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A B S T R A C T   

Determining reaction mechanisms that control the mobility of nutrients and toxic elements in soil matrices is 
confounded by complex assemblages of minerals, non-crystalline solids, organic matter, and biota. Our objective 
was to infer the chemical elements and solids that contribute to As binding in matrices of soil samples from 
different pedogenic environments at the micrometer spatial scale. Arsenic was reacted with and imaged in thin 
weathering coatings on eight quartz sand grains separated from soils of different drainage classes to vary con-
tents of Fe and Al (hydr)oxides, organic carbon (OC), and other elements. The grains were analyzed using X-ray 
fluorescence microprobe (µ-XRF) imaging and microscale X-ray absorption near edge structure (μ-XANES) 
spectroscopy before and after treatment with 0.1 mM As(V) solution. Partial correlation analyses and regression 
models developed from multi-element µ-XRF signals collected across 100 × 100 µm2 areas of sand-grain coatings 
inferred augmenting effects of Fe, Zn, Ti, Mn, or Cu on As retention. Significant partial correlations (r′ > 0.11) 
between Fe and Al from time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis of most samples 
suggested that Fe and Al (hydr)oxides were partially co-localized at the microscale. Linear combination fitting 
(LCF) results for As K-edge μ-XANES spectra collected across grain coatings typically included >80% of As(V) 
adsorbed on goethite, along with varying proportions of standards of As(V) adsorbed on boehmite, As(V) or As 
(III) bound to Fe(III)-treated peat, and dimethylarsinic acid. Complementary fits for Fe K-edge μ-XANES spectra 
included ≥50% of the Fe(III)-treated peat standard for all samples, along with goethite. Our collective results 
inferred a dominance of Fe and possibly Al (hydr)oxides in controlling As immobilization, with variable con-
tributions from Zn, Ti, Cu, or Mn, both across the coating of a single sand grain and between grains from soils 
developed under different pedogenic environments. Overall, these results highlight the extreme heterogeneity of 
soils on the microscale and have implications on soil management for mitigating the adverse environmental 
impacts of As.   

Abbreviations: XRF, X-ray fluorescence; XANES, X-ray absorption near edge structure; TOF-SIMS, Time-of-flight secondary ion mass spectrometry; LCF, Linear 
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citrate-bicarbonate-dithionite; ICP-OES, Inductively coupled plasma – optical emission spectrometry. 
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1. Introduction 

Elevated concentrations of As have been observed in soils and 
groundwaters worldwide, and their negative health impacts are well 
recognized (Bhowmick et al., 2018; Brammer and Ravenscroft, 2009; Li 
et al., 2018; Ravenscroft et al., 2009; Rehman et al., 2018; Shakoor et al., 
2017; Tchounwou et al., 2019). Accumulation of As in these geochem-
ical systems can occur, for example, when naturally enriched As-bearing 
rocks and sediments undergo coupled biogeochemical and hydrologic 
processes that increase As mobility (Gillispie et al., 2016; Gillispie et al., 
2019; Kocar and Fendorf, 2012; Polizzotto et al., 2008; Smedley and 
Kinniburgh, 2002; Wuana and Okieimen, 2011). Efforts to mitigate 
adverse impacts of As on human and ecosystem health have benefitted 
from a mechanistic understanding of the underlying biogeochemical and 
hydrological processes that affect As mobility. 

Direct measurement of reaction mechanisms of As and other trace 
elements in soils is confounded by the complexity of these multi- 
component systems at all spatial scales. Soils in particular have 
spatially varying physical, chemical, mineralogical, and (micro)biolog-
ical properties as a result of long- and short-term pedogenic weathering 
processes (Buol et al., 2003; Hesterberg et al., 2011; Tisdall and Oades, 
1982). Intimately associated minerals, non-crystalline solids, organic 
matter, and biomass are involved in adsorption, (co–)precipitation, 
redox transformations, and biological accumulation of As (Amstaetter 
et al., 2010; Chen and Sparks, 2015; Chen and Sparks, 2018; Fan et al., 
2014; Inskeep et al., 2001; Mikutta and Kretzschmar, 2011; Otero-Fariña 
et al., 2017; Park et al., 2016). Consequently, soil As is distributed be-
tween multiple solid-phase chemical species at any point in time (Borch 
et al., 2010; Fendorf and Kocar, 2009; Fendorf et al., 2010; Gamble et al., 
2018; LeMonte et al., 2017), and it is difficult to directly identify indi-
vidual chemical species with a high degree of specificity (Kizewski et al., 
2011). It is also challenging to measure how individual species respond 
to short- and long-term temporal changes in soil biogeochemical prop-
erties driven by, for example, wetting and drying or (micro)biological 
activity. Highly specific (e.g., molecular-level) knowledge about As 
adsorption/desorption, precipitation/dissolution, and redox trans-
formations in geochemical systems is largely based on research using 
single or multi-component (e.g., clay-organic) model systems containing 
well-characterized solids. These reaction mechanisms are generally 
assumed to be transferable to the more complex biogeochemical 
matrices. However, it remains challenging to directly delineate As 
immobilization and release mechanisms as affected by either individual 
soil-matrix components or multiple, co-localized components that 
potentially interact. 

Arsenic geochemistry is affected by the presence of multiple soil 
components such as (hydr)oxides of Fe, Al, and Mn, and sulfide minerals 
in environmentally relevant conditions such as acid sulfate soils and acid 
mine drainage. For example, acid sulfate soils are Fe- and S-rich and 
usually contain secondary Fe(III) minerals such as goethite, ferrihydrite, 
jarosite, and schwertmannite (Burton et al., 2021; Cheng et al., 2009; 
Johnston et al., 2010; Karimian et al., 2017; Paikaray, 2015; Sullivan 
and Bush, 2004). While these minerals are important sorbents for As, 
they also have potential to release As during redox transitions. For 
example, under reducing condition, As bound to these minerals could be 
released through reductive dissolution of Fe(III) oxides (Bennett and 
Dudas, 2003; Erbs et al., 2010; Schaefer et al., 2017). Moreover, Mn 
oxides present in these systems contribute as a strong oxidant, oxidizing 
As(III) to As(V) or Fe(II) to Fe(III) and act as a redox buffer (Borch et al., 
2010; Wu et al., 2018; Ying et al., 2012). Similarly, acid mine drainage 
also tends to be enriched with Al, Fe, and S and traces of other con-
taminants. Aluminum enriched ferric oxide-hydroxide recovered from 
authentic acid mine drainage has high adsorption capacity of arsenate 
(Muedi et al., 2021). Therefore, determining the contribution of indi-
vidual soil components in As immobilization in complex geochemical 
systems provides insights into effective management strategies for 
mitigating environmental impacts of As. 

Soil matrix components that are responsible for As binding are often 
inferred from µ-XRF imaging coupled with µ-XANES spectroscopic an-
alyses of As and different matrix elements within microsites (Burton 
et al., 2014; Fan et al., 2014; Gräfe et al., 2008; Landrot et al., 2012; 
Langner et al., 2013; LeMonte et al., 2017; Polizzotto et al., 2008; 
Sharma and Hesterberg, 2020; Sharma et al., 2019; Ying et al., 2013). In 
fact, coupling µ-XRF imaging with scanning microscale X-ray absorption 
spectroscopy (µ-XAS) and diffraction (µ-XRD) has yielded highly specific 
molecular bonding information for trace elements concentrated within 
homogeneous subregions of heterogeneous geochemical matrices 
(Manceau et al., 2014; Manceau et al., 2002). Spatial associations be-
tween soil elements are usually inferred from µ-XRF chemical images 
using simple (Pearson) correlations. Sharma et al. (2019) showed that 
this approach can be misleading because simple correlations do not 
decouple effects of multiple elements co-localized within the microscale 
soil volumes, nor do they account for autocorrelations of individual el-
ements across a soil matrix. Moreover, one should be cautious in inter-
preting spatial correlation as it does not definitively show the evidence 
of bonding but rather only suggests its possibility. Furthermore, the 
spatial resolution of the microprobe could also limit the ability to 
decouple the effects of co-localized elements on trace metal accumula-
tion. Many studies understandably utilized mechanisms of As binding in 
model systems such as high-affinity adsorption on Fe (hydr)oxides to 
infer binding mechanisms to similar minerals or poorly crystalline solids 
in soils. However, any confounding effects of less abundant matrix ele-
ments such as Mn, Ti, Cu, Zn, or Ca that might be associated with Fe 
(hydr)oxides are often not separated (Galkaduwa et al., 2018; Gillispie 
et al., 2019; Gräfe et al., 2008; Landrot et al., 2012; Schwer and McNear, 
2011; Strawn et al., 2002). Analytically separating any complex in-
teractions between abundant and minor matrix components that have 
been inferred to affect As immobilization (Gillispie et al., 2016; Power 
et al., 2005; Rao et al., 2015; Yang et al., 2010; Ying et al., 2012; Zhang 
et al., 2013; Zhang et al., 2018a) would provide deeper knowledge of As 
binding mechanisms in soils relative to model systems. 

We proposed spatial-statistical approaches for separating the co- 
localized element effects in µ-XRF images of soil matrices and used 
these approaches to infer multiple solid phases contributing to As 
retention in sand-grain coatings treated with aqueous As(V) solutions 
(Guinness et al., 2014; Sharma et al., 2019; Terres et al., 2018). Results 
from a single sand grain inferred a dominance of As associated with Fe 
(III) and possibly Al(III) (hydr)oxides, with minor augmenting effects of 
co-localized Ca and Ti (Sharma et al., 2019). Here we apply these ap-
proaches to assess As retention in grain coatings from soils developed 
under different pedogenic environments to assess microscale matrix 
effects within and between soils. 

Our overarching research goal is to ultimately resolve reaction 
mechanisms affecting trace-element binding and mobilization in soils 
and other complex, multi-component geochemical matrices. The specific 
objective of this study was to determine the consistency of short-term As 
accumulation in microsites from diverse soil matrices in relation to 
microsite elemental composition, and by inference, soil solids. Spatial 
and non-spatial statistical modeling was used to infer co-localized 
element effects on As binding within soils developed under different 
pedogenic environments. We hypothesized that spatial patterns of As 
accumulation in relation to those of matrix elements will uniquely 
depend on the pedogenic environment. For example, poorly drained 
soils that undergo more frequent oxidation and reduction are expected 
to contain a greater proportion of Fe in poorly crystalline forms like 
ferrihydrite, whereas well-drained, well-aerated soils are typically 
dominated by goethite (α-FeOOH) and hematite (α-Fe2O3) (Schwert-
mann, 1993). Such differences in Fe (hydr)oxide mineralogy should be 
important for As reactivity because poorly crystalline Fe (hydr)oxides 
can adsorb four- to five-fold more arsenate than goethite at a given pH 
(e.g., (Violante and Pigna, 2002). To test our hypothesis, we performed 
partial correlation and spatial and non-spatial statistical modeling of 
µ-XRF imaging data to assess spatial patterns of accumulated As in 
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relation to those of matrix elements in thin coatings of As(V)-treated 
sand grains (Sharma et al., 2019) isolated from different soils. Com-
plementary As and Fe K-edge µ-XANES spectroscopy and TOF-SIMS were 
used for speciation modeling of both As and Fe, and to assess possible 
contributions of Al (hydr)oxides on As accumulation. Findings from this 
study provide insights to properties that control As retention in reactive 
geochemical microsites, which is useful for translating extensive 
knowledge of As reaction mechanisms from model systems to more 
complex, natural geochemical matrices. 

2. Materials and methods 

2.1. Soil sampling and sand grain collection 

Samples of four soils (~2 kg each) with no known As contamination 
were collected from two locations in the Coastal Plain physiographic 
region of North Carolina. Three of the samples were collected in Nags 
Head Woods, two from the A (12–15 cm) and B (30–45 cm) horizons of a 
well-drained soil mapped as Fripp (Thermic, uncoated Typic Quartz-
ipsamments), and one from the Bw horizon (17–21 cm) of a poorly 
drained Osier soil (Siliceous, thermic Typic Psammaquents) developed 
in the depression of a dune area that contained stagnant water. These 
samples are herein referred to as “Fripp A”, “Fripp B”, and “Osier Bw”, 
respectively. The fourth sample was collected within the Greenville, NC 
city limits, where the B horizon (30–40 cm) of a well-drained Buncombe 
soil (Mixed, thermic Typic Udipsamments) on a natural levee was 
sampled, i.e., “Buncombe B”. The samples were placed into Ziploc® 
plastic bags, transported on ice, and stored in a refrigerator without 
drying until physically fractionated to collect sand grains. No special 
precautions were taken to exclude oxygen during sampling and storage. 
Measurements on whole soil samples included soil pH in 1:1 w/v soil: 
water (Thomas, 1996), texture by the hydrometer method (Gee and 
Bauder, 1986), and total C using a CHN Elemental Analyzer (Perki-
nElmer model 2400), which was assumed to represent total organic 
carbon (OC) on these acidic soil samples. Oxalate and citrate- 
bicarbonate-dithionite (CBD) extractable Fe and Al were measured on 
separate soil samples following Jackson et al. (1986). Pseudo-total 
elemental contents were measured by ICP-OES following acid diges-
tion using concentrated HNO3 and HCl, and H2O2 (30%) according to 
EPA Method 3050B (EPA, 1996). 

Quartz sand grains were fractionated from each soil sample by 
dispersion in deionized H2O and wet sieving as described in Sharma 
et al. (2019). Two sand grains from each of the four soil samples were 
selected under an optical microscope for µ-XRF imaging and spectro-
scopic analyses and are herein labeled, for example, “Buncombe B #1” 
and “Buncombe B #2”. The selected grains had visibly thin weathering 
coatings of reddish-colored Fe (hydr)oxide (pictures in Appendix 
Fig. A.1), and a relatively flat area rather than crevices was chosen for 
analyses to avoid signal attenuation. 

2.2. Micro- X-ray fluorescence imaging 

Spatial patterns of As accumulation in relation to detected soil matrix 
elements in each sand-grain coating were assessed using µ-XRF imaging 
on the Submicron Resolution X-ray Spectroscopy (SRX) beamline (5-ID) 
at the National Synchrotron Light Source-II (NSLS-II), Brookhaven Na-
tional Laboratory (Chen-Wiegart et al., 2016), as described in Sharma 
et al. (2019). Here, soil matrix elements are referred to the elements that 
are inherently present in the sand-grain coating. The beamline optics 
and detector set up were similar to that described in Sharma et al. 
(2019), except that a constant beam current of 300 mA was used and the 
sample stage was perpendicular to the beam to maximize spatial reso-
lution. All µ-XRF images were collected at 13.5 keV with 0.5 s dwell time 
and 1 µm × 1 µm pixel size. We merged fluorescence signals collected by 
each of three elements of a Vortex detector that was offset by 15◦ from 
the sample plane. Element-specific fluorescence intensities at each pixel 

were extracted by full spectral fits (Fig. A.6) using the PyXRF software 
(Li et al., 2017) as described in Sharma et al. (2019). These 100 × 100 
µm2 µ-XRF images are herein identified as “ROI-100a”, whereas separate 
images (“ROI-100b”) were collected with a different sample/detector 
geometry to identify locations for collecting µ-XANES spectra as 
described below. 

A unique aspect of our research approach is that we assessed short- 
term reactivity of the sand grain coatings with As(V) directly by 
acquiring µ-XRF images before and after treatment with an aqueous 
arsenate solution, as described by Sharma et al. (2019). Basically, an 
initial fly scan image was collected across one or, in some cases two, 100 
× 100 µm2 areas of a sand grain before As(V) treatment to determine the 
multi-element composition of the weathering coating. The quartz core is 
considered to be unreactive, and the quartz attenuates the X-ray beam so 
that multi-element fluorescence signals mainly arise from the front 
surface coating, which is effectively a “natural thin section” (Sharma 
et al., 2019). After imaging, the kinematic holder with the mounted 
grain was removed from the beamline and reacted in the laboratory for 
30 min with 0.1 mM Na2HAsO4⋅7H2O in a 0.1 mM NaCl background 
solution. Excess aqueous As and perhaps weakly bound As were 
removed by rinsing the treated grain four times with 150 µL aliquots of 
deionized H2O. The treated grain was dried under N2(g), re-mounted on 
the beamline and aligned, and a second µ-XRF image was collected 
across the same, As(V)-treated ROI-100a [see details in Sharma et al. 
(2019)]. The As(V) treatment solution was pre-adjusted to pH 5.5, 
consistent with the average pH of 5.5 ± 0.3 measured on our bulk-soil 
samples. The 30-minute reaction time was chosen mainly to focus on 
adsorption mechanisms at the initial part of the reaction. Hence, micro- 
scale spatial patterns of As accumulated in the grain coatings should 
reflect soil components that immobilize As during an initial exposure of 
soil to arsenate contamination, including fast adsorption reactions 
(Sparks, 1999). For example, Raven et al. (1998) showed that adsorption 
of aqueous arsenate by reactive soil components such as ferrihydrite can 
reach steady state within ≤5 min when treated at sub-maximal 
adsorption levels of ~ 300 mmol As/kg. 

For the second grain from the Buncombe B soil (Buncombe B #2) we 
performed a more intensive set of measurements to assess variability in 
µ-XRF images of accumulated As due to any potential beam-induced 
changes, and between two locations on the same sand grain. These an-
alyses indicated whether any variations in As accumulation in relation to 
soil matrix elements across sand grains from different soils could be 
uniquely ascribed to pedogenic effects, beyond variability on a single or 
multiple grains from the same soil sample. Two 100 × 100 µm2 ROIs (R1 
and R2) separated by <1 mm on the Buncombe B #2 grain were each 
imaged once before and twice after applying the As(V) treatment. These 
images are herein designated as “Buncombe B #2-R1-1” and “Buncombe 
B #2-R1-2” (grain 2, ROI1, replication 1 and 2), and “Buncombe B #2- 
R2-1” and “Buncombe B #2-R2-2”. Overall, duplicate µ-XRF images 
were collected from two different areas of one Buncombe B soil sand 
grain, and single µ-XRF images were collected on the remaining sand 
grains collected from four different soil samples. 

2.3. Micro-XANES spectroscopy 

To select points for µ-XANES analyses, separate µ-XRF images of 100 
× 100 µm2 were collected on one sand grain from each of the four soil 
samples (referred to as ROI-100b) with the Vortex detector set at 45◦ to 
diminish background scattering contributions to spectra. The ROI-100a 
and ROI-100b regions were visually judged, based on physical features 
of the sand grains, to be essentially overlapped for the Buncombe B and 
Fripp B soil samples. However, for the Fripp A and Osier Bw samples the 
two ROIs did not overlap and were offset to a region of greater As 
fluorescence signal to obtain higher quality µ-XANES spectra. Point 
µ-XANES spectra were collected at both the As and Fe K-edges as single 
scans across multiple spots of varying fluorescence signals. Each 
µ-XANES spectrum was collected between 11,842 and 11942 eV for As 

A. Sharma et al.                                                                                                                                                                                                                                 



Geoderma 411 (2022) 115697

4

or between 7087 and 7187 eV for Fe using a minimum step size of 0.25 
eV across the edge region and 0.1 or 0.5 s dwell time, depending on 
signal intensity. The energy of the As µ-XANES spectra was calibrated to 
the white line maximum set at 11874 eV for As(V) in a natural scorodite 
inclusion (Sharma et al., 2019), and that of Fe µ-XANES spectra was 
calibrated to the first derivative maximum (set at 7112 eV) of a spectrum 
collected in fluorescence mode from a 5 µm thick Fe foil. Linear com-
bination fitting analysis for As µ-XANES included spectra from various 
Fe-, Al-, and Ca-bonded arsenate or arsenite standards in adsorbed or 
mineral forms that were collected previously at unfocused beamlines 
(Lopez et al., 2018), along with As2O5 and As2O3 salts (Table A.1, 
Fig. A.2). Standards for fitting Fe µ-XANES spectra included ferrihydrite, 
hematite, magnetite, ferric glass [Fe(III) co-precipitated in aluminosili-
cate glass], goethite, pyrite, siderite, and a Fe(III)-treated peat sample 
(Fig A.2). The Fe(III)-treated peat standard was prepared by reacting 
3600 mmol Fe(III) (as FeCl3) per kg Pahokee peat in a 50 mM KCl so-
lution at pH 6 for 42 h. EXAFS spectra of this standard (not shown) 
showed a higher-shell peak that was similar but not as intense as that of 
ferrihydrite, indicating a combination of Fe-hydroxide polymers as well 
as Fe(III)-NOM complexes. Other standards included here are described 
elsewhere (Rivera et al., 2015). 

The µ-XANES spectra were analyzed using IFEFFIT under the Athena 
interface (Ravel and Newville, 2005). We merged µ-XANES spectra from 
soil microsites of similar chemical composition to obtain higher quality 
spectra for selecting appropriate fitting standards. Given a strong As-Fe 
partial correlation (discussed below), for each grain we first grouped 
and merged non-normalized As µ-XANES spectra into “high” and “low” 
Fe groups, and separately Fe µ-XANES spectra into “high” and “low” As 
groups. The merged spectra within each group had lower spectral noise 
than spectra from individual spots and were used in initial fitting 
analysis to select a subset of standards to include in fits to spectra from 
individual spots (Sharma et al., 2019). The high vs. low groupings were 
determined as having >50% or ≤50% of the maximum fluorescence 
signal for the complementary element for all spots on a given sand grain, 
and more than half of the spots with high or low As corresponded with 
those with high or low Fe, respectively. The spectra for As and Fe 
standards collected at bulk-sample beamlines were baseline subtracted 
using a linear function between −200 and −30 eV and normalized using 
a linear function between 45 and 900 eV, all relative to E0 taken as the 
first derivative maximum. The µ-XANES spectra from sand grains were 
baseline subtracted between −35 and −10 eV. However, sample 
µ-XANES spectra were collected over a shorter relative energy range 
(approximately −25 to 75 eV) and did not exhibit an extended flat post- 
edge region like those of bulk standards. Therefore, the normalization 
range for µ-XANES spectra was selected, along with the “flatten” func-
tion in Athena (Kelly et al., 2008), so that the post-edge region of 
µ-XANES spectra overlaid with spectra of bulk standards exhibiting 
similar post-white line features. 

The initially grouped As and Fe µ-XANES spectra were fit with all 
standards over an energy range of −10 to 25 eV relative to E0 for As- 
XANES or −17 to 35 eV for Fe-XANES. Fits were done using a modifi-
cation of the standard-elimination approach described by Manceau et al. 
(2012), and allowing an energy shift of up to ± 0.25 eV for individual 
standards. The details of the µ-XANES fitting method used here can be 
found in Sharma et al. (2019). Weighting factors on fitting standards 
were not constrained, but were renormalized to sum to 100% (Kelly 
et al., 2008). The LCF results of merged Fe-XANES from different soil 
environments showed that these spectra could all be fit with combina-
tions of goethite and peat reacted with Fe(III) at a loading of 3600 mmol 
kg−1 [Fe(III)-peat 3600] standard. These two standards, which represent 
crystalline and poorly crystalline phases, were then used to fit Fe 
µ-XANES spectrum from individual spots of all samples. For As, how-
ever, individual spectra from low As/Fe regions were too noisy (Fig. A.5) 
to obtain reliable fits. Consequently, merged As µ-XANES spectra with 
low and high As/Fe regions collected from a given sand grain were fit, 
and LCF results included different combinations of these standards: As 

(V) bound to goethite, As(V) bound to Fe(III)-treated peat, As(V) 
adsorbed on boehmite, dimethylarsenic acid, and As(III) bound to Fe 
(III)-treated peat. 

2.4. TOF-SIMS analysis 

We used TOF-SIMS at the NC State Analytical Instrumentation Fa-
cility (NCSU-AIF, 2018), with a pixel size of 0.39 µm × 0.39 µm and 
estimated penetration depth of 3 nm. Spatial distributions of Al and C in 
relation to Fe was determined in areas within 100 µm of ROI-100b of As 
(V)-treated sand grains. We followed the experimental procedure 
described by Sharma et al. (2019), except that initial sputtering was 
done for 68 s to remove surface contamination before collecting data. 
Arsenic was not detected by TOF-SIMS. 

2.5. Statistical analyses 

The µ-XRF data normalized to the incoming X-ray intensity (I0) were 
natural log (ln) transformed, and partial correlation, and spatial- 
likelihood linear regression (spatially correlated error model─also 
referred to as spatial models) and simple multiple linear regression 
(independent error model─referred to as non-spatial models) were 
conducted using R statistical software (RStudio─Version 1.1.383) as 
described by Sharma et al. (2019). The log transformation was applied 
to the data to approximate a normal distribution, which is a criterion for 
conducting linear correlation and regression models. Because some 
features of soil matrix elements in images were visibly changed before 
and after the As(V) treatment (Sharma, 2019), statistical relationships 
were analyzed between fluorescence signals for As and matrix elements 
after the treatment to improve spatial registry of all elements. 

Statistical modeling to describe spatial patterns of As accumulation 
on As(V) treated sand grains in relation to native soil matrix elements 
imaged by µ-XRF involved a combination of spatial and non-spatial 
regression modeling (Sharma et al., 2019). Spatial likelihood linear 
models fit using a ‘GpGp’ package in R (Guinness, 2018a) were used to 
select matrix elements that are significant predictors of As while ac-
counting for autocorrelation (Beale et al., 2010), which is inherent in 
geochemical matrices showing element hotspots. Residuals were 
assumed to follow a Gaussian process and a Matérn isotropic covariance 
function (Guinness, 2018b; Minasny and McBratney, 2005; Minasny and 
McBratney, 2007) with parameters of variance, range, smoothness, and 
nugget. To simplify models for predicting As accumulation to three or 
less matrix elements, significant predictors in spatial models having 
regression coefficients ≤ ±0.05 were excluded, and the remaining pre-
dictors were used to develop non-spatial linear-regression models, 
which give better predictions of accumulated As than spatial models 
(Sharma et al., 2019). 

Furthermore, to assess whether the variation in As(V) retention 
within soils was as significant as the variation between soils, we per-
formed the log likelihood ratio test. The log likelihood ratio test 
informed whether different models are needed to describe variability of 
accumulated As within soils. We combined the data collected across 
ROI-100a on each of the two replicated grains from each soil and fit a 
single non-spatial model to the combined dataset. Then we used the log 
likelihood ratio test to determine whether non-spatial models fit to in-
dividual datasets were significantly (α = 0.05) different than those fit to 
the combined datasets. Similarly, we also tested datasets from two re-
gions within the same grain. 

3. Results 

3.1. Soil properties 

The soil samples from which sand grains were isolated were mostly 
of fine sand texture, with pH between 5.3 and 5.9 (mean = 5.5 ± 0.3; 
Table 1). The samples varied in contents of oxalate or CBD-extractable 
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Fe and Al, and contents of organic C and other matrix elements (Ta-
bles 1, A.2). These differences reflect different pedogenic weathering 
environments. The sample from the poorly drained Osier soil contained 
one to two orders of magnitude less oxalate- and CBD-extractable Fe and 
Al than those from the well-drained Buncombe and Fripp soils. Oxalate 
and CBD-extractable Fe are indicative respectively of poorly crystalline 
+ organic-matter associated Fe and total free Fe (hydr)oxides including 
crystalline forms (Jackson et al., 1986). The ratio of oxalate/CBD Fe is 
generally expected to be greater in poorly drained soils (Schwertmann, 
1993), but this trend did not hold for the Osier Bw sample, perhaps 
because of its overall lower extractable Fe contents (Table 1). Ratios of 
oxalate/CBD Fe between 0.4 and 0.6 for the other three samples suggest 
that Fe is nearly equally distributed between poorly crystalline or 
organic-matter bound Fe and crystalline Fe (hydr)oxide minerals in the 
bulk soil samples. Similarly, oxalate- and CBD-extractable Al contents of 
the soil samples suggest the presence of both poorly crystalline Al hy-
droxides and Al co-precipitated with Fe (hydr)oxides (Jackson et al., 
1986). Although the characterization data in Table 1 indicate that the 
soil samples vary in arsenate sorption properties related to forms and 
amounts of Fe and Al (hydr)oxides and organic matter, these bulk-soil 
characteristics are not necessarily representative of those for surface 
coatings of our selected sand grains, nor within the specific microsites 
analyzed by synchrotron µ-XRF and µ-XANES. 

3.2. Spatial patterns of accumulated As and soil matrix elements 

Fig. 1 shows µ-XRF images of As before and after As(V) treatment 
along with images of Fe, Mn, and Ti after As(V) treatment, acquired 
across ROI-100a for one of the two sand grains collected from each soil 
sample. The remaining µ-XRF images are included in Appendix Fig. A.3. 
Average natural log-transformed values of fluorescence signals across 
each image for each element are shown in Table A.3. We consider the 
µ-XRF signals across a given ROI to generally reflect relative elemental 
contents of microsites within these regions, and averaged fluorescence 
signals were considered to gauge relative abundances of elements be-
tween the 100 × 100 µm2 regions imaged. However, note that the 
coating thickness of the sand grain was not measured in this study, and 
the variability in thickness affects the fluorescence intensities. Never-
theless, our results should be minimally affected as our objective was to 
determine the contribution of matrix elements to accumulate As in a 
given microsite, and the effect of coating thicknesses were assumed to be 
thin enough that any variations in thickness would all similarly affect 
elemental fluorescence signals within a microsite. Prior to the As(V) 
treatment, ROI-100a showed detectable As signals from all samples 
(Figs. 1 and A.3). However, after As(V) treatment the average As fluo-
rescence signal for Buncombe B #1 and Fripp B #1 increased by ~ 14 
fold and that for the remaining samples increased by up to 6.4 fold, 

Table 1 
Selected chemical and physical properties of bulk soil samples from which sand grains were isolated.a.  

Soil sample Drainage class pH Texture Feox FeCBD Feox Alox AlCBD OC 

mg/kg mg/kg FeCBD mg/kg mg/kg % (w/w) 

Buncombe B Well-drained  5.4 SL 1415 ± 141 2264 ± 2  0.63 303 ± 42 549 ± 25 0.17 ± 0.02 
Fripp A Well-drained  5.4 FS 478 ± 9 1329 ± 17  0.36 159 ± 5 348 ± 13 0.55 ± 0.03 
Fripp B Well-drained  5.3 FS 879 ± 6 2099 ± 11  0.42 255 ± 0 500 ± 6 0.24 ± 0.01 
Osier Bw Poorly-drained  5.9 FS <6 151 ± 13  <0.04 <6 115 ± 11 0.27 ± 0.04  

a ox = oxalate extractable; CBD = citrate-bicarbonate-dithionite extractable; OC = organic carbon; FS = fine sand; SL = sandy loam; Numbers represent mean ±
standard deviations of duplicate measurements. Suffix on the sample name indicates horizon designation. 

Fig. 1. µ-XRF images of As [before and after an As(V) treatment] and images of Fe, Mn, and Ti (after the treatment) collected across 100 × 100 µm2 regions of sand 
grains (ROI-100a). Brighter colors in the μ-XRF images represent greater natural log-transformed fluorescence signals for each element analyzed. 
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except for Osier Bw #2. The latter sample showed only 22% increase in 
As signal, suggesting that As(V) accumulated to a lesser extent in this 
grain (Figs. 1 and A.3; Table A.3). Spatial distribution of matrix Fe, Mn, 
Ti, and Zn shown by µ-XRF images as well as scatter plots of As vs. Fe, 
Mn, Zn and Ti (Fig. A.4) indicated that these elements are at least 
partially co-localized in all samples. However, spatial distribution of Si 
did not follow spatial pattern of any native matrix elements, which in-
dicates that Si signals are likely contributed from both the quartz core of 
the sand grain as well as any Si associated with the minerals in the grain 
coating. Overall, visible spatial patterns of accumulated As(V) were 
most similar to those of Fe and Mn, and to a lesser extent Ti, Zn, and Cu. 

Fig. 2 shows µ-XRF images of As and Fe acquired from ROI-100b of 
As(V) treated sand grains where As and Fe µ-XANES were collected, and 
Fig. 3 shows corresponding Fe+, Al+, and C- collected by TOF-SIMS 
within 100 µm of ROI-100b. For all four µ-XRF images, visible spatial 
patterns of accumulated As(V) followed those of Fe (Fig. 2). TOF-SIMS 
images showed visibly similar spatial patterns of Fe and Al especially 
for Buncombe B #1 and Fripp B #1, and to a lesser extent for Fripp A #1 
and Osier Bw #2. No visible similarities in spatial patterns of C and Fe or 
Al was found, perhaps because the C signals were considerably weaker 
than those of the metals (Fig. 3). TOF-SIMS measured Al signals were at 
least two times greater than those of Fe. Furthermore, TOF-SIMS 
measured Al content in the top 3 nm probed by this analysis appeared 
to be greater in Buncombe B #1 followed by Fripp B #1, which is also 
supported by the results from bulk-soil analysis of Al content 
(Table A.2). 

3.3. Correlations of As and soil matrix elements 

Partial correlation coefficients (r′) between (log-transformed) µ-XRF 
signals of As and native soil matrix elements across 100 × 100 µm2 ROIs 
of sand grains (Table 2) inferred that the degree of heterogeneity of 
matrix elements affects As accumulation irrespective of pedogenic 
environment. Our results showed differences in significant partial cor-
relations from two regions of the same sand grain separated by < 1 mm, 
as well as between the two sand grains from the Buncombe B horizon 
(#1, #2 - Table 2). It is noteworthy that the different ROIs on these two 

grains have different overall average (ln-transformed) signals from the 
matrix elements, which potentially affects matrix element speciation 
and reactivity with As(V). Note that such differences in r′ values be-
tween the two sand grains within the soil were also evident in the other 
three soils that we studied. 

Statistically significant (α = 0.05) values of r′ from µ-XRF images 
ranged from −0.21 to 0.61 for ROI-100a and from 0.05 and 0.55 for ROI- 
100b. Note that ROI-100b at least partially overlapped with ROI-100a in 
some cases. Of 13 regions in ROI-100a and ROI-100b imaged, the 
greatest positive correlations were found between accumulated As and 
Fe for nine ROIs, between As and Mn for two ROIs, and between As and 
Ti or Zn for one ROI each; and negative correlations were found in three 
cases between As-Mn, As-Ti, and As-Zn. Also, note that partial correla-
tion results of repeated µ-XRF images in region R1 and R2 of Buncombe 
B grain #2 showed identical r′ values for As-Fe and As-Ti, however, r′ for 
As-Cu showed a difference of 0.11 unit (Table 2), indicating negligible 
beam-induced changes. Collectively, our partial correlation results infer 
a dominance of Fe (hydr)oxides in augmenting As accumulation for all 
samples. However, a statistically significant (α = 0.05) but weak positive 
partial correlation (r′ ≥ 0.11) between Fe and Al determined by TOF- 
SIMS analysis of four sand grains, suggested that Al (hydr)oxides 
likely contributed to As accumulation, consistent with findings of 
Sharma et al. (2019). In fact, the TOF-SIMS analyses indicated greater Al 
than Fe in the sand grain coatings measured (Fig. 3), at least in the top ~ 
30 Å probed by this analysis. 

3.4. Statistical models for predicting As accumulation 

Spatial and non-spatial regression models (Tables 3, A.4 and A.5) 
that predicted As accumulated in ROI-100a and ROI-100b of sand grains 
also inferred that microscale heterogeneity of elements within soil 
microsites affect As accumulation regardless of the soil pedogenic 
environment. Models from sand grains within the same soil, as well as 
from two regions of the same sand grain involved different combinations 
of predictor elements in predicting As accumulation or had different 
regression coefficient values for the given predictor (e.g., Fe, Zn, and Ti). 
Of 15 spatial models developed for ROI-100a and ROI-100b, eight of 

Fig. 2. µ-XRF images of As and Fe acquired across 100 × 100 µm2 regions (ROI-100b) of As(V) treated sand-grains showing numbered spots (black circles) where 
individual As and Fe µ-XANES spectra were collected. Brighter colors in the μ-XRF images represent greater natural log-transformed fluorescence signals for each 
element analyzed. Spots that have >50% or ≤50% of the maximum fluorescence signal of As/Fe were designated as high (H) or low (L) As/Fe spots for 
µ-XANES analysis. 
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them included four or five significant (α = 0.05) predictors. In all spatial 
models Fe was the predictor with the greatest regression coefficient, and 
in 12 of the models Fe had regression coefficients ≥ 0.5. Elimination of 
any predictor with coefficients ≤ ±0.05 in the spatial models produced 
all non-spatial models with a maximum of three predictors. For essen-
tially all cases, the non-spatial models gave better predictions (greater 
R2) but greater Akaike Information Criteria (AIC) values than the spatial 
models (Tables 3; A.4; A.5), consistent with Sharma et al. (2019). The 
AIC values estimate the relative quality of each statistical model for a 
given set of data based on the number of parameters included in the 

model and the log likelihood value (Ma et al., 2017). Fig. 4 compares 
how well the non-spatial models predict As fluorescence signals for 
different samples. 

Iron was among the strongest predictors for non-spatial models along 
with Cu, Zn, Ti, or Mn (Table 3 and A.5). Additionally, most of the 
models in ROI-100b and a few in ROI-100a also showed that Fe was the 
sole predictor of As accumulation, consistent with As µ-XANES fit results 
which showed a dominance of Fe-bonded As(V) standards (discussed 
below). It is important to note that the µ-XRF fluorescence signals for Fe 
were orders of magnitude greater than those for these other elements 

Fig. 3. TOF-SIMS elemental images of Fe+, Al+, and C- collected within 100 µm of ROI-100b on the sand grains from different soil environments. Brighter colors in 
the elemental images indicate greater ion counts on a linear scale. 
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(Figs. 1, A.3; Table A.3), although natural log transformation diminishes 
this discrepancy in the regression models. In all but one case (Zn in 
model 1), regression coefficients were positive and inferred an aug-
menting effect of the predictor elements on As accumulation (Table 3 

and A.5). Note that the poor model prediction was found for Osier Bw 
#2 in ROI-100a (R2 = 0.01) and ROI-100b (R2 = 0.26), perhaps because 
As accumulation was minimally greater than the native As in this grain 
(Fig. A.3). 

Our results from log likelihood ratio tests of non-spatial regression 
models (Table A.6) showed significant differences between the models 
for sand grains from the same soil, as well as for two regions of the same 
sand grain. Thus, unique models were generally needed to describe As 
accumulation from any µ-XRF image collected on any area of a sand- 
grain coating. These results infer that the variability of As-matrix 
element relationships within a given soil can be as significant as the 
variability between soils from different pedogenic environments. 
Moreover, the result of this test for repeated µ-XRF images from the same 
area on the same grain were not statistically significant, which indicated 
that beam-induced effects have minimal contribution to variability in 
µ-XRF images. Overall, our regression models inferred that soil compo-
nents containing multiple matrix elements, e.g., Fe, Mn, and perhaps Ti 
(hydr)oxides contribute to As sorption within the soil microsites of our 
samples, with an augmenting effect of Cu or Zn in many cases. 

3.5. Speciation of soil As and Fe 

Variations in linear combination fitting results for As and Fe 
µ-XANES spectra showed the extent of spatial variations in As and Fe 
speciation within soil microsites on grains from within or between 
different pedogenic environments (Tables 4–6; Figs. 5 and 6). Overall, 
the As µ-XANES spectra collected on the sand grains had visibly similar 
spectral features, but showed minor differences in white line intensities 
or breadth (Fig. 5). Similarly, Fe µ-XANES spectra showed only minor 
visible differences in spectral features (Figs. 5 and 6). Fitting results for 
As included >80% of a standard of As(V) adsorbed on goethite for all but 
the Osier Bw #2 high-As sample, along with various proportions of three 
other standards (Table 4). The standard of As(V) adsorbed on Al oxy-
hydroxide (boehmite) accounted for most of the remaining spectral 
features in five of the samples, with the Osier Bw #2 high-As sample 
including 8% As(III) in the fit. Although the averaged Fe µ-XANES 
spectra for high and low-As spots were largely fit with a standard of Fe 
(III) bound with peat at 3600 mmol Fe kg−1 peat (Table 5), fits to spectra 
from individual spots showed greater variation between this and a 
goethite standard, especially for the Buncombe B #1 sample for which 
the most spots were analyzed (Table 6). 

The standard of As(V) adsorbed on goethite dominated the fits for As 
µ-XANES merged for low- and high-Fe regions, however, no statistically 
significant (α = 0.05) correlation was found between fitted proportions 
of this standard (Table 4) and corresponding ln-transformed µ-XRF sig-
nals for Fe averaged across all spots within the group. Similarly, the 
fitted proportions of the two Fe standards to Fe µ-XANES spectra showed 

Table 2 
Partial correlation coefficients (r′) showing significant (α = 0.05) correlation 
between natural log-transformed µ-XRF signals of As and soil matrix elements 
across ROI-100a and ROI-100b, and between TOF-SIMS signals of Fe and Al 
(ROI-100b only) for sand grain samples.a.  

Sample ID Matrix Elements Partial correlation (r’) 

ROI-100a (µ-XRF)   
Buncombe B #1 Mn  0.41  

Fe  0.20  
Zn  −0.21 

Buncombe B #2-R1-1 Fe  0.47  
Cu  0.40 

Buncombe B #2-R1-2 Cu  0.51  
Fe  0.47 

Buncombe B #2-R2-1 Ti  0.37  
Fe  0.30 

Buncombe B #2-R2-2 Ti  0.37  
Fe  0.30 

Fripp A #1 Fe  0.40  
Ti  0.35 

Fripp A #2 Fe  0.54  
Ni  0.24 

Fripp B #1 Fe  0.61  
Mn  −0.21 

Fripp B #2 Fe  0.59  
Ti  0.37 

Osier Bw #1 Fe  0.42  
Ni  0.27 

Osier Bw #2 Fe  0.21  
Ti  −0.17  

ROI-100b (µ-XRF)   
Buncombe B #1 Mn  0.51  

Fe  0.08 
Fripp A #1 Zn  0.55  

Fe  0.53 
Fripp B #1 Fe  0.46  

Ti  0.36 
Osier Bw #2 Fe  0.31  

Cr  0.25  

ROI-100b (TOF-SIMS)   
Buncombe B #1 Fe-Al  0.03 
Fripp A #1 Fe-Al  0.26 
Fripp B #1 Fe-Al  0.11 
Osier Bw #2 Fe-Al  0.24  

a For the Buncombe B #2 sand grain, “R1” and “R2” represent two different 
100 × 100 µm2 regions, and “−1”, and “−2” represent duplicated images of the 
same ROI. 

Table 3 
Non-spatial models for describing As accumulation in relation to soil matrix elements based on µ-XRF fluorescence signals from elements in ROI-100a imaged on sand 
grains. Models include significant predictors with coefficients ≥ 0.05 from corresponding spatial likelihood models shown in Table A.4, and “e” represents model 
residuals. The AIC values estimate the relative quality of each statistical model for a given set of data based on the number of parameters included in the model and the 
log likelihood value.  

Sample ID Eq. no General form of the Models Log likelihood AIC R2 

(As = constant + predictor 1 + predictor 2 + … + e) 

Constant Predictor 1 Predictor 2 Predictor 3   

Buncombe B #1 1  7.95 0.74 Mn 0.40 Fe –1.12 Zn −7218.4  14446.8  0.64 
Buncombe B #2-R1-1 2  −5.73 0.97 Cu 0.51 Fe  −4502.7  9013.4  0.38 
Buncombe B #2-R1-2 3  −5.87 0.97 Cu 0.52 Fe  −4643.9  9295.7  0.44 
Buncombe B #2-R2-1 4  −0.98 0.67 Fe 0.18 Zn  −3327.4  6662.9  0.78 
Buncombe B #2-R2-2 5  −0.90 0.67 Fe 0.17 Zn  −3373.0  6753.9  0.78 
Fripp A #1 6  −1.23 0.57 Fe 0.26 Ti 0.05 Zn −504.3  1018.6  0.72 
Fripp A #2 7  −11.27 0.80 Ti 0.67 Zn 0.62 Fe −7817.1  15644.3  0.67 
Fripp B #1 8  −2.77 1.01 Fe   −2301.7  4609.4  0.85 
Fripp B #2 9  −4.87 0.87 Fe 0.48 Zn  −9305.4  18618.8  0.66 
Osier Bw #1 10  −3.66 0.63 Zn 0.50 Fe  −716.6  1441.2  0.67 
Osier Bw #2 11  5.73 0.14 Fe   −9226.7  18459.3  0.01  
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no significant (α = 0.05) correlation with the corresponding ln- 
transformed Fe fluorescence signals from ROI-100b for all four sand 
grains. In general, these results suggest that the proportion of Fe- 
associated As species does not change systematically with Fe content 
of microsites. Microsite characteristics other than Fe content, possibly Al 
content or effects of other elements could perhaps affect the proportions 
of Fe associated As species, and Fe speciation. 

4. Discussion 

4.1. Soil microsites selection 

Soil samples from which the sand grains were isolated for this study 
had similar pH but were generally weathered under different drainage 
conditions, and they showed differences in extractable Fe and Al, 
organic C, and overall elemental composition (Tables 1, A.2). Studies 
have shown that soil sand fractions can adsorb as much as 60% of the 
total P which was found to be associated with Fe rich amorphous alu-
minosilicates in sand-grain coatings (Arai and Livi, 2013). Because As 
(V) has similar chemical structure to phosphate, a substantial amount of 

As(V) is also expected to be adsorbed in the sand-grain coatings, and 
hence quartz sand grains with surface coatings were selected for ana-
lyses. The advantage of analyzing sand grains is that it allows us to 
remove the sample from the beam and acquire µ-XRF images on the 

Fig. 4. Scatter plots of predicted vs measured natural log-transformed As µ-XRF signals for non-spatial predictive models developed for ROI-100a and ROI-100b. Plot 
labels correspond with equation numbers in Tables 3 and A.5, and 1:1 lines represent a perfect match between data and predictions. 

Table 4 
Linear combination fitting results showing combinations of standards giving best fits to As µ-XANES spectra collected and merged for high (H) and low (L) Fe regions on 
a sand grain selected from each of four soil samples (fits are overlaid on spectra in Fig. 5a).  

Sample ID Proportions of standards ± uncertainty a R-factor 

As(V)-goethite (adsorbed) As(V)-Fe-peat As(V)-boehmite (adsorbed) DMA As(III)-Fe-peat 

Buncombe B #1 - H 82 ± 2   18 ± 3   0.0073 
Buncombe B #1 - L 87 ± 5  13 ± 5    0.0015 
Fripp A #1 - H 83 ± 7  17 ± 7    0.0032 
Fripp A #1 - L 89 ± 7 11 ± 7     0.0045 
Fripp B #1 - H 87 ± 5  13 ± 5    0.0019 
Fripp B #1 - L 87 ± 5  13 ± 5    0.0021 
Osier Bw #2 - H 64 ± 10  28 ± 12  8 ± 3  0.0129 
Osier Bw #2 - L 89 ± 2   11 ± 2   0.0091  

a As(III) or As(V)-Fe-peat represents As(III) or As(V) sorbed on peat pretreated with 2400 mmol Fe/kg, and DMA = dimethylarsinic acid. 

Table 5 
Linear combination fitting results showing combinations of standards giving 
best fits to Fe µ-XANES spectra collected and merged for high (H) and low (L) As 
regions on a sand grain selected from each of four soil samples (fits are overlaid 
on spectra in Fig. 5b).  

Sample ID Proportions of standards ± uncertainty R-factor 

goethite Fe(III)-peat 3600 a 

Buncombe B #1 - H  100 ± 11  0.0008 
Buncombe B #1 - L 45 ± 6 55 ± 5  0.0007 
Fripp A #1 - L  100 ± 7  0.0010 
Fripp B #1 - H 48 ± 4 52 ± 3  0.0006 
Fripp B #1 - L  100 ± 6  0.0009 
Osier Bw #2 - H  100 ± 7  0.0009 
Osier Bw #2 - L  100 ± 7  0.0019  

a Fe(III) treated peat samples with Fe reacted at 3600 mmol Fe/kg peat. 

A. Sharma et al.                                                                                                                                                                                                                                 



Geoderma 411 (2022) 115697

10

same area before and after As(V) treatment to assess short-term reac-
tivity of As(V). Natural sand grains are not perfectly flat or smooth, 
hence areas on the surface where good signals could be obtained and 
signal attenuation could be avoided (for e.g., relatively flat regions 
rather than the crevices) were selected for analyses. Although natural 
samples are often thin sectioned to achieve flat samples (Gillispie et al., 
2016; Gillispie et al., 2019; Langner et al., 2013; Strawn et al., 2002), 
thin sectioning of the sand grains precludes us from treating the grain 
coatings with As(V), and therefore natural sand grains were used for 
analyses. 

For the objective of our work, which is to determine if there is 

variation in As accumulation in soil microsites that are isolated from 
soils with contrasting properties, different microsites from different 
grains were selected. The selected microsites contained suites of ele-
ments and represented the natural soil setting. Also, the images of 
selected microsites contained large numbers of data points (i.e., 10,000), 
which is sufficient for statistical analyses (Guinness et al., 2014; Terres 
et al., 2018). 

4.2. Contributions of multiple-elements to As accumulation in soil 
microsites 

Overall, our statistical modeling of µ-XRF images and µ-XANES 
spectral analyses inferred that arsenate reactivity and binding depended 
on the combination of elements within microscale regions of soil 
matrices developed within or across different pedogenic environments. 
The non-spatial, predictive models from µ-XRF images and results of LCF 
analysis of As µ-XANES spectra suggested that Fe was consistently the 
most dominant matrix element predicting As retention within soil 
microsites, with varying degrees of augmentation by solids containing 
Mn, Ti, Zn or Cu (Tables 3, A.5). This evidence for preferential As(V) 
binding to Fe (hydr)oxides on the coatings of sand grains evaluated here 
is consistent with high-affinity bonding of arsenate to various Fe (hydr) 
oxides as inner-sphere surface complexes, which have been deduced 
from studies on model systems (Di Iorio et al., 2018; Dzade and De 
Leeuw, 2018; Fendorf et al., 1997; Manceau, 1995; Waychunas et al., 
1995). 

The inclusion of Mn, Ti, Cu or Zn in our statistical models for 
describing As accumulation suggests that Fe-(hydr)oxides alone do not 
account for As binding; however, the mechanisms of enhanced As 
retention by solids containing these elements are not clear. Studies have 
shown that under natural conditions, Mn oxides co-localized with Fe can 
enhance As(V) accumulation by preventing reductive dissolution of Fe 
oxides; Mn oxides act as a redox buffer (Borch et al., 2010; Gillispie 
et al., 2019). Additionally, Mn oxides can rapidly oxidize As(III) to As 
(V), enhancing adsorption of As(V) to Fe (hydr)oxides and Mn oxides 
(Lafferty et al., 2010; Manning et al., 2002; Wu et al., 2018; Ying et al., 
2012). Arsenic(V) most likely coordinates with MnO2 via bidentate 
binuclear corner sharing complex (Lafferty et al., 2010; Manning et al., 
2002). We reacted our samples with As(V), and As µ-XANES spectral fits 
only showed evidence for minor (<10%) As(III) in one sample (Osier Bw 
#2-H). This sample was derived from a soil developed under the most 
reducing pedogenic conditions, as implied from characteristics in 
Table 1 and soil classification. Iron µ-XANES spectra showed no evi-
dence for reduced Fe in any of our samples, and area-averaged µ-XRF 
signals indicated that Mn was less abundant than Fe in all samples 
(Table A.3). 

Enhanced As(V) sorption by Fe (hydr)oxides in the presence of Zn, 
Cu, or Ti has been shown from studies on model systems (Gräfe et al., 
2004; Rao et al., 2015; Zhang et al., 2013). Similarly, As adsorption was 
enhanced when Fe, Ti and Mn co-existed as a composite oxide (Zhang 
et al., 2018b). However, such effects cannot be isolated at the microscale 
of µ-XRF imaging. Also, although we could not detect Al by µ-XRF 
analysis, significant contributions of Al (hydr)oxides to As retention in 
our soil samples was implied by: (i) a greater abundance of Al and a 
weak but significant correlation (r′ > 0.11) between Al and Fe deter-
mined by TOF-SIMS analysis (Fig. 3); (ii) As µ-XANES fits that included 
13–28% of a standard of arsenate adsorbed on boehmite (Table 4); and 
(iii) a documented adsorption capacity of Al (hydr)oxides for arsenate 
reported for model systems (Goldberg, 2002; Violante and Pigna, 2002). 

Collectively, the statistical relationships between accumulated As 
and soil matrix elements were found to be highly variable within and 
between soils. Differences in partial correlation and regression co-
efficients found in two regions of the same sand grain, as well as between 
the two sand grains from the same soil (Tables 2 and 3) indicate that the 
degree of heterogeneity of matrix element affects As accumulation 
irrespective of pedogenic environment. In essence, our results indicate 

Table 6 
Linear combination fitting results showing combinations of two standards 
[goethite and Fe(III)-treated peat 3600 a] fit to individual Fe µ-XANES point 
spectra collected from individual sand grains from four soil samples (fits are 
overlaid on spectra in Fig. 6).  

Sample ID Fe fluorescence 
intensity (log 
values) 

As fluorescence 
intensity (log 
values) 

Proportions of 
standards ±
uncertainty 

R- 
factor 

goethite Fe(III)- 
peat 
3600a 

Buncombe 
B #1      

1 9.8  7.4 15 ± 8 85 ± 8  0.0013 
2 10.1  5.4 0 100 ±

7  
0.0012 

3 10.5  7.1 34 ± 8 66 ± 7  0.0012 
4 10.6  7.4 53 ± 5 47 ± 5  0.0014 
5 9.9  5.4 7 ± 8 93 ± 8  0.0015 
6 10.4  8.0 14 ± 10 86 ±

10  
0.0022 

7 10.8  7.4 94 ± 9 6 ± 8  0.0017 
8 11.2  8.5 22 ± 10 78 ±

10  
0.0022 

9 10.8  8.5 0 100 ±
7  

0.0025 

10 10  7.4 0 100 ±
9  

0.0038 

11 10.2  7.3 0 100 ±
16  

0.0057 

12 10.2  6.9 100 ± 0 0  0.0006 
13 10  6.9 13 ± 4 87 ± 4  0.001 
14 10.8  8.3 43 ± 5 57 ± 5  0.0013  

Fripp A #1      
1 9.5  5.0 0 100 ±

9  
0.0017 

2 9.3  5.4 0 100 ±
7  

0.0011 

3 9.2  5.8 0 100 ±
7  

0.001  

Fripp B #1      
1 11.6  8.4 53 ± 6 47 ± 6  0.0007 
2 11.4  8.4 38 ± 5 62 ± 5  0.0007 
3 11  7.9 0 100 ±

5  
0.0014 

4 9.8  7.3 0 100 ±
7  

0.001 

5 9.8  7.4 0 100 ±
5  

0.0013 

6 10.2  7.6 0 100 ±
9  

0.0017  

Osier Bw 
#2      

1 10  7.3 0 100 ±
7  

0.0011 

2 11.2  6.8 26 ± 5 74 ± 5  0.0011 
3 10.8  5.8 0 100 ±

6  
0.0015 

4 8.7  7.3 0 100 ±
5  

0.0027  

a Fe(III) treated peat samples with Fe reacted at 3600 mmol Fe/kg peat. 

A. Sharma et al.                                                                                                                                                                                                                                 



Geoderma 411 (2022) 115697

11

Fig. 5. Arsenic and iron K-edge XANES spectra: merged As µ-XANES spectra (black lines) with overlaid fits (red points) corresponding with models tabulated in 
Table 4 for high (H) and low (L) Fe regions (a); merged Fe μ-XANES spectra and overlaid fits (Table 5) for high and low As regions (b); and bulk spectra for As (c) and 
Fe (d) standards included in linear-combination fitting analyses. Regions that have >50% or ≤50% of the maximum fluorescence signal of As/Fe are determined as 
high (H) or low (L) As/Fe regions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Individual Fe K-edge μ-XANES spectra (black lines) collected from Buncombe B #1 (a), Fripp A #1 (b), Fripp B #1 (c), and Osier Bw #2 (d), along with 
overlaid fits (red points) corresponding with models tabulated in Table 6. Numbers on each µ-XANES spectrum correspond to spots denoted in Fig. 2. Spectra that fall 
under high As region include: 6, 8, 9, 10, and 14 for Buncombe B #1; 1, 2, 3, 5, and 6 for Fripp B #1, and 1, 2, and 4 for Osier Bw #2. All three spectra for Fripp A #1 
fall under the low As region. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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that microscale variations in matrix composition affect As accumulation, 
and Fe, Al, as well as less abundant Mn, Zn, Ti, and Cu contribute to the 
differences in As accumulation. In light of the studies that showed effects 
of microscale heterogeneity on As accumulation (Gillispie et al., 2019; 
Strawn et al., 2002), it is important to consider chemical heterogeneity 
within microenvironments to more accurately predict As mobility. 

4.3. Influence of Fe on As accumulation in diverse microsites 

Numerous studies have shown high-affinity, inner-sphere surface 
complexation of As(V) by Fe in Fe(III) (hydr)oxides as discussed above. 
However, the amount of accumulated As on the solids depends on the 
redox state of the soil, where the Fe and As content in the solids are 
controlled likely due to reductive dissolution of Fe(III) oxides (Bennett 
and Dudas, 2003; Erbs et al., 2010; Schaefer et al., 2017; Schwertmann, 
1991). Therefore, one can expect to have variations in Fe contributions 
to accumulation of As in different soils. 

Our regression models from µ-XRF images indicated that the 
contribution of Fe to accumulate As varied across soil microsites, indi-
cated by differences in regression coefficients for Fe which ranged from 
0.14 to 1.01 (Table 3 and A.5). Such variations in Fe contributions is 
conceivable because the soils which developed under poorer drainage 
conditions, such as the Osier soil sampled here, are exposed to more 
reducing conditions. Such conditions are expected to have different 
proportions of crystalline vs. poorly crystalline forms of Fe (hydr)oxides 
because of more frequent reductive dissolution-oxidative precipitation 
cycles (Schwertmann, 1993). Poorly crystalline Fe (hydr)oxides adsorb 
four- to five-fold more arsenate than goethite, at a given pH (Violante 
and Pigna, 2002). Our Osier Bw sample showed the least amount of total 
Fe content (Table 1) in the bulk sample and a dominant fit with the Fe 
(III)-treated peat standard (Table 6), a poorly crystalline form of Fe. It 
is noteworthy, however, that As accumulation in ROI-100a of our Osier 
Bw #2 grain was minimally greater than the native As detected by µ-XRF 
analysis in this sample region. Sand grains from well-drained soils, 
particularly the Buncombe B sample, showed the greatest amount of 
total Fe in the bulk sample (Table 1) and Fe µ-XANES fits for this soil 
showed a greater average proportion of a goethite standard (28 ± 34%, 
n = 14) compared with the samples of Fripp A (none detected in three 
spots), Fripp B (15 ± 24%; n = 6), or Osier Bw (6 ± 13%) samples, 
although the results are highly variable (Table 6). Another interesting 
result was found in sample Fripp B #1-ROI-100a, where the accumu-
lated As appeared to be nearly as high as for Buncombe B#1-ROI-100a 
despite having a relatively low Fe content. This could be attributed to 
the contribution of Al on As accumulation, which is supported by As 
µ-XANES fits that indicated the As(V) bound to Al standard accounting 
for 13% of the spectral features in this sample (Table 4), and the bulk- 
soil analysis showed a considerable amount of Al (2000 mg/kg – 
Table A.2) present in this soil. Finally, we also wanted to point out that 
while the LCF results of Fe µ-XANES suggested the predominance of Fe 
(III) bound to peat standard, the fit results of As µ-XANES suggested the 
predominance of As(V) bound to goethite. This result suggests a higher 
affinity of As(V) for goethite in the sample. Although intrinsic surface 
complexation constants for As(V) are higher for goethite than amor-
phous iron oxide (Dixit and Hering, 2003), interpretation of spectral fits 
from our heterogeneous samples in terms of definitive speciation is only 
tentative (Sharma and Hesterberg, 2020). 

While statistical analyses of µ-XRF images and µ-XANES spectral 
analyses allowed us to decouple the effects of co-localized elements on 
As accumulation, the ability of the micro-focused techniques to decouple 
the effects of co-localized matrix elements more accurately is limited by 
the micron-scale spatial resolution of the microprobe. Soil heterogeneity 
persists even at the smallest spatial scale (e.g., sub-micrometer) and 
probing a soil matrix with a probesize larger than the size of the solid 
phase provides only average information. A high resolution probe (for e. 
g., nanoprobe) would be more ideal to capture submicroscale soil het-
erogeneity and unmask the effects of co-localized elements on As 

accumulation. 

5. Conclusions 

Multivariate statistical models and partial correlation analyses of 
µ-XRF images combined with µ-XANES spectroscopic analyses of As(V)- 
treated sand grains showed significant variations in geochemical effects 
of matrix elements on As retention. Such variations were evident be-
tween imaged areas of sand grains from within one soil as well as be-
tween different areas of a single sand grain. In fact, variations in the 
relative importance of each predictor element between different 
microsites were found. These results indicated that the degree of 
microscale heterogeneity of matrix elements affects As accumulation 
regardless of the pedogenic environment. 

Our collective results implied that both Fe and Al (hydr)oxides were 
dominant soil components responsible for As(V) retention in these soil 
matrices and microsites, consistent with the high-affinity adsorption of 
arsenate shown for these adsorbents in model systems. However, our 
statistical analyses also inferred that As binding was enhanced by less 
abundant Mn, Zn, Ti, and Cu in solids within microsites of our samples. 
We cannot determine at the spatial scale of our µ-XRF data whether Ti, 
Zn, or Cu bearing solids were present in distinctly separated phases 
within microsites versus associated into complex, submicrometer-sized 
assemblages. However, given that co-localization of Fe and Ti is 
evident, it is possible that Ti is structurally incorporated in iron oxides. 
Titanium is commonly found to be combined with Fe in soils, and direct 
replacement of Fe by Ti within goethite has been reported (Fitzpatrick 
et al., 1978; Wells et al., 2006). Similarly, Zn and Cu are also reported to 
associate with goethite, with some proportions of these elements being 
present in the structure of the iron oxides (Manceau et al., 2000; Singh 
and Gilkes, 1992). Elucidating possible mechanisms by which Ti, Cu or 
Zn enhance As accumulation would require analyses that are more tar-
geted to these elements, for e.g., µ-XAS analyses at the Ti, Cu, and Zn 
edges. 

More than 95% of trace elements are sequestered in soil solids via 
formation of strong surface complexes; however, minor changes in 
aqueous concentrations can have a disproportionate effect on element 
toxicity (Hesterberg, 1998; McBride, 1989). Thus, even a minor 
contribution of matrix elements to enhance As immobilization could 
play an important role in minimizing environmental impacts of As 
release. Our results suggested that minor matrix elements such as Mn, Ti, 
Zn, or Cu are potentially important in terms of their contribution to As 
immobilization. Therefore, the impacts of these minor soil-matrix ele-
ments on immobilizing As and the underlying molecular mechanisms of 
immobilization are important next steps for future research, specifically, 
the multicomponent heterogeneities affecting trace element binding in 
geochemical matrices. 
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