The proof is divided
into two parts: in the first part, we study the false alarm relationship (4.1), and in the
second part we study the detection delay relationship (4.2).

6.1. False Alarm Relationship

Let us begin with the proof of false alarm relationship in (4.1), which is the easier one.
The key idea in proving (4.1) is to construct a new stopping time T
ðAÞ such that
E1½T
ðAÞ� � E1½TGCSðAÞ� for all thresholds A and prove that T
ðAÞ satisfies the false
alarm constraint in (2.4). Mathematically, T
ðAÞ is defined as

T
ðAÞ ¼ inf

�
t � 1 : S
t ¼

Xt
l¼1

Yt
m¼l

fĥm,Rm ðX
Rm
m Þ

f0ðXRm
m Þ � eA

�
: (6.1)

It is easy to verify that log S
t � maxf ~W 1
t , :::, ~W

p
t g for all times t and thus E1½T
ðAÞ� �

E1½TGCSðAÞ� holds for any threshold A. Note that fS
t � tg is a P1- martingale with
zero expectation, and applying the optional sampling theorem obtains that

E1 TGCS½ � � E1 T
½ � ¼ E1 S
T


� � � eA: (6.2)

Table 2. Comparison of detection delay and sampling ratio.
c ¼ 5000 Detection delay Sampling ratio

Affected node Tcyclic TGCS Tcyclic (%) TGCS (%)
X1 315.75 138.60 20.00 56.17
X2 315.02 138.94 20.00 56.87
X3 318.09 152.97 20.00 52.41
X4 314.61 133.97 20.00 57.90
X5 312.71 159.19 20.00 50.15
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6.2. Detection Delay Relationship

Consider now the detection delay relationship in (4.2). Below we write the log likeli-
hood ratio as

log

�
fhjðXÞ
fh0ðXÞ

�
¼ ðhj � h0ÞX � wðhjÞ þ wðh0Þ: (6.3)

The main idea in proving (4.2) is to present an equivalent definition of our proposed
algorithm TGCSðAÞ by the sequential tests. For each jðj ¼ 1, :::, pÞ, a prototype sequential
test applied to the jth local stream is defined as

Tj ¼ inf t � 1 : t ¼ qðAÞ or Sjt ¼
Xt
l¼1

ððĥl � h0ÞXj
l � wðĥlÞ þ wðh0ÞÞ 62 ð0,AÞ

( )
: (6.4)

with the estimator ĥl

ĥl ¼ min

�
f, max

�
d,w1

Xj
1 þ � � � þ Xj

l�1

l� 1

� ���
: (6.5)

For notational simplicity, here we use the same notation ĥl for different sequential tests
Tj and omit the subscript j.
Define the sequence fTmg,m ¼ 1, 2, :::, of sequential tests applied to each local

stream. Then it is clear that each Tm has the same distribution as a particular prototype
sequential probability ratio test Tj: In addition, if we define (a stopping time) K to be
the first time the sequential test Tm of the local stream being tested crosses the upper
boundary A, then our proposed stopping time TGCS can be written as the sum

TGCS ¼ T1 þ T2 þ � � � þ TK ¼
XK
m¼1

Tm: (6.6)

Without loss of generality, we assume that the change occurs to the pth local stream
at change time s ¼ k, and we are monitoring the ith (i.e., Rk ¼ i) local stream when
the change occurs. To better characterize the sequential test on the ith stream when the
change occurs at time s ¼ k, we define

	 MðkÞ : the total time instants in which we have consecutively sampled at the
stream when the change occurs (the ith stream) up to time k.

	 SðkÞ ¼Pk
l¼k�MðkÞþ1 X

i
l is the sum of observations on the ith stream within the

window ½k�MðkÞ þ 1, k�:
	 GðkÞ ¼Pk

l¼k�MðkÞþ1ððĥl � h0ÞXi
l � wðĥlÞ þ wðh0ÞÞ is the local statistic on the

ith stream at time k.
	 Ti

kðAÞ : the sequential test on the ith stream after the change occurs.

Ti
kðAÞ ¼ infft � k : t � kþ 1, t � kþMðkÞ ¼ qðAÞ or Sit, k 62 ð�GðkÞ,A� GðkÞÞg,

(6.7)
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where Sit, k ¼
Pt

l¼kþ1ðð~hl � h0ÞXi
l � wð~hlÞ þ wðh0ÞÞ and ~hl is defined as

~hl ¼ min

�
f, max

�
d,w1

�
SðkÞ þ Xi

kþ1 þ � � � þ Xi
l�1

MðkÞ þ l� 1� k

���
: (6.8)

Here we use the notation ~hl to distinguish it from the estimator ĥl, which is not
affected by MðkÞ, SðkÞ:
With the definition of Ti

kðAÞ, we are able to write the detection delay of our pro-
posed algorithm as the sum of sequential tests. We divide the discussions into two
parts:

	 We first consider the simplest scenario when the change occurs to the pth stream
at time s ¼ 0 and R1 is randomly set to 1; that is, we start sampling from the
stream. This clearly generates a worse detection delay, because the change occurs
to the pth stream and we need to go over p� 1 unaffected stream.

Ep
0 TGCS Að ÞjR1 ¼ 1
� � ¼ Ep

0

XK

m¼1
Tm

h i
¼
X1

m¼1
Ep
0 Tm½ �Pp

0 K � mð Þ

¼ Xp þ xpXp þ x2
pXp þ � � � ¼ Xp

1� xp
,Ep

0 TGCS Að ÞjR1 ¼ 1
� �

¼ Ep
0

XK

m¼1
Tm

h i
¼
X1

m¼1
Ep
0 Tm½ �Pp

0 K � mð Þ

¼ Xp þ xpXp þ x2
pXp þ � � � ¼ Xp

1� xp
,

where

xp ¼ bp
Yp�1

j¼1
ð1� aiÞ

Xp ¼ Ep0½T1� þ Ep0½T2�
	
1� a1



þ � � � þ � � � þ Ep0½Tp�

Yp�1

j¼1

ð1� aiÞ

¼ E1½T1� þ E1½T2�
	
1� a1



þ � � � þ � � � þ Ep

0½Tp�
Yp�1

j¼1

ð1� aiÞ

where bp ¼ P
p
0ðSpTp < AÞ denotes the type II error probability of the sequential test Tp

and ai ¼ P1ðSi
Ti � AÞ denotes the type I error probability of the sequential test Ti

(i ¼ 1, :::, p� 1). Because 0 � ai, bi � 1, we have the following upper bound:

E
p
0 TGCSðAÞjR1 ¼ 1½ � � E

p
0 T

p½ �
1� bp

þ 1
1� bp

Xp�1

j¼1

E1 Ti½ �: (6.9)

	 Then we consider the general scenario when the change occurs to the pth stream
at time s ¼ k and we are monitoring the ith stream (Rk ¼ i) at the same time.
Note that if we do not detect a change on the ith stream, we will switch to the
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next stream, and this actually returns to the simplest scenario when the change
occurs at time s ¼ 0: This can be further divided into two cases:

	 If we are not monitoring the affected stream when the change occurs (i 6¼ p), the
detection delay can be written as

DpðTGCSðAÞj i 6¼ pÞ � E
p
k Ti

kðAÞj i 6¼ p,TGCS > k
� �

þ E
p
0 TGCSðAÞjR1 ¼ 1½ � :

	 If we are just monitoring the affected stream when the change occurs (i ¼ p),
the detection delay can be written as

DpðTGCSðAÞj i ¼ pÞ � E
p
k T

p
kðAÞj i ¼ p,TGCS > k

h i
þ bk, pE

p
0 TGCSðAÞjR1 ¼ 1½ �

,

where bk, p ¼ P
p
kðSpTp

kþk, k
� A� GðkÞÞ is the type II error probability of the sequential

test Tp
kðAÞ:

If we are able to show that both DpðTGCSðAÞj i 6¼ pÞ,DpðTGCSðAÞj i ¼ pÞ satisfy the
relationship (4.2), the problem is solved. It suffices to bound the detection delay
E
p
0½TGCSðAÞjR1 ¼ 1� and the sequential tests Ti

kðAÞ for i 6¼ p, i ¼ p: For better presenta-
tion, below we divide the proof into two subsubsections. In the first subsubsection, we
bound the detection delay E

p
0½TGCSðAÞjR1 ¼ 1�, and in the second one we focus on the

sequential tests Ti
kðAÞ:

6.2.1. Detection Delay When Change Occurs to the pth Stream at Time s ¼ 0
We first consider the detection delay E

p
0½TGCSðAÞjR1 ¼ 1�, which is the easier one.

Below we divide the proofs into a series of lemmas. The notation of constants is as fol-
lows: Cij refers to the constant j in Lemma i, and Cijk refers to the constant k in Lemma
ij. (Thus, C121 refers to a constant in Lemma 6.12.) Constants of the form CðiÞ refer to a
constant that does not appear in the lemma. When constants add up, we freely use
another constant to bound their sum.

Lemma 6.1. For any j ¼ 1, :::, p, there exist constants C11,C12,C13 such that for some g >

0 and all times t,

P
j
0

�




Pt

l¼1X
j
l

t
� w0ðhjÞ





 > g

�
< C11e

�C12g2t , (6.10)

E
j
0

�Pt
l¼1X

j
l

t
� w0ðhjÞ

�4
" #

<
C13

t2
: (6.11)

The same relationship holds when w0ðhjÞ is replaced by w0ðh0Þ and P
j
0,E

j
0 is replaced

by P1,E1:

Proof. Standard large deviations arguments.
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Lemma 6.2. For the sequential test Tp in (6.4), let bp ¼ P
p
0ðSpTp < AÞ, and we have

E
p
0 T

p½ � � ð1� bpÞA
Iðhp, h0Þ þ x1 þ x2 þ x3, (6.12)

where

x1 � C21 E
p
0

XTp

l¼1

ðĥl � hpÞ2
2
4

3
5

0
@

1
A

1=2

þ C22ðEp
0 T

p½ �Þ1=2 (6.13)

x2 � C23E
p
0

XTp

l¼1

ðĥl � hpÞ2
2
4

3
5þ C24E

p
0

XTp

l¼1

ðw0ðĥlÞ � w0ðhpÞÞ2
2
4

3
5 (6.14)

x3 � C25AP
p
0ðTp ¼ qðAÞÞ (6.15)

for some constants C21,C22,C23,C24 that only depend on the parameter hp but not on the
threshold A.

Proof. Applying Wald’s equation and optional stopping theorem obtains that

Ep
0½Tp� ¼ Ep

0½
PTp

l¼1ðhp � h0ÞXp
l � wðhpÞ þ wðh0ÞÞ�

Iðhp, h0Þ

¼ Ep
0½
PTp

l¼1ððĥl � h0ÞXp
l � wðĥlÞ þ wðh0ÞÞ�

Iðhp, h0Þ

þ Ep0½
PTp

l¼1ððhp � ĥlÞXp
l � wðhpÞ þ wðĥlÞÞ�

Iðhp, h0Þ

¼ Ep0½SpTp �
Iðhp, h0Þ þ

Ep0½
PTp

l¼1ððhp � ĥlÞw0ðhpÞ � wðhpÞ þ wðĥlÞÞ�
Iðhp, h0Þ

� Pp
0ðSpTp � AÞA
Iðhp, h0Þ þ Pp

0ðSpTp � AÞEp
0½SpTp � AjSpTp � A�

Iðhp, h0Þ

þ Ep0½
PTp

l¼1ððhp � ĥlÞw0ðhpÞ � wðhpÞ þ wðĥlÞÞ�
Iðhp, h0Þ þ Pp

0ðTp ¼ qðAÞÞEp
0½SpTp jTp ¼ qðAÞ�

Iðhp, h0Þ

¼ Pp
0ðSpTp � AÞA
Iðhp, h0Þ þ x1 þ x2 þ x3:

where Sp
Tp is the local statistics defined in (6.4) and x1, x2, x3, are the three correspond-

ing components in the second to last inequality.
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x1 � Ep
0½jðĥTp � h0ÞXp

Tp � wðĥTpÞ þ wðh0Þj�
Iðhp, h0Þ

� Ep
0½jðĥTp � hpÞXp

Tp j�
Iðhp, h0Þ þ Ep0½jh0 � hpjXp

Tp �
Iðhp, h0Þ þ C26

�

�
Ep
0

�PTp

l¼1ðĥl � hpÞ2ðXp
lÞ2
��1=2

Iðhp, h0Þ þ

�
Ep0

�PTp

l¼1ðh0 � hpÞ2ðXp
lÞ2
��1=2

Iðhp, h0Þ þ C26

� C21

�
Ep0

�XTp

l¼1
ðĥl � hpÞ2

�
Þ1=2 þ C22ðEp0½Tp�Þ1=2:

Note that ĥl is universally bounded by d, f defined in (3.3) and thus E
p
0½jwðhpÞ �

wðĥlÞj� is bounded by a constant C26: We omit this constant in the following proof.

For the x2 term, as w00ðhÞ > 0 for all h, we have

x2 ¼
Ep0½
PTp

l¼1ððhp � ĥlÞw0ðhpÞ � wðhpÞ þ wðĥlÞÞ�
Iðhp, h0Þ

� Ep0½
PTp

l¼1ððhp � ĥlÞðw0ðhpÞ � w0ðh
ÞÞ�
Iðhp, h0Þ �

� Ep0½
PTp

l¼1ððhp � ĥlÞðw0ðhpÞ � w0ðhlÞÞ�
Iðhp, h0Þ

� C23E
p
0

XTp

l¼1
ðĥl � hpÞ2

h i
þ C24E

p
0

XTp

l¼1
ðw0ðĥlÞ � w0ðhpÞÞ2

h i
for some constants C23 ¼ C24 ¼ 1

2 Iðhp, h0Þ. For the x3 term, note that E
p
0½SpTp jTp ¼

qðAÞ� � A and thus x3 � C25AP
p
0ðTp ¼ qðAÞÞ for some constants C25 ¼ 1

I ðhp, h0Þ.
Lemma 6.3. There exist constants C31,C32 such that

P1 Tj � l
� �

� C31e
�C32l (6.16)

for all j ¼ 1, :::, p and l ¼ 1, 2, ::::

Proof. Let 0 < u < 1, and we have

E1 euððĥl�h0ÞXj
l
�wðĥlÞþwðh0ÞÞjXj

1, :::,X
j
l�1

h i
¼ ewðuĥlþð1�uÞh0Þ�uwðĥlÞ�ð1�uÞwðh0Þ: (6.17)

Note that

@

@h
ðwðuhþ ð1� uÞh0Þ � uwðhÞ � ð1� uÞwðh0ÞÞ ¼ uðw0ðuhþ ð1� uÞh0Þ � w0ðhÞÞ < �a:

(6.18)

where a ¼ minh2½d, f�ð�uðw0ðuhþ ð1� uÞh0Þ � w0ðhÞÞÞ > 0: This is because 0 < u < 1

and w0ðhÞ is strictly increasing. Thus,

ewðuĥlþð1�uÞh0Þ�uwðĥlÞ�ð1�uÞwðh0Þ � e�bu: (6.19)

for some constant b ¼ aðd� h0Þ.
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It follows that euS
j
l
þbul is a supermartingale under P1 and we have

P1 Tj � l
� �

� P1 uSjl > 0
h i

¼ P1 euS
j
l > 1

� �
� E1 euS

j
l

� �
� e�bulE1 euS

j
l
þbul

� �
� e�bulE1 euS

j
1þbu

� �
:

Relationship (6.16) is then C31 ¼ E1½euSj1þbu� and C32 ¼ bu: w

Lemma 6.4. There exists a constant C41 such that

E1 Tj½ � < C41, (6.20)

for all j ¼ 1, :::, p:

Proof. Applying Lemma 6.3 obtains that

E1 Tj½ � ¼
X1
l¼1

P1ðTj � lÞ � C41: (6.21)

for some constant C41: w

Lemma 6.5. For any sufficiently large threshold A � A0, bp ¼ P
p
0ðSpTp < AÞ, which is the

type II error probability of the sequential test TpðAÞ, satisfies the lower bound
bp � C51, (6.22)

where 0 < C51 < 1 is a constant that does not depend on the threshold A.

Proof. We consider the following event:

D ¼
�




Pt

l¼1 X
p
l

t
� w0 hp

� �



 � g for all t � 1 and some g > 0:

�

From relationship (6.10) in Lemma 6.1, we can verify that Pp
0ðDÞ > C52 for some con-

stant C52 > 0: Under the event D, the estimator ĥl satisfies jĥl � hpj < k for all times l
and some constant k ¼ kðgÞ > 0: It follows that the log-likelihood ratio satisfies

ðĥl � h0ÞXp
l � wðĥlÞ þ wðh0Þ � Yl ¼ ðhp � h0ÞXp

l � kjXp
lj � C53, (6.23)

where C53 ¼ maxjh�hpj<kðwðhÞ � wðh0ÞÞ: We choose proper g, k such that E
p
0½Yl� > 0

and define the stopping time and the event as

NðAÞ ¼ inf

�
t > 0 :

Xt
l¼1

Yl � 0

�
E ¼ fNðAÞ ¼ 1g

:

168 Q. XU AND Y. MEI



If event E occurs, the relationship (6.23) implies that our summary statistics also never
return to 0. We can further prove that Pp

0ðEÞ > C54 for some constant C54 > 0 in the
renewal theory. Now consider the third event with sufficiently large A such that
A=qðAÞ < E

p
0½Yl�=2 :

F ¼
�XqðAÞ

l¼1

Yl � A

�
:

We have

P
p
0ðFÞ ¼ P

p
0

PqðAÞ
l¼1

Yl

qðAÞ � A
qðAÞ

0
@

1
A

� P
p
0






PqðAÞ

l¼1
Yl

qðAÞ � E
p
0 Yl½ �





 � E
p
0 Yl½ �
2

0
@

1
A

� C55

for some constant 0 < C55 < 1 which can be derived from Chebyshev’s inequality.
Under the event D, E and FC, we have Sp

Tp � A and thus

bp � 1� P
p
0ðDÞPp

0ðEÞPp
0ðFCÞ � C51: (6.24)

for some constant 0 < C51 < 1:

Lemma 6.6. There exist constants C61,C62 such that for sufficiently large A � A0 and
every r ¼ 1, 2, :::,

P
p
0 Tp >

10A
Iðhp, h0Þ þ r

� �
� C61e

�C62r: (6.25)

Proof. Let s ¼ ½ 5A
Iðhp, h0Þ�, we define the following event for some constant g,

E ¼
�
jĥl � hpj < k for all l � sþ r

2

�
:

From relationship (6.10) we have P
p
0ðECÞ � C63e�C64r for some constant C63,C64: Similar

to Lemma 6.5, we consider a new stopping time

N
ðAÞ ¼ inf

�
t > 0 :

Xt
l¼1

Yl � A

�
, (6.26)

where Yl is defined in (6.23). It is easy to verify that if TpðAÞ > 10A=Iðhp, h0Þ þ r, then

N
ðAÞ > 10A=Iðhp, h0Þ þ r: Moreover, it is straightforward to see that P
p
0ðN
ðAÞ >

10A=Iðhp, h0Þ þ rÞ is bounded exponentially in r and we can prove that there exist con-
stants C61,C62 such that

SEQUENTIAL ANALYSIS 169



P
p
0 Tp >

10A
Iðhp, h0Þ þ r

� �
¼ P

p
0ðTp >

10A
Iðhp, h0Þ þ rjEÞPp

0ðEÞ

þ P
p
0ðTp >

10A
Iðhp, h0Þ þ rjECÞPp

0ðECÞ

� P
p
0ðTp >

10A
Iðhp, h0Þ þ rjEÞ þ P

p
0ðECÞ

� P
p
0ðN
 >

10A
Iðhp, h0Þ þ rÞ þ P

p
0ðECÞ

� C61e
�C62r:

(6.27)

Lemma 6.7. There exist constants C71,C72 such that

E
p
0

XTp

l¼1

ðw0ðĥlÞ � w0ðhpÞÞ2
2
4

3
5 � C71 logAþ C72: (6.28)

Proof. From relationship (6.11), we obtain that there exists constant C73 such that

E
p
0 ðw0ðĥlÞ � w0ðhpÞÞ4
h i1=2

¼ E
p
0

�
Xp
1þ���þXp

l�1
l�1 � w0ðhpÞ

�4
" #1=2

¼ C73

l� 1
:

Moreover, we have

Ep
0

�XTp

l¼1

ðw0ðĥlÞ � w0ðhpÞÞ2
�
¼ Ep

0

�X1
l¼1

ðw0ðĥlÞ � w0ðhpÞÞ21fTp�lg

�

�
X1
l¼1

ðEp
0½ðw0ðĥlÞ � w0ðhpÞÞ4�Þ1=2ðPp

0ðTp � lÞÞ1=2

¼
X10A=Iðhp, h0Þ

l¼1

ðEp
0½ððw0ðĥlÞ � w0ðhpÞÞ4�Þ1=2ðPp

0ðTp � lÞÞ1=2

þ
X1

l¼10A=Iðhp, h0Þþ1

ðEp
0½ðw0ðĥlÞ � w0ðhpÞÞ4�Þ1=2ðPp

0ðTp � lÞÞ1=2

�
X10A=Iðhp, h0Þ

l¼2

C73

l
þ
X1

l¼10A=Iðhp, h0Þþ1

C73

l� 1
ðC61e

�C62ðl�10A=Iðhp, h0ÞÞÞ1=2

� C71logAþ C72:

for some constants C71 ¼ C73 and C72 ¼ C73logð10I ðhp, h0ÞÞ þ 2C73

ffiffiffiffiffi
C61

p
C62

.

Lemma 6.8. There exist constants C81,C82 such that

E
p
0

XTp

l¼1

ðĥl � hpÞ2
2
4

3
5 � C81 logAþ C82: (6.29)
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Proof. Because ĥl is universally bounded, we define q ¼ maxd�h�fw
00ðhÞ and obtain that

E
p
0

XTp

l¼1

ðĥl � hpÞ2
2
4

3
5 �

E
p
0

PTp

l¼1ðw0ðĥlÞ � w0ðhpÞÞ2
h i

q2

� C81 logAþ C82:

Lemma 6.9. There exists a constant C91, such that

x3 � C25AP
p
0ðTp ¼ qðAÞÞ < C91, (6.30)

for all thresholds A.

Proof. This results from relationship Lemma 6.3 directly.
Combining the results above, we have

Ep
0½TGCSðAÞjR1 ¼ 1� � Ep

0½Tp�
1� bp

þ 1
1� bp

Xp�1

j¼1
E1 Ti½ �:

�
ð1�bpÞA
Iðhp, h0Þ þ x1 þ x2 þ x3

1� bp
þ C41

1� C51
p� 1ð Þ

� A
Iðhp, h0Þ þ

x1 þ x2 þ x3
1� C51

þ C41

1� C51
p� 1ð Þ

� A
Iðhp, h0Þ þ Cð1ÞlogAþ Cð2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ep0½TGCSðAÞjR1 ¼ 1�

q
þ Cð3Þp,

for some suitable constants Cð1Þ ¼ C81 C21 þ C23ð Þ þ C71C24, Cð2Þ ¼ C22, Cð3Þ ¼ C41
1�C51

:

6.2.2. Analysis of the Sequential Tests Ti
kðAÞ

We then consider the sequential tests Ti
kðAÞ on the stream being monitored (the ith

stream) when the change occurs to the pth stream at time s ¼ k: We need to bound
two kinds of sequential tests:

	 E
p
k½Ti

kðAÞj i 6¼ p,TGCS > k�, where we are monitoring another stream iði 6¼ pÞ
when the change occurs to the pth stream. Observations under this scenario are
under a prechange distribution.

	 E
p
k½Tp

kðAÞj i ¼ p,TGCS > k�, where we are just monitoring the affected stream p
when the change occurs to the pth stream. Observations under this scenario are
under a postchange distribution.

We note that Ti
kðAÞ,Tp

kðAÞ are completely characterized by the statistics
MðkÞ, SðkÞ,GðkÞ defined at the beginning of Subsection 6.2. The following lemmas give
the bounds on these statistics.
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Lemma 6.10. For any set A in the domain of MðkÞ, we have
P
p
kðMðkÞ 2 AjTGCS > k, i 6¼ pÞ ¼ P

p
kðMðkÞ 2 AjTGCS > k, i ¼ pÞ: (6.31)

Similar relationship holds for SðkÞ,GðkÞ:: Thus, in the following contexts on these three
statistics, we will omit the conditions i 6¼ p and i ¼ p:

Proof. Due to the random starting value of R1, P
p
kðMðkÞ 2 AjTGCS > k, i ¼ jÞ should be

identical for any j ¼ 1, :::, p: Relationship (6.31) is then proved.

Lemma 6.11. There exists a constant C111 such that

P
p
kðTGCS > kjTGCS > k�MðkÞÞ � C111 (6.32)

for some constant C111 that is not related to k, A.

Proof.

P
p
kðTGCS � kjTGCS > k�MðkÞÞ

¼ P1ðTGCS < MðkÞÞ
� P1ðT
 < MðkÞÞ

�
XMðkÞ�1

l¼1

P1ðS
l � eAÞ

�
XMðkÞ�1

l¼1

l

eA

� q2ðAÞ
A

� C112

(6.33)

for some constant C112 < 1: Here T
 and S
t are the sequential test and statistics defined
in (6.1). Relationship (6.32) is then proved with C111 ¼ 1� C112:

Lemma 6.12. There exist constants C121 and C122 such that

P
p
kðMðkÞ � lÞ � C121e

�C122l: (6.34)

Proof. Applying Lemma 6.3 obtains that

P
p
kðMðkÞ � lÞ ¼ P1ðMðkÞ � lÞ

¼
Xk�l

m¼1

P1ðk�MðkÞ ¼ m, ~W
p
t > 0 for all mþ 1 < t < kÞ

�
Xk�l

m¼1

P1ðTi > k�mÞ

�
Xk�l

m¼1

C31e
�C32ðk�mÞ

� C121e�C122l

for some constants C121,C122:
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Lemma 6.13. There exist constants C131 and C132 such that

P
p
kðMðkÞ � ljTGCS > kÞ � C131e

�C132l: (6.35)

Proof.

P
p
kðMðkÞ � ljTGCS > kÞ ¼ P1ðMðkÞ � ljTGCS > kÞ

¼ P1ðMðkÞ � ljTGCS > k,TGCS > k�MðkÞÞ
¼ P1ðMðkÞ � ljTGCS > k�MðkÞÞ

P1ðTGCS > kjTGCS > k�MðkÞÞ
� C121

C111
e�C122l:

Thus, relationship (6.35) is proved with C131 ¼ C121=C111 and C132 ¼ C122:

Lemma 6.14. There exists constant C141 such that for r ¼ 1, 2, :::,

E
p
k SðkÞ4jTGCS > k
� �

� C141, (6.36)

E
p
k GðkÞ4jTGCS > k
� �

� C142, (6.37)

E
p
k ð SðkÞ

MðkÞ þ r
Þ4jTGCS > k

� �
� C141

r4
, (6.38)

Proof.

Epk½SðkÞ4jTGCS > k� ¼ Epk½SðkÞ4jTGCS > k,TGCS > k�MðkÞ�

¼ Epk½SðkÞ4jTGCS > k�MðkÞ�
Pp
kðTGCS > kjTGCS > k�MðkÞÞ

¼
PqðAÞ�1

u¼1 Epk½SðkÞ41fMðkÞ¼ugjTGCS > k�MðkÞ�
Pp
kðTGCS > kjTGCS > k�MðkÞÞ

¼
PqðAÞ�1

u¼0 Epk½ð
Pk

l¼k�u X
i
lÞ41fMðkÞ¼ugjTGCS > k�MðkÞ�

Pp
kðTGCS > kjTGCS > k�MðkÞÞ

�
PqðAÞ�1

u¼0 Epk½ð
Pk

l¼k�u X
i
lÞ8�1=2Pp

kðTi � uÞ1=2
Pp
kðTGCS > kjTGCS > k�MðkÞÞ

�
PqðAÞ�1

u¼0 C143u2ðC31e�C32uÞ1=2
C111

� C141:

for some constants C141 and C143 that can be derived from the property of exponential

family and the fact that the summation
X1
u¼1

u2e�u is bounded. The proof of relationship

(6.37) follows the same path as the proof of (6.36) and relationship (6.38) follows dir-
ectly from (6.36).

Now we have bounded MðkÞ, SðkÞ,GðkÞ in Lemma 6.10 to Lemma 6.14, and here we
first consider the sequential test Ti

kðAÞ when we are not monitoring the affected stream
at the change time (i 6¼ p):
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Ti
kðAÞ ¼ infft � k : t � kþ 1, t � kþMðkÞ ¼ qðAÞ or Sit, k 62 ð�GðkÞ,A� GðkÞÞg,

(6.39)

where Sit, k ¼
Pt

l¼kþ1ðð~hl � h0ÞXi
l � wð~hlÞ þ wðh0ÞÞ and ~hl is defined as

~hl ¼ min

�
f, max

�
d,w1

�
SðkÞ þ Xi

kþ1 þ � � � þ Xi
l�1

MðkÞ þ l� 1� k

���
: (6.40)

The following lemma gives the bounds on Ti
kðAÞ when i 6¼ p:

Lemma 6.15. For the estimator ~hl defined in (6.40), there exists a constant C151 such
that

P
p
kðj~hr � dj > kjTGCS > kÞ < C151

ðr � kÞ4 (6.41)

for all r ¼ kþ 1, kþ 2, ::::

Proof. Due to the continuity of w0 and Lemma 6.14, we can select suitable g ¼ gðkÞ
such that

Pp
kðj~hr � dj > kjTGCS > kÞ

� Pp
k





 SðkÞ þ Xi
kþ1 þ � � � þ Xi

r�1

MðkÞ þ r � 1� k
� w0 h0ð Þ





 > gjTGCS > k

 !

� Pp
k





 SðkÞ þ Xi
kþ1 þ � � � þ Xi

r�1

MðkÞ þ r � 1� k
� w0 h0ð Þ





 > g,
jSðkÞj

MðkÞ þ r � 1� k
<

g
4
jTGCS > k

 !

þPp
k

jSðkÞj
MðkÞ þ r � 1� k

� g
4
jjTGCS > k

� �

� Pp
k





Xi
kþ1 þ � � � þ Xi

r�1

MðkÞ þ r � 1� k
� w0 h0ð Þ





 > g
2
jTGCS > k

 !
þ C152

ðr � kÞ4

� Pp
k





Xi
kþ1 þ � � � þ Xi

r�1

r � 1� k
�MðkÞ þ r � 1� k

r � 1� k
w0 h0ð Þ





 > g
2
jTGCS > k

 !
þ C152

ðr � kÞ4

� Pp
k





Xi
kþ1 þ � � � þ Xi

r�1

r � 1� k
� w0 h0ð Þ





 > g
2
� MðkÞ
r � 1� k

jw0 h0ð ÞjjTGCS > k

 !
þ C152

ðr � kÞ4

� Pp
k





Xi
kþ1 þ � � � þ Xi

r�1

r � 1� k
� w0 h0ð Þ





 > g
4
jTGCS > k

 !

þPp
k

MðkÞ
r � 1� k

jw0 h0ð Þj � g
4
jTGCS � k

� �
þ C152

ðr � kÞ4

� C151

ðr � kÞ4

for some constants g ¼ gðkÞ,C151,C152 that can be derived from Lemma 6.1 and
Lemma 6.14 and all r ¼ kþ 1, kþ 2, :::: w
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Lemma 6.16. There exists a constant C161 such that

E
p
k Ti

kðAÞjTGCS � k
� � � C161: (6.42)

Proof. We consider a new sequential test:

Ti, 

k ðAÞ ¼ infft � k : t � kþ 1,

Xt
l¼kþ1

ððh0 � ~hlÞXi
l þ wð~hlÞ � wðh0ÞÞ 62 ð�1,GðkÞÞg,

(6.43)

and it is clear that Ti, 

k ðAÞ � Ti

kðAÞ: We claim that

P
p
kðTi, 


k ðAÞ � rjTGCS > kÞ � C162

r2
(6.44)

for some constant C162 and all r � 1: To prove relationship (6.44), consider the event

H ¼ fj~hl � dj � k for all l � kþ rg:

From Lemma 6.15, we obtain that P
p
kðHCjTGCS > kÞ � C163

r3 for some constant C163:

Under the event H, we have

ðh0 � ~hlÞXi
l þ wð~hlÞ � wðh0Þ � Zl ¼ ðh0 � dÞXi

l þ wðdÞ � wðh0Þ � kjXi
lj � max

jh�dj�k
ðwðdÞ � wðhÞÞ:

(6.45)

We select suitable k so that Ep
k½Zl� > 0 and

Pp
kðTi,


k ðAÞ� rjTGCS>kÞ¼Pp
k

�Xkþr

l¼kþ1
ððh0�~hlÞXi

lþwð~hlÞ�wðh0ÞÞ�GðkÞ
�

�Pp
k

�Xkþr

l¼kþ1
Zl�GðkÞÞþPp

kðHCjTGCS>k

�

�Pp
k

Xkþr

l¼kþ1
Zl� rEpk½Zl�

2

� �
þPp

k G kð Þ� rEpk½Zl�
2

jTGCS>k

� �
þC153

r3

�Pp
k






Pkþr

l¼kþ1Zl

r
�Ep

k Zl½ �




�Ep

k½Zl�
2

 !
þC164

r4
þC163

r3

for some constant C164 that can be derived from Lemma 6.14. Below we write Zl as

Zl¼XlþYlþC165,

where Xl ¼ ðh0 � dÞXi
l,Yl ¼ kjXi

lj and C165 ¼ wðdÞ � wðh0Þ �maxjh�dj�kðwðdÞ �
wðhÞÞ: We have
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Pp
k






Pkþr

l¼kþ1 Zl

r
� Epk Zl½ �j � Epk½Zl�

2

 !

¼ Pp
k






Pkþr

l¼kþ1 Xl

r
þ
Pkþr

l¼kþ1 Yl

r
� Epk Xl½ � � Ep

k Yl½ �j � Ep
k½Zl�
2

 !

� Pp
k






Pkþr

l¼kþ1 Xl

r
� Epk Xl½ �j þ j

Pkþr
l¼kþ1 Yl

r
� Ep

k Yl½ �j � Ep
k½Zl�
2

 !

� min Pp
k






Pkþr

l¼kþ1 Xl

r
� Epk Xl½ �j � Epk½Zl�

4

 !
,Pp

k






Pkþr

l¼kþ1 Yl

r
� Epk Yl½ �j � Ep

k½Zl�
4

 !( )

� C166e
�C167r

for some constants C166,C167 that can be derived from Lemma 6.1. Relationship (6.44)
is then proved and relationship (6.42) follows directly from (6.44). w

With Lemma 6.16, we are able to write the detection delay when we are not monitor-
ing the affected stream at the change time as

DpðTGCSðAÞj i 6¼ pÞ � E
p
k Ti

kðAÞj i 6¼ p,TGCS > k
� �þ E

p
0 TGCSðAÞjR1 ¼ 1½ �

� C161 þ A
Iðhp, h0Þ þ Cð1Þ logAþ Cð2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E
p
0 TGCSðAÞjR1 ¼ 1½ �

q
þ Cð3Þ

� A
Iðhp, h0Þ þ Cð1Þ logAþ Cð2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E
p
0 TGCSðAÞjR1 ¼ 1½ �

q
þ Cð4Þ

:

(6.46)

Consider now the second scenario when we are just monitoring the affected stream
(the pth stream) when the change occurs. The sequential test Tp

kðAÞ is defined as

T
p
kðAÞ ¼ infft � k : t � k, t � kþMðkÞ ¼ qðAÞ or Spt, k 62 ð�GðkÞ,A� GðkÞÞg, (6.47)

where Spt, k ¼
Pt

l¼kþ1ðð~hl � h0ÞXp
l � wð~hlÞ þ wðh0ÞÞ and ~hl is defined by

~hl ¼ min

�
f, max

�
d,wð1Þ

�
SðkÞ þ Xp

kþ1 þ � � � þ Xp
l�1

MðkÞ þ l� 1� k

���
: (6.48)

Lemma 6.17. For the estimator ~hl defined in (6.48), there exists constant C171 such that

P
p
kðj~hl � hpj > kjTGCS > kÞ < C171

ðl� kÞ4 (6.49)

for all l ¼ kþ 1, kþ 2, ::::

Proof. The proof is the same as the proof of Lemma 6.15.

Lemma 6.18. Let bp, k ¼ P
p
kðSpTp

kþk, k
� A� GðkÞÞ, and we can write Ep

k½Tp
kjTGCS > k� as

E
p
k T

p
kjTGCS > k

h i
� ð1� bp, kÞA

Iðhp, h0Þ þ x1 þ x2 þ x3, (6.50)
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where

x1 � C181

	
Epk

�XkþTp
k

l¼kþ1
ð~hl � hpÞ2jTGCS > k

��1=2

þ C182ðEpk½Tp
k �
�1=2

x2 � C183E
p
k

�XkþTp
k

l¼kþ1
ð~hl � hpÞ2jTGCS > k

�
þ C184E

p
k

�XkþTp
k

l¼kþ1
ðw0ð~hlÞ � w0ðhpÞÞ2jTGCS > k

�
x3 � C185AP

p
kðTp

k ¼ qðAÞ �MðkÞjTGCS > kÞ

for some constants C181,C182,C183,C184,C185:

Proof. The proof is the same as the proof of Lemma 6.2.

Lemma 6.19. There exists constant C191 such that for sufficient large A � A0 and every
r ¼ 1, 2, :::,

P
p
k

�
T
p
k >

10A
Iðhp, h0Þ þ rjTGCS > k

�
� C191

r3
: (6.51)

Proof. Let s ¼ ½ 5A
Iðhp, h0Þ�; then we define the following event for some constant g :

E ¼
�
j~hl � hpj < k for all l � kþ r

2

�
:

From relationship (6.49) we have P
p
kðECjTGCS > kÞ � C192

r3 for some constant C192: It fol-
lows that the log-likelihood ratio satisfies

ð~hl � h0ÞXp
l � wð~hlÞ þ wðh0Þ � Yl ¼ ðhp � h0ÞXp

l � kjXp
lj � C112, (6.52)

where C193 ¼ maxjh�hpj<kðwðhÞ � wðh0ÞÞ: We choose proper g, k such that E
p
k½Yl� > 0

and define the stopping time

N
ðAÞ ¼ inf

�
t > 0 :

Xt
l¼1

Yl � A

�
: (6.53)

It is easy to verify that if Tp
kðAÞ > 10A=Iðhp, h0Þ þ r, then N
ðAÞ > 10A=Iðhp, h0Þ þ r:

Moreover, it is straightforward to see that P
p
kðN
ðAÞ > 10A=Iðhp, h0Þ þ rjTGCS > kÞ is

bounded exponentially in r, and we can prove that there exist constants C194,C195 such that

P
p
k

�
T
p
k >

10A
Iðhp, h0Þ þ rjTGCS > k

�
¼ P

p
k

�
T
p
k >

10A
Iðhp, h0Þ þ rjTGCS > k,E

�
P
p
kðEjTGCS > kÞ

þP
p
kðTp

k >
10A

Iðhp, h0Þ þ rjTGCS > k, ECÞPp
kðECjTGCS > kÞ

� P
p
k

�
T
p
k >

10A
Iðhp, h0Þ þ rjjTGCS > k,E

�
þ P

p
kðECjTGCS > kÞ

� P
p
k

�
N
 >

10A
Iðhp, h0Þ þ rjTGCS > k

�
þ P

p
kðECjTGCS > kÞ

� C191

r3
:

(6.54)
for some constant C191: w
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Lemma 6.20. There exist constants C201,C202 such that

E
p
k

XkþT
p
k

l¼kþ1

ðw0ð~hlÞ � w0ðhpÞÞ2jTGCS � k

2
4

3
5 � C201 logAþ C202: (6.55)

Proof.
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þ
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p
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MðkÞ þ l� 1� k
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TGCS > k

 #( )

� C201logAþ C202

for some constants C201,C202 that can be derived from Lemma 6.1 and Lemma 6.14.

Lemma 6.21. There exists constant C211 such that

P
p
kðTp

k ¼ qðAÞ �MðkÞjTGCS > kÞ � 211

qðAÞ3 (6.56)

for all sufficiently large threshold A � A0:

Proof.

P
p
kðTp

k ¼ qðAÞ �MðkÞjTGCS > kÞ � P
p
k

�
T
p
k ¼

qðAÞ
2

jTGCS > k

�
þ P

p
k

�
MðkÞ ¼ qðAÞ

2
jTGCS > k

�

� C212

qðAÞ3 þ
C213

qðAÞ4

� C211

qðAÞ3

for some constant C211,C212,C213: w

With these lemmas, we can write the detection delay when we are just monitoring
the affected stream at the change time as

DpðTGCSji ¼ pÞ ¼ E
p
k T

p
kjTGCS � k

h i
þ bp, kE

p
0 TGCSðAÞjR1 ¼ 1½ �

� ð1� bp, kÞA
Iðhp, h0Þ þ x1 þ x2 þ x3 þ bp, kE

p
0 TGCSðAÞjR1 ¼ 1½ �

� A
Iðhp, h0Þ þ Cð5Þ logAþ Cð6Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DpðTGCSÞ

q
þ Cð7Þp,

(6.57)
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for some suitable constants Cð5Þ,Cð6Þ,Cð7Þ: Relationship (4.1) follows directly by combin-

ing relationships (6.46) and (6.57).

7. CONCLUSIONS

In this article, we consider the active quickest detection problem with unknown post-
change parameters, where there are p local streams in a system but one is only able to
take observations from one of these p local streams at each time instant. We propose an
efficient GCS-based quickest detection algorithm under sampling control constraint,
whose main idea is to keep monitoring one stream until we are confident to switch or
raise an alarm. Our proposed algorithm is shown to have first-order asymptotic opti-
mality in the sense of minimizing detection delay when the false alarm constraint c
goes to infinity and p ¼ oð log cÞ: Numerical studies are conducted to show the effect-
iveness and applicability of the proposed algorithm.
There are a number of interesting problems that have not been addressed here. In

practice, one may be interested in the more general scenario when there are s > 1
affected data streams and we are allowed to sample from q > 1 streams per time step.
Our conjecture is that we are still able to achieve asymptotic optimality results when
q � s, but are unable to do so if q < s: Another research direction would be to consider
monitoring the system based on a linear projection of the complete data. The sparse
structure of the changes might help us to detect the change in high-dimensional data
with only a low-dimensional projection. Therefore, this article is just the beginning of
further investigation.
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