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Liquids realize a highly complex state of matter in which strong competing kinetic and interaction effects
come to life. As such, liquids are, generally, more challenging to understand than either gases or solids. In weakly
interacting gases, the kinetic effects dominate. By contrast, low temperature solids typically feature far smaller
fluctuations about their ground state. Notwithstanding their complexity, with the exception of quantum fluids
(e.g., superfluid helium) and supercooled liquids (including glasses), various aspects of common liquid dynamics
such as their dynamic viscosity are often assumed to be given by rather simple, Arrhenius-type, activated forms
with nearly constant (i.e., temperature independent) energy barriers. In this paper, we analyze experimentally
measured viscosities of numerous liquids far above their equilibrium melting temperature to see how well this
assumption fares. We find, for the investigated liquids, marked deviations from simple activated dynamics. Even
far above their equilibrium melting temperatures, as the temperature drops, the viscosity of these liquids increases
more strongly than predicted by activated dynamics dominated by a single uniform energy barrier. For metallic
fluids, the scale of the prefactors of the best Arrhenius fits for the viscosity is typically consistent with that
given by the product (nh) with n the number density and 4 Planck’s constant. More generally, in various fluids
(whether metallic or nonmetallic) that we examined, (nh) constitutes a lower bound scale on the viscosity. We
find that a scaling of the temperature axis (complementing that of the viscosity) leads to a partial collapse of
the temperature dependent viscosities of different fluids; such a scaling allows for a functional dependence of
the viscosity on temperature that includes yet is far more general than activated Arrhenius form alone. We

speculate on relations between non-Arrhenius dynamics and thermodynamic observables.

DOLI: 10.1103/PhysRevResearch.4.043047

I. INTRODUCTION

The Arrhenius equation [1-5] is an empirical relation de-
scribing the relationship between the reaction rate and the
temperature 7 of a chemical reaction [6,7]. The reaction rate
constant k(7") quantifies the speed at which the reaction oc-
curs. The Arrhenius equation asserts that

K(T) o e EalksT | (1)

Here, E, is an “activation energy”, and kg is the Boltzmann
constant. Another expression, commonly derived in transition
rate theory textbooks, the Eyring equation [8], contends that
the transition rate is, more precisely, given by

K(T) = —"k}fTe-AG/kBT. ©)

In Eq. (2), the constant k is the “transition coefficient” and # is
Planck’s constant. Similar to the Arrhenius equation [Eq. (1)],

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

2643-1564/2022/4(4)/043047(18) 043047-1

the reaction rate in Eq. (2) depends exponentially on the Gibbs
free energy of activation AG—which assumes the role of a
barrier. This free energy barrier AG = AH — T AS generally
includes both entropic (AS) and enthalpic (AH) contributions
[9]. A weakly temperature dependent AG qualitatively emu-
lates a dominant exponential decay [Eq. (1)] with a constant
E,. In the current paper, we will synonymously use E, and
AG to denote the effective (free) energy activation barriers.
Related transition state forms have been posited over the years
[6,7].

Beyond its historical roots in chemical reaction rates, the
Arrhenius equation has seen widespread use in other (at times,
interrelated) arenas including (i) semiconductor physics (e.g.,
where it enables a determination of the number of thermally
activated electrons in the conduction and valence bands) [10]
aiding theoretical design and enabling a basic understanding
of diodes, transistors, solar cells, and other semiconductor
devices, (ii) metallurgy (e.g., creep rate and the number of
vacancies/interstitial sites in a crystal), e.g., [11-14], (iii)
the analysis of data from dynamical probes such as those of
dielectric response, NMR and NQR in a host of systems, e.g.,
[15-19], (iv) relaxation rates associated with particles of fixed
structural “softness” (an analog of elastic defect density in
amorphous systems whose average value correlates with the
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viscosity) [20] and, notably, (v) fluid dynamics—the focus of
our paper.

Before proceeding further, we must briefly comment on
a well known exception to activated liquid dynamics—that
of supercooled fluids, e.g., [21-34]. Compounding the sili-
cates that have been known to form glasses since antiquity,
numerous liquids may be experimentally supercooled below
their “freezing” or liquidus temperature 7;. Such a rapid cool-
ing does not enable the liquids to change their phase and
thus crystalize at the equilibrium freezing temperature. At
low enough temperatures, these supercooled liquids assume
a glassy amorphous state. During the supercooling process,
the typical relaxation time scale of the liquids may increase
dramatically by many orders of magnitude for a modest tem-
perature drop and strongly deviate from the Arrhenius form of
Eq. (1). This capricious divergence from activated dynamics
is one of the principle features underscoring the enigmatic
character of supercooled liquids and glasses.

Excusing the above celebrated exception of supercooled
liquids as well as that of quantum fluids at cryogenic tem-
peratures (most notably, low temperature Helium at ambient
pressure), the viscosity n of most equilibrated liquids (includ-
ing glass formers at sufficiently high temperatures above their
liquidus temperature) has, for decades, been largely presumed
to be given by an Arrhenius type expression. Specifically, it
is commonly assumed that the typical relaxation time t of
liquids is given by

T = 10e"/T. 3)

In Eq. (3), the activation barrier E, has been rescaled by the
Boltzmann constant kg so that it is measured in units of tem-
perature (Kelvin) (i.e., E = E,/kg). While in harmonic solids,
there is a linear (Hooke law like) relation between stress and
strain, in fluids, it is the strain rate [the time derivative of the
strain (or displacement)] that is linearly proportional to the
stress (or force); this is a continuum counterpart to the linear
relation between the applied force and particle velocity in a
viscous system (with the ratio between the two being set by
a viscosity). By the Maxwell model for viscoelasticity, the
dynamic viscosity scales as

n = Gr, “

where G is the instantaneous shear modulus [28] and 7 is
the relaxation time (inverse strain relaxation rate). Typically,
G has a much more mild temperature dependence than that
of the relaxation time. From these and other considerations,
viscosities are often anticipated to display a behavior similar
to that of Eq. (3),

n(T) = noe"/". o)

Indeed, e.g., aside from Eq. (3), also the Eyring form of
Eq. (2) leads, in certain treatments [8,29] to Eq. (5) with a
viscosity prefactor 1y that scales with the particle number
density n (a quantity that is, typically, weakly temperature
dependent). Thus, on the whole, the time scale governing lig-
uid dynamics and the respective viscosities are often assumed
to be effectively governed by a single activation barrier of
uniform height that is set by E and with a constant prefac-
tor 9. Equation (5) was first noted in a paper by Reynolds
[35] (three years before Arrhenius introduced his now famous

equation for reaction rates). Nonetheless, viscosity satisfying
Eq. (5) is commonly said to be of the “Arrhenius” type due
to the intuitive connection, briefly reviewed above, that the
Arrhenius rate equation of Eq. (1) evokes. In the many years
since, this relation has been posited and rediscovered anew by
several researchers (perhaps most notably, by Guzman [36]
and Andrade [37] [in some circles, Eq. (5) is known as the
Guzman-Andrade or Andrade equation].

In the current paper, we will extensively analyze the tem-
perature dependence of the dynamic viscosities of numerous
fluids. Empirically, in accord with certain theoretical antici-
pations [related to those underlying Eq. (2)], when fitting the
viscosities of various fluids to the Arrhenius form of Eq. (1),
the prefactor in Eq. (5) (19) was, in certain instances, found
to be of the scale of a particularly simple product: (nk). Here,
h is Planck’s constant and n denotes the number of particles
per unit volume [8,29,30,38,39]. In a more general vein, the
product (nh) has thus been suggested to be a lower bound
on the scale of the viscosity [29]. (A related tighter bound
differing by factors of mass ratios was later proposed in [40].)
In the current paper, we will demonstrate that empirically

n = O(nh). (6)

Related lower bounds on the viscosity were further rigorously
proven in [41].

Low viscosity is associated with a high Reynolds number
regime where the system may become most turbulent. In
conventional materials, the viscosity is minimal at a crossover
between the gaseous and fluid viscosity behaviors. In the gas
(due to increased collisions between the molecules as the
gas is heated and thus an effective increase in the coupling
between layers), the viscosity increases with temperature.
By contrast, in the fluid, the viscosity monotonically drops
with temperature due to increased thermal motion, which
effectively reduces the coupling between fluid layers (the in-
teractions become less important relative to thermal effects).
Fluids with high viscosity support laminar flow wherein shear
stresses readily dampen applied perturbations. The two oppos-
ing behavioral trends of monotonic decrease and increase in
the viscosity as a function of temperature in, respectively, the
fluid and the gas mandate an experimentally observed inter-
vening viscosity minimum [that, as noted above, empirically
satisfies Eq. (6)].

Broader than the single uniform activation barrier of
Eq. (5), any function n(T) may be written as a Laplace
transform in the inverse temperature 8 = % (after, once again,
rescaling the activation energies by kg) via a distribution P(E”)
of effective energy barriers,

1 1 /‘ S _E
—— = — | P(E")e” TdE'. @)
n(T) no

As Eq. (7) emphasizes, in principle, an inverse Laplace trans-
form of any data set over an extensive range of temperatures
will trivially yield an activation energy distribution P. This
distribution will, by construction, reproduce the measured
viscosity data. Physically, the distribution P may be not only
a function of the activation energy alone but also of the tem-
perature. In a similar spirit, for the viscosity data of liquids
below their liquidus temperature 7; (not above it as we focus
on in the current paper), a particular theory [23-26] repro-
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duces all experimentally measured data of supercooled liquids
over 16 decades of viscosity with a single-parameter scale
free temperature-dependent normal distribution P of effective
equilibrium relaxation rates. In what follows, we will test
the applicability of Eq. (7) with a delta function distribution
P(E’) = 8(E — E’) associated with the commonly assumed
activation energy form of Eq. (5) for high temperature liquids
(above their melting temperature). Throughout this paper, all
values of the dynamic viscosity 1 (as well as the scale 1) will
be quoted in units of Pa - s (= 0.1 Poise). In order to provide an
everyday intuitive feel for these conventional units, we remark
that the viscosity of water at room temperature is ~1 cen-
tiPoise = milli-Pa - s. While numerous investigations applied
the fit of Eq. (5) for the dynamic viscosities to various fluids,
we are not aware of much work that critically focused on and
tested the veracity of the Arrhenius form to these viscosities
and any deviations thereof. It is important to underscore that,
notwithstanding their simple intuitive appeal, there are no
rigorous derivations of activated dynamics in fluids. Indeed,
theoretically determining the viscosity of fluids as a function
of their temperature is not, at all, an easy problem. Unlike the
solid (where interaction effects dominate) or the gas (where
kinetic effects are important), in the fluid, both kinetic effects
and interactions are comparable and compete with one an-
other. In this paper, we will test the validity of Arrhenius form
of equilibrium fluids (at temperatures 7 > 7;). Towards this
end, we will compute, within various temperature intervals,
values of effective activation energy E and prefactor 7o that
match the experimental values of the viscosity when Eq. (5)
is assumed. These tests will enable us to comment on the high
temperature limits of various well known fits to the viscosity
of glass forming liquids, e.g., [38,42—45]. Various notable
works advanced and tested various (kinematic) viscosity fits,
e.g., [46]. To our knowledge, there are no prior investigations
explicitly focusing on the effective activation energies associ-
ated with high temperature liquids.

In the current paper we will frequently refer to two different
temperatures:

(1) In several earlier studies of glass forming fluids, e.g.,
the above noted [38,42-44], a crossover temperature Ty was
identified below which (7" < T4) strong deviations from Ar-
rhenius behavior were found and above which (temperatures
T > T,) the dynamics seemed to conform to an approximate
Arrhenius form.

As we will detail, our analysis reveals that, as a general
trend, even up to temperatures far above melting, disparate
fluids may exhibit a viscosity that varies more significantly
with temperature than activated dynamics [Eq. (5)] would
predict. In other words, the commonly assumed simple Arrhe-
nius form does not, in fact, accurately capture fluid dynamics.
Towards that end,

(2) We tested for a broader temperature dependence as-
sociated with a general scaling temperature Ty.. Specifically,
we examined whether scaled dimensionless viscosities of dif-
ferent fluids n/no can, in their high temperature regime, be
made to collapse as a function of corresponding dimension-
less inverse temperatures Ty./7T. Here, o and T;. are fluid
specific parameters. The Arrhenius form of Eq. (5) is only
one realization of such a possible collapse; in the Arrhenius
form, the activation energy E is set by T, and the function

specifying the associated collapse is the exponential function.
We searched for such a more general possible collapse and de-
termined the optimal associated temperature scales Ty, over a
broad range of viscosities. Our tests revealed that certain fluids
exhibit nearly identical dependencies on the temperature over
13 decades of viscosity while others collapse over a far more
limited range.

II. OUTLINE

The remainder of this article is organized as follows. We
begin, in Sec. III, by describing simple litmus tests indicating
deviations from Arrhenius dynamics with constant activation
energies. We then turn (Sec. IV) to briefly discuss the vari-
ous fluids that we analyzed and the smoothening procedure
invoked in our numerically evaluated derivatives. Sections V,
VI, and VII quantify, via complementary calculations, the
deviations from simple Arrhenius dynamics. Taken together,
these analyses illustrate how the effective activation barriers
typically increase as the temperature is lowered. In Sec. VIII,
we demonstrate that it is possible to collapse the viscosity data
from different fluids onto a curve with some liquids persisting
for many decades of the viscosity for while others such a
collapse is over a very limited range. In Sec. IX, we illustrate
that the lower bound [29] on the viscosity of Eq. (6) holds
for all materials investigated and contrast it with other more
recent proposed bounds [40]. We conclude with a synopsis
of our results in Sec. X. Various technical details have been
relegated to the Appendices.

III. HALLMARKS OF DEVIATIONS FROM SIMPLE
ACTIVATED DYNAMICS IN EQUILIBRATED HIGH
TEMPERATURE FLUIDS

Since the viscosity of various fluids typically span several
decades as their temperature is varied, we will analyze Eq. (5)
on a logarithmic scale,

E
Inn(T) =Inno + . ®)

We now explicitly highlight the exceedingly simple prin-
ciples underlying much of our study. If Eq. (8) holds, then
both E and 1y as adduced from (numerical) derivatives of
the experimentally measured viscosities of all studied liquids
should be temperature independent constants. That is, for
simple activated dynamics, both

40T Inn ©

and
Inny = (T Inn) (10)
1Mo T nn

must, for each individual fluid, assume the same value at
all temperatures. Temperature variations of the derivatives of
Egs. (9) and (10), if any exist, will attest to the degree to which
departures from the putative Arrhenius form of Eq. (5) appear.

Given the above corollaries for temperature independent £
and no as determined from derivatives, we display in Fig. 1
(see left-vertical axis) our approximate numerical for the ac-
tivation energy of Eq. (9) as deduced from experimentally
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FIG. 1. Finite difference numerical (“slope”) approximations of
the effective activation energy E of Eq. (9) (as determined by the
finite gradient approximation of Eq. (13), see left-vertical axis with
points marked in black) and of 5y of Eq. (10) (as computed via the
finite difference approximation of Eq. (14), see right-vertical axis
with points highlighted in red) for six liquids above their liquidus
temperature 7;. Notwithstanding fluctuations, it is seen that across
all fluids, as the temperature decreases, the finite difference approx-
imation to the effective activation energy E (T ) becomes larger. The
“strong” glass forming fluid SiO, [47] exhibits a nearly constant
large effective energy barrier at the high temperature shown (far
above that of supercooling and glass formation). The finite differ-
ence approximations to 7y as computed from Eq. (10) increase as
temperature rises. Combined with their more notable deviations from
Arrhenius dynamic, the sparse viscosity data of B,0O;, OTP, and
TaNB give rise to curves that are not very smooth.

measured viscosities for all liquids, which we analyzed above
their liquidus (or melting) temperature 7;. Similarly, on the
right-vertical axis of Fig. 1, we provide our numerically evalu-
ated results for Eq. (10) at temperatures about the equilibrium
liquidus temperature.

As Fig. 1 makes evident, empirical numerical approx-
imations to the derivatives of Eqgs. (9) and (10) are not
temperature independent constants. Specifically, as Fig. 1 at-
tests for temperatures 7 > T; (and, respectively, Figs. 9 and 10
in Appendix B demonstrates for 7 > Tj.), at the lower end of
the temperature range (and usually at far higher temperatures
as well):

The effective activation energy as computed from Eq. (9)
increases significantly as the temperature T decreases.

In order to quantitatively contrast the viscosity with the
ansatz of Eq. (5) with empirical results, we may endow 1y —
no(T) and/or E — E(T) with temperature dependencies so
as to optimally fit the experimental viscosity data. (Varying
any one of these parameters alone will suffice to fit any ex-
perimental data set.) By fiat, the activated form of Eq. (5)
assumes the absence of any such temperature dependencies. If
Eq. (5) applies, with moderate variations of E(7") and no(T),
then (since 7 is exponential in £) a numerical evaluation of
Eq. (10) will capture the derivative dE /dT of the effective
activation barrier. The marked decrease of the numerically

evaluated Eq. (10) in Fig. 1 indicates that the rate of increase
of the effective activation barrier E(T) as the temperature T
is decreased becomes more pronounced as the temperature
is lowered. Similar trends (made evident in Fig. 10) are also
visible at temperatures above the (typically) higher tempera-
ture crossover temperature 7, [38,42—45]. The astute reader
may note from these figures that for water, at sufficiently
high temperatures, some of these trends are reversed. This is
so since the extended temperature range that we investigate
also includes temperatures above the boiling point of water
(373 K) where the system is no longer a liquid. Indeed, while
an increase in temperature typically decreases the viscosity of
the liquid, in a gas this trend is reversed.

Equation (8) is trivially invariant under the simultaneous
transformations

£(T)

no(T) — no(T)e” 7,
E(T) — E(M)+ f(T), (1D)

with f(T') an arbitrary function of the temperature. As further
discussed in Appendix C, possible effective temperature de-
pendencies of E and ny may be obtained by, e.g., explicitly
plotting

Tnn=Tlnny+E (12)

as a function of the temperature. The equality of Eq. (12) was
implicitly invoked in deriving Eq. (10) under the assumption
of constant £ and 7. As seen from Eq. (12), if the ansatz of
Eq. (5) applies, then a plot of (T Inn) as a function of 7" will
yield a line with a slope set by In 1 and intercept equal to E.
Setting, in Eq. (11), f = aT + b (with general constants a and
b) to be an arbitrary linear function will yield other consistent
parameters for any such nearly constant £ and 7. Taken
together, Egs. (9), (10), and (12) [all which trivially stem from
Eqg. (8)] allow for an estimate of the typical values of E and
no. This will also allow us to monitor for any temperature
variations from assumed constant values of these parameters.
Detailed analyses of various high temperature fluids all lead to
our earlier highlighted conclusion: If the viscosity of liquids
is fitted to a single uniform activation energy form then the
resulting E(T') exhibits, on the whole, an increase as 7T is
lowered.

In what follows, we briefly discuss the liquids that we
examined and our discrete temperature difference approxima-
tions to the derivatives of Egs. (9) and (10).

IV. THE STUDIED LIQUIDS AND GENERAL ASPECTS OF
THE DATA ANALYSIS

We list all of the liquids that we study along with some
of their properties (such as the scaling temperature 7., which
we describe next) in Table I. Our focus is on high temper-
ature behavior (i.e., at temperatures far above the liquidus
temperature) where Arrhenius behavior was assumed to uni-
versally hold for all liquids. The liquids in Table I include
good glass forming liquids known to display non-Arrhenius
dynamics when supercooled to temperatures lower than 7;.
For the metallic fluid glassformers [48], plots of In(n/no) as
a function of T;./T, with a material dependent T;. for each
individual fluid, collapse onto a single universal curve [38].
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TABLE I. Measurements of liquidus temperature 7;, crossover temperature 7;. by us and 7, from previous published paper [38], In 1y and
In(nh) (both are measured in Pa - s) [38]. For metallic liquids, their 7 is nearly equal to their nh value [see Eq. (15)]. By contrast, the liquids
H,0 and B,0; have g values that are much smaller than their respective nh values. The error bar of 7. is 1K while the error bar of In ng[Pa - 5]
is 0.001. The method of determining 7. (and thus also the corresponding In 1) is provided in Fig. 2. Where the data was taken from sources
other than our own measurements and/or [38], these have been cited below. The data of H,O have been calibrated by combining [40,50]. The
column marked “TB bound” is a lower bound on In 1 [40], which we will return to in Sec. IX. When the parameters were unknown they were

left blank.

T T T In ny In(nh) TB bound Density at T;
Composition [K] [K] K] [Pa - 5] [Pa - 5] [Pa - 5] [g/cm’]
CuysZrasAlp 1209 1371 ~10.829
CuyeZrsy 1198 1212 —10.601
CU47ZI'45A18 1190 1345 —10.868
CuyyZraAlg 1172 1307 ~10.756 6.83
CU4QZF45A16 1177 1324 —10.945
CU50ZI'40Ti10 1168 1276 —10.877 6.90
CusoZra 5Ti7 5 1152 1237 ~10.903 6.92
CuspZrysAls 1173 1329 1308 —10.879 —10.2258 —6.3847 6.91
CuspZrs 1226 1273 1284 —10.831 —10.2419 —6.3796
Cus3ZrasAl, 1199 1290 ~10.915
CussZrys 1193 1298 —11.003
CugpZryTizg 1127 1302 1301 —11.174 —10.0991 —6.3168 6.92
CugoZrao 1168 1275 ~10.893
CugsZrse 1230 1320 —11.139
LM601 1157 1318 —10.588
Niso sNbyo s 1448 1637 ~10.479
Ti3g_5Zr3g_5Ni21 1277 —10.8
TigoZr10CussPd 4 1185 1274 1278 ~10.952 ~10.1360 —6.3689 6.69
Vit105 1093 1369 —10.618 6.46
Vit106 1123 1362 1373 —10.505 —10.3156 6.44
Vit106a 1125 1357 1360 —10.646 —10.3156 6.51
Zrs7Nig3 1450 1342 —10.414
ZreoNipsAlys 1248 1395 1421 —10.516 —10.3662 6.23
ZrCuyoNigAlyg 1152 1321 1325 —10.531 —10.3639 —6.5063
ZreaNiss Al 1212 1350 ~10.394
ZresNisg 1283 1256 1223 —-10.27 —10.3271 —6.4512
ZI'65A7A5CU17_5Ni10 1170 1267 —10.274 6.5
Zr7sRhog 1350 1357 —10.144
Zr55Pdas s 1303 1289 —10.284
Zr76Nips 1233 1157 1161 —10.057 —10.4123 —6.5125
ZrgoPty[38,58] 1450 1482 1549 —10.004 —10.3939 —6.3468 8.38
H,0 [40,50] 273.15 297 —13.4 —10.7181 —9.6671 0.997
B,0; [51] 723 1187 —4.289 —11.1740 —9.8872 2.460
OTP [52] 330 411 —13.05
Toa NB [52] 435 652 —13.5
Si0,[53] 1986 3455 -34 —11.136 —9.7028 2.65

Figure 2 shows both the raw and filtered data of ZrgyPty and
the corresponding fit of Eq. (5). By “filtered data”, we refer
to the replacement of In n(7") by the average of In n(7T') over a
finite temperature window [T — %, T + %] centered about
each temperature T . Averages over finite width (A7) tempera-
ture windows suppress oscillations of the raw empirical values
of Inn(7T). In Appendix E, we further discuss these averages.
The linear fit in Fig. 2 illustrates how a crossover temperature
T, (and a scaling temperature Ty, for which such a collapse
occurs) may be ascertained [49].

The values of In g listed in Table I are those associated
with the fit of Eq. (5) for temperatures T < T;.. The viscos-

ity data of the metallic liquids were measured by one of us
[30]. Other viscosity data were extracted by scanning graphs
from published works [50-53]. The process of scanning and
digitizing the experimental plots was performed with data
digitalization software [54].

The viscosity data inherently display noise present in the
original experiments and scanning errors. In order to reduce
the noise, we applied equidistance interpolation to the data
and designed a low-pass finite impulse response (FIR) filter
[55-57] (see Appendix E). We then fitted the filtered data with
Eq. (8) for all temperatures above the liquidus temperature
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FIG. 2. The determination of a crossover temperature 7 [38,42—
45]. A comparison of the temperature-dependent viscosity data for
ZrsoPtyo and the Arrhenius form of Eq. (5). The gray dots represent
the raw experimental data; the green curve marks the “filtered” data
(i.e., the data averaged over a fixed temperature window to minimize
the experimental noise). The solid-red line is a fit to Eq. (8) of the
filtered data for temperatures 7 > T (see [38,45] for the definition
and discussion of 7, for general fluids), and the solid-blue line is
for temperatures 7 < T. The dashed-red and blue lines are, respec-
tively, extrapolated (Arrhenius type) curves of an effective constant
activation energy. At higher temperatures (see the dashed-blue line),
the deviations from the expected constant activation energy of Eq. (5)
are not nearly as pronounced as those at lower temperatures (see the
dashed-red line for temperatures 7' < T4). Taken together, the latter
curves point towards an approximate crossover from an effective
Arrhenius behavior in the shown temperature range above T, to a
markedly non-Arrhenius one at lower temperatures. The temperature
T;. is the “scaling temperature” that is discussed in the main text.

T; as well as the scaling temperature T discussed in the
Introduction.

V. EXTRACTING THE EFFECTIVE, TEMPERATURE
DEPENDENT, ACTIVATION ENERGIES FROM
NUMERICAL DERIVATIVES

Our filtered data are quite detailed with a minimal temper-
ature interval AT = 0.25 K between subsequent data points
(labelled an index i). As briefly alluded to in Sec. III, this
allows for numerical approximations of Eq. (9) via finite tem-
perature differences,

Inni —Inn;

oo = T =y 1
The finite difference approximation of Eq. (13) to the deriva-
tive of Eq. (9) is acutely sensitive to local variations of Inn
as a function of the temperature. This drawback compounds
the errors already present in the raw data. In order to see
an intelligible trend, we apply a low-pass FIR filter (see Ap-
pendix E) to calculate Egqpe. As an illustrative example, we
consider several aspects of ZrgoPtyo in Figs. 3 and 4. The
black curve in Fig. 4(a) represents the activation energy E as

obtained from Eq. (13) whereas the red curve is the resulting
plot after applying the filter. We used this method to obtain
E as a function of T above 7; as displayed in Fig. 1. (The
analogous results for T > T, appear in the Appendix (Fig. 9
and Fig. 10.)

VI. DETERMINING AN EFFECTIVE 7, IN DIFFERENT
TEMPERATURE WINDOWS FROM NUMERICAL
DERIVATIVES

Assuming a constant activation barrier, an effective tem-
perature dependent Inny may, as we discussed earlier, be
computed via Eq. (10). Similar to Eq. (13), the derivative in
Eq. (10) may be approximated by a finite difference gradient,

(TInn)iyy — (T Inn);
T — T )

In 10,slope = (14)

The prefactor results of Fig. 1 for temperatures above the
liquidus temperature 7; (and those of Fig. 10 of the Ap-
pendix for temperatures larger than a crossover temperature
T;.) illustrate, unambiguously, that the Arrhenius form does
not hold. If E is kept fixed then the prefactor 1y of Eq. (5)
cannot be a temperature independent constant; in most liquids,
the value of 7y necessary to fit the data changes by several
orders of magnitude.

In Fig. 3, we contrast the optimal values of the activation
energy Ey, with Egope [Eq. (13)] and the viscosity pref-
actor 1g,avg With 19 g0pe Of Eq. (14). Here, E. and 1 aye
refer to the constant (temperature independent) values of the
activation energy and viscosity prefactor in the Arrhenius
expression for the viscosity that fit the data best. Details of
the optimization procedure are given in Appendix A. As we
noted above, according to theoretical (Eyring-type) predic-
tions [8,29,30,38,39], the viscosity prefactor

e = nh. (15)

As we alluded to earlier, n denotes the number particle density
and & is Planck’s constant. In Table I, we compare the found
fitted values with the prediction of Eq. (15). While the discrep-
ancy between the empirical value of 1y and nf)heory is relatively
small for metallic liquids [29,38] [see also Fig. 3(a)], it can
become far more marked for nonmetallic fluids fitted over
a large temperature range [Figs. 3(b) and 3(c)]. The explicit
functional form for the viscosity associated with the scaling
temperature Ty, will be elaborated on in Eq. (18).

VII. EFFECTIVE ENTROPY

When employing the Eyring form of Eq. (2), if the Gibbs
free energy barrier AG is almost constant then Arrhenius
dynamics will appear. Our results establish, however, that the
effective activation barrier (Egope) required to conform the
experimental data is clearly temperature dependent. Thus, if
we attempt to describe the data with the Eyring equation that
the effective Gibbs free energy barrier AG varies with tem-
perature. Such a variation implies that the effective entropy

IAG
AS = _<W> (16)
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FIG. 3. Comparison between the measured viscosity of, ZrgyPtyo, H,O, and B,O; with the Arrhenius form of Eq. (8) (see Sec. IX for
further comparisons). The ordinate represents the natural logarithm of the numerical value of the viscosity n when the latter is measured in
units of Pa - s. In all panels, the black scatters refer to the filtered experimental In n(7') data that are contrasted with the Arrhenius fits of
Eq. (8). The line delineated by triangular markers is the Arrhenius fit of Eq. (8) obtained with an optimal uniform “average” (see Appendix A
for details) activation energy E,,, with a viscosity prefactor In 7, values that fit the data well. The curve with circular markers represents
the fit of Eq. (8) by setting In ny = In(nh) where n is the number density and /% is Planck’s constant. (Similar to the logarithm of the viscosity,
In(nh) denotes the natural logarithm of the numerical value of (nh) when (nh) is measured in units of Pa - s.) The thin-dashed curves are
extrapolations. (a) The filtered experimental data of Zrg,Ptyy are compared with Arrhenius fits with E,,, = 8080 K, In 19 5y = —8.666 and
Inny = In(nh) = —10.394 for temperatures above 7; = 1450 K. (b) A comparison between the measured viscosity of H,O with the Arrhenius
fit of Eq. (8). An optimal fit for T > 7T; = 273.15 K is obtained by setting E,,, = 1411 K, In g vy = —11.770, and In(nh) = —10.718. (c) A
comparison of B,O3 with E,,; = 8189 K, Inng 4y, = —4.177, and In(nh) = —11.174 for T > T; = 723 K.

does not vanish. To ascertain the scale of this effective entropy,
we may replace AG by Egop. and employ our finite temper-
ature difference approximations (that we earlier invoked to
determine Egjope) to rewrite Eq. (16),

E L —E .
ASslope _ slope,i+1 slope, i ) (17)
Ty — T,
2 —
3 ®
< ©
° e
X1 g
2 @
o =
w” g
0 =
1400 1700 2000 1400 1700 2000
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FIG. 4. (a) The effective activation energy Egqp. of Eq. (13) for
the metallic liquid ZrgyPtyy. The black curve is the raw finite dif-
ference gradients [Eq. (13) as evaluated over temperature windows
of width (74, — T;) between consecutive points]. The red curve
displays these finite difference gradients as smoothened via a finite
impulse filter (FIR) (Appendix E). (b) The effective Inng gope Of
the metallic liquid ZrgoPty as evaluated over different temperature
windows. Similar to (a), the black curve provides the raw finite
difference gradients of Eq. (14) represents In g gop. While the red
curve corresponds to a finite difference gradient generated by an FIR
with a larger temperature window.

In Fig. 5, we display both the filtered and unfiltered results
of ASgope resulting from such finite temperature differences
[with, in Eq. (17), the energies Egope explicitly measured in
Joules (i.e., not, as in much of this paper, rescaled by the
kp and represented as a temperature scale)] when examining
ZrgoPtyy. Employing a larger temperature interval AT avoids
noise in the data and consistently yields positive effective
entropy change AS. This effective entropy change under-
scores the deviation from Arrhenius dynamics with a constant
effective energy barrier. The positive sign of AS highlights,
once again, the monotonic variation of the effective activation
barrier with temperature in the liquid phase. Performing a
linear fit illustrates that, on average, the ascertained effective
entropy ASgope monotonically rises with increasing tempera-
ture. The latter further implies an average positive “effective
heat capacity” Cess = T%.

VIII. TESTS OF A MORE GENERAL UNIVERSAL
VISCOSITY COLLAPSE

Having established that viscosities may, generally, be far
more complex than simplest activated functions of the tem-
perature, we now ask whether more general scaling forms
may better fit the data. That is, we will now inquire whether
hallmarks of the commonly assumed universal (activated) dy-
namics may be seen by broader tests. To achieve this goal, we
critically tested if 1n(7")/no might be another (not necessarily
the simple exponential appearing in the Arrhenius equation)
universal function F' of a dimensionless temperature 7;./T
with both ny and the scaling temperature Ty, being specific
constants for each fluid. If such a universal function exists then
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FIG. 5. The effective entropy ASep. defined by Eq. (17) for
selected liquids above their liquidus temperature 7;. The finite differ-
ence gradients of Eq. (17) are evaluated over consecutive temperature
windows (i) of width (7;.; — T;). Excusing fluctuations in the nu-
merical data, the effective activation barrier generally decreases with
increasing 7. Thus, when computing numerical differences over a
larger temperature interval, the average effective entropy as com-
puted by Eq. (17) is positive. As the color bar indicates, the black
curves are all defined by Eq. (17) at temperature interval AT = 15 K,
and the gray and light-gray curves are similarly computed for, respec-
tively, AT =25 K, 35 K.

plotting, for N disparate liquids, the dimensionless viscosity
n/no as a function of the dimensionless temperature 7y./T
(with T, replacing the activation barrier E of the Arrhenius
form) will lead to curve whose form is given by the aforemen-
tioned universal function F'. As is well known, when present, a
data collapse onto a universal curve underscores an underlying
simplicity. The celebrated Guggenheim fit [59] first illustrated
that the scaled dimensionless densities of various liquids in
the vicinity of their critical points are a universal function
of scaled dimensionless reduced temperatures. Guggenheim
reported on this data collapse onto a universal curve long be-
fore the current advent of critical phenomena [60]. Inspired by
these well known results, we assess to what extent a collapse
might or might not occur for the viscosities of various fluids
with such liquid dependent adjustable temperature (7;.) and

viscosity (1) scales,

T

T _F <—> (18)
1o T

Here the function F(z) will not be constrained to the expo-
nential function (e¢“* with ¢ a constant) defining the Arrhenius
form of Eq. (5). Operationally, we adjust the constants Ty,
and 1o such that, the scaled curves of In(n/n¢) as a function
of T;./T of the different fluids enjoy a large overlap. Earlier
papers [38] examined the prospect of such adjustable scales
particularly with regard to a possible crossover of viscosities
of supercooled liquids from Arrhenius to super-Arrhenius
dynamics (see our own analysis for one such glass former

(ZrgoPty) in Fig. 2 where the crossover temperature is marked
as Ty). We emphasize that it is because the Arrhenius form
does not work well (as we illustrated in the previous sec-
tions) that we test to see if the functional form of Eq. (18)
fits the viscosity data better. Since it includes the Arrhenius
form as a special case), Eq. (18) will always allow for a
broader collapse of the data than when F is constrained to
an Arrhenius form. If the resultant viscosity collapse does not
extend over a significant range of scaled temperatures (7 /T.)
then the deviation from any attempted scaling of such a form
will be even stronger (i.e., no collapse appears even if the
function F in Eq. (18) is not restricted to be the exponential
function associated with the Arrhenius fit). We determined the
values of T'sc and 19 by maximizing the overlap between the
In(n/no) versus T;./T curves of the different fluids. Towards
this end, we calculated, for any pair of fluids, the discretized
integral of the squared difference [a sum of squared errors
(SSE)] between scaled viscosity curves of the two fluids. We
then found the values of scaling parameters 7y, and In
that minimized the resulting latter SSE when the latter was
summed over all N(N — 1)/2 pairs of fluids.

For any two different liquids, there is a specific SSE value.
For 38 different liquids, there are 703 pairs of liquids and
703 SSE values. Taking the sum of all 703 SSE values, we
obtain an overall SSE, which will vary with the change of each
liquid’s T;. and no. By adjusting T;. and 5, for each liquid,
we are able to minimize the overall SSE and to optimize our
collapsed curve. The values of T, and ng after the adjustment
are therefore our optimum 7. and 7 values.

In Fig. 6, we display our test results for a possible gen-
eral viscosity collapse of high temperatures liquids with an
unconstrained function F in Eq. (18) that is not, necessarily,
of an Arrhenius form. As seen therein, the scaled viscosities of
several liquids (e.g., CusoZrsyTi g, OTP, H,O, etc.) track each
other over many decades. The silicate SiO,, a quintessential
“strong” glass former with relatively small deviations from
Arrhenius dynamics upon supercooling to low temperatures,
also displays somewhat minute differences from activated
dynamics at high temperatures relative to the other liquids
that we examined. The viscosity of some fluids may be col-
lapsed in this way onto one another over many decades of the
viscosity while for other fluids an attempted collapse yields
more fleeting results—a viscosity collapse does not appear for
all liquid types in unison. The values of 7. that we found
for various fluids are often close to the values of T, (see
Table I) associated with deviations from approximate high
temperature Arrhenius dynamics.

In Fig. 7(a), we plot for several liquids, similar to Fig. 5, the
numerical proxy ASgqpe for the effective entropy of Eq. (16)
as a function of the temperature 7. In Fig. 7(b), we provide,
similar to Fig. 1, values of (i) the activation energy (left
vertical axis in panel (b)) and the viscosity prefactor (right
axis) as computed from Eqgs. (13) and (14).

IX. A LOWER SCALE BOUND ON THE VISCOSITY

As we briefly reviewed in the Introduction, the viscosity
of various compounds is typically minimal at a crossover
between their gaseous and fluid phases. Several investigations
[29,38,40,41] suggested a lower bound on this viscosity min-
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FIG. 6. A test of a possible universal dimensionless collapse of the viscosity of liquids of different types (OTP, H,O, and numerous metallic
liquids). For B,O3, TaNB, SiO,, and OTP, the scaled curves collapse for 7;./T < 1.25. The values of T;. and n, associated with the displayed
viscosity collapse are provided in Table I. The black dashed curve represents the collapse curve In(1/19) = 2.111e(-19Te/T),

imum. In this section, we discuss two interrelated bounds and
illustrate that they are satisfied for the liquids that we exam-
ined. The first bound is that of Egs. (6) and (15) [29,38,41].
A related second bound, proposed by [40] (TB), can be ex-
pressed as

S nh [m

~ 8n2 \/n:
Here, m, is the electron mass, and m is the mass of the
molecules forming the liquid. With M = (m/(1836m,)) de-
noting the molecular mass of the fluid, the bound of Eq. (6) is
lower by a factor of ~O.543m relative to the TB bound of
Eq. (19) (dashed-pink line). In Fig. 8, we tested these bounds
against available experimental data. For H,O, the viscosity
minimum at 800 K saturates the TB bound. In Fig. 8, we
further include, for comparison, two extended Arrhenius type
forms (one with the temperature dependent Egjope and 1o siope
and the other with temperature independent E,y, and 7 ave)
shown in blue and green. Both of these Arrhenius type func-
tions deviate substantially from the measured viscosity curve.
These deviations underscore the invalidity of the Arrhenius
form for describing the viscosity of these systems. Over the
temperature range shown for water, a strong deviation from

n (19)

Arrhenius is mandated since the viscosity rises with increas-
ing temperature in sufficiently high temperature gases. The
other three systems displayed in Fig. 8 (ZrgoPts9, B2O3, and
CusgZrsp) are all far below their respective boiling tempera-
tures.

X. CONCLUSIONS

We tested the validity of Arrhenius form for describing the
dynamics of general liquids at temperatures above those of
melting (and other possible crossovers) by carefully analyzing
viscosity data and contrasting it with Eq. (5). We applied an
equidistant interpolation of the data and partitioned the tem-
perature range into equal intervals. Subsequently, we applied
a low-pass FIR filter to reduce the data noise. We computed
the values of the putative uniform activation energy E (and
prefactor ng) of Eq. (5) at 0.25 K temperature intervals.

(i) Our analysis indicates that the viscosity of the liquid
(at all temperatures within that phase) is far more complex
than a simple Arrhenius behavior with a single temperature
independent activation energy E. Perusing Fig. 1 and ensuing
analysis, one sees that the viscosity data may be qualitatively
captured by the likes of Eq. (2) when, as a general trend the
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FIG. 7. (a) The effective entropy ASgepe of Eq. (17) computed
with successive temperature differences of size AT = 15K and
(b) the activation energy E and the values of ny as a function of
temperature above T for selected liquids except SiO, and TaeNB
(see text) above their 7. For these two liquids, the values of T;. are
higher than the examined temperature range and are thus not shown
in the figure.

Gibbs free energy activation barrier AG typically increases
as the temperature 7 decreases. Equivalently, dispensing with
local (in temperature) fluctuations, the associated effective
entropic contribution AS = —% is generally large and pos-
itive. These trends are highlighted in Fig. 5.

(ii)) We tested whether activated (more general than Ar-
rhenius) dynamics might still appear universally in high
temperature liquids. Towards that end, we examined the extent
to which it is possible to collapse dimensionless viscosity data
of different fluids as a function of a scaled dimensionless
temperature and found that several fluids (of very different
composition) exhibit strikingly similar behaviors over many
decades of viscosity while others are more divergent. We
caution that our results and analysis concern only the viscos-
ity. We do not exclude possible Arrhenius behaviors of other
transport coefficients.

(iii) We found that the scale of the viscosity of metallic
fluids is consistent with that provided by Eq. (15) with n being
the particle number density and # Planck’s constant. More
generally, we find that the lower bound scale of Eq. (6) holds
empirically in both the metallic and nonmetallic fluids that we
examined.

In the Appendix, we further contrast the empirical vis-
cosity data with several earlier fits in the literature (that
were largely introduced for various glass formers). While the
most prevalent fits assume a constant Arrhenius form at high
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FIG. 8. Comparison of different lower bounds of the viscosity
for (a) ZrgyPtyg, (b) B,0Os3, (¢) CusoZrsy, and (d) H,O above their
liquidus temperature 7;. The black only portion of the continuous
curve is comprised of filtered data points having temperature 7 > 7;
while the overlaid orange portion of that curve provides the viscosity
in the temperature range 7 > T.. In (d), the data range is such that
these black and orange data points completely overlap. The bottom
solid-horizontal line marks the value of In(nh) whose scale is a
proposed lower bound of viscosity [29,38,41] and the dashed line is
a more recent bound suggested by [40] [Eq. (19)]. The blue curve
represents the Arrhenius form with temperature dependent 1 giope
and Ejqp., while the green-dashed curve refers to the Arrhenius
form with constant 7 5y, and E,,. In these and all other fluids that
we investigated, the raw viscosity data was consistent with the two
viscosity bounds of Egs. (6) and (19).

temperatures, some do not. In particular, the MYEGA form
[61,62]

K/
Innp=1Inny+ ?eC/T (20)

(with material dependent parameters 79, K, and C), and the
DHTDSI fit [63]

— Wo —T/Tw
Innp=1Inny+ kBTe (21)
(with its fluid dependent parameters 19, Wy, and Ty ), may
both be expressed as scaling exponentially in E/T with ef-
fective energy barriers £ (T') that (unlike the Arrhenius form)
increase as the temperature 7' is decreased. The more rapid
rise of the viscosity than predicted by activated dynamics
dominated by a uniform energy barrier is a feature that we find
in all liquids. In accord with these data trends, the MYEGA
and DHTDS]J fits that allow (with adjustable additional pa-
rameters) for effective activation energies to become larger
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as the temperature drops fit the viscosity data better than the
Arrhenius form that, as we demonstrated in the current paper,
exhibits sizable variations from the experimental data. There
are various possible extensions of our extensive analysis of
the viscosity of disparate fluids that formed the focus of the
current study to disparate response functions- e.g., tests of
the Arrhenius and Eyring forms for dielectric relaxation rates.
Additionally, the relation between our findings regarding the
temperature dependence of the effective activation behavior
in equilibrated high temperature liquids and the far more
dramatic “super-Arrhenius” viscosity of supercooled liquids
[21,22,24,27-34] would be interesting to explore.

We conclude with a more speculative remark. Following
recent elegant analysis by Bagiolli and Zaccone [64,65], the
density of states in the liquid is given by

g(w) ~ e b, (22)

1)
602 + 1"2
with wp an effective Debye frequency (such that the last
factor introduces a soft cutoff) and I" a temperature dependent
damping rate constant. As pointed out by [64], this enables
the computation of thermodynamic observables such as, e.g.,
the specific heat contribution from these instantaneous normal
modes [64],

hw

oo —_
¢y = k,gf do % (23)
0 sinh? 512
Given our findings in the current work of deviations from
activated dynamics in general fluids, instead of assuming that
I" obeys an Arrhenius type behavior [64], we may attempt to,
more generally, set I equal to the reciprocal of the tempera-
ture dependent measured relaxation time, i.e., I' = =1, with
7 determined by the Maxwell relation of Eq. (4). This may
fortify [64,65] so as to afford a general link between dynamics
(7) and thermodynamics (c,) in fluids whose deviation from
Arrhenius dynamics is marked over the pertinent temperature
range. While such a link seems logical, caution must be paid to
the contributions of the different frequencies to the dynamic
and thermodynamic properties. The order of magnitude in-
consistencies suggest that additional frequency contributions
other than those in Eq. (22) may need to be included in
g(w). Towards this end, we comment on a discrepancy en-
countered when assuming the single damping rate (and Debye
frequency) term of Eq. (22) to capture both the heat capacity
and viscosity data at different temperatures. Indeed, the vis-
cosity of liquids may be typically dominated by low frequency
hydrodynamic modes whereas the heat capacity can be con-
trolled by far stiffer short range Debye type elastic modes. For
instance, for water, the latter hydrodynamic damping rate I is
107! Hertz whereas the scale of the frequency with dominant
contributions to the heat capacity is 10'® Hertz [66]. We leave
the detailed analysis of the above suggested link to a future
investigation.
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APPENDIX A: SELF-CONSISTENCY CHECKS

It is illuminating to test the Arrhenius form by reinsert-
ing our obtained £ and In g into Eq. (8). If the Arrhenius
equation is valid then, up to reasonable scatter in the data,
the activation energies E(T) (and associated prefactors ng)
will assume constant “average” values Euye (and 79 avg). To
compute Eqye (and 7o ave), We take the equal weight uniform
average of Egope (and 7o 0pe) OVer the temperature range,
which is from 7 above T;. to the maximum temperature of
our liquids data range.

We may then substitute these average values E,, and
In 79,ave into Eq. (8) and compare Inn = In g avg + Eave/T
with the experimental data and contrast the so obtained
Inng avg from the experimental data with the theoretical pre-
diction of Eq. (15). In Fig. 3(a), an Arrhenius fit with E,,, and
In 79 ave (marked in red) is consistent with the raw data (the
black curve in this figure) only at temperatures close to 7. =
1482K. The Arrhenius curve and the actual raw experimental
data substantially deviate from one another when extrapolat-
ing to higher (and lower) temperatures. We next tested how
an agreement with the Arrhenius form might be ameliorated
if we compute the average values E,,, and Inng g over a
narrower temperature range. Towards this end, we calculated
the above E,ys and In 1o 5y by averaging over the temperature
interval between Ty, to T, (Where Ty, > T.). Here, T
denotes the highest temperature for which experimental data
are available. Evaluating these averages, we found that the
data and Arrhenius form with the above values matched in
a limited range near 7j,. As we progressively shortened the
temperature range over which the averages were taken (by
fixing T, and raising 74.), the Arrhenius (red) curve in
Fig. 3(a) continued to deviate from the experimental data at
gradually higher temperature.

We further explored the consistency of Eq. (15) with
the experimental data, where E,,, = 8225 K and In(nh) =
—10.394Pa - s for ZrgoPtyo. As Fig. 3(a) underscores, an order
of magnitude disparity may appear between Eq. (15) and the
experimental data—the scale of 1y associated with the fitted
measured viscosity of ZrgyPty is, approximately, e'6 ~ 5
times larger than the product nh. As seen in Fig. 3(b), for
H,O the corresponding ratio between 1 and (rh) is far larger,
being approximately ¢® ~ 400. Due to measurement errors
and the form of the raw experimental data, the temperature
intervals may not, generally, be judiciously chosen so as to be
of uniform width. Consequently, we cannot collate all of the
calculated slopes into one figure to see how they vary with the
temperature since each slope has different denominator values
when employing Egs. (13) and (14).

APPENDIX B: RELIABILITY OF RESULTS

We need to assess whether our obtained effective E(T") and
no(T) are reliable. Addressing this question requires us to find
the extent to which the FIR filter may impact the determined
E(T) and no(T). The defining property of our (and any) FIR
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FIG. 9. Activation energy E [Eq. (9)], viscosity prefactor 19 [Eq. (10)], and effective entropy ASqpe of Eq. (17) as a function of temperature
of various fluids above their liquidus temperature 7; (unfilled markers) and their scaling temperature 7. (filled markers).

filter is the absence of feedback in its application generally
endowing it with an intrinsic stability.

In the main text, we reported on our tests of the validity of
Arrhenius form by plotting both the activation energy E(T)
and the prefactor no(7") as functions of temperature. Trends in
E(T) and no(T) become clearer when these are smooth and
monotonous. However, if we apply the finite difference equa-
tions of Eq. (13) or Eq. (14) directly to the raw viscosity data,
then E(T') or no(T) will, generally, exhibit large fluctuations.
These fluctuations can obscure trends in either the activation
energy E or the viscosity prefactor ny(7).

Ideally, reducing the width of the temperature interval in
Eqg. (13) and Eq. (14) may, in principle, allow for a more
accurate determination of an effective activation energy E(T')
or the viscosity prefactor no(7"). However, the use of smaller
intervals will, inevitably, enhance any noise present in the
data. Due to the measurement errors and the detailed form of
the raw experimental data, generally, the temperature intervals
may not chosen to identically be equal. To deal with the
problem of varying width temperature intervals, we applied
equidistant interpolation. To mitigate the inherent noise in
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FIG. 10. Similar to Fig. 9, we plot the activation energy E [Eq. (9)], viscosity prefactor 1o [Eq. (10)], and the effective entropy ASp. of
Eq. (17) as a function of temperature of several liquids above their liquidus temperature 7; (unfilled markers) and their scaling temperature Ty,
(filled markers). Related results are shown in Fig. 7 and Fig. 9. Here, we provide data for additional fluids. For SiO, and TaNB (see text), the
values of the scaling temperature 7. are higher than the examined temperature range and are therefore not shown in the figure.

the data, we designed and applied a low-pass FIR filter with
equidistant interpolation.

We applied the FIR filter to the raw viscosity data n(T)
instead of the extracted E(T) or no(T). This was done since
E(T) and no(T') are approximate measures derived from the
raw data. In Fig. 1, we provided extracted finite difference
numerical values of E(T) and no(T) for six selected liquids
above their liquidus temperature 7;. In this Appendix, we
separately plot E(T') and no(T') of all tested metallic liquids
above their liquidus temperature 7; and scaling temperature
T, in Figs. 9 and 10.

In Table II, we provide statistics regarding the quality of
our fits. These figures of merit, computed for both the raw and
filtered data, are comprised of R-square (R?) values and the
sum of squared errors (SSE).

APPENDIX C: FURTHER COMMENTS ON ESTIMATING E
AND 75y VALUES FROM FITS

As discussed in the main text, Eq. (8) enables the extraction
of the effective E and Inng at different temperatures. Our
filtered data were chosen to be equally spaced allowing us
to fit adjacent data points with Eq. (8). For example, for the
temperature domain [7;, T;+] and the corresponding range
of viscosity [Inn;, Inn;4+1], the fitting outputs will be E; and
In n,; at the temperature T;/,. Similarly, for the temperature
interval [Tiy1, Ti+1+41], the outputs are E;; and Inng,y; at
Tir141)2, €tc.

Our initial analysis centered on temperature intervals of
width AT = T;;; — T; = 0.25 K. Such relatively small tem-
perature intervals AT increase the uncertainties in E and In 1
and introduce oscillations in E(7) and In#no(T). To avoid
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TABLEII. Statistical residuals of fitting results. The first four columns are the residuals when fitting the raw and filtered data with Arrhenius
form Eq. (10) with the whole data range, and the 4th and 5th columns are the R? results when fitting T < Ty and T > T with myrefeq:200.The
uncertainty of each liquid comes from the liquids’ density’s liquids. The uncertainty of E is determined by evaluating the maximum amplitude

of the oscillated curve.

SSE (raw) R%(raw) SSE (filter) R2(filter) R*(filter) R*(filter) Uncertainty

Composition [1079] (AILT) [1079] (AILT) (T <Ty) (T >Ty) of E[x10* K]
CusZrssAly 1,576 0.9502 3.863 0.9998 02
CuygZrsy 8.125 0.9489 2.123 0.9982 0.25
CuyrZrs5Alg 4.016 0.9339 1.908 0.9943 0.3
CupnZrinAlg 5.112 0.894 2214 0.9857 02
CuygZrysAlg 1.237 0.9735 5.121 0.9987 0.25
CusoZrsoTigg 4.522 0.9032 0.936 0.9972 0.2
CusoZraz.5Ti7 5 1518 0.9874 6.006 0.9947 0.25
CusgZrysAls 1.512 0.9727 3.214 0.9936 0.9912 0.9918 0.2
CusoZrs 3.231 0.9281 2.489 0.9951 0.9941 0.9948 0.3
CusiZrisAly 3.667 0.9465 1.844 0.9972 03
CussZrys 3.941 0.9016 2.841 0.9906 0.2
CugoZrooTiyg 1.254 0.9612 0.609 0.9955 0.9836 0.9964 0.2
CugZra0 5.126 0.9189 4263 0.9966 02
CugyZr3 3.12 0.8317 2.607 0.9834 0.2
LM601 1.039 0.9665 11.03 0.9883 0.2
Niso sZr3 1.924 0.9699 9.659 0.9756 02
Tizg 5Zr33Nip; 4.199 0.9839 5.615 0.9969 0.2
TiggZroCusoPdyg 2.653 0.9496 0.652 0.9986 0.25
TigZroCusgPd 4 3.162 0.9513 0.7 0.9977 0.9995 0.9951 0.3
Vitl105 4.566 0.9732 2.049 0.9983 0.2
Vit106 0.001098 0.9873 0.00274 0.9951 0.9982 0.9996 0.2
Vitl06a 2.585 0.9546 1.623 0.9962 0.9886 0.9965 0.2
Zrs7Nig 18.89 0.976 5.535 0.998 0.2
ZrgoNiysAlys 1.201 0.9847 1.896 0.9969 0.2
Zrg;CuyyNigAlyg 2.34 0.9866 1.563 0.9928 0.2
ZresNiys Alyy 6.04 0.8718 0.908 0.998 0.3
ZrgsNisg 4211 0.9015 1.788 0.9972 0.9966 0.9985 0.3
ZresAly 5Cuy7.5Nig 12.01 0.9551 15.42 0.9915 0.2
Zr74Rhyg 232.4 0.9866 564 0.9929 0.15
Zr755Pdoy s 232.4 0.9843 998.2 0.991 0.2
Z176Nioy 19.13 0.9919 195.7 0.9983 0.9999 0.9994 0.2
Zrgo Pty 2.001 0.9913 0.997 0.9984 0.997 0.9935 0.35
H,O 17.5 0.9233 2.45 0.9932 0.2
B,0; 4.017 0.9542 1.066 0.9961 0.1
OTP 3.018 0.9332 1.656 0.9947 0.3
Ta NB 2.89 0.9611 1.788 0.9936 0.2
SiO, 1.526 0.9991 0.956 0.9977 0.1

these spurious effects and generate more monotonous trends,
we varied the width of the temperature intervals over which
we compute the averages. As this latter width increases, the
resulting £(7T') and In 1o(7T") curves become smoother as more
fluctuations are removed. When this factor is large enough,
the general monotonic trends of E and In 7 become lucid.
For instance, if this scaling factor is 60 then the temperature
intervals will be [750;, Tooi+1)]-

Figure 4 shows, respectively, the values of E(7) and
Inno(T) for ZrgoPtyy that were obtained in this way. The
temperature window scaling factor is 60 with a corresponding
the temperature interval width AT = 15 K. As the temper-
ature rises from 1400 K to 1900 K, the effective activation
energy E drops from 11000 K to 6000 K whereas Inng

increases from —10.7 to —9. As we noted earlier, from
Eq. (12) [a trivial restatement of Eq. (8)], when T Inn
is examined as a function of the temperature, the acti-
vation energy E becomes the intercept and Inng is the
slope.

APPENDIX D: ADDITIONAL VISCOSITY FITS

Aside from the MYEGA [61] and DHTDSJ [63] fits of
Egs. (20) and (21) (the inception of which was motivated by
the behavior of glass formers), there are numerous other fitting
forms that attempt to describe the viscosity of fluids at high
temperatures (as well as the viscosities of bona fide super-
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FIG. 11. A comparison between our experimentally measured
filtered viscosity data of ZrgPty with four fitting forms: BENK
[Eq. (D4)], DHTDSJ [Eq. (21)], MYEGA [Eq. (20)], and VFT
[Eq. (DD)].

cooled liquids at temperatures below equilibrium freezing).
For concreteness, we list several of these below.

We start by noting perhaps by the far most common em-
pirical form, that of Vogel, Fulcher, and Tammann (VFT)
[67-69]. Herein,

Inn(T)=1Inny + D1

T-T,

with material dependent parameters 7, B, and T4.
According to the KKZNT [42-44] fit for the viscosity

Ty

E Ty —T
1nn(T):1nn0+;'°+—B( A

Ty

T t7 > O, —T), (D2)

where 19, Ewo, Ty, and z are liquid dependent adjustable con-

stants (with, in most fluids, z >~ 8/3).
The DEH [45] fit asserts that

Ey (T —Ty)

+—55—00-T).

Inn(T) =1
nn(T) nno+kBT o

(D3)
with 19, Ew, a, and T being material dependent parameters.

Another functional form (BENK) [38] that we studied sug-
gests that

E 1 1)?
Inn(T) =1 — 4+ ==-=)O@-T) D4
nn(T) nno+kBT+ (T T) (Ty—T). (D4)

Here, the adjustable, fluid dependent, constants are ng, J, T,
and Tj,.

Numerous functional forms and theoretical approaches in-
cluding, in particular those related to the enigmatic glass
transition, appear in the literature, e.g., [21-24,27-34]. Some
of these, similar to the above forms build on Arrhenius type
notions and various modifications of this form. An Arrhenius

type analysis was recently pursued in [70],

b *
lnn(T)=lnno——+&

. D5
kg kgT (D)

Here, Q; is the effective activation energy computed by
Eq. (9). When computed form viscosity data of supercooled
liquids, this effective energy barrier exhibits a peak around
the glass transition 7,. This led [70] to posit that the glass
transition is associated with a bona fide phase transition at
T,. In Fig. 11, we compare several fitting functions for the
viscosity over a temperature interval that includes the liquidus
temperature (7; = 1450 K) of ZrgoPty.

In Egs. (D1)—(D4), Tx (see also a brief discussion in the
main text) denotes a crossover temperature from a putative
Arrhenius behavior (T > T,) to super-Arrhenius scaling (T <
T,). Equation (DS5) does not invoke a crossover temperature.

Our results concerning the high temperature deviations
from activated dynamics (including temperatures above as-
sumed crossover temperatures) suggest that the VFT, KKZNT,
DEH, and BENK fits and similar others that assume high
temperature Arrhenius dynamics do not accurately describe
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FIG. 12. The amplitude response of two low-pass FIR filters
(labeled FIR 1 and FIR 2). The abscissa denotes the number of
samples per inverse temperature interval 1/87. The ordinate marks
the magnitude of attenuation of the filter. The red- and blue-dashed
lines indicate, respectively, the sample rate at Fpag and Fyop. As all
panels of this figure illustrates, the (black) response curve starts to
oscillate for sample rates beyond Fy,. Panel (b) is a blow up of
FIR 1’s amplitude response (Panel a). Here, Fp,s = 0.006 K~! and
Fyop = 0.03 K~!. In Panel (c), we provide a blow up of FIR 2’s
response with Fy,e = 0.002 K™' and Fy,p, = 0.012 K™
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TABLE III. The low-pass FIR filters that we used to filter the
viscosity data. FIR1 filters the raw viscosity data with AT = 0.25 K.
For FIR2, AT =5 K, and 15 K. Both FIR1 and FIR2 are generated
by the software MATLAB.

Filter FIR1 FIR2
Specify Order 260 25

Fy 4K! 0.067 K~!
Fpass 0.006 K~! 0.002 K~
Fiop 0.03 K™! 0.012K™!

high temperature liquids. Our finding does not exclude the
asserted functional forms of these fits at all temperatures-
only their behaviors at high temperatures. By contrast, fits like
those of Egs. (20) and (21) that, at all T (in particular, also
for all temperatures above equilibrium melting), exhibit an
effective activation barrier £ (7") that monotonically decreases
with increasing temperature are consistent with the trends that
we universally find in all examined high temperature fluids.

APPENDIX E: LOW-PASS FILTER

In the current paper, we invoked ideas similar to those
used in standard frequency filters and (given that our viscosity
data are a function of temperature and not time) extended
these to the temperature domain (i.e., with ﬁ playing the
role of frequency in the typically used filters [71]). Figure 12
and Table III provide basic schematics of our low-pass FIR
filter (FIR1) for the viscosity data, while Figs. 12 provide

the schematics of our second FIR filter for determining the

activation energy and effective entropy. When applying an
equidistant interpolation to our viscosity data, the tempera-
ture interval between each two adjacent data points is AT =
0.25 K. Thus, the sampling rate of the filter is F; = 1/AT =
1/0.25 K = 4 K~'. We then increased the width of the tem-
perature windows over which we compute the averages and
fitted the decimated data with Eq. (9) to obtain Egep. and
applied our second FIR filter (FIR 2). Herein, AT = 15 K,
and the sampling rate of the second filter is Fy = 1/AT =
1/15 K = 0.067 K~!. We repeated this procedure for Sslope
with our second FIR filter.

Figures 12 illustrate the effects of the two filters. In these
figures, the abscissa is the temperature frequency F; = 1/6T
(where 6T is a temperature interval not smaller than AT).
The vertical axis is the attenuation magnitude of the filter. The
minimal temperature interval used was of width AT = 0.25 K
(for FIR1) and AT = 15 K for (FIR2) and F, ;,,4x = F;.

Whenever F; is smaller than F, = 0.006 K~' (FIR1)
and 0.002 K~! (for FIR2), filtering leads to no change. By
contrast, when Fpys < F; < Fyop = 0.03 K™! (for FIR1) and
0.012 K~! (for FIR2), as F, increases, the magnitude of the
filtered data monotonically decreases (with the filtered data
being reduced by 42.9 dB for FIR1 (and 35.2 dB for FIR 2)
just above Fyp. For F; > Fyop, the magnitude of the filtered
data remains, approximately, constant. The filter attenuates
data sufficiently close to 7; while leaving data far from 7;
essentially unchanged. Applying a low-pass FIR filter to the
data leads to a smoother and more monotonous result while,
concomitantly, preserving the original trends present in the
data.
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