It’s like flossing your teeth: On the Importance and Challenges of
Reproducible Builds for Software Supply Chain Security

Marcel Fourné

* Dominik Wermke', William Enck ®f, Sascha Fahl

t, Yasemin Acar ©Y

*Max Planck Institute for Security and Privacy, Bochum, Germany, marcel . fourne@mpi—-sp.org
TCISPA Helmholtz Center for Information Security, Germany, [first.last]@cispa.de
¥North Carolina State University, Raleigh, North Carolina, USA, whenck@ncsu.edu
YPaderborn University, Germany, George Washington University, USA, acar@gwu.edu

Abstract—The 2020 Solarwinds attack was a tipping point
that caused a heightened awareness about the security of the
software supply chain and in particular the large amount
of trust placed in build systems. Reproducible Builds (R-Bs)
provide a strong foundation to build defenses for arbitrary
attacks against build systems by ensuring that given the same
source code, build environment, and build instructions, bitwise-
identical artifacts are created. Unfortunately, much of the
software industry believes R-Bs are too far out of reach for
most projects. The goal of this paper is to help identify a path
for R-Bs to become a commonplace property.

To this end, we conducted a series of 24 semi-structured
expert interviews with participants from the Reproducible-
Builds.org project, finding that self-effective work by highly
motivated developers and collaborative communication with
upstream projects are key contributors to R-Bs. We identi-
fied a range of motivations that can encourage open source
developers to strive for R-Bs, including indicators of quality,
security benefits, and more efficient caching of artifacts. We
also identify experiences that help and hinder adoption, which
often revolves around communication with upstream projects.
We conclude with recommendations on how to better integrate
R-Bs with the efforts of the open source and free software
community.

1. Introduction

“To what extent should one trust a statement that
a program is free of Trojan horses? Perhaps it is
more important to trust the people who wrote the
software.” - Ken Thompson

Thompson’s 1984 Turing award lecture “Trusting Trust”
demonstrated that the security of a program is more than
the logic in its source code [1]. It also includes all of the
programs used to make the source code logic executable.
Thirty-six years later, Thompson’s theoretical attack became
a pressing concern for nation states across the globe. The
2020 Solarwinds attack did not inject malicious source code
into a project. It did not trick users into installing software
with an invalid signature. The Solarwinds attack trojaned the
build system, transparently injecting malicious logic into the

product binary signed with Solarwinds’ official code signing
keys.

The world of software has transformed entirely since
Thompson’s lecture. His suggestion of “trusting the people”
is orders of magnitude harder today than in 1984. Today’s
software supply chain ecosystem is vast, with software
projects often including transitive dependencies that are
tens to hundreds of layers deep. And despite much of the
software supply chain being open source, end users rarely,
if ever, compile software themselves. Thus, the build system
has become an ideal target for attackers.

Reproducible Builds (often abbreviated R-Bs) offer a
foundation for defending against attacks targeting the build
system. “A build is reproducible if given the same source
code, build environment and build instructions, any party
can recreate bit-by-bit identical copies of all specified ar-
tifacts” [2]. Conceptually, R-Bs allow multiple parties to
build the same software package, and assuming the attacker
cannot simultaneously compromise the build systems of all
parties, arbitrary subversion of an individual build system
can be trivially detected. High-profile projects including
Bitcoin [3] and Tor [4] use R-Bs to assure users that dis-
tributed binary executables match their source code. Recent
literature has built upon R-Bs to enhance build provenance
guarantees [5] and create verifiable builds [6] more suitable
for providing guarantees to end customers. Finally, the US
National Security Agency (NSA) identifies R-Bs as an im-
portant part of securing the software supply chain [7], [8].

Unfortunately, most software builds are not reproducible.
Over the past decade, the Reproducible-Builds.org project
has cataloged the many sources of non-determinism that pre-
vent R-Bs, including uncontrolled build inputs (e.g., system
time, environment variables, and build location) and build
non-determinism (e.g., process scheduling) [9]. Despite in-
dustry [10], [11] and academic [12]-[14] tools to facilitate
R-Bs and extremely high rates of R-Bs in some popular
Linux distributions (95.5% for Debian on AMD64 [15] and
88.7% for Arch Linux core [16]), much of the software
industry believes R-Bs to be a long-term goal, if achievable
at all [17].

The goal of this paper is to help R-Bs more quickly
become a commonplace effort in software development. We
seek answers to the following research questions:

RQ1: “What are motivations for, and common themes
around, adopting reproducible builds in projects?” We are
interested in our participants’ motivations around striving
for reproducible builds in their projects, specifically in the
case of complex, community- or industry-driven projects,
that likely necessitate a complex, interconnected system of
motivations and drivers. We are also interested if some of
the motivations involve security, and what specific threat
models are applied.

RQ2: “What experiences and challenges did projects en-
counter in the context of reproducible builds?” Most projects
were not created with reproducibility in mind. We are
interested in what experiences were made, and challenges
encountered, on the way towards reproducibility, both by
contributors of the project as well as with outside entities
such as customers or upstream dependencies. This research
question aims at the personal experiences of R-B developers.
RQ3: “What are commonly encountered obstacles and facil-
itators in projects’ efforts towards reproducibility?” Some
projects stall in their efforts toward reproducibility, while
others succeed. We are interested in what facilitators and
obstacles our participants encountered during their efforts,
how they approached them, and what they would recom-
mend for other projects aiming to become reproducible. This
research question aims at external factors encountered by R-
Bs developers.

By answering these questions, we hope to guide future
industry and academic efforts that target both the techni-
cal and human aspects of R-Bs. In this paper, we report
the results of a semi-structured interview study with 24
prominent and public members of the R-Bs effort. All
participants were experienced developers (5+ years) with
R-Bs experience, who could give deep insights into their
thought and development processes, and deeply discuss and
reflect on the topic. Based on these interviews, we offer the
following key insights.

e Open Source developers are self-motivated to work on
software infrastructure. They see themselves as users
as well as developers and want to build better software
even without external requests.

e The Snowden revelations and SolarWinds incident
heightened the security awareness. While some people
were interested in R-Bs before, their number grew
significantly after those two public events.

o Caching matters most to businesses. R-Bs allow for
efficient caching of artifacts, which was mentioned as
the most important aspect for businesses.

While we specifically choose to interview experts with
many invested years in R-Bs for their experience and in-
sights, we also want to highlight that our expert participants
are likely positively biased regarding the potential for R-Bs
becoming widespread. While this may be substantiated by
growing numbers of developers on the R-Bs mailing list as
well as growing parts of operating systems being tested as
built reproducibly, our sample is still biased towards R-B
enthusiasts [18].

The remainder of this paper proceeds as follows. Sec-

tion 2 discusses background information and related work.
Section 3 describes our interview methodology. Section 4
presents our detailed results. Section 5 provides discussion
and a set of recommendations. Section 6 concludes.

2. Background and Related Work

This section provides background information for re-
producible builds and their relation to overall open source
software supply chain security, as well as related work
in three key areas: research on reproducible builds, open-
source software security, and interview studies with software
developers with a focus on software security.

Relationships between open source software projects can
be characterized by their order of incorporating software:
When one project uses another project’s software, it is often
called downstream of the project originating the software.
Conversely, many project interactions are with upstream
projects, which originated the software. A single package
that does not have a downstream relationship with another
package, instead of just redistributing it without changes,
is called a leaf package. Any package that provides some
functionality used in the infrastructure of a software build
and supply tool chain can also be called an infrastructure
package. To make a package build reproducibly, all of its
dependencies need to build reproducibly. If a maintainer
changes one package to do so, it is often most efficient
to upstream those changes as a patch set for incorporation
by the upstream developers, so the work is shared with all
other downstream projects of that dependency.

2.1. Reproducible Builds Background Information

Reproducible builds are a collection of techniques and
processes that aim to make the compilation of source to
resulting binary code deterministic: the same source code
should always be compiled to the bit-by-bit identical binary
code. Achieving reproducibility in building software is non-
trivial as the software compilation process is susceptible to
multiple sources of non-determinism.

Lamb and Zacchiroli [19] provide an overview of com-
mon sources of non-determinism during the build process:!

Build timestamps are commonly used by C program-
ming language projects and other build tools such as
make [20] using similar macros to the _ DATE___ C-
preprocessor macro. While build timestamps are useful
for bug reporting, most version control systems in-
cluding Git provides alternatives such as offer better
solutions to record specific software versions without
introducing additional non-determinism [21].

Build paths are commonly embedded using a C program-
ming language preprocessor macro (e.g., _ FILE_)
as well as assertion macros referencing source code
locations or log messages. In most cases, a relative path
to the root location of the source code is sufficient [22]
and reduces the amount of non-determinism. Build

1. This list is not meant to be exhaustive.

directory name inclusion can be prevented by only
including build paths relative to the root directory of
the source code, which will be constant. Non-constant
paths can include user-specific changes. To avoid these
while maintaining absolute build paths, a statically
known directory path can be used for all software
builds. This is used in Nix, GUIX, but also Debian
using the sbuild software [23], which is the basis
for the R-Bs checking tool reprotest [11].

Filesystem ordering as part of the POSIX standard does
not define the order when returning the results of a
directory listing causing additional non-determinism.

Archive metadata such as the date and ownership informa-
tion in .zip and .tar archives are commonly used
for archival purposes but should be avoided to reduce
non-determinism.

Randomness results not only from parallelism and concur-
rency in the build process. Additionally, some com-
pilers introduce explicit randomness during the build
process to generate unique names that do not conflict
with those generated for other files such as single
compilation unit [24] distinct identifiers.

Unitialized memory adds non-determinism by not always
initializing memory to a programmer-defined value and
is supported by some popular low-level programming
languages including C and C++.

As part of our interview study, we aim to better understand
how open source software developers identify and handle
these sources of non-determinism.

The reproducible-builds.org project [2] aims to sup-
port developers and software projects in making their build
processes reproducible. They support mainstream Linux dis-
tributions such as Debian (currently 95.5% reproducible for
AMD64) and Arch Linux (currently 88.7% reproducible for
Arch Linux core) in building their software reproducibly.

The project provides several tools to help developers
achieve R-Bs, including reprotest to automate the pro-
cess of building a package multiple times in diverse en-
vironments and diffoscope [10] to help find the dif-
ferences within complex binary packages and directories.
Diffoscope receives two files to be compared as input,
tries to unpack any data recursively, and displays differences
found between the two input files. It is plugin-based and as
a wrapper re-uses common file format handling utilities.?

As part of our work, we aim to learn if and how
developers use support tools for R-Bs.

2.2. Research on Reproducible Builds

Most prior research considering reproducible builds ad-
dressed technical challenges. In 2005, Wheeler proposed
diverse double compilation [25] to address Thompson’s
Trusting Trust attack [1], [26], connecting software security
and R-Bs. Diverse double compilation suggests that source

2. All provided tools can be found at https://reproducible-builds.org/to
ols/.

code is compiled by different compilers, potentially mutu-
ally distrusting parties, and every additional instance giving
the same resulting binary file makes the Trusting Trust attack
less likely. However, the software must build reproducibly,
giving the exact same binary if compiled at different points
in time, space, and for any number of recompilations. To
generate a fully trustworthy compile chain, trustworthy root
binaries are needed. A popular approach to address this issue
is bootstrapable builds [27]: The core idea is to address
circular build dependencies of complex software by creating
a new dependency path using more simple prerequisite
software.

Prior work suggested R-Bs as a primitive to improve
software supply chain security including distributed veri-
fication [6], transparency logs [28], supply chain workflow
integrations [5], and “keyless” signatures using trusted third-
party inspectable logs [29].

Prior work has also considered better tool support for
R-Bs. Several Linux distributions such as NixOS [30] and
GNU GUIX [31]-[33] and their corresponding packaging
tools are based upon primitives that promote reproducibility.
In a series of work, Ren et al. proposed RepLoc [12],
RepTrace [13] and RepFix [14] to more precisely locate
sources of non-determinism and suggest patches. Recently,
containers have been explored specifically for reproducibil-
ity [34] and corresponding security impact [35], as well as
new build tools [36] which have been reimplemented as
open-source tools. In closed- or mixed-source environments,
rebuilds can be organized in a more centralized manner [37]
that also supports R-Bs.

Closest to our work, Butler et al. interviewed company
experts to investigate the value of R-Bs for companies [17].
They identified reasons for their limited adoption of R-Bs
like limited awareness and perceived challenges.

In contrast to previous research on reproducible builds,
our interview study aims to shed light on enablers and block-
ers for the adoption of R-Bs in the open source community.

2.3. Research on Open Source Software Security

Open source repositories are open to access from out-
siders and the security and privacy research community has
established use of this data source. From these repositories’
commits [38]-[40] and contributors [41], but also secondary
and related information like vulnerabilities [42], [43] and
even torrents [44], [45] as an alternate access method have
been used for research in a number of papers.

Big open-source projects like FreeBSD [46], Linux [47],
and Mozilla [48] have been the focus of case studies. Topical
analysis of vulnerabilities can take the corpus of code and
has been done by matching Common Vulnerabilities and
Exposures (CVEs) numbers [49], [50], by using the code
base for evaluation of static analysis tools [51]-[54], or vul-
nerability changes [55]-[58]. These changes are necessary
to secure a codebase, so the patterns and development of
fixes have been investigated [59]-[61]. In one specific work,
337 CVE entries were linked to the patches fixing them and
the authors found that the developers of those fixes are of

higher experience levels [62]. The highly polished Linux
Kernel implementations of drivers have also been analyzed
multiple times [63], [64].

The social aspects of repository contents researched
things like toxic comments [65] and metadata [66], [67]
as well as programming languages [68] and their general
maintenance [69], [70]. Furthermore, pull requests [71]—
[73], collaboration [74]-[76], and even gamification of the
process [77] have been studied in related work.

In contrast to closed-source development, the secu-
rity challenges for open-source communities are unique,
valuable sources of research data and therefore well re-
searched [78]-[80]. Open source software repositories con-
tain public commits and issues that can be statistically evalu-
ated [81], mined for emotions [82] and security tactics [83].
Programming language-specific communities were investi-
gated, finding the Python and JavaScript communities to not
react quickly to security vulnerabilities [84]. A large-scale
analysis of hundreds of thousands code review requests from
different open-source projects identified [85] the changes of
less experienced contributors to be between 1.8 and 24 times
more likely to contain security vulnerabilities.

Automated identification of open-source projects using
vulnerability data [86]—[88] and toxic comments [89] were
investigated. Both problems may weaken trust in the public
reception of these software projects, even among collabo-
rators. There has been work on different factors to influ-
ence [72], [90], [91] trust and quantification [92], [93] of it.
Trust is influenced by open source projects’ security, which
itself is highly influenced by code quality, which has been
investigated by different assessment models [94], the differ-
ence between architectural plans and implementation [95],
and later code reviews [96], [97]. The base unit of collabora-
tion is the committer, whose motivations [98]-[101], barriers
to entry [102], [103], and the eventual pull requests [104]
have been a focus of different works.

The onboarding [105]-[108] and mentoring [108], [109]
of new committers have been studied as well. Socialization
in the form of pre-existing relationships is an important fac-
tor and precursor [110] to joining GitHub projects. Most of
such project ecosystems have one central project connecting
every part of that ecosystem via software dependencies and
connecting to other ecosystems as well [111].

In contrast to previous work on open-source software se-
curity, we focus on understanding enablers and blockers for
the adoption of reproducible builds as a critical contribution
to overall software security.

2.4. Interviews with Security Developers

The security and privacy research community uses in-
terviews effectively and as a well-established method for
detailed investigations. Prior work utilized interviews to gain
detailed information about different kinds of experts, for
example: Administrators [112], [113], and overall security
professionals [114], [115], but also of communities that rely
on their security, from journalists [116], over editors [117],
to victim service providers [118]. Interviews can be used as a

part of larger studies and give researchers a view of data that
is not readily available from technical systems: e.g., thoughts
and procedures. For Tor adoption [119] or how to work with
encryption [120], examples are readily available, just like
developers’ thoughts and plans about security features [121].

In 2017, IT administrators were asked about the usability
of deploying HTTPS [122], and programmers about the
benefits and drawbacks of outright changing to a different
programming language in a study in 2022 [123]. A 2021
qualitative study was performed about developers’ strug-
gles with CSP [124], and in 2022 industry practitioners’
mental models of adversarial machine learning were inves-
tigated [125], [126].

Open-source developers are a special case, their trans-
parency and distributed work being subject of dedicated
study [74]. The social barrier of entry for new contributors
was studied as part of a larger study containing semi-
structured interviews with 36 developers recruited from 14
projects [102]. Their challenges and strategies for over-
coming them using tasks recommended for newcomers
were studied by interviewing mentors of 10 open-source
projects [108]. Recently, Wermke et al. leveraged interviews
to investigate behind-the-scene security processes in open
source projects [127] and industry projects that utilize open
source components [128].

As an extension to previous interview studies with secu-
rity developers, we focus on reproducible builds.

3. Methodology

We conducted 24 in-depth, semi-structured interviews
with developers, maintainers, and contributors implementing
reproducible builds for their software in the fall of 2022.
During these interviews, we discussed reasons for adopting
R-Bs and the processes they encountered and used while
doing this. Both the interview guide and the codebook are
provided in the Appendix.

3.1. Participant Recruitment

We recruited participants by emailing 100 members of
the Reproducible Builds Project website’s mailing list “rb-
general” [129]. We decided on this more focused recruit-
ment approach, because based on our prior experiences
we assumed that developers from outside the mailing list
would often not be familiar with the concept of R-Bs.
Some participants made additional suggestions and/or of-
fered introductions to potential interviewees with insights
into reproducible builds; we followed up on all suggestions.

We interviewed a total of 24 participants between Au-
gust and November 2022. Table 1 provides an interviewee
demographics summary. All of our participants are software
developers (5+ years) with reproducible builds experience.
They provided us with insights into their thoughts on R-Bs
and development processes, and could discuss and reflect on
the topic. Five participants stated that they are engaging less
with R-Bs than at some point in the past, never fully joined
the R-B effort, or have not yet started actively working

towards R-Bs, while still being interested, to hear their
reasons against R-Bs. The set of developers we interviewed
contained two non-binary individuals and otherwise men,
which is disappointing for diversity, but reflects those active
in the mailing list and community we targeted.

3.2. Interview Procedure

We conducted semi-structured interviews and topical
hints to keep the interviews flowing and otherwise let our
participants structure their answers and remarks on their own
following established practices [18]. We built our interview
guide around our research questions, and discussed and re-
vised it with researchers outside our team with reproducible
builds experience. Figure 1 illustrates the interview structure
and we provide our final interview in the Appendix.

To pre-test the interview guide, we conducted one mock
interview. Interviews generally lasted between 30 to 60
minutes. We scheduled the first batch of interviews with
the intention of treating them as pilot-interviews, however,
as no major changes were made to the interview guide
and the data we collected from them was meaningful, we
decided to include theses pilot interviews in our data set.
Throughout the interviews, we asked for experiences and
opinions and participants’ responses indicate that they also
reported their (strong) opinions in either direction of R-Bs,
including reasons against R-Bs. We specifically iterated over
the (various) definition(s) for reproducibility and discussed
them with our interviewees.

We offered our interviewees to choose between a locally
hosted Jitsi and Zoom for the remote interviews and con-
ducted six of the interviews in person at the Reproducible
Builds Summit 2022.> We gave them the option to end the
interview and withdraw at any time. We started interviews
with verbal consent to being audio-recorded, the interview
being transcribed by a GDPR-compliant third-party service
and the use of the interviews in a scientific publication. One
or two authors conducted and recorded the interviews.

1. Context and Definition. The interview guide opened
with a section establishing the context for participants, their
projects, and their role in the projects. Questions included
how, when, and why they got in touch with their projects,
their background, and how they decided to focus on repro-
ducible builds. In addition, we established their definition
of a reproducible build for their project and in general.

2. Reasons and Decisions. The “Reasons and Decisions”
section explored the reasons for progressing towards repro-
ducible builds in the project and specific decisions surround-
ing this process. Questions included internal and external
drivers for pursuing reproducible builds, threat models and
requirements, and how decisions were formed and by whom.

3. Processes and Tools. The “Processes and Tools” section
established utilized processes and tools for the reproducible
builds, as well as experiences with these approaches. Ques-
tions included the general process of making the project

3. https://reproducible-builds.org/events/venice2022/

 Intro and Consent |
| Introduction to the interview, highlighting the context of
: the interview, and obtaining verbal consent. }

1. Context and Definition
Establish project context, role of participant in the project,
as well as participant’s definition of reproducibility.

¥

2. Reasons and Decisions

Investigate projects’ reasons for heading towards repro-
ducible builds, establishing specific threat models, as well
as how these decisions were made.

¥

3. Processes and Tools

Establish the specific process for making projects’ repro-
ducible, including the involved people and communica-
tions with upstream, involved tools, build processes, and
other resources, as well as the foundational strategy.

¥
4. Obstacles, Challenges, and Facilitators

Investigate encountered obstacles and challenges in
moving projects towards reproducible builds, as well as
establish facilitators that helped during the process.

¥

5. Generalization and Lessons Learned

Establish general lessons learned, recommendations for
other projects looking to become reproducible, as well as
what participants would change if they could start over.

Figure 1. Illustration of topic flow in the reproducible builds interviews.
As we conducted semi-structured interviews, participants were presented
with general questions and corresponding follow-ups in each section, but
were generally free to diverge from this flow.

or parts of it reproducible, the estimated time for these ef-
forts, how the experiences with upstream projects were, and
whether additional resources like documentation or websites
were any help.

4. Obstacles, Challenges, and Facilitators. The “Ob-
stacles, Challenges, and Facilitators” section investigated
encountered obstacles, challenges, and positive facilitators
during the projects’ progress towards reproducible builds.
Questions included obstacles of different types (organiza-
tional, technical, dependencies / upstream, and communities)
and which particular factors were helpful for the project.

5. Generalization and Lessons Learned. The interview
closed with a “Generalization and Lessons Learned” sec-
tion, establishing general themes and lessons learned from
their reproducible builds attempts. Questions included what
they would do differently if they could start over, what
worked well and what did not, and what they would rec-
ommend for other developers and projects attempting re-
producible builds.

After the interview, participants often expressed their in-
terest in our research and in being mailed results (which we

promised) and/or recommended other potential interviewees.
The authors debriefed with each other after the interviews,
discussing new insights.

3.3. Reproducible Builds Summit Discussion

We presented preliminary results from this study, mostly
on what motivates reproducible builds and how they can
benefit stakeholders, to attendees at the Reproducible Builds
Summit 2022, Venice. Attendees, together with the main
author, then used a collaborative session to iterate over a
matrix of motivations and benefits for reproducible builds,
which we (with the attendees’ consent) discuss with insights
into motivations and experiences from our interviews in
Section 5.

3.4. Coding and Analysis

After the 18th interview, new themes ceased to emerge
and participants mostly iterated themes we had heard before;
therefore, we chose to stop interviewing after 24 partic-
ipants, reaching theoretical saturation [130]. We analyzed
our data using qualitative coding [18]. The main author
developed a codebook based on the interview guide and
insights from conducting the interviews; the team reviewed
and slightly iterated over the codebook. The main author
then coded all data with the codebook, discussing insights
with the team. The final codebook is provided in the Ap-
pendix.

3.5. Ethical Considerations and Data Protection

Our study, including recruitment strategy, data collec-
tion, recording methods, and interview guide, was approved
by our Institutional Review Board (IRB).

All participants were either recommended by their own
colleagues or signed up to a public list of those generally
interested in reproducible builds and reacted accordingly to
our invitation emails: They generally responded positively,
expressed interest in our research, recommended others, and
attempted to schedule interviews. We offered online (and
offline) meeting and recording options, including meeting
them at the Reproducible Builds Summit that an author at-
tended, as well as using self-hosted meeting software (Jitsi)
with local recordings for improved privacy. All participants
consented to the interviews, recordings, and transcription
by an external, GDPR-compliant service. When participants
flagged parts of the interview as too sensitive to transcribe,
we removed them before transcription. We de-identified par-
ticipants and interview transcripts using identifiers such as
PO1 and de-identified sensitive information in the transcripts.
After checking transcripts for correctness, we deleted all
audio recordings. We offered no compensation, due to our
interviewees being potentially highly paid individuals, mo-
tivated to work on R-Bs by their involvement in the Open
Source/Free Software project communities; based on our
prior experience with this population, they usually reject

payments or attempt to re-direct them to donations for
OSS projects, which our funding source was unable to
accomplish.

3.6. Limitations

Our work is affected by limitations common to interview
studies, including limited generalizability and biases such
as recall and social desirability biases [18]. We accounted
for these biases by interviewing a diverse (in projects and
experience) sample of those who fit our recruitment criteria.
Furthermore, we only interviewed those involved in the
Reproducible Builds project; therefore, our sample repre-
sented the experiences and perceptions of those who were
generally highly aware of and/or working with reproducible
builds. While interviewees happened to be concentrated
in the Western world and were predominantly male, this
is in line with the reproducible builds community [131].
Our sample includes various organizational contexts, from
industry-leading companies to single developers. Based on
provided answers, we can reason that our sample is broad
and diverse in R-B adoption, experiences, and organizational
contexts, but we refrain from comparing smaller and larger
companies quantitatively due the limited sample sizes and
the more qualitative nature or our research approach.

4. Results

In this section, we describe the findings from 24 semi-
structured interviews with developers with experience in
R-Bs for software projects. First, we illustrate our inter-
viewees’ motivation to implement R-Bs for their software
projects. Second, we explore supporting factors and obsta-
cles for R-Bs. We de-identified participant quotes, made
minor grammatical corrections, and highlighted omissions
using brackets (“[...]”). German interview quotes were
translated into English by native German speakers.

Counts in our reporting should be interpreted as the
number of interviewees that touched on the specific topic
at least once during their interview. As qualitative interview
study, reported counts are not necessarily representative for
the wider developer population, but are included to give
some general idea about the distribution of codes and to
highlight especially prevalent or underrepresented themes
in the interviews.

Table 1 provides an overview of project demographics.
We conducted 18 remote interviews and six in-person in-
terviews at the Reproducible Builds Summit 2022. Four of
those interviewees were recruited at the summit. We mark
those interviews “PS” (vs. “P” for all other participants),
as their attitude towards R-Bs might be particularly posi-
tive. Most (21) interviewees worked in some capacity as
developers on projects that strived to build reproducibly.
All interviewees were software developers with between 5
and more than 20 years of experience in general software
development, specifically between 2 and 12 years on R-Bs.

TABLE 1. OVERVIEW OF OUR INTERVIEW PARTICIPANTS

Alias Interview Project
Duration Codes' Recruitment Channel Position Area Software Stack?
PO1 44 minutes 40 rb-general mailing list Developer Operating systems Ocaml
P02 31 minutes 15 rb-general mailing list Developer Desktop Environments C
P03 42 minutes 29 rb-general mailing list Developer Operating systems C/C++
P04 39 minutes 27 rb-general mailing list Developer Operating systems Assembly, C, and others
P05 39 minutes 31 rb-general mailing list Developer Operating systems C, Tcl
P06 51 minutes 40 rb-general mailing list Developer Operating systems diverse
P07 45 minutes 29 rb-general mailing list Developer Operating systems C, Python
P08 58 minutes 14 rb-general mailing list Developer Graphics processing C/C++
P09 50 minutes 28 rb-general mailing list Developer Operating systems Python, a little C/C++
P10 55 minutes 36 rb-general mailing list Developer Operating systems C
P11 57 minutes 24 rb-general mailing list Developer Privacy preservation C/C++, Rust
P12 54 minutes 20 rb-general mailing list Developer Build systems, GUIs Python, C and others
P13 64 minutes 19 Personal recommendation Developer Operating systems C and others
P14 50 minutes 15 rb-general mailing list Project lead Electronic currencies diverse
P15 34 minutes 22 rb-general mailing list Advisor Privacy infrastructures -
P16 42 minutes 26 Personal recommendation CEO Build systems Python and others
P17 39 minutes 20 rb-general mailing list Developer Operating systems C/C++, Python, Scheme, and others
PS183 45 minutes 24 RB Summit 2022, Venice Developer Embedded software C, Assembly, and others
P19 31 minutes 11 RB Summit 2022, Venice Developer Privacy preservation C/C++, Rust, and others
PS203 48 minutes 27 RB Summit 2022, Venice Developer Operating systems Scheme, C, and others
P21 49 minutes 34 RB Summit 2022, Venice Developer Operating systems diverse
PS223 46 minutes 24 RB Summit 2022, Venice Developer Operating systems diverse
PS233 58 minutes 29 RB Summit 2022, Venice Developer Build systems Java
P24 31 minutes 35 rb-general mailing list Developer Operating systems C/C++ and others

! Total number of codes assigned to the interview after resolving conflicts.

2 Abbreviated. Common among all participants was some amount of shell script use.
3 Participant aliases: P means participant was recruited by email, PS indicates recruitment at Reproducible Builds Summit.

4.1. Why and How Projects Started to Work on
Reproducible Builds

In this section, we illustrate reasons for and against
reproducible builds that the interviewees mentioned.
Reasons for and against adopting Reproducible Builds.
We identified technical and non-technical themes related
to our participants’ motivations for making their builds
reproducible, both related to security and as an intuition
of how compilation should behave according to their own
mental model of software compilation.

Ten participants reported encountering a misunderstand-
ing of the mechanics of current software compilers: They
brought up that they commonly encounter the expectation
that compilers generally produce the same binary output
given the same source code without outside interference.

“I have an input and some computation, so I ex-
pect the output to be the same. [Like a mathe-
matical function.] And like a scientific function.
It’s computations; you put something in it, and
the same output should get out. Except if the
function randomizes, [...] or it is broken. I think
unreproducible builds are illogical. Conversely,
reproducible builds are logical.” - P21
Their main motivation to work on reproducible builds was
to bring the mechanics of software compilation closer to
their assumptions. Aside from compiler mechanics, broken
expectations were brought up by eleven interviewees. Beside
their expectation for compilation working deterministically,

they also want software to work the same in the future. Two
participants reported beneficial (better run-time performance
in some cases or security fixes) but still unexpected compiler
behavior:

“It’s more like things aren’t fixed. You do a de-
ployment one day with some source code, and
you come back a week later, and you do the
deployment again. You repeat the process with the
same source code. Your source code is the same,
but because you haven’t engineered the process
to be reproducible, what you actually deploy is
something different. [...] [T]oo often, one, it’s not
understood what’s changing and two, you don’t
have control over it.” - PS22

Some interviewees (6) mentioned the importance of con-
stantly maintaining a high level of build quality to limit
increased effort later in the development process. For 18
interviewees, improved software quality was the main mo-
tivator. One participant compared the effects of improving
software quality by making it build reproducibly to dental
flossing:

“At every summit you have people show up there
because they want the hands-on support to get
their thing into a more reproducible status so |[...]

I have this ongoing analogy I use around dental
flossing and the dentists tell you how important it
is to the dental floss and people do not very often
floss as much as their dentist tells them to. I think
Reproducibility is falling in that same spectrum of

really important things [and] people treat it like
that.” - P15

A similar sentiment was reported for company resources:

“The only reason why we ever moved into this
direction of reproducible builds, for the company,
was because it was causing us issues in losing
time. People would forget to declare dependen-
cies and that would fail the build. People merge
small changes that change the dependency order-
ing when executed massively parallel. We noticed
that when this happened, it would take us half a
day to fix. During this half of the day, there were
about 500 people who couldn’t build anymore.
That costs a lot of money and time.” - P05

As described earlier, many participants started working
on R-Bs due to intrinsic motivation; they began with the
parts of their software projects that best fit their motiva-
tion. Once they had worked on their chosen package, they
explored more complex components required for R-Bs in
their software packaging work.

The main motivation for 16 interviewees was work-
ing on infrastructure reproducibility, while six worked on
single software packages. While building infrastructure
solves more problems compared to leaf packages, individual
configuration specific R-Bs problems are specific to leaf
packages.* Overall, participants reported complex, intercon-
nected motivations to implement R-Bs; some motivations
are related to intuition for how builds should behave, and
some are grounded in explicit security concerns, both for
developers and software and its users. One developer men-
tioned working on version pinning. Version pinning is an
approach of describing the exact version of each software
dependency, as an easy, but necessary area to implement
R-Bs by documenting a set of dependency versions that
produced a working artifact. Another two interviewees men-
tioned that they worked on difficulties with specific compiler
versions, citing specific versions of well-known compilers
as problematic for R-Bs. Older versions of those compilers
generated more reproducible binaries than current versions.
Finally, two participants mentioned to have worked on
transitive dependencies, i.e., dependencies of dependencies,
which may influence reproducibility. These participants re-
ported having investigated if indirect dependencies broke
their reproducibility and figured out how to fix this.

Four participants mentioned interactions with upstream
projects. While they had made a version of their software
that depended on upstream projects being reproducible, they
needed the upstream project to incorporate and maintain
their changes. One interviewee reported that they had an
upstream project rewrite a suggested patch from scratch, and
were amazed at the commitment to R-Bs by the upstream
project. The ideal goal for all participants was full bit-by-bit
reproducibility. However, projects have considered weaker
reproducibility criteria as more realistically achievable along
the way.

4. See https://github.com/bmwiedemann/theunreproduciblepackage.git
for a list of known problems that can occur in a leaf package.

Two participants started with the build process by man-
ually debugging unreproducibility introduced by it. After
achieving reproducibility manually, 15 participants contin-
ued their efforts toward R-Bs through more automation in
Continuous Integration (CI) and other infrastructure.

With R-Bs, a build of the same source code version
results in the exact same binary. Without R-Bs, a rebuild
can change the binary of the package, which can still be
cached each time but leads to waste and incompatibilities.
Ten developers, across industry and open source projects,
mentioned that slow build speeds are frustrating for develop-
ers, and can be caused by inefficient caching that is sensitive
to small changes. Building reproducibly would solve this
problem.

“We recently got a new build machine which is 1
think 64 cores and [lots] of memory or something
like that, terabytes of this as a benchmark. How
long does it take to build everything from scratch?
It took about a day on that machine to build every-
thing. [...] Fortunately, that’s not the typical dev
experience because our particular system caches
build outputs.” - P11

The caching strategy mentioned by P11 only applies, if the
compilation toolchain works like a mathematical function,
giving the exact same result to an unchanged input, i.e., if
compilation builds reproducibly.

Reasons against working on Reproducible Builds. Thir-
teen interviewees also mentioned reasons against R-Bs.
They reported that, due to decreasing enthusiasm and repet-
itive work, they decreased the amount of time and effort
they invested in R-Bs. This decrease in enthusiasm and
effort corresponded with a perceived impracticality of fully
reproducible builds due to workload, missing organizational
buy-in, unhelpful communication with upstream projects, or
the goal being perceived as only theoretically achievable.
Relatedly, the frustrating experience of “moving goalposts”
was described as follows: Projects that had achieved bit-
by-bit R-Bs might “lose” that status when someone found a
previously unchecked source of mutation in the environment
that broke full reproducibility.

Seven participants mentioned discussions about which
mutations of the build environment should be checked for
fully reproducible software packages, including a feeling of
unclear goals, as noted by PO1:

“[Projects] also have various definitions of what
reproducibility means. It means you have some
mysterious cloud, and in the end, you get the very
same binaries, the bit-wise identical binary. That
is the output, but what is considered as part of the
input is not very clear.” - PO1

Seven participants, again across industry and OSS, men-
tioned detractors to implementing R-Bs, such as missing
organizational buy-in, as mentioned by P10:
“To say, ‘Reproducibility is stupid; go away.” That
happens very rarely. We just remember it a lot
because it’s interesting. The most common inter-

action with upstream is silence. They just don’t
merge the patches,” - P10

or due to their unwillingness to change their build process,
as mentioned by PO06: “[project] is an old project and
some areas are very conservative.” (P06) One interviewee
compared a lack of reaction to suggestions that contribute
to R-Bs to a general quality problem in projects:

“[E]arly warnings that you know this and that up-
stream has some problems with their definition or
they don’t want to accept the patch about certain
epoch, specification, or something like that.” - PO7
The notion of unclear goals that change over time when a
new source of unreproducible behavior occurs, was echoed
by POS:
“Because we are taking a ‘fix when we find’ ap-
proach, I don’t think we are doing anything to
evaluate whether a package has achieved 100%
reproducibility. Usually, when we fail to register
a package to Reprepro, we know there may be a
reproducibility issue and will look into it. Once
we fix it, we’ll do a clean build a few times
to make sure the same binaries are produced. It

sounds more like ‘we make sure it’s reproducible
for now’.” - PO8

Personal reproducibility target changes were discussed in 13
interviews. These changes in goals include being content
with repeatable builds (i.e., compiling the same source code
at different times into a functional artifact, not necessarily
with the same bit-by-bit result) instead of fully R-Bs. One
participant expressed hope that the community would value
and work on the guarantees fully R-Bs provide over e.g.,
repeatable builds:

“It’s one of those things where if more people in

the community value this, they would get solved.

Right now, they’re happy with the builds being

reproducible-ish.” - P04

Summary: Reasons for and against adopting Reproducible
Builds. Interviewees were mostly driven by improved software
quality. The unclear impact of R-Bs on the overall security
of deployed software systems, together with high effort, were
reasons against R-Bs.

Reproducible Builds as a Protection Mechanism. By de-
sign, R-Bs can serve as a protection mechanism for software
projects against security and quality problems that might
be introduced—maliciously, through coercion, or through
mistakes—Dby software developers. Many interviewees (14)
mentioned R-Bs as a security measure against coercive
attacks against developers by malicious actors:
“The time where you have a room full of Debian
developers and you tell them, ‘If your computer is
compromised in a way, then you might unknow-
ingly compromise millions of machines’. People
were like, ‘I am this kind of target.” [...] It was
a way to remove some leverage for a malicious
actor to actually go at the people directly. If you
would try to kidnap my kids and say, ‘You need

to plant this malware.” I can say, ‘I can’t. It’s
going to be seen, so probably you should do it
differently and give me back my kids.” If you don’t
have reproducible build systems in place, then they
have leverage because it’s going to go unnoticed if
you release a binary that doesn’t match the actual
source code.” - P06

R-Bs were also mentioned as a requirement for checking
0SS, and making explicit trust in individual maintainers
redundant. Some participants (13) mentioned that explicit
trust in open source software project maintainers was not
needed since open source code can be audited by anyone,
at any given time. This possibility of having one’s work
audited was discussed as an incentive for honesty, and not
wanting to be publicly seen as dishonest, which in turn was
discussed as a powerful motivator motivator to safeguard the
security of open-source software projects against powerful
(non-)government agencies and private security actors. R-
Bs were discussed as one strong mechanism to facilitate
public scrutiny. In turn, participants discussed that for R-Bs
to be an effective public security measure, openness is a
requirement.

Eleven participants mentioned that their user base re-
quested improved security, including specific requests for R-
Bs, based on an awareness of one or more highly impactful,
publicized security incidents, including the Snowden leaks,
the Heartbleed vulnerability, the introduction of the GDPR,
or the SolarWinds incident.

“It was clearly a need. There were a lot of the
NSA, Snowden revelations coming out, and var-
ious things like that. Nothing specifically from
those revelations, but the gist of a general vibe
of, oh, we can trust even less than we previously
thought as a very general idea, and the world,
post-2015, is moving to a more data-conscious
and privacy security.” - P10
Although many participants mentioned requests for repro-
ducibility due to highly visible security incidents, they also
explained that these requests originate from only a small
part of their user base—security-affine power-users—that
reported concerns and requested R-Bs as a preventative
measure against software supply chain attacks.

“It is perceived as one of those very rarely visited
corners and only in cases like breaches and things
like SolarWinds and attacks against suppliers.” -
P07
Most of our interviewees (23) could not name a security
incident related to reproducible builds, either thwarted or
caused by it. However, one interviewee mentioned the fol-
lowing case:

“I had a package that was not reproducible when
I checked. The difference between my rebuilds
and the reference builds that are in [binary soft-
ware repository] is the passphrase of a GPG key.
During the builds, it was recorded because the
command line that he used for signing, he added
it in the parameter. I don’t know why he’s recorded

it into a file that was then merged into the archive,

and it is in [binary software repository].” - PS23
In the above example, R-Bs helped to detect a secret leak
and contributed to the overall security of the project.

Summary: Reproducible Builds as a Protection Mechanism.
Attacks on software supply chains were an important driver
to build software reproducibly.

Software Project Decision Structures. For both, open
source and commercial software projects, interviewees re-
ported that decision structures had a strong impact on R-Bs.

Although many OSS projects make important decisions
by consensus, only seven participants reported a joint deci-
sion process to start moving the project to implement R-Bs.
Some interviewees (11) reported that individual developers
in their projects had independently started work on R-Bs
due to intrinsic motivation.

For commercial projects, decisions were driven by com-
mercial product deadlines, and decisions were generally
made at the management level. Five participants reported
that their project started moving towards implementing R-
Bs through management decisions, heavily influenced by
developers’ insistence on what they perceived to be a con-
tribution towards product quality.

Summary: Project Decision Process. Individual developers have
an influence on R-Bs adoption. They either drove R-Bs adop-
tion by starting the process themselves or influencing project
decisions.

4.2. Experienced Obstacles

In this section we report obstacles our interviewees
experienced while working on R-Bs. Obstacles include un-
expectedly large efforts, unsupportive upstream projects, and
development processes that might be unusable, undefined,
chaotic, or inconsistent. We discuss challenges and oppor-
tunities relating to community support in Section 4.3.

Lack of Good Communication. In general, eleven inter-
viewees mentioned the relevance of strong communication
skills to implement R-Bs in open source software. This
communication involved heavy discussions of the concept
of R-Bs, the goals achieved by R-Bs, and the need to adopt
R-Bs. A common theme related to communication was a
lack of outreach. The Reproducible Builds project’s outreach
consists of maintaining a website and mailing list, as well
as paying one developer to post monthly progress reports,
as they report on reproducible-builds.org. This included
building the website’s infrastructure for reporting successes
in R-Bs, including testing OSS projects for reproducibility
criteria themselves. However, to move beyond outreach and
towards a wide adoption of R-Bs, participants discussed the
need for wider support beyond those already involved in the
R-Bs project. Participants communicated that more people
working on R-Bs would be beneficial and would move the
needle on software supply chain security. Eleven partici-
pants reported feeling not having done enough outreach-
related work themselves, having instead focused on solving

10

individual reproducibility changes in the code for which
they felt responsible. One interviewee discussed the issue
of transferring research advances into code, a problem also
seen in prior research [132]:

“I think there’s this big gap between scientific re-
search and programming. [...] I think bootstrap-
pability and reproducible builds could be an enor-
mous boost for free software, and inspire people
to move towards free software and free software
practices.” - P17

Eight interviewees mentioned a lack of and a higher need
for more helpful documentation for R-B efforts in a software
project. The documentation on the R-Bs central website was
also mentioned as needing more work.

Seven of our interviewees mentioned experiences of un-
helpful interactions with other developers or users who were
unsupportive or had difficulties understanding the concepts
and benefits of R-Bs and the required effort. This led to
delays in achieving R-Bs, including projects for which the
upstream communication is still ongoing or stuck in a bug
tracker. A total of eleven developers were astonished by the
amount and importance of good communication for R-Bs.
Eleven interviewees mentioned patience as a virtue in com-
municating with upstream projects that were less motivated
to make reproducible builds part of their project. Participants
explained that “good etiquette” in the open-source ecosys-
tem is to proliferate bug reports upstream, ideally accom-
panied by a patch. The goal behind this approach is to fix
issues at the source, getting rid of the burden of maintenance
of the local changes. Our interviewees often went beyond
that: five told us that they iterated with upstream projects and
“polished” their patches until the upstream projects accepted
them.

Summary: Lack of Good Communication. The impact of inter-
action with other developers was often initially underestimated;
participants discussed the importance of patience and good
communication.

Technical Obstacles. Binaries including dates or other
point-of-time information were the most common is-
sues for reproducible builds reported by our interviewees.
Reasons our interviewees gave included debugging arti-
facts, and different software version commits. eight in-
terviewees mentioned the SOURCE_DATE_EPOCH stan-
dard [133] as an effective solution to the above prob-
lems. The SOURCE_DATE_EPOCH standard replaces ran-
dom build time information with epoch.’
Five interviewees mentioned build directory name inclu-
sion (cf. Section 2) that hindered their adoption of R-Bs.
“There has been some pitch to also support build
path prefix, someway, somehow, but I don’t know
how to use it. From my approach, the OCaml com-
piler is not relocatable at the moment. It will be
in the future eventually, but I’'m not too concerned
about it because I don’t think there’s any threat
model that contains the build path, and in the

5. The epoch value is the UNIX system time 01 Jan 1970 00:00:00 UTC

end, I'm fine with recording the operating system
packages, and the environment variables that led
to that binary. Then I'm conducting the builds in
a container, or in jail.” - POl
Three interviewees mentioned that compilers include ran-
domness explicitly during the compilation process, but also
that a deterministic initial value can be supplied (for exam-
ple via gcc -frandom-seed-string):
“I think we set the python seed. I think we set the
python seed with Python. Um. The sort of state
I’'m trying to think of the other languages that
they have, other weird things like that.” - PS20
Only one interviewee mentioned the potential issues around
Profile-Guided Optimization [134], which change optimiza-
tions based on execution on the compiling machine. four
interviewees reported (embedded) cryptographic signatures
as implemented in the Apple ecosystem with enforced cryp-
tographic signatures on binaries as a problem for R-Bs.
Seven interviewees mentioned an unclear definition of build
reproducibility as an obstacle to adopting R-Bs. Discussions
in the community range from full, bit-by-bit R-Bs down to
repeatable builds.
Overall, most interviewees mentioned that the technical
obstacles above are manageable for people interested in R-
Bs, but there is a long tail of problems to fully R-Bs.

Summary: Technical Obstacles. Interviewees reported a wide
range of technical obstacles including embedded timestamps,
signatures, and build directories, which they assessed as intel-
lectually simple, but cumbersome and repetitive to solve.

4.3. Helpful Factors

Helpful factors most mentioned were being self-

effective, which interviewees defined as being determined,
possessing the skill-set to progress R-Bs, and having good
communication with other developers.
Self-effective Participants. 14 interviewees implemented
R-Bs by themselves, through trial and error with some
software that they tried to reproduce, which they described
as the most efficient pathway to R-Bs. They described that a
self-effective work environment, including having ownership
of a large part of a project, being able to implement changes
themselves, and prioritizing tasks as well as work packages
themselves greatly contributed to effective work on R-Bs.
We did not discover any different path to R-Bs in our
interviews. Relatedly, interviewees explained hardships in
increasing community efforts towards R-Bs, as the reserve
of developers productively contributing to R-Bs. Anyone
who could meaningfully contribute would need a high level
of specialized knowledge and familiarity with the project;
however, working on R-Bs might not be the most attractive
work that these highly skilled open source developers might
want to work towards.

Summary: Self-effective Participants. Interviewees reported that
specialized knowledge about projects, as well as the enthusiasm
and ability to take broad action made their R-Bs work possible.

11

These circumstances seems hard to scale to volunteers from the
broader community.

Successful Community Communication. We identified
factors that support R-Bs, often centering around effective
community interaction. 14 participants mentioned positive
interactions with upstream projects. These interactions in-
cluded benign disinterest:

“Well, the first thing I do is ask them if they’re
aware of the problem because there’s still a decent
percentage of even developers that aren’t fully
aware of the reproducibility problem. I think it’s
solved at the package manager level. You know,
they think that there’s some sort of layer of it and
it gets kind of resolved. Then from there, you know,
I help them to understand the types of things that
like this scope can help them understand the ways
to ability can be compromised.” - P15

Positive interactions also included encouraging cooperation
and work on upstreamed patches: “We got in contact with
upstream and they fixed it, and now it’s working fine.” (P19)
In addition to interacting with upstream projects, commu-
nication with compiler authors was mentioned as helpful.
Six interviewees reported positive interactions with com-
piler authors regarding R-Bs. Like other upstream requests,
interviewees reported providing patches to compiler authors
to address R-Bs issues, which were later incorporated.

Summary: Successful Community Communication. Being help-
ful to upstream projects helps create goodwill for R-Bs in the
open source community. Upstream projects may spend time and
effort on R-Bs if they receive help from the R-Bs community
for their own software project.

Helpful Resources. Different resources that helped with R-
Bs were discussed in the interviews, but the most helpful re-
source for implementing R-Bs can be summarized as “good
tooling.” A total of 13 people mentioned that they found
tooling particularly helpful, specifically the diffoscope
tool [10]. Eight interviewees mentioned that projects should
work on the future seamless integration of R-Bs into the
build process. Eight interviewees mentioned additional re-
sources they used for R-Bs, including the R-B’s website
and mailing list. Eight interviewees stated that documen-
tation should be expanded to make onboarding new R-
Bs enthusiasts easier. In contrast, P16 stated that existing
documentation was sufficiently helpful for R-Bs, and that
efforts should increase community awareness and buy-in
toward more effective support for R-Bs.

5. Discussion

In the previous results sections, we establish the impor-
tance of effectively disseminating the benefits of R-Bs to a
broader community and that communication with upstream
projects is crucial.

Outreach. To better communicate the procedural, monetary,
reputational, and general benefits that stakeholders can gain

from employing reproducible builds, we discussed prelimi-
nary findings and potential benefits with participants of the
Reproducible Builds Summit 2022 in Venice with additional
related material provided in the Appendix, and highlight key
points from that discussion below.

The goal of an outreach effort is to describe benefits
that a stakeholder of fully reproducibly built software may
want. The benefits can be classified as time savings, mone-
tary savings, reputational gains, and generally better results
of the work with the software. A non-exhaustive list of
stakeholders includes non-university research groups, uni-
versities, development corporations, security organizations
(which can themselves be in a corporation), open-source
projects, end users, and governmental organizations. For any
of the potential beneficiaries of reproducible builds, multiple
benefits may apply. While any user of the software may be
an end user individually, most organizations have different
needs as a whole.

Almost any software project can benefit from caching
build results, giving decreased build times and better
turnaround times for changes. A published reproducible
build will not change and can be reproduced exactly as-
is, so no retesting is needed since all previous tests for that
build directly apply for a rebuild. Build debugging is simpler
since any singular build that fails for some users can be
reproduced for finding the bugs in it. Developers can work a
lot faster and with more confidence that bugs they introduce
can be bisected and figured out, while at worst, any previous
version can be used. The open-source project can also save
on hardware resources, since build artifacts can be dedupli-
cated effectively, meaning that only parts that changed need
to be saved again. This can also be used for updates, where
only the differences between updated versions need to be
transferred to each user, saving bandwidth (cost). For their
reputation, the open source project can fulfill more parts
of the OpenSSF scorecard [135]. While the project does
not directly gain a reputation from higher software quality
in its dependencies, however, choice of dependencies has
an effect on the reputation of the open-source project in
question. Incorporating reproducibly built dependencies may
therefore indirectly increase a project’s reputation.

In general, open source projects gain faster builds and
the ability as well as a guarantee that they can build their
software at any point in the future. All of this applies with
one additional benefit: They learn which software com-
ponents were used in building their software. This binary
introspection can be a hard task in itself, but R-Bs can give
this information almost for free using “.buildinfo”-files
or a Software Bill of Materials (SBOM), as elaborated in
analogy by P21:

“I don’t grow plants, I don’t create food, I don’t
write recipes, I don’t prepare meals, but I do
research on how to tell people to wash their hands.

This does not make the food taste any better, make
it better in general, more healthy. Maybe it makes
the food a little bit less unhealthy or poisonous,
but most times you’ll be fine eating unwashed
food. We try to change the way food is prepared.

12

This does not influence the food at first but makes
it better, safer, more healthy in general. We want
to change the way people prepare food, just like
water sewage, and treatment systems have been
installed before. We want to change the mindset.
We want to remind people, that reproducible, de-
terministic software is possible and reasonable.”
- P21.

Answers to RQs. Our 24 semi-structured interviews with
experts involved with reproducible builds projects provided
the following answers to our research questions:

RQ1: “What are motivations for, and common themes
around, adopting reproducible builds in software projects?”

Our interviewees mentioned complex, interconnected moti-
vations in the context of R-Bs. Some motivations are related
to intuition for how builds should behave such as being
deterministic as well as motivations grounded in explicit se-
curity concerns such as a compromised maintainer account.

RQ2: “What experiences and challenges did projects en-
counter in the context of reproducible builds?”

Many interviewees mentioned positive interactions with up-
stream projects and other developers, although some specifi-
cally noted that upstream communication required patience.

RQ3: “What are encountered obstacles and facilitators in
projects’ efforts towards reproducibility?”

Commonly encountered obstacles to reproducible builds
include build directory name inclusion and cryptographic
signatures on the technical side, as well as patience and
good social communication on the interaction side.

Additional Insights. Some interviewees suggested that the
overall awareness and buy-in for R-Bs was lacking, and
that even with the increase of prevalence of software supply
chain attacks, R-Bs is not yet widespread. Participants re-
ported that in the early days of the R-Bs effort, most work
appears to have been invested into infrastructure, including
the upstreaming patches and creation of tooling, which
should in theory provide a foundation for developers to make
leaf packages build reproducibly.

Based on our participants’ answers there appears to be
a still ongoing public discussion about which criteria need
to be fulfilled to call a package reproducible. The clearest
criterion is bit-by-bit identical build results, which we opted
to use in this paper. However, even bit-by-bit identical
builds is subjective with respect to the mutators used to
evaluate packages. Currently, the most used deployment of
reprotest does not check all available mutators while
testing a package for its build reproducibility.® A test with
those or other not yet found sources of unreproducible
behavior may change some bits in the artifact and give way
to a stricter definition. Definitions of R-Bs that allow for
differences in files from embedded signatures make R-Bs on

6. https://reproducible.debian.net/, which now points to https://reproduc
ible-builds.org/citests/ and is used by different OSS distributions

Apple devices possible. These definitions specify elements
in files that may be otherwise bit-by-bit reproducible.

Many groups do not enforce R-Bs. The Debian policy
suggests rather than enforces reproducibility, which is under-
standable: users want to use software even if it is not built in
a reproducible way. The OpenSSF scorecard also only cites
R-Bs inside a high-risk criterion named ‘“non-reviewable
code,” a detail that is fairly buried in the documentation.’
In the case of open source projects, missing organizational
buy-in comes in the form lack of support to mark R-Bs bug
reports as blocking for a new software release. Untested
changes from R-Bs can break build systems, so projects
being conservative about patches is understandable.

For transitive dependency problems, concrete technical
documentation could be achieved by the pervasive use of
Software Bills of Materials (SBOMs) [136] to indicate all
software included in building an artifact, so the transitive
dependencies could be traced over a dependency graph.

Neither of President Biden’s Executive Orders for Cy-
bersecurity [137] or Supply Chains [138] mentions R-Bs.
While this promises some eyes on the criticality of (Soft-
ware) Supply Chain Security, we are worried that neither
adequate funding for the work of mostly hobbyist open
source developers nor real changes or competent help are
to come in the foreseeable future. Lack of funding and
organizational buy-in for their work was one of the major
detractors mentioned in our interviews.

While we do not have insights into governmental regula-
tion efforts, at some point we expect to see some regulation
about software, similar to regulations about mandatory fit-
ness of purpose and non-toxicity for other products. As also
mentioned in one of our interviews, there are legislative ef-
forts underway towards requiring an SBOM, which can only
be reliably generated by having the depth of information as
is needed for R-Bs.

Recommendations. A significant effort by a small number
of individuals has laid the groundwork for R-Bs, fixing
hard-to-find non-determinism in common build infrastruc-
ture. Despite these efforts, a significant number of partic-
ipants regretted not spending more time on outreach. The
knowledge and frameworks around R-Bs have reached a
level of maturity such that now is the time for broader
consumption. In this light, we conclude with the following
recommendations.

1. We urge the industry to give their engineers leeway
to work on what they deem necessary for software
quality. They were the ones hired for their expertise
and to know what is necessary for this and they should
be empowered to work on it. Missing organizational
buy-in by supporting their developers who may already
want to get rid of some technical debt was one of
the main detractors for R-Bs. Industry funding and
engineering freedom were specifically mentioned in our
interviews as wished for items regarding buy-in.

7. https://github.com/ossf/scorecard/blob/main/docs/checks.md

13

2. The open-source community should join the R-Bs ef-
fort and make it the new standard, so new releases are
reproducible by default. Newly released unreproducible
software should be permissible in distributions only if
sufficient reasons and a plan to change are provided,
creating more security for their users and themselves.
Help with upstream interaction, R-Bs developers’ small
numbers, fatigue, and clarifying the status and im-
portance of packages on the last mile to 100% R-Bs
could help a lot. R-B’s goal was seen as not clearly
communicated, which led to some burnout with part of
our interviewees. Better communication and avoiding
“moving goalposts” would minimize the reported loss
of emotional investment.

3. Not based on our interviews, but rather related work
on the Trusting Trust attack and Software Supply Chain
Security, we see R-Bs as a potentially greater interest to
the security research community. We hope more buy-
in from security organizations and researchers could
be achieved by treating unreproducible software builds
as a serious threat for software supply chain security
and better support reproducible builds. We see some
similarity of the R-Bs effort and security concerns,
hinted at by one participant’s remark about the search
for mutators that make builds unreproducible, just like
security vulnerabilities are searched for.
Governments should mandate some level of R-Bs as
part of a general effort to strengthen software quality.
Liability for last-level commercial, for-profit entities
should be a necessary precondition for being allowed
to profit from software products, just like it is common
with physical products. This would create financial
incentives for companies to provide R-Bs as a part of
their software quality and security.

6. Conclusion

While R-Bs offer a strong foundation for securing the
software supply chain, much of the industry believes it is
out of reach. We conducted a series of 24 semi-structured
expert interviews with participants from the Reproducible-
Builds.org project with the goal of identifying insights that
could lead to R-Bs becoming more commonplace in soft-
ware development. Our findings include that the collabo-
ration between highly motivated developers and upstream
projects over long periods of time is a key aspect for
the success of R-Bs. We identified a range of motivations
for adopting R-Bs (RQ1), including indicators of quality,
security benefits, and more efficient caching of artifacts.
Discussions around process (RQ2) and obstacles (RQ3)
confirmed many of the challenges discussed in this work.

The R-Bs effort to date has operated under the mindset
of “infrastructure before leaf packages.” It has required
active and self-guided bug hunting to root out problems
in the build infrastructure that have been long overlooked.
While this approach has brought R-Bs far with very limited
resources and persons, progress was in most cases achieved

with only limited organizational buy-in, specifically by mo-
tivated individual open-source developers.

When companies do care for R-Bs, it is mostly seen as
a cost-saving measure and only sometimes as a safeguard
against wasting the time of highly-paid software engineers.
The goals of quality and robust security motivate open
source developers a lot more than corporate developers,
though this may change due to the current geopolitical
climate. In particular, new US initiatives have made R-Bs
very tacitly, but mostly indirectly named, important to (inter-
)national security. However, while the software supply chain
security is seeing generous amounts of funding, nothing yet
has been earmarked towards R-Bs.

Acknowledgments

This work is supported in part by NSF grants CNS-
2206865 and CNS-2207008. Any findings and opinions
expressed in this material are those of the authors and do not
necessarily reflect the view of funding agencies. We want to
thank all interviewees for their participation and appreciate
the valuable time that they have generously given. We also
want to thank the anonymous reviewers for their valuable
feedback.

References
(11
(2]
(3]
(4]

K. Thompson, “Reflections on trusting trust,” Commun.
ACM, pp. 761-763, 1984.

Reproducible Builds project, https://reproducible-builds.
org/docs/definition/.

devrandom, Gitian: A secure software distribution method,
https://github.com/devrandom/gitian-builder, 2011.

M. Perry, S. Schoen, and H. Steiner, Reproducible builds
moving beyond single points of failure for software dis-
tribution, https : // media . ccc.de/v/31c3_- _6240_-
en-_saal_g -_201412271400_- _reproducible_builds_-
_mike_perry_-_seth_schoen_-_hans_steiner, 2014.

S. Torres-Arias, H. Afzali, T. K. Kuppusamy, R. Curt-
mola, and J. Cappos, “In-toto: Providing farm-to-table
guarantees for bits and bytes,” in Proceedings of the
28th USENIX Security Symposium (Sec’19), Aug. 2019,
pp. 1393-1410.

K. Nikitin, E. Kokoris-Kogias, P. Jovanovic, et al.,
“CHAINIAC: Proactive Software-Update transparency via
collectively signed skipchains and verified builds,” in
Proceedings of the 26th USENIX Security Symposium
(Sec’17), Aug. 2017, pp. 1271-1287.

ESF Partners, NSA, and CISA Release Software Supply
Chain Guidance for Suppliers, https://www.nsa.gov/Press-
Room/News - Highlights / Article / Article /3204427 / esf -
partners - nsa- and - cisa- release - software - supply - chain -
guidance-for-suppliers/, 2022.

NSA, CISA, ODNI Release Software Supply Chain Guid-
ance for Developers, https://www.nsa.gov/Press-Room/
News-Highlights/Article/Article/3146465/nsa-cisa- odni-
release- software- supply- chain- guidance- for- developers/,
2022.

C. Lamb and S. Zacchiroli, “Reproducible builds: In-
creasing the integrity of software supply chains,” IEEE
Software, vol. 39, no. 2, pp. 62-70, 2022.

(5]

(6]

(7]

(8]

(9]

14

[10]
[11]
[12]

[13]

[14]

[15]
[16]

[17]

(18]

[19]

[27]
(28]

[29]

(30]

(31]

[32]

(33]

Diffoscope in-depth comparison of files, archives, and
directories. https://diffoscope.org/, 2014.

Reprotest, https://salsa.debian.org/reproducible - builds/
reprotest, 2016.

Z. Ren, H. Jiang, J. Xuan, and Z. Yang, Automated local-
ization for unreproducible builds, 2018.

Z.Ren, C. Liu, X. Xiao, H. Jiang, and T. Xie, “Root cause
localization for unreproducible builds via causality anal-
ysis over system call tracing,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engi-
neering (ASE), 2019, pp. 527-538.

Z. Ren, S. Sun, J. Xuan, X. Li, Z. Zhou, and H. Jiang,
“Automated patching for unreproducible builds,” in Pro-
ceedings of the 44th ACM International Conference on
Software Engineering (ICSE’22), 2022, pp. 200-211.
Reproducible Debian overview, https://tests.reproducible-
builds.org/debian/reproducible.html, 2023.

Reproducible Arch Linux?! https://tests . reproducible -
builds.org/archlinux/archlinux.html, 2023.

S. Butler, J. Gamalielsson, B. Lundell, et al., “On business
adoption and use of reproducible builds for open and
closed source software,” Software Quality Journal, Nov.
2022.

J. Lazar, J. H. Feng, and H. Hochheiser, Research methods
in human-computer interaction. Morgan Kaufmann, 2017.
C. Lamb and S. Zacchiroli, “Reproducible builds: In-
creasing the integrity of software supply chains,” IEEE
Software, vol. 39, no. 2, pp. 62-70, Mar. 2022.

T. J. Thompson, “Designer’s workbench: Providing a pro-
duction environment,” The Bell System Technical Journal,
vol. 59, no. 9, pp. 1811-1825, 1980.
https://git-scm.com/book/en/v2/Git-Basics-Tagging.
https://android.googlesource.com/platform/build/soong/+/
master/docs/best_practices.md.

sbuild, https://salsa.debian.org/debian/sbuild.

S. R. Schach, Practical Software Engineering. 1992.

D. A. Wheeler, “Fully countering trusting trust through
diverse double-compiling,” CoRR, vol. abs/1004.5534,
2010.

D. A. Wheeler, “Countering trusting trust through di-
verse double-compiling,” in Proceedings of the 21st IEEE
Annual Computer Security Applications Conference (AC-
SAC’05), 2005.

https://bootstrappable.org/.

M. Linderud, “Reproducible builds: Break a log, good
things come in trees,” 2019, Master Thesis.

Z. Newman, J. S. Meyers, and S. Torres-Arias, “Sigstore:
Software signing for everybody,” in Proceedings of the
2022 ACM SIGSAC Conference on Computer and Com-
munications Security (CCS’22), 2022, pp. 2353-2367.

E. Dolstra, A. Loh, and N. Pierron, “NixOS: A purely
functional Linux distribution,” Journal of Functional Pro-
gramming, vol. 20, no. 5-6, pp. 577-615, 2010.

L. Courtes, “Functional Package Management with Guix,”
in European Lisp Symposium, Madrid, Spain, Jun. 2013.
L. Courtes and R. Wurmus, “Reproducible and User-
Controlled Software Environments in HPC with Guix,” in
2nd International Workshop on Reproducibility in Parallel
Computing (RepPar), Vienne, Austria, Aug. 2015.

L. Courtes, “Code staging in GNU Guix,” in Proceed-
ings of the 16th ACM SIGPLAN International Conference
on Generative Programming: Concepts and Experiences
(GPCE’17), 2017, pp. 41-48.

[34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

(42]

[43]

[44]

(45]

[40]

[47]

(48]

O. S. Navarro Leija, K. Shiptoski, R. G. Scott, et al.,
“Reproducible containers,” in Proceedings of the 25th
ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (AS-
PLOS’20), 2020, pp. 167-182.

A. Zerouali, T. Mens, G. Robles, and J. Gonzalez-
Barahona, On the relation between outdated docker con-
tainers, severity vulnerabilities and bugs, 2018.

M. Ivankovié, G. Petrovié¢, R. Just, and G. Fraser, “Code
coverage at Google,” in Proceedings of the 27th ACM
Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software
Engineering (ESEC/FSE’19), 2019, pp. 955-963.

R. Potvin and J. Levenberg, “Why Google stores billions
of lines of code in a single repository,” Commun. ACM,
vol. 59, no. 7, pp. 78-87, Jun. 2016.

A. Pietri, D. Spinellis, and S. Zacchiroli, “The software
heritage graph dataset: Public software development under
one roof,” in Proceedings of the 16th International Con-
ference on Mining Software Repositories (MSR’19), 2019,
pp- 138-142.

——, “The software heritage graph dataset: Large-scale
analysis of public software development history,” in Pro-
ceedings of the 17th International Conference on Mining
Software Repositories (MSR’20), 2020, pp. 1-5.

A. Alali, H. Kagdi, and J. I. Maletic, “What’s a typical
commit? a characterization of open source software repos-
itories,” in Proceedings of the 16th IEEE International
Conference on Program Comprehension, 2008, pp. 182—
191.

G. Robles, L. Arjona Reina, A. Serebrenik, B. Vasilescu,
and J. M. Gonzdlez-Barahona, “FLOSS 2013: A survey
dataset about free software contributors: Challenges for
curating, sharing, and combining,” in Proceedings of the
11th Working Conference on Mining Software Reposito-
ries (MSR’14), 2014, pp. 396-399.

A. Gkortzis, D. Mitropoulos, and D. Spinellis, “VulinOSS:
A dataset of security vulnerabilities in open-source sys-
tems,” in Proceedings of the 15th International Confer-
ence on Mining Software Repositories, ser. MSR 18,
Gothenburg, Sweden: Association for Computing Machin-
ery, 2018, pp. 18-21.

M. Shahzad, M. Z. Shafiq, and A. X. Liu, “A large scale
exploratory analysis of software vulnerability life cycles,”
in Proceedings of the 34th International Conference on
Software Engineering (ICSE’12), 2012, pp. 771-781.

G. Gousios and D. Spinellis, “GHTorrent: GitHub’s data
from a firehose,” in Proceedings of the 9th IEEE Working
Conference on Mining Software Repositories (MSR’12),
2012, pp. 12-21.

G. Gousios, B. Vasilescu, A. Serebrenik, and A. Zaidman,
“Lean GHTorrent: GitHub data on demand,” in Proceed-
ings of the 11th Working Conference on Mining Software
Repositories (MSR’14), 2014, pp. 384-387.

T. T. Dinh-Trong and J. M. Bieman, “The FreeBSD
project: A replication case study of open source devel-
opment,” IEEE Transactions on Software Engineering,
vol. 31, no. 6, pp. 481-494, 2005.

Q. Tu et al., “Evolution in open source software: A case
study,” in Proceedings of the 2000 International Confer-
ence on Software Maintenance, IEEE, 2000, pp. 131-142.
A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two case
studies of open source software development: Apache and

15

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

Mozilla,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 11, no. 3, pp. 309-346, 2002.
N. Edwards and L. Chen, “An historical examination of
open source releases and their vulnerabilities,” in Pro-
ceedings of the 2012 ACM Conference on Computer and
Communications Security (CCS’12), 2012, pp. 183-194.
A. D. Householder, J. Chrabaszcz, T. Novelly, D. Warren,
and J. M. Spring, “Historical analysis of exploit avail-
ability timelines,” in Proceedings of the 13th USENIX
Workshop on Cyber Security Experimentation and Test
(CSET 20), 2020.

K. Altinkemer, J. Rees, and S. Sridhar, “Vulnerabilities
and patches of open source software: An empirical study,”
Journal of Information System Security, vol. 4, no. 2,
pp. 3-25, 2008.

M. Alenezi and Y. Javed, “Open source web application
security: A static analysis approach,” in 2016 Interna-
tional Conference on Engineering & MIS (ICEMIS), 2016,
pp. 1-5.

F. Zampetti, S. Scalabrino, R. Oliveto, G. Canfora, and
M. Di Penta, “How open source projects use static code
analysis tools in continuous integration pipelines,” in Pro-
ceedings of the 14th IEEE International Conference on
Mining Software Repositories (MSR’17), 2017, pp. 334—
344.

M. Zahedi, M. Ali Babar, and C. Treude, “An empirical
study of security issues posted in open source projects,” in
Proceedings of the 51st Hawaii International Conference
on System Sciences (HICSS’18), 2018, pp. 5504-5513.
A. Bosu, J. C. Carver, M. Hafiz, P. Hilley, and D. Janni,
“When are OSS developers more likely to introduce vul-
nerable code changes? a case study,” in Open Source Soft-
ware: Mobile Open Source Technologies, Springer Berlin
Heidelberg, 2014, pp. 234-236.

P. Anbalagan and M. Vouk, “Towards a unifying approach
in understanding security problems,” in Proceedings 20th
International Symposium on Software Reliability Engi-
neering (ISSRE’09, 2009, pp. 136-145.

L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai,
“Bug characteristics in open source software,” Empirical
software engineering, vol. 19, no. 6, pp. 1665-1705, 2014.
J. Walden, “The impact of a major security event on
an open source project: The case of OpenSSL,” in Pro-
ceedings of the 17th International Conference on Mining
Software Repositories (MSR’20), 2020, pp. 409—419.

J. Sliwerski, T. Zimmermann, and A. Zeller, “When
do changes induce fixes?” SIGSOFT Softw. Eng. Notes,
vol. 30, no. 4, pp. 1-5, May 2005.

F. Li and V. Paxson, “A large-scale empirical study of se-
curity patches,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security
(CCS’17), 2017, pp. 2201-2215.

R. Ramsauer, L. Bulwahn, D. Lohmann, and W. Mauerer,
“The sound of silence: Mining security vulnerabilities
from secret integration channels in open-source projects,”
in Proceedings of the 2020 ACM SIGSAC Conference on
Cloud Computing Security Workshop, ser. CCSW’20, Vir-
tual Event, USA: Association for Computing Machinery,
2020.

V. Piantadosi, S. Scalabrino, and R. Oliveto, “Fixing of se-
curity vulnerabilities in open source projects: A case study
of Apache HTTP server and Apache Tomcat,” in Proceed-
ings of the 12th IEEE Conference on Software Testing,
Validation and Verification (ICST’19), 2019, pp. 68-78.

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

P. Deligiannis, A. F. Donaldson, and Z. Rakamaric, “Fast
and precise symbolic analysis of concurrency bugs in de-
vice drivers,” in Proceedings of the 2015 30th IEEE/ACM
International Conference on Automated Software Engi-
neering (ASE’15), 2015, pp. 166-177.

J.-]. Bai, J. Lawall, Q.-L. Chen, and S.-M. Hu, “Effective
static analysis of concurrency use-after-free bugs in Linux
device drivers,” in Proceedings of the 2019 USENIX An-
nual Technical Conference (ATC’19), 2019, pp. 255-268.
C. Miller, S. Cohen, B. Vasilescu, and C. Kistner, ““Did
You Miss My Comment or What?” understanding toxi-
city in open source discussions,” in Proceedings of the
44th International Conference on Software Engineering
(ICSE’22), 2022.

D. Sondhi, A. Gupta, S. Purandare, A. Rana, D.
Kaushal, and R. Purandare, “Dataset to study indi-
rectly dependent documentation in GitHub repositories,”
in 2021 IEEE/ACM 43rd International Conference on
Software Engineering: Companion Proceedings (ICSE-
Companion), 2021, pp. 215-216.

R. Li, P. Pandurangan, H. Frluckaj, and L. Dabbish, “Code
of conduct conversations in open source software projects
on Github,” Proc. ACM Hum.-Comput. Interact., vol. 5,
no. CSCW1, Apr. 2021.

W. Li, N. Meng, L. Li, and H. Cai, “Understanding
language selection in multi-language software projects on
GitHub,” in 2021 IEEE/ACM 43rd International Confer-
ence on Software Engineering: Companion Proceedings
(ICSE-Companion), 2021, pp. 256-257.

H. Hata, R. G. Kula, T. Ishio, and C. Treude, “Research
artifact: The potential of meta-maintenance on GitHub,”
in 2021 IEEE/ACM 43rd International Conference on
Software Engineering: Companion Proceedings (ICSE-
Companion), 2021, pp. 192-193.

J. Coelho and M. T. Valente, “Why modern open
source projects fail,” in Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering,
ser. ESEC/FSE 2017, Paderborn, Germany: Association
for Computing Machinery, 2017.

G. Gousios, M. Pinzger, and A. v. Deursen, “An ex-
ploratory study of the pull-based software development
model,” in Proceedings of the 36th International Confer-
ence on Software Engineering (ICSE’14), 2014, pp. 345—
355.

J. Tsay, L. Dabbish, and J. Herbsleb, “Influence of so-
cial and technical factors for evaluating contribution in
GitHub,” in Proceedings of the 36th International Confer-
ence on Software Engineering (ICSE’14), 2014, pp. 356—
366.

D. Ford, M. Behroozi, A. Serebrenik, and C. Parnin,
“Beyond the code itself: How programmers really look
at pull requests,” in Proceedings of the 41st International
Conference on Software Engineering: Software Engineer-
ing in Society (ICSE-SEIS’19), 2019, pp. 51-60.

L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social
coding in GitHub: Transparency and collaboration in an
open software repository,” in Proceedings of the ACM
2012 Conference on Computer Supported Cooperative
Work (CSCW’12), 2012, pp. 1277-1286.

B. Vasilescu, K. Blincoe, Q. Xuan, et al., “The sky is not
the limit: Multitasking across GitHub projects,” in Pro-
ceedings of the 38th International Conference on Software
Engineering (ICSE’16), 2016, pp. 994-1005.

16

[76]

[77]

(78]

[79]

[80]

(81]

(82]

(83]

(84]

[85]

[86]

(87]

[83]

[89]

K. Constantino, M. Souza, S. Zhou, E. Figueiredo, and
C. Kistner, “Perceptions of open-source software devel-
opers on collaborations: An interview and survey study,”
Journal of Software: Evolution and Process, €2393, 2021.
L. Moldon, M. Strohmaier, and J. Wachs, “How gami-
fication affects software developers: Cautionary evidence
from a natural experiment on github,” in 2021 IEEE/ACM
43rd International Conference on Software Engineering
(ICSE’21), 2021, pp. 549-561.

W. Scacchi, J. Feller, B. Fitzgerald, S. Hissam, and K.
Lakhani, Understanding free/open source software devel-
opment processes, 2006.

K. Crowston, K. Wei, J. Howison, and A. Wiggins,
“Free/libre open-source software development: What we
know and what we do not know,” ACM Comput. Surv.,
vol. 44, no. 2, 2008.

S.-F. Wen, “Software security in open source development:
A systematic literature review,” in 2017 21st Conference
of Open Innovations Association (FRUCT), 2017, pp. 364—
373.

L. P. Hattori and M. Lanza, “On the nature of commits,”
in Proceedings of the 23rd IEEE/ACM International Con-
ference on Automated Software Engineering - Workshops,
2008, pp. 63-71.

D. Pletea, B. Vasilescu, and A. Serebrenik, “Security and
emotion: Sentiment analysis of security discussions on
GitHub,” in Proceedings of the 11th Working Confer-
ence on Mining Software Repositories (MSR’14), 2014,
pp- 348-351.

J. C. S. Santos, A. Peruma, M. Mirakhorli, M. Galstery,
J. V. Vidal, and A. Sejfia, “Understanding software vulner-
abilities related to architectural security tactics: An empir-
ical investigation of Chromium, PHP and Thunderbird,” in
Proceedings of the 2017 IEEE International Conference
on Software Architecture (ICSA’17), 2017, pp. 69-78.

G. Antal, M. Keleti, and P. Hegediins, “Exploring the secu-
rity awareness of the Python and JavaScript open source
communities,” in Proceedings of the 17th International
Conference on Mining Software Repositories (MSR’20),
2020, pp. 16-20.

A. Bosu, J. C. Carver, M. Hafiz, P. Hilley, and D.
Janni, “Identifying the characteristics of vulnerable code
changes: An empirical study,” in Proceedings of the 22nd
ACM SIGSOFT International Symposium on Foundations
of Software Engineering, 2014, pp. 257-268.

H. Perl, S. Dechand, M. Smith, et al, “VCCFinder:
Finding potential vulnerabilities in open-source projects
to assist code audits,” in Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications
Security (CCS’15), 2015, pp. 426-437.

1. Abunadi and M. Alenezi, “Towards cross project vul-
nerability prediction in open source web applications,”
in Proceedings of the The International Conference on
Engineering & MIS 2015, ser. ICEMIS 15, Istanbul,
Turkey: Association for Computing Machinery, 2015.

Y. Zhou and A. Sharma, “Automated identification of
security issues from commit messages and bug reports,”
in Proceedings of the 11th ACM Joint Meeting on Foun-
dations of Software Engineering (ESEC/FSE’17), 2017,
pp- 914-919.

N. Raman, M. Cao, Y. Tsvetkov, C. Kistner, and B.
Vasilescu, “Stress and burnout in open source: Toward
finding, understanding, and mitigating unhealthy interac-
tions,” in Proceedings of the ACM/IEEE 42nd Interna-

[90]

[91]

[92]

(93]

(94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[102]

tional Conference on Software Engineering: New Ideas
and Emerging Results (ICSE-NIER’20), 2020, pp. 57-60.
M. Antikainen, T. Aaltonen, and J. Viisdnen, “The role of
trust in OSS communities — case Linux kernel commu-
nity,” in Open Source Development, Adoption and Inno-
vation, J. Feller, B. Fitzgerald, W. Scacchi, and A. Sillitti,
Eds., Boston, MA: Springer US, 2007, pp. 223-228.

V. S. Sinha, S. Mani, and S. Sinha, “Entering the circle of
trust: Developer initiation as committers in open-source
projects,” in Proceedings of the 8th Working Conference
on Mining Software Repositories, ser. MSR 11, Waikiki,
Honolulu, HI, USA: Association for Computing Machin-
ery, 2011, pp. 133-142.

S. Bugiel, L. V. Davi, and S. Schulz, “Scalable trust
establishment with software reputation,” in Proceedings of
the sixth ACM workshop on Scalable trusted computing,
2011, pp. 15-24.

M. Syeed, J. Lindman, and I. Hammouda, “Measuring
perceived trust in open source software communities,” in
Open Source Systems: Towards Robust Practices, F. Bala-
guer, R. Di Cosmo, A. Garrido, F. Kon, G. Robles, and S.
Zacchiroli, Eds., Cham: Springer International Publishing,
2017.

A.-K. Groven, K. Haaland, R. Glott, and A. Tannenberg,
“Security measurements within the framework of quality
assessment models for free/libre open source software,”
in Proceedings of the 4th European Conference on Soft-
ware Architecture (ECSA’10): Companion Volume, 2010,
pp. 229-235.

J. Ryoo, B. Malone, P. A. Laplante, and P. Anand, “The
use of security tactics in open source software projects,”
IEEE Transactions on Reliability, vol. 65, no. 3, pp. 1195—
1204, 2016.

A. Bosu and J. C. Carver, “Impact of developer reputation
on code review outcomes in OSS projects: An empirical
investigation,” in Proceedings of the 8th ACM/IEEE Inter-
national Symposium on Empirical Software Engineering
and Measurement (ESEM’14), 2014.

C. Thompson and D. Wagner, “A large-scale study of
modern code review and security in open source projects,”’
in Proceedings of the 13th International Conference on
Predictive Models and Data Analytics in Software En-
gineering, Toronto, Canada: Association for Computing
Machinery, 2017.

A. Hars and S. Ou, “Working for free? motivations for
participating in open-source projects,” Int. J. Electron.
Commerce, vol. 6, no. 3, pp. 25-39, Apr. 2002.

C. Hannebauer and V. Gruhn, “Motivation of newcomers
to FLOSS projects,” in Proceedings of the 12th Interna-
tional Symposium on Open Collaboration (OpenSym’16),
2016.

G. Pinto, I. Steinmacher, and M. A. Gerosa, “More
common than you think: An in-depth study of casual
contributors,” in 2016 IEEE 23rd International Confer-
ence on Software Analysis, Evolution, and Reengineering
(SANER’16), 2016, pp. 112-123.

C. Miller, D. G. Widder, C. Kistner, and B. Vasilescu,
“Why do people give up FLOSSing? a study of contributor
disengagement in open source,” in Open Source Systems,
Springer International Publishing, 2019, pp. 116-129.

I. Steinmacher, T. Conte, M. A. Gerosa, and D. Redmiles,
“Social barriers faced by newcomers placing their first
contribution in open source software projects,” in Proceed-
ings of the 18th ACM Conference on Computer Supported

17

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

Cooperative Work & Social Computing (SCW’15), 2015,
pp. 1379-1392.

S.-F. Wen, “Learning secure programming in open source
software communities: A socio-technical view,” in Pro-
ceedings of the 6th International Conference on Informa-
tion and Education Technology, ser. ICIET ’18, Osaka,
Japan: Association for Computing Machinery, 2018.

V. N. Subramanian, I. Rehman, M. Nagappan, and R. G.
Kula, “Analyzing first contributions on GitHub: What do
newcomers do,” IEEE Software, 2020.

1. Steinmacher, T. U. Conte, C. Treude, and M. A. Gerosa,
“Overcoming open source project entry barriers with a
portal for newcomers,” in Proceedings of the 38th Inter-
national Conference on Software Engineering (ICSE’16),
2016, pp. 273-284.

I. Steinmacher, C. Treude, and M. A. Gerosa, “Let me in:
Guidelines for the successful onboarding of newcomers
to open source projects,” IEEE Software, vol. 36, no. 4,
pp. 41-49, 2019.

J. Dominic, J. Houser, 1. Steinmacher, C. Ritter, and
P. Rodeghero, “Conversational bot for newcomers on-
boarding to open source projects,” in Proceedings of the
IEEE/ACM 42nd International Conference on Software
Engineering Workshops (ICSEW’20), 2020, pp. 46-50.
S. Balali, U. Annamalai, H. S. Padala, et al., “Recom-
mending tasks to newcomers in OSS projects: How do
mentors handle it?” In Proceedings of the 16th Interna-
tional Symposium on Open Collaboration (OpenSym’20),
2020.

G. Canfora, M. Di Penta, R. Oliveto, and S. Panichella,
“Who is going to mentor newcomers in open source
projects?” In Proceedings of the 20th ACM SIGSOFT
International Symposium on the Foundations of Software
Engineering (FSE’12), 2012.

C. Casalnuovo, B. Vasilescu, P. Devanbu, and V. Filkov,
“Developer onboarding in GitHub: The role of prior so-
cial links and language experience,” in Proceedings of
the 2015 10th Joint Meeting on Foundations of Software
Engineering (ESEC/FSE’15), 2015, pp. 817-828.

K. Blincoe, F. Harrison, and D. Damian, “Ecosystems in
GitHub and a method for ecosystem identification using
reference coupling,” in Proceedings of the 12th Working
Conference on Mining Software Repositories (MSR’15),
2015, pp. 202-207.

L. Bauer, L. F. Cranor, R. W. Reeder, M. K. Reiter, and
K. Vaniea, “Real life challenges in access-control man-
agement,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, 2009, pp. 899-908.
R. Barrett, E. Kandogan, P. P. Maglio, E. M. Haber, L. A.
Takayama, and M. Prabaker, “Field studies of computer
system administrators: Analysis of system management
tools and practices,” in Proceedings of the 2004 ACM
conference on Computer Supported Cooperative Work,
2004, pp. 388-395.

D. Botta, R. Werlinger, A. Gagné, et al., “Towards un-
derstanding IT security professionals and their tools,” in
Proceedings of the 3rd Symposium on Usable Privacy and
Security (SOUPS’07), 2007, pp. 100-111.

M. Silic and A. Back, “Information security and open
source dual use security software: Trust paradox,” in
Open Source Software: Quality Verification, E. Petrinja, G.
Succi, N. El Ioini, and A. Sillitti, Eds., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 194-206.

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

S. E. McGregor, P. Charters, T. Holliday, and F. Roesner,
“Investigating the computer security practices and needs
of journalists,” in Proceedings of the 24th USENIX Secu-
rity Symposium (Sec’15), 2015, pp. 399—414.

S. E. McGregor, E. A. Watkins, M. N. Al-Ameen, K.
Caine, and F. Roesner, “When the weakest link is strong:
Secure collaboration in the case of the Panama Papers,”
in Proceedings of the 26th USENIX Security Symposium
(Sec’17), 2017, pp. 505-522.

C. Chen, N. Dell, and F. Roesner, “Computer security
and privacy in the interactions between victim service
providers and human trafficking survivors,” in Proceedings
of the 28th USENIX Security Symposium (Sec’19), 2019,
pp. 89-104.

K. Gallagher, S. Patil, and N. Memon, “New me: Under-
standing expert and non-expert perceptions and usage of
the Tor anonymity network,” in Proceedings of the 13th
Symposium on Usable Privacy and Security (SOUPS’17),
2017, pp. 385-398.

W. Bai, M. Namara, Y. Qian, P. G. Kelley, M. L. Mazurek,
and D. Kim, “An inconvenient trust: User attitudes toward
security and usability tradeoffs for key-directory encryp-
tion systems,” in Proceedings of the 12th Symposium on
Usable Privacy and Security (SOUPS’16), 2016, pp. 113—
130.

M. Gutfleisch, J. H. Klemmer, N. Busch, Y. Acar, M. A.
Sasse, and S. Fahl, “How does usable security (not) end up
in software products? results from a qualitative interview
study,” in Proceedings of the 43rd IEEE Symposium on
Security and Privacy (S&P’22), 2022.

K. Krombholz, W. Mayer, M. Schmiedecker, and E.
Weippl, “I have no idea what I'm doing” - on the usability
of deploying HTTPS,” in Proceedings of the 26th USENIX
Security Symposium (Sec’17), Aug. 2017, pp. 1339-1356.
K. R. Fulton, A. Chan, D. Votipka, M. Hicks, and M. L.
Mazurek, “Benefits and drawbacks of adopting a secure
programming language: Rust as a case study,” in Pro-
ceedings of the 17th Symposium on Usable Privacy and
Security (SOUPS 2021), Aug. 2021, pp. 597-616.

S. Roth, L. Grober, M. Backes, K. Krombholz, and B.
Stock, “12 angry developers - a qualitative study on
developers’ struggles with CSP,” in Proceedings of the
2021 ACM SIGSAC Conference on Computer and Com-
munications Security (CCS’21), 2021, pp. 3085-3103.

L. Bieringer, K. Grosse, M. Backes, B. Biggio, and K.
Krombholz, “Industrial practitioners’ mental models of
adversarial machine learning,” in Proceedings of the 18th
Symposium on Usable Privacy and Security (SOUPS’22),
Aug. 2022, pp. 97-116.

J. Mink, H. Kaur, J. Schmiiser, S. Fahl, and Y. Acar,
““Security is not my field, I'm a stats guy”: A Qualitative

18

[127]

[128]

[129]
[130]

[131]

[132]

[133]
[134]

[135]
[136]

[137]

[138]

Root Cause Analysis of Barriers to Adversarial Machine
Learning Defenses in Industry,” in Proceedings of the
32nd USENIX Security Symposium, 2023.

D. Wermke, N. Wohler, J. H. Klemmer, M. Fourné, Y.
Acar, and S. Fahl, “Committed to trust: A qualitative study
on security & trust in open source software projects,” in
Proceedings of the 43rd IEEE Symposium on Security and
Privacy (S&P’22), May 2022.

D. Wermke, J. H. Klemmer, N. Woéhler, et al., ““Always
contribute back™ A qualitative study on security chal-
lenges of the open source supply chain,” in Proceedings
of the 44th IEEE Symposium on Security and Privacy

(S&P’23), May 2023.
https://reproducible-builds.org/.

P. I. Fusch and L. R. Ness, “Are we there yet? data
saturation in qualitative research,” 2015.

A. Offenwanger, A. J. Milligan, M. Chang, J. Bullard, and
D. Yoon, “Diagnosing bias in the gender representation
of HCI research participants: How it happens and where
we are,” in Proceedings of the 2021 ACM Conference on
Human Factors in Computing Systems (CHI’21), 2021.
J. Jancar, M. Fourné, D. D. A. Braga, et al., ““They’re
not that hard to mitigate”: What cryptographic library
developers think about timing attacks,” in Proceedings
of the 43rd IEEE Symposium on Security and Privacy
(S&P’22), 2022, pp. 632-649.
https://reproducible-builds.org/specs/source-date-epoch/.
K. Pettis and R. C. Hansen, “Profile guided code po-
sitioning,” in Proceedings of the ACM SIGPLAN 1990
Conference on Programming Language Design and Imple-
mentation, ser. PLDI 90, White Plains, New York, USA:
Association for Computing Machinery, 1990, pp. 16-27.
OpenSSF, OpenSSF Scorecards, https : [/
securityscorecards.dev/.

CISA, Software Bill of Materials (SBOM), https://www.
cisa.gov/sbom.

Executive order on improving the nation’s cybersecurity,
https://www.whitehouse.gov/briefing-room/presidential -
actions/2021/05/12/executive - order- on- improving - the-
nations-cybersecurity/, 2021.

Executive order on America’s supply chains, https://[www.
whitehouse. gov/briefing-room/presidential - actions/2021/
02/24/executive-order-on-americas-supply-chains/, 2022.

Appendix

For additional material, including the codebook, the
questionnaire, and the motivational matrix, please visit
https://publications.teamusec.de/2023-oakland-repro/.

