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ABSTRACT

Sub-optical-cycle dynamics of dense electron bunches in relativistic-intensity laser–solid interactions lead to the emission of high-order har-
monics and attosecond light pulses. The capacity of particle-in-cell simulations to accurately model these dynamics is essential for the predic-
tion of emission properties because the attosecond pulse intensity depends on the electron density distribution at the time of emission and
on the temporal distribution of individual electron Lorentz-factors in an emitting electron bunch. Here, we show that in one-dimensional
collisionless simulations, the peak density of the emitting electron bunch increases with the increase in the spatial resolution of the simulation
grid. When collisions are added to the model, the peak electron density becomes independent of the spatial resolution. Collisions are shown
to increase the spread of the peaks of Lorentz-factors of emitting electrons in time, especially in the regimes far from optimum generation
conditions, thus leading to lower intensities of attosecond pulses as compared to those obtained in collisionless simulations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0140028

I. INTRODUCTION

At relativistic laser intensities, solid surfaces turn into fully ion-
ized plasmas that reflect the incident light and emit high-order har-
monics extending well into the x-ray range and forming attosecond
pulses.1–11 On a microscopic level, the process of relativistic high-
order harmonic generation is well described by the coherent synchro-
tron emission (CSE) model that explains harmonic emission as a result
of the sub-laser-cycle formation and acceleration of dense, nanometer-
sized electron bunches.12–16 The distribution of electrons in an emit-
ting bunch plays a critical role in the efficiency as well as the temporal
and spectral profiles of the emitted radiation whether the density dis-
tribution is viewed as a function of space at a fixed time12,15,17,18 or as
a function of the advanced time coordinate.16,19 Previous work has
shown that the electron bunches can be controlled by tailoring the
driving laser’s waveform to achieve enhanced harmonic efficiency.20–24

Manipulating the electron bunches to control the properties of the
harmonic radiation requires a detailed understanding of how the elec-
tron bunch evolution depends on the laser and plasma parameters.

The particle-in-cell (PIC) method, extensively used to numeri-
cally simulate laser–plasma interactions,25–28 employs physical
approximations and introduces numerical artifacts. To solve
Maxwell’s equations on a grid, conventional PIC codes utilize a finite-
difference time-domain (FDTD) method, the Yee solver,29 which is
subject to numerical dispersion.30–38 Numerical dispersion poses a sig-
nificant challenge for modeling high-order harmonics that comprise a
broad range of frequencies. Recently, pseudo-spectral Maxwell solvers
based on fast Fourier transforms have been implemented to mitigate
numerical dispersion and noise,39–44 and dispersion-free propagation
of harmonics has been demonstrated.41 The PIC method also employs
finite-sized macroparticles which represent a number of real particles
in the system. Macroparticles accurately model long-range, collective
plasma phenomena, but reduce the magnitude of the electromagnetic
fields for short-range, collisional interactions.45 To restore these short-
range interactions, Monte Carlo-based algorithms for modeling binary
collisions between macroparticles were developed,46–52 and have been
applied to short-pulse laser–solid interaction studies.53–55 The binary
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collision model works by randomly pairing two particles within the
same cell of the computational grid and then stochastically scatters the
particles based on the Coulomb cross section. Monte Carlo collision
models were originally proposed for non-relativistic interactions and
between macroparticles with equal weighting46 but have advanced in
recent years to accurately handle collisions between relativistic par-
ticles49,50,56 and macroparticles with arbitrary weight.48,51

Here, we aim to examine the characteristic features in the spatial
distributions of electron densities at times before and near the time of
attosecond pulse emission and understand the effect of spatial resolu-
tion, collisions, and numerical dispersion in conventional PIC simula-
tions on the properties of accelerated electron bunches and their
emission. Using the EPOCH PIC code,28 we provide a detailed analysis
of the electron bunch evolution for different relativistic laser–solid
interaction scenarios in collisionless and collisional simulations. We
demonstrate the appearance of unphysical density spikes with the
peak density growing with increasing spatial resolution in collisionless
simulations. We show, however, that these density spikes have no
effect on the intensity of emitted harmonic radiation. We then analyze
the effects of collisions on the electron bunches, showing that the
unphysical density spikes disappear with collisions and, in addition,
collisions are shown to increase the spread in time of the peak Lorentz
factors of emitting electrons within the electron bunch, which reduces
attosecond pulse intensity compared to collisionless simulations.

II. ATTOSECOND ELECTRON BUNCH DYNAMICS

Since the formation of individual electron bunches in relativistic
laser–solid interactions occurs on a sub-laser-cycle timescale, we con-
sider single-cycle laser pulses interacting with semi-infinite plasma slabs,
which result in the continuous spectra of plasma emission analyzed
below. We model normal and oblique incidence interactions in a one-
dimensional geometry, where a relativistic transform to a boosted refer-
ence frame is used for oblique incidence.57,58 The incident laser’s wave
vector is at an angle h with respect to the x-axis in the x–y plane, where
the target’s normal vector points in the negative x direction. The laser
pulse strength is given by the relativistic amplitude a0 ¼ eEL=ðmxLcÞ,
where c is the speed of light, e andm are the electron’s charge and mass,
EL is the maximum of the electric field envelope, and xL is the driving
laser’s angular frequency. For all simulations, the laser was p-polarized
with a central wavelength of kL¼ 800nm and had a Gaussian temporal
profile with a full-width-half-maximum of 2.7 fs. The plasma slab has a
step-like density profile with an initial electron number density of N0,
where N0 is normalized by the critical density [nc ¼ mx2

L=ð4pe2Þ]. We
treat ions as an immobile background, which is a reasonable assumption
for single-cycle interactions. The simulations use a second-order FDTD
scheme to solve Maxwell’s equations, for which the time step, Dt, is
determined by the Courant–Friedrichs–Lewy (CFL) number,
C ¼ cDt=Dx, where Dx is the size of the spatial cell of the numerical
grid. The simulations presented here use a spatial resolution between
100 and 100 000 cells per laser wavelength, a CFL number between 0.50
and 1.0, and between 25 and 150 particles/cell, where all particles are
represented by a first-order b-spline (triangle) shape function unless
otherwise stated.

In this work, we are interested in the evolution of the electron
number density (Ne, which is normalized by nc), the distribution of
electron relativistic Lorentz factors (c) as a function of the advanced
time coordinate (ta¼ t þ jxo � xj=c, where xo is the observer position

and x is the position of the electron), and the attosecond pulse genera-
tion efficiency. The reflected radiation is analyzed by first recording
the reflected electric field in time at a fixed spatial location of 3kL from
the initial vacuum–plasma interface for a duration of at least four laser
periods before and after the arrival of the center of the reflected laser
field’s temporal envelope. The spectral intensity, IðxÞ, is then com-
puted as the Fourier transform of the reflected field over this time win-
dow. Finally, the electric fields of attosecond pulses, Ea, are obtained
by filtering the spectra in the frequency range xLF < x=xL < xUF

and inverse Fourier transforming back to the time domain. The atto-
second pulse generation efficiency, gatto, is defined as the peak value of
E2
a=E

2
L. The spectral efficiency of frequency upconversion, gspec, is cal-

culated by integrating IðxÞ in the frequency range xLF < x=xL

< xUF and then dividing by the integrated spectral intensity of the
incident laser. The incident and reflected spectra have been normal-
ized by the peak value of the incident laser’s spectral intensity.

The attosecond pulse emission and the sub-cycle plasma dynam-
ics in relativistic laser–solid interactions are shown in Fig. 1. In the
time domain [Fig. 1(a)], the reflected waveform is substantially dis-
torted compared to the incident one, indicating the presence of high-
frequency radiation. Transforming to the frequency domain [Fig.
1(b)], we observe a broadband, continuous spectrum which follows a
power-law scaling up to a frequency cutoff (x=xL � 200) after which
a steeper decline in spectral intensity is observed. The dashed orange
line in Fig. 1(b) represents a power-law fit [IðxÞ / ðx=xLÞ�p] in the
frequency range 1 < x=xL < 10 but is seen to provide a good fit up
until the frequency cutoff. Filtering out the low harmonic orders
(x=xL < 30) and transforming back to the time domain results in an
attosecond pulse, as shown by the red line in Fig. 1(a).

The spatial distributions of the electron density for particular
instants of time during the interaction are presented in Figs. 1(c) and
1(d). The time t=TL ¼ 0 corresponds to the instant when the laser’s
electric field node (the node that precedes the attosecond pulse emis-
sion) first meets the plasma surface, where the electric field nodes are
defined as the points in space where the incident electric field is zero.
As the laser starts interacting with the plasma, the v�B force and the
force from the component of the laser’s transverse electric field that
acts in the target’s normal direction combine to displace the electrons
from their initial location, forming a dense electron nanobunch [Fig.
1(c)]. The displacement of the electron surface results in a built-up
electrostatic restoring force which subsequently accelerates the elec-
tron bunch toward the specular direction where it narrows in space
and increases in peak density, emitting an attosecond pulse at
t=TL ¼ 0.63 [Fig. 1(d)]. The dynamics of a single emitting electron
within the bunch are shown in Fig. 1(e), where the particle data are
plotted in the reference frame (x1, y1), which is rotated by an angle h
with respect to (x, y), so that x1 is parallel to the direction of specular
reflection. The time of emission corresponds to the spike in the relativ-
istic Lorentz factor, cx1, when the electron’s velocity is along the specu-
lar direction and the acceleration is perpendicular to the velocity,
which is in agreement with the CSE model.14

The efficiency of attosecond pulse generation is highest when the
laser force, which is a function of a0, and the plasma restoring force,
which is a function of N0, are of similar magnitude, and not necessarily
at exactly the same time.16,23 This balance can be characterized by the
similarity parameter S ¼ N0=a0, or 1=S ¼ a0=N0, which arises from the
similarity analysis of laser–plasma interactions in the ultra-relativistic
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limit.59 The brightest attosecond pulses occur when a0=N0 � 0.3 for nor-
mal incidence interactions and for a0=N0 � 0.5 for oblique incidence
interactions.16 In Fig. 2, we show the evolution of the electron density
spatial distribution and the emitted attosecond pulses for normal
(h¼ 0�) and oblique (h¼ 30�) incidences and various ratios of a0=N0.
In each subplot, the electron bunch evolves from the time when the

electron bunch has its maximum displacement from the initial plasma–
vacuum interface (TMaxDisp) through the time when the attosecond pulse
is emitted (TEmission), which is calculated by back-propagating the emitted
attosecond pulse until the time instant when the peak of the attosecond
pulse and the leading edge of the electron bunch is located at the same
point in space. The dashed line indicates the peak density of the electron
bunch at different points in time.

For a0=N0� 0.1 [Figs. 2(a) and 2(b)], the electron bunch evolu-
tion in normal and oblique incidence simulations is similar: the peak
density of the electron bunch slowly drops, while its width remains
roughly the same. The attosecond pulse is emitted at t=TL � 0.5, at
which point the electron bunch has expanded close to the original den-
sity, resulting in inefficient attosecond pulse generation. In contrast,
for a0=N0 � 0.2 [Figs. 2(d)–2(k)], the electron bunch is compressed in
space as it accelerates toward vacuum for both the normal and
obliquely incident cases. For normal incidence interactions, the elec-
tron bunch never reaches a peak density higher than what is obtained
at TMaxDisp but better maintains the peak density through TEmission,
where the peak density is seen to decrease by only 30% from TMaxDisp

to TEmission for a0=N0 ¼ 0.55 and not at all for a0=N0 ¼ 0.35. For obli-
que incidence interactions, emission occurs when the electron bunch
has a peak density higher than that obtained at TMaxDisp [Figs. 2(h)
and 2(k)]. This results in more efficient attosecond pulse generation
than that obtained for values of a0=N0� 0.1. Note that the times of the
attosecond pulse emission extend beyond one-half of a laser period in
the interactions with a0=N0 � 0.2 as a result of the increased displace-
ment of the electron bunches from the initial plasma–vacuum
interface.

III. RESOLUTION-DEPENDENT SPIKES OF THE
ELECTRON DENSITY

As the intensity, spectra, and duration of the emitted radiation
critically depend on the electron density distribution at the time of
emission and the temporal distribution of individual electron Lorentz-
factors in an emitting electron bunch, the capacity of PIC simulations
to accurately model electron density dynamics is essential for the pre-
diction of the emission properties. This brings up questions regarding
the effects of the spatial resolution and number of particles/cell present
at the start of the simulation on the electron density dynamics. To
address these questions, we first examine the dependence of the peak
density of electron bunches on the spatial cell size of the numerical
grid. The peak electron density (Npeak) at the times TMaxDisp and
TEmission is potted as a function of kL=Dx in Fig. 3(i) for different sets
of simulation parameters: (a) h¼ 0�, a0¼ 40, N0¼ 200; (b) h¼ 30�,
a0¼ 175, N0¼ 500; (c) h¼ 30�, a0¼ 325, N0¼ 500. As is shown in
Fig. 3(i), the peak electron density exhibits a power-law growth as a
function of kL=Dx and does not converge to a fixed value even at an
extremely high resolution of kL=Dx > 35 000.

The spatial distributions of the electron density at the times
TMaxDisp and TEmission are plotted in Figs. 3(ii) and 3(iii), respectively.
For each instant of time, the distributions are plotted with a dotted
blue line for simulations with kL=Dx¼ 4000 and a solid cyan line for
simulations with kL=Dx¼ 35 000. In these collisionless PIC simula-
tions, we observe the presence of narrow density spikes contained
within a single cell of the numerical grid. The number of density
spikes, as well as the peak density of those spikes, increases with higher
spatial resolution. At the highest resolutions considered here, a large

FIG. 1. Attosecond pulse emission [(a) and (b)] and sub-cycle density dynamics
[(c) and (d)] of relativistic electron bunches near the surface of a plasma mirror
from PIC simulations. Simulation parameters are h¼ 30�, a0¼ 175, N0¼ 500,
kL=Dx¼ 8000, particles/cell¼ 50, and C¼ 0.95. (a) The electric fields of incident
(gray), reflected (black), and filtered attosecond pulse (red) as a function of time.
(b) Spectral intensity of the incident (gray) and reflected (black) laser pulse, and a
power-law fit of the reflected spectrum in the frequency range 1 < x=xL < 10
(dashed). [(c) and (d)] Spatial distribution of the electron density (Ne) for different
times within a single cycle of the incident laser field. (c) Electron bunch is moving to
the right into the bulk of the plasma pushed by the laser field. (d) Electron bunch is
moving to the left toward vacuum. The attosecond pulse is emitted at t=TL ¼ 0.63
when the velocity and acceleration are perpendicular to each other. (e) Dynamics
of a selected electron leading up the emission of the attosecond pulse. The dynam-
ics are plotted in a coordinate system (x1, y1) that is parallel and perpendicular to
the specular direction. The two components of acceleration have been normalized
to their maximum values.
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number of electrons (N0 > 20 000) is compressed into a single cell of a
width Dx � 0.08 Å. The peak density in the spikes is about an order of
magnitude higher than the average density in the bunch. The appear-
ance of these single-cell density spikes and the corresponding growth
of the peak electron density result from the fact that closely spaced
particles tend to accumulate in a single cell of the numerical grid.

To eliminate this unphysical effect, we consider collisional PIC
model using the Monte Carlo-based binary collision algorithm47,48,50

incorporated in the EPOCH code. We include electron–ion and elec-
tron–electron collision processes in all simulations. The results of colli-
sional simulations are shown by red circles and squares in Fig. 3(i).
With collisions, the peak density of the electron bunch initially follows
the same power-law growth as a function of kL=Dx as in the simula-
tions without collisions, but eventually, it converges to a fixed value at
a spatial resolution which depends on the laser and plasma parameters
but is less than 10 000 cells per fundamental wavelength in all cases.
Additionally, in contrast to collisionless simulations where the
increased spatial resolution leads to the appearance of multiple density
spikes confined within single cells, collisional model yields smoother
density distributions [solid black line in Figs. 3(ii) and 3(iii)] without

the single-cell density spikes even at a high spatial resolution of
kL=Dx¼ 35 000.

The unphysical growth in the peak density of the electron bunch
present in collisionless simulations does not change with the number
of particles/cell present at the start of the simulation or on the shape
function used to represent the particles. In Fig. 4(a), the peak density
of the electron bunch is plotted as a function kL=Dx for simulations
with collisions and particles/cell¼ 50 (red triangles) and simulations
without collisions and particles/cell¼ 25 (green circles), 50 (blue
squares), and 100 (black triangles). All other parameters are the same
as those used for the simulations presented in Fig. 3(a). Here, we see
that at TMaxDisp and TEmission the peak density of the electron bunch
follows the same power-law growth independent of the number of
particles/cell. Similarly, increasing the order of the particle shape func-
tion does not remove the resolution-dependent density spikes since
the spikes arise from the clumping of electrons within a cell of the
numerical grid rather than from sampling noise. This is illustrated in
Fig. 4(b) where the peak density of the electron bunch is plotted as a
function kL=Dx for simulations with collisions and a first-order b-
spline (triangle) shape function (red triangles) and simulations without

FIG. 2. Spatial distributions of the electron number density (Ne) illustrating the electron bunch evolution from the time when the electron bunch has its maximum displacement
from the initial plasma–vacuum interface (TMaxDisp) through the time when the attosecond pulse is emitted (TEmission). The simulation parameters are N0¼ 500, particles/
cell¼ 50, kL=Dx¼ 8000, C¼ 0.95, and a0=N0 ¼ 0.10 [(a)–(c)], a0=N0 ¼ 0.20 [(d)–(f)], a0=N0 ¼ 0.35 [(g)–(i)], and a0=N0 ¼ 0.55 [(j)—(l)]. The dashed gray line marks the
electron bunch’s peak density as it evolves from right to left and emits the attosecond pulse. The bold times within each subplot indicate the time of emission. The density distri-
butions in subplots (g) and (j) have been scaled by a factor of two, as indicated in the upper right corner, so that the distribution of the electron density is easier to visualize at
this scale. For each case of a0=N0, the right panels plot the attosecond pulses as a function of time from the normal and oblique incidence interaction, where we have artifi-
cially overlaid the two attosecond pulses and centered them at a time of zero so that their profiles and peaks can be easily compared. The attosecond pulses were constructed
using radiation in the frequency range 10<x=xL < 100.
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collisions [NC] and a zeroth-order b-spline (top-hat) shape function
(green circles), a first-order b-spline (triangle) shape function (blue
squares), and a third-order b-spline shape function (black triangles).

The single-cell density spikes in collisionless simulations do not
affect the convergence of the radiated fields as verified in Figs. 5(a)–5(c),
where we see the reflected spectra, temporal intensity profiles, and atto-
second pulse efficiency converge with increasing spatial resolution. The
emitted attosecond pulses are able to converge despite the lack of con-
vergence of the electron bunch peak density since these density spikes
arise from a grouping of electrons within the cell of the numerical grid,
which is much smaller than the shortest wavelength of interest. Since
the number of electrons within the density spike remains fixed and only
the cell size changes when the spatial resolution is increased, the radiated
fields of the electrons converge with increasing spatial resolution. Note
that the differences between the pulse profiles in Fig. 5(b) at low spatial
resolutions are due to the fact that the harmonics are under-resolved
and numerical dispersion has an effect on the pulse shape. A detailed
discussion of the effects of the spatial and temporal resolution on the
emitted attosecond pulses is presented in the Appendix.

IV. EFFECTS OF COLLISIONS ON ELECTRON BUNCH
DYNAMICS AND ATTOSECOND PULSE INTENSITY

In Sec. III, we showed that collisionless simulations allow for
resolution-dependent spikes in the electron bunch, but that the atto-
second pulses due converge with increasing resolution. Additionally,
we showed that in collisional simulations, there are no unphysical den-
sity spikes and the electron bunch is smoother compared to collision-
less simulations. In this section, we address the final question of how
do the radiated attosecond pulses and spectra differ between collisional
and collisionless simulations. In Fig. 6, the attosecond pulse generation
efficiency with and without collisions is plotted as a function of a0=N0

for three different initial plasma densities. There are two regimes
where simulations with and without collisions have the same attosec-
ond pulse efficiency. The first is in the limit where a0=N0 � 1 for a
fixed N0 and the second is when N0 > 500 for a fixed a0=N0. Both of
these limits require a0 > 100, which is a higher laser field strength
than that currently achievable in ongoing experiments. For parameter
regimes away from these two limits, collisions lower the attosecond
pulse efficiency, where the greatest reduction occurs for a0=N0 greater
than 0.2, but less than 0.6. The reduction in attosecond pulse efficiency
reaches up to a factor of 5 in the chosen frequency range of 80
< x=xL < 300. We have found that the amount of reduction is
dependent on the chosen frequency range and would be completely
negligible if the frequency range of 10 < x=xL < 100 was used. To
understand how the entire spectra are affected by collisions, we return
to modeling the electron bunch dynamics prior to attosecond pulse
emission.

In Fig. 7, the spatial distribution of the electron density at particu-
lar times before the emission of the attosecond pulse is plotted for sim-
ulations with and without collisions at four different values of a0=N0.
For a0=N0 < 0.35, collisions have the effect of lowering the peak den-
sity of the electron bunch, especially near the time when the electron
bunch is at its maximum displacement from the initial plasma–vac-
uum interface. As a0=N0 is increased to values � 0.35, the electron
density spatial distributions become identical at all instants of time,
apart from the single-cell density spikes present in collisionless simula-
tions for which we have already shown have negligible effect on the
emitted attosecond pulses. Also shown in Fig. 7 are the spectra and
attosecond pulses of the reflected electric field. For all values of a0=N0,
the simulations with and without collisions produce identical har-
monic intensity for low frequencies. However, for a0=N0� 0.50, the
spectra produced from simulations with collisions have a lower

FIG. 3. Effects of spatial resolution on the density distribution of the electron bunch modeled with and without collisions for (a) h¼ 0�, a0¼ 40, N0¼ 200; (b) h¼ 30�,
a0¼ 175, N0¼ 500; and (c) h¼ 30�, a0¼ 325, N0¼ 500. For all simulations, C¼ 0.95 and particles/cell¼ 50. (i) The peak density, Npeak, in collisionless [NC] (blue circles
and squares) and collisional [C] (red circles and squares) simulations as a function of kL=Dx. For the collisionless cases, the black dashed lines show power-law fits to the
peak density. For the collisional cases, a horizontal gray dashed line is plotted at the average value of Npeak for kL=Dx > 10 000. (ii) The electron density spatial distribution
near the time when the electron bunch has its maximum displacement from the plasma–vacuum interface (TMaxDisp). Distributions from collisionless simulations are plotted in
dark blue for kL=Dx¼ 4000 and cyan for kL=Dx¼ 35 000. Distributions from collisional simulations are plotted in black at kL=Dx¼ 35 000. (iii) Same as (ii) but the distribu-
tion is plotted at the time when the attosecond pulse is emitted (TEmission).
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frequency cutoff compared to collisionless simulations. Therefore,
the intensity of attosecond pulses produced from simulations with
collisions will be reduced only if a frequency range after the fre-
quency cutoff is used, which for the spectra of Fig. 7 occurs at
x=xL � 90.

Within the framework of the CSE model, the location of the fre-
quency cutoff can be determined by analyzing the distribution of the
relativistic Lorentz factors of the emitting electrons within the electron
bunch.16,19 Analytically, the reflected spectral intensity can be calcu-
lated with the following equation:12

IðxÞ / j~f ðxÞj2x�4=3 Ai0 ðx=xcÞ2=3
h in o2

: (1)

In Eq. (1), xc ¼
ffiffiffiffiffi
8a

p
c3, where a is a constant calculated from the

electron trajectories, c ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2=c2

p
is the Lorentz factor of the

electrons at the time of emission, Ai 0 is the derivative of the Airy func-
tion of the first kind, and ~f ðxÞ is the Fourier transform of the electron
bunch shape function. It has been shown, across a wide range of laser
and plasma parameters, that the shape of the electron bunch can be
approximated as a step function since the peak Lorentz factors of the
electrons abruptly jump to their maximum value at the leading edge of
the distribution.16 As a consequence, when the emitted wavelengths
have a comparable size to the emitting electron bunch width, a

FIG. 4. (a) Peak density of the emitting electron bunch (Npeak) as a function of spa-
tial resolution for simulations with collisions [C] and particles/cell¼ 50 (red trian-
gles) and for simulations without collisions [NC] and particles/cell¼ 25 (green
circles), 50 (blue squares), and 100 (black triangles). (b) Npeak as a function of spa-
tial resolution for simulations with collisions [C] and a first-order b-spline (triangle)
shape function (red triangles) and for simulations without collisions [NC] and a
zeroth-order b-spline (top-hat) shape function (green circles), a first-order b-spline
(triangle) shape function (blue squares), and a third-order b-spline shape function
(black triangles). For both plots, the shaded symbols denote the peak density at
TMaxDisp and open symbols denote the peak density at TEmission. Unless otherwise
indicated, all simulations use h¼ 0�, a0¼ 40, N0¼ 200, C¼ 0.95, particles/
cell¼ 50, and the particles are represented by a first-order b-spline. For the colli-
sional cases, a horizontal gray dashed line is plotted at the average value of Npeak
for kL=Dx > 10 000.

FIG. 5. Effects of the spatial resolution on the (a) reflected spectra, (b) the attosec-
ond pulse temporal profile, and (c) the attosecond pulse efficiency in collisionless
simulations for the parameters h¼ 0�, a0¼ 20, N0¼ 100, particles/cell¼ 100, and
C¼ 0.95. In (b), the attosecond pulses were constructed using radiation in the fre-
quency range 40<x=xL < 100. In (c), the attosecond pulse efficiency was com-
puted using radiation in the frequency range (xLF, xUF), where
xLF < x=xL < xUF .

FIG. 6. Attosecond pulse generation efficiency, gatto, as a function of a0=N0 for
three different values of N0, where the attosecond pulses were constructed using
radiation in the frequency range 80 < x=xL < 300. Shaded triangles indicate
simulations without collisions [NC]. The other symbols indicate simulations with col-
lisions [C]. For all simulations h ¼ 30�; kL=Dx¼ 4000, particles/cell¼ 100, and
C¼ 0.95.

Physics of Plasmas ARTICLE pubs.aip.org/aip/pop

Phys. Plasmas 30, 063904 (2023); doi: 10.1063/5.0140028 30, 063904-6

Published under an exclusive license by AIP Publishing

D
ow

nloaded from
 http://pubs.aip.org/aip/pop/article-pdf/doi/10.1063/5.0140028/17992289/063904_1_5.0140028.pdf

pubs.aip.org/aip/php


transition of spectral scaling from the original x�p power-law to
x�p�2 takes place as a result of destructive interference between radia-
tion emitted from different electrons within the electron bunch.

In Fig. 8, the distribution of Lorentz factors for individually emit-
ting electrons within the electron bunch is plotted as a function of the
advanced time coordinate for a collisionless [Fig. 8(a)] and collisional
[Fig. 8(b)] simulation. Here, we see that, although the electrons within
the emitting electron bunch have similar peak Lorentz factors in both
cases, the overall spread in time of the peak Lorentz factors is greater
when collisions are modeled [Fig. 8(c)]. This increased spread in the
peak of the Lorentz factors results in an earlier frequency cutoff for the
case with collisions as illustrated in Fig. 8(d). If we define the bunch
width-induced frequency cutoff (xb) to be the frequency at which the
spectral intensity drops by a factor of 1=e below its initial power-law
scaling, then, xb=xL � 250 in the collisionless simulation and
xb=xL � 150 in the collisional simulation.

V. CONCLUSION

In summary, we present results from one-dimensional particle-
in-cell simulations of relativistic laser–solid interactions, concentrating
on the sub-cycle dynamics of electron bunches and the emitted atto-
second pulses as a function of the laser intensity, plasma density, laser
angle of incidence, and spatial and temporal resolution of the simula-
tions. Specifically, we show that for initial conditions of the laser and
plasma parameters which yield inefficient attosecond pulses, the time
of attosecond pulse emission occurs at t=TL � 0.5, at which point the
electron bunch has expanded close to the original density of the

FIG. 7. Comparison of the electron density spatial distribution, the reflected spectral intensity, and the emitted attosecond pulse for simulations with and without collisions for
the parameters h¼ 30�, N0¼ 500, kL=Dx¼ 8000, particles/cell¼ 150, C¼ 0.95, and varied a0. The top row shows the evolution of the electron bunches from TMaxDisp
through TEmission for simulations without collisions (solid black lines without shading) and for simulations with collisions (dashed blue lines with shading). The distributions in the
left two plots have been scaled up by the factor listed in the upper right corner of the plot to allow for comparison of the profiles across all four values of a0=N0. The bottom
row plots the reflected spectral intensity for both the collisional and collisionless cases. The inset plots on the bottom row compare the attosecond pulses which were con-
structed using radiation in the frequency range 100<x=xL < 300 since that is where we observe the greatest discrepancy between collisional and collisionless simulations.
For a0=N0 ¼ 0.08, a frequency interval of 30<x=xL < 100 was used because this interaction is less efficient, and for x=xL > 100, the intensity drops below the noise level
of the simulation.

FIG. 8. Comparison of the distribution of Lorentz factors for emitting electrons within
the electron bunch for simulations with and without collisions (a) distribution of the rela-
tivistic Lorentz factors of emitting electrons as a function of the advanced time coordi-
nate for a collisionless simulation. The Lorentz factors are colored according to their
peak value, cpeak, as indicated by the colorbars. (b) Same as (a) but with collisions sim-
ulated. (c) Shows only the peak value of the Lorentz factors from (a) and (b) illustrating
the spread of the emitting electron bunch when collisions are simulated. (d) Reflected
spectra of the two cases showing the earlier bunch width-induced frequency cutoff
when collisions are simulated. The simulation parameters are h¼ 45�, a0¼ 80,
N0¼ 200, kL=Dx¼ 10 000, particles/cell¼ 100, and C¼ 0.95.
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plasma, resulting in weak attosecond pulse intensities. In contrast, in
parameter regimes where the highest attosecond pulse efficiencies are
obtained, the attosecond pulses are emitted at a point in time when
the electron bunch has its highest peak density, which occurs at times
exceeding 0.5TL as a result of the increased displacement of the elec-
tron bunch from the initial plasma–vacuum interface.

We find that in collisionless particle-in-cell simulations, there
exists a spatial resolution-dependent growth in the peak density of the
electron bunch, which does not plateau even at extremely high resolu-
tions. Despite the appearance of these sharp density spikes confined to
be within a single cell of the numerical grid, the attosecond pulses and
spectra converge with increasing spatial resolution for a given fre-
quency range.

When binary collisions are added to the PIC model, the peak
electron bunch density initially exhibits the same growth but eventu-
ally converges to a fixed value as the spatial resolution is increased. In
general, modeling collisions lower the attosecond pulse intensity
except in regimes where a0=N0 � 0.6 at a fixed N0 and where
N0 � 500 at a fixed a0=N0. The reduction in attosecond pulse inten-
sity for collisional simulations is a consequence of the increased spread
in time of the peak Lorentz factors of the emitting electrons, which
leads to an earlier frequency cutoff than that obtained in collisionless
simulations.
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APPENDIX: SPACE AND TIME
DISCRETIZATION–NUMERICAL DISPERSION

Relativistic high-harmonic generation experiments are per-
formed in vacuum to avoid the nonlinear effects of high-intensity
laser propagation in air. In vacuum, the dispersion relation of elec-
tromagnetic waves is independent of wavelength, but the algorithm
used in conventional PIC simulations to advance the fields is the
FDTD-based Yee scheme, which has a numerical dispersion rela-
tion and associated group velocity that can be expressed as
follows:26,27

x ¼ 2
Dt

sin�1 C sin kDx=2ð Þð Þ; (A1)

vg
c
¼ 1

c
dx
dk

¼ cos kDx=2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2 sin2 kDx=2ð Þ

p : (A2)

Inspection of Eq. (A2) shows that, for fixed temporal and spatial
resolution, the speed of light in vacuum decreases as the frequency
of the radiation increases. In this section, we show that the
frequency-dependent group velocity present in the FDTD-based
Yee scheme has negligible effect on the propagation of attosecond
pulses for significant propagation lengths as a result of needing high
spatial resolution to resolve the attosecond pulses at the time of
emission. We restrict our focus to one-dimensional particle-in-cell
simulations, but the analysis presented here on the frequency-
dependent group velocity can be extended to two- or three-
dimensional simulations. However, in a two- or three-dimensional
geometry, numerical dispersion will result in additional effects such
as non-specular reflection of harmonics from the plasma–vacuum
interface as has been analyzed previously.41

To illustrate the effects of numerical dispersion on the propa-
gation of attosecond pulses, we analyze the reflected electric field
using spectrograms. The spectrograms are constructed by first mul-
tiplying the reflected electric field by a gating window (here, we use
a Gaussian-shaped window with a full width half maximum of
0.5TL) with a chosen delay, s with respect to the center of the
reflected laser’s temporal envelope. Next, the Fourier transform of
the resulting waveform is computed, yielding a spectrum of the
gated field. Finally, the full spectrogram is constructed by repeating
this process for different delays of the gating window. In Fig. 9,
spectrograms of the reflected electric field from four PIC simula-
tions are plotted, where each simulation was performed using a spa-
tial resolution of either kL=Dx¼ 1500 or kL=Dx¼ 4000 and a CFL
number of either C¼ 0.53 or C¼ 0.95. For kL=Dx¼ 4000 and
C¼ 0.95 [Fig. 9(d)], the spectrogram consists of a vertical line cen-
tered at t¼ 0 which indicates that all frequencies were emitted at
the same time. As kL=Dx is decreased to 1500 and C is decreased to
0.53, the high-frequency radiation of the spectrogram bends toward
later times, reflecting the fact that higher frequencies are traveling
slower than the speed of light.

Numerical dispersion causes a temporal chirp in the propagat-
ing attosecond pulse as a result of the frequency-dependent propa-
gation speeds. However, we emphasize here that, at the high
resolutions needed to resolve the emission of the attosecond pulse
at all, the deleterious effects of group velocity mismatch on the atto-
second propagation are negligible for significant propagation
lengths. Figure 10 illustrates the difference between poorly resolved
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attosecond pulses immediately after the time of emission [Fig.
10(a)] and attosecond pulses that have become temporally chirped
as a result of numerical dispersion after propagating in vacuum for
28 laser periods [Fig. 10(b)]. For the frequency range used to con-
struct the attosecond pulses in Fig. 10 (4 < x=xL < 10), a spatial
resolution of kL=Dx� ¼ 50 is needed to accurately resolve the

attosecond pulse at the time of emission. After propagating for 28
laser periods, the intensity of the attosecond pulse drops by only a
factor of two for kL=Dx¼ 50 and not at all for kL=Dx� 100.

Since we have an analytic expression for the numerical disper-
sion of electromagnetic waves in vacuum (gray lines in Fig. 9), we
can define a criterion that specifies the smallest wavelength for
which the effects of numerical dispersion are negligible based on a
given C, Dx, and propagation length. Here, the effects of numerical
dispersion are considered significant when radiation at a wave-
length, kn, has traveled a distance kn/2 less than it would have if it
propagated according to the continuous dispersion equation. At
this point, the numerically propagated wavelengths greater than or
equal to kn would have completely destructively interfered with the
continuum versions of themselves. According to this criterion, only
the cases in Fig. 10(b) with kL=Dx > 150 will have suppressed the
effects of numerical dispersion.

To get an intuitive feeling for this criterion, we construct ana-
lytic spectrograms across a wide range of CFL numbers [Fig. 11(a)]
and spatial resolutions [Fig. 11(b)]. As illustrated in Fig. 11(a), the
highest resolved frequency approaches the Nyquist–Shannon crite-
rion (x=xL ¼ kL=2Dx) as the CFL number approaches 1.
Theoretically, setting C¼ 1 will allow for dispersion-free propaga-
tion, but the simulation will only be marginally stable. Increasing
the CFL number from C¼ 0.95 to C¼ 0.999 will suppress numeri-
cal dispersion from harmonic order x=xL ¼ 100 to x=xL ¼ 300
when kL=Dx¼ 1000 and a propagation distance of 1kL is used.
Increasing the spatial resolution will also suppress numerical dis-
persion [Fig. 11(b)], but the computational expense (memory and
time) will increase considerably. For comparison, to suppress
numerical dispersion from harmonic order x=xL ¼ 100 to
x=xL ¼ 300 would require increasing the spatial resolution from
kL=Dx¼ 1000 to kL=Dx¼ 6000 when C¼ 0.95 and a propagation
distance of 1kL is used. For these reasons, it is desirable to choose C
close to one for a particular spatial resolution without resulting in
an instability.

FIG. 10. Effects of spatial resolution on the attosecond pulse temporal profile for
the parameters h¼ 0�, a0¼ 40, N0¼ 200, varied kL=Dx, particles/cell¼ 100, and
C¼ 0.95. (a) Attosecond pulses immediately after emission for five different spatial
resolutions. The attosecond pulses are constructed using radiation in the frequency
range 4<x=xL < 10. (b) The same five attosecond pulses but after they have
propagated for 28 laser periods.

FIG. 11. Analytic spectrograms calculated from Eq. (A2). The calculation assumes
all frequencies are emitted at the same time and have propagated for one laser
period. (a) Spectrograms for varied spatial resolution and C¼ 0.95. (b)
Spectrograms for varied CFL number and kL=Dx¼ 2000. The gray dots are
located at a frequency (xn) such that t=TL ¼xL=ð2xn).

FIG. 9. Spectrograms of the reflected electric field from PIC simulations with (a)
C¼ 0.53 and kL=Dx¼ 1500, (b) C¼ 0.53 and kL=Dx¼ 4000, (c) C¼ 0.95 and
kL=Dx¼ 1500, and (d) C¼ 0.95 and kL=Dx¼ 4000. The other parameters of the
simulations are h¼ 0�, a0¼ 40, N0¼ 200, and particles/cell¼ 50. The reflected
electric field propagated for three laser wavelengths before being recorded in time
at a fixed spatial location. The gray line is calculated using Eq. (A2) and assumes
that all frequencies were emitted at the same time.
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We performed a set of simulations with varying spatial and
temporal resolution with C in the range of 0.95–0.999 999 and
kL=Dx in the range of 100–50 000 (Fig. 12). Figure 12(a) shows the
reflected field’s spectrum for three different spatial resolutions and
C¼ 0.999 999. For simulations with kL=Dx < 10 000, an instability
develops which has the fastest growth rate at the Nyquist fre-
quency. To achieve convergence in spectral intensity at
x=xL ¼ 100 requires using a spatial resolution of kL=Dx > 10 000,
which is an order of magnitude higher than if a lower CFL number
of C¼ 0.95 was used. For comparison, the spectrum obtained from
a simulation with C¼ 0.95 and kL=Dx¼ 1000 is plotted in black in
Fig. 12(a).

In Fig. 12(b), the spectral efficiency is plotted as a function of
kL=Dx for three different harmonic orders (xn=xL ¼ 3, 25, 200)
and four different CFL numbers. For C values between 0.95 and
0.99, the numerical error resulting from the instability is negligible
for all kL=Dx. However, for C> 0.99, the instability affects the spec-
tral energy for both low (xn=xL ¼ 3) and high (xn=xL ¼ 200) har-
monic orders and requires at least an order of magnitude higher
spatial resolution for the spectral efficiency to converge to a fixed
value. These results suggest there is no advantage to using a CFL
number greater than 0.99 to mitigate numerical dispersion since a
higher CFL number requires increased spatial resolution to sup-
press the induced numerical instabilities.

In summary, in this appendix, we showed that the minimum
spatial resolution needed to resolve attosecond pulse emission is
also sufficient to suppress the effects of numerical dispersion on the
attosecond pulse temporal profiles for significant propagation
lengths. In addition, although choosing CFL numbers close to one
is a promising way to achieve dispersion-free propagation of har-
monics, it leads to numerical errors as it is close to the stability
limit. These numerical errors can be corrected only by increasing
the spatial resolution, which requires more computational expense
and largely offsets the advantages for choosing a higher CFL
number.
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