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Abstract. This paper is concerned with fully discrete finite element methods for approximating variational solu-
tions of nonlinear stochastic elastic wave equations with multiplicative noise. A detailed analysis of the properties
of the weak solution is carried out and a fully discrete finite element method is proposed. Strong convergence in
the energy norm with rate &'(k+ h") is proved, where k and & denote respectively the temporal and spatial mesh
sizes, and r(> 1) is the order of the finite element. Numerical experiments are provided to test the efficiency of
proposed numerical methods and to validate the theoretical error estimate results.
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1. INTRODUCTION

This paper is concerned with numerical approximations of the following stochastic elastic
wave equations with multiplicative noise of Ito type:

u,; —div (o(u)) = F[u] + G[ul in 2r :=(0,T) x 9, (1.1)
u(0,-)=ug, w(0,-)=vy in2, (1.2)
u(t,)=0 ond%r:=(0,T) x93, (1.3)

*Corresponding author: Xiaobing Feng.
E-mail address: xfeng@utk.edu (X. Feng), yukun.li@ucf.edu (Y. Li), yjlin2018 @mail.nwpu.edu.cn (Y. Lin).
Received September 12, 2021; Accepted October 3, 2022.

(©2022 Communications in Optimization Theory



2 XIAOBING FENG, YUKUN LI, YUJIAN LIN

where u; = ‘é—‘l‘, E=W= % is the white noise, 2 C RY (d = 2,3) is a bounded domain, (ug, v)
is an Htl) x L2-valued random variable, and

o(u) = (Adivu)l+ pe(u), (1.4)
g(u) = %(Vu—i— (Vva)h), (1.5)
Flu] = F(u,Vu), (1.6)
G[u] = G(u,Vu). (1.7)

Here I denotes the unit matrix. F[u] and G[u] are two given nonlinear mappings satisfying some
structure conditions. The multiplicative noise G[u]& has the following three cases:

Case 1. W is a R-valued Wiener process which is defined on the filtered probability space
(Q, F,{% }o<i<T,P), and G[u] is d-dimensional nonlinear mapping;

Case 2. W is a R%-valued Wiener process , and G[u] is a scalar nonlinear mapping;

Case 3. W is a Rl-valued Wiener process, G[u] is a d x [ matrix, then GW is a d-dimensional
multiplicative noise.

For the sake of presentation clarity, we only consider Case 1, For the other two cases, it can be
shown that the same results still hold.

Wave propagation is a fundamental physical phenomenon, and it arises from various appli-
cations in geophysics, engineering, medical science, biology, etc. There is a large amount of
literature on numerical methods for deterministic acoustic wave equations, we refer the reader
to[1,3,4,5,7,8,16, 17,21, 22,29, 32, 33, 35, 38, 40] and the references therein for a detailed
account. Moreover, numerical methods for stochastic acoustic wave equations have also been
intensively developed in the last few years, see [2, 10, 12, 14, 15, 18, 20, 23, 24, 26, 27, 30, 37].
Similarly, the elastic wave equations are also of great importance and find applications in geo-
science for modeling seismic waves and in medical science for tumor detection as well as in
materials science for non-destructive testing. Although there is a large literature in numeri-
cal methods for deterministic elastic wave equations, see [9, 19, 25, 28, 34, 36, 31] and the
references therein, there is barely any work on numerical analysis of stochastic elastic wave
equations in the literature, which motivates us to carry out the work of this paper.

The primary goal of this paper is to develop some semi-discrete (in time) scheme and fully
discrete finite element methods for the stochastic elastic wave equation with multiplicative
noise. The highlight of the paper is the establishment of strong norm convergence and error
estimates for both semi-discrete and fully discrete methods. To achieve this goal, we first need
to establish some stability and Holder continuity estimates for the (variational) weak solution
of the stochastic wave equations. These results will be crucially used to derive the desired error
estimates for the semi-discrete scheme. We next need to establish various (energy) stability
estimates for the semi-discrete numerical solution, which are necessary for deriving the desired
error estimates for the fully discrete finite element methods.

The rest of the paper is organized as follows. In Section 2, we introduce a variational weak
formulation for problem (1.1)—(1.3). The stability and Holder continuity estimates in the L2,
H'-, and H?-norm are established for the strong solution. In Section 3, we propose a semi-
discrete in time numerical scheme for problem(1.1)—(1.3). It is proved that the semi-discrete
solution is energy stable. Moreover, we prove the convergence with rates O(k) in the L2-norm

and O(k%) in the H'-norm for the displacement approximations. In Section 4, we propose a
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fully discrete finite element method to discretize the semi-discrete scheme in space and derive its
error estimates, which show that for the linear finite element, the L2-norm of the error converges
with O(h?) rate and the H'-norm converges with O(h) rate. In Section 5, we present two two-
dimensional numerical experiments to test the efficiency of the proposed numerical methods
and to validate the theoretical error estimate results. Finally, we conclude the paper with a short
summary given in Section 6.

2. PRELIMINARIES

Standard notations for functions and spaces are adopted in this paper. For example, L” de-
notes (LP(2))? for 1 < p < oo, (-,-) denotes the standard L?(2)-inner product and H"(2)
denotes the Sobolev space of order m. Throughout this paper, C will be used to denote a generic
positive constant which is independent of the mesh parameters k and A.

2.1. Assumptions. The following structural conditions will be imposed on the mappings F[']
and G[-:

IF[0][[r2 + IG[O]l[r2 <Ca, (2.1)
IVuF[[lL= + [[VuG[][[L= <Cq, (2.2)
[Fou; = <Ca, 1<4,j<d, (2.3)

1
[F[v] = Fw]|[ > <Cs (M!diV(V— W)l +lle(v—w)llg. + HV—WHiz) XS
1

1G] = GIWlll 2 <Ca (Alldiv(v—w)[F2 + plle(v—wZ + [v=wl:) ", @59)

where F Y -] denotes the second derivative of F with respect to u;,u; , and C4 and Cp are two
positive constants.

2.2. Variational weak formulation and properties of weak solutions. In this subsection, we

first give the definition of variational weak formulation and weak solutions for problem (1.1)—

(1.3). We then establish several technical lemmas that will be used in the subsequent sections.
Equations (1.1)—(1.3) can be written as

du = vdr, (2.6)
dv = (ZLu+F[u))dr+Gu|dW(r), ZLu:=divo(u), (2.7)
u(0) =up, v(0)= vy, (2.8)
u(t,)) =0. (2.9)

Definition 2.1. The weak formulation for problem (2.6)—(2.9) is defined as seeking (u,v) €
L?(Q;C([0,T};L*) NL2((0,T),H})) x L?(Q;C([0,T],L?)) such that

(u(t),0) = /(V ¢)ds + (uo,9) Vel (2.10)
A A (div (u d1v(l//))ds—/0 (e(u(s)),e(y))ds (2.11)
+ /0 (Flu(e) y)ds+ [ (GullaW(s).v) +(vo.y) e H]
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for all (¢, y) € L2 x H(l). Such a pair (u,v), if it exists, is called a (variational) weak solution
to problem (2.6)—(2.9). Moreover, if a weak solution (u,v) belongs to L?(Q;C([0,T]; H*N
H})) x L?(€;C([0,T];H}))), then (u,v) is called a strong solution to problem (2.6)~(2.9).

Remark 2.2. The well-posedness of problem (2.6)—(2.9) can be proved using the same tech-
nique (i.e., the Galerkin method) as done in [6] for the acoustic stochastic wave equation with
multiplicative noise. The only markable difference is that to verify the coercivity (or ellipticity)
in H'(2) of the operator .Z, we need to use the well-known Korn’s (second) inequality.

We now state and prove the stability properties of the strong solution (u,v) of problem (2.6)—
(2.9). Those bounds will be used to prove Holder continuity in time in this section. They are
also useful in establishing rates of convergence for the numerical schemes.

Lemma 2.3. Let (u,v) be a strong solution to equations (2.6)—(2.9). Under the assumptions
(2.1)—(2.5), there hold

sup B [IVIE2] + sup B |2 fdiv ()| + @] <G, @12)
0<t<T -
sup E[z||div<v>uLz+uue<v>uLz]+ wp E[|2ul] <co, @13)
0<t<T
Osup E[H&,CIVHLZ} + sup E[l”dlv ;U HLZ—H,LH 1 HL2 <Cg (2.14)
<t<T

for1 < j<d, and
] | 2
Cy = (E HVoHiz] +E [A ||div (ll())”iz +u He(uo)Hiz] 4_4C§>6CCB7
Coo = (E[Alldiv (vo)[1£2 + ke (vo) 72| +E [l 2w0l122 | +cCicn ).

Cor = (B [0 vol[52] +E [2 [[div (34,00 [ + 8 [Je(@uo)|[F.] )R

Proof. Step 1: Applying 1td’s formula to the functional ®;(v(-)) = Hv()||i2 yields

V122 = [Ivol» +/OID<1>1(V(S)) (L + Flu])ds 2.15)

t t
+ /O Tr(D2@, (v(s)) (Glu], Gu]) ) ds + /O D (v(s)) (GuldW (s)).
The expressions of D®; (v(-)) and D?*® (v(-)) are as follows:
D®;(v)(wy) =2(v,wy) vw; € Cy, (2.16)
D2®; (v)(W1,Wa) = 2(W(, W) Vwi,wy € Cy.
Substituting the expressions of D®;(v(-)) and D*®; (v(-)) into (2.15) , we get
V() 152+ A |[div (u(e)) 32+ [ (o) |52 (2.17)

2 : 2 2
= [[vollgz + A l[div (uo) |2 + p [[€(wo) £

+2/ ds+/ |G[u Hdes+2/ W(s)

= |Ivollf2 +2 l[div (wo)lIfz + p [l(uo) I§2 + 1 + I + 5.
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For the first term /7, let = 0 in equation (2.4). Using equation (2.1), the Poincaré inequality,
and the Korn’s inequality, we have

t t
2 [ (Flul,v)as < [ [Fful] 22+ v]ds @.18)
2 ! . 2 2 2 2 ! 2
<2C3 [ A ldiv () 2+ 4 () 22+ fullfads 2G5+ [ (IvIR2) s
2 ! . 2 2 2 ! 2
<CC [ 2 ldiv ()R + ulle)fds +265+ [ VIR ds.
Taking the expectation on both sides of (2.18), we obtain
t t
o UO (Flu],v)ds| <CC3E [/0 Aldiv (u) [ + 1 fle ()] s (2.19)
2 ! 2
L4+ E [/0 Iv[3 ds].

Similarly, using equations (2.1) and (2.5), the Poincaré inequality, and the Korn’s inequality,
the expectation of the second term I, can be bounded by

t t
B[ [ 1G] fds] <2CBE[ [ A div ()t +a le(w)f + ulas] 263 220
t
<CCAE UO A ldiv ()13 + e ()12 ds| +2¢3.

The third term /3 is a martingale, and [E[Iz] = 0. Taking the expectation on both sides of
(2.17) and using the Gronwall’s inequality, we get

E[IVE2] +E [ 4 Idiv (@)IF2 + g e ()]l 221)

< (B [Ivolliz] +E [ A div (o) [ + 1 (o) 2| +4CF ).

Step 2: Again, by applying Itd’s formula to @, (u(-)) = ||-Zu(-) I3 2, we obtain

| Lu(t)|2 = || Luo 22 +2 /0 | (ZLuls), 2v(s))ds. (2.22)
Applying 1td’s formula to @3 (v(-)) = A ||div (v(-)) ||z, + | (v(-)) || » leads to
A div (v(e)) 32+ R €(v(e)) I3 = A div (vo) 32 + & (o) 32 2.23)
+2/ (div (Lu),div (v)) +(e(Lu), (v)) ) ds
+2/ (div (Flu]), div (v)) + 1 (e (Flu]), £(v)) ) ds

+ [ (v (Glul) 2+ ulle(Glu))3: )as

+2/ (div (GluldW (s)), div (v)) + 1 (¢(Glu]dW (s)), £(v)) ) ds.
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Adding (2.22) and (2.23) gives
1Lu(0) g2 + A |[div (v(0))lIE2 + 2 [le(v(2))[IE2 = A lldiv (vo)[[2 + 1 lle(vo)llF2 (2.24)

+ \|$uo||iz+2/0t (. (div (Flu).div (v) + s (e(Flu]). (v)) ) ds
+ [ (v (Glul) =+ ulle(GluIF: ) as

+2/ (div (G[u]dW (5)),div (v)) + 1 (e(Glu]dW (s)), £(v)) ) ds

= A |[div (vo) {2 + 4 He(vO)Hiz + [ Luollt + 1+ L+ .
By equation (2.2) and the Korn’s inequality, the first term /; can be bounded by

2 / (div (F[u]), div (v)) + u(e(F[u]),e(v)))ds (2.25)
< [ ety (Flul) 22+ PRI s+ [ (R v (4)132 + (92 )ds

t t
< CC%/O (A l1div (g2 + 1 lle ()52 )ds+/o (Alldiv (v)lI2 + st e (¥) 152 ) ds.
Similarly, by equation (2.2) and the Korn’s inequality, the second term /> can be bounded by
t t
| (@ lidiv (@) + (Gl 2 )ds < €CF [ (R 1div (@) + (w2 )ds. 2:26)

The third term 73 is a martingale, and [E [I3] = 0. Using equation (2.12), taking the expectation
on both sides of (2.24) and using the Gronwall’s inequality, we have

E[|lZult:] +E |2 ldiv () 1E2 + 1 eI (2.27)
< (E[Aldiv (vo) 2 + e (v0)l122] +E [ 2wo0ll32] + Ccica)e

Step 3: Similar to Step 1, by applying Itd’s formula to the functional ||&xjv(-) Hiz
d, we get

195,v ()| [ + A [|div (9 u(n)) |1+ [[€ (O,0(0)) |I7- (2.28)

t
=Wwﬂé+MWW%WWE+Mk@wM@+AH%GMKMS

for1 <;<

+2/ . Flu], 0, vds+2/ (3, Gu], 3y, v)dW (s)

= H3ij0HLz + 2 ||div (9 u0)|[7, + 1 [|€(@uyu0) |7 + 11 + I+ 1.
Using equation (2.2) and Korn’s inequality, we bound /; and I; by

t
2FE [/0 (3ij[u],8xjv)ds] < CCIE [/ 2 ||div(0x HL2 (2.29)
t
-Hma%wmﬂs+ﬁuwaﬂﬁﬂ%

d 2 ’ d . 2 2
E[ /0 |0 Glullly. ds] < 3R /0 A div(aqu) 72 + plle@wffds] . @30
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The third term /3 is a martingale, and E[l5] = 0. Taking the expectation on both sides of
(2.17) and using Gronwall’s inequality, we get

E [0, v].] +E [ v (w7, + ae|e(@w].] 231)
< (E[llavol] +E [ v (u0) [, + 1 [[e@s o) [ ] ).
The proof of Lemma 2.3 is complete. 0

The following lemma is also needed to establish another stability property of the strong so-
lution (u, v), which will be given in Lemma 2.5.

Lemma 2.4. Let (u,v) be a strong solution to equations (2.6)—(2.9). Under the assumptions
(2.1)—(2.5), there hold

E[||ZFu]|lf] < CCiCyi + CCACy, (2.32)
E[||.-£G[u]||f.] < CCiCy1 +CC5Cy3. (2.33)
Proof. Notice that
ZF[u] = div((Adiv F[u))T) + div(ue(Flu])) := I + b. (2.34)
The first term /; on the right-hand side of (2.34) can be written as
I = div((A(VeF)" : Vu)I) (2.35)

= W((V F)" :Vu)

Z N7 (Vu)j+ (V(Va) )T (VuF)T),].,

where (VyF)7 : Vu denotes the element-wise product of two matrices, and ((V4F)7); and (Vu);
denote the j-th columns of (V,F)” and Vu, respectively.
By equations (2.2)—(2.3), equations (2.12)—(2.14), and the Korn’s inequality, we have

E[|L]}.] < CCiCq1 +CCACs3. (2.36)
Define A and B by their i j-th components as below:
1 .
Ajj= EVuFJ ‘uy, 1<i,j<d, (2.37)
1 .
Bjj = EVuFl ‘U, 1<i,j<d, (2.38)

where F’ and F/ denote the i-th and j-th components of F, respectively.
Then the second term /; on the right-hand side of (2.34) can be written as

L = udiv(A+B). (2.39)
By equations (2.2)—(2.3), equations (2.12)—(2.14), and the Korn’s inequality, we have
d d d
BI1I:] < CE|Y, Y. 30 VP sz (2.40)
i=1j=1k=

< CC3Cy1 + CCACs.
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Combining equations (2.36) and (2.40), the conclusion (2.32) is proved. The conclusion
(2.33) can be similarly proved. U

Lemma 2.5. Let (u,v) be a strong solution to equations (2.6)—(2.9). Under the assumptions
(2.1)—(2.5), there holds

sup E[H.,zﬂvum} + sup IE[?LHle (gu)||L2+u||e(zu)||L2} <Cu, (2.41)

0<t<T

where

Cot = (B [12vol132 ] + B[ div(Lu0) |2 + k(L) 2] + CCE(Cot +Coa) e

Proof. Applying Itd’s formula to ®@4(u(-),v(:)) = A ||div (ZLu(: )HL2 + u|[e(Lu() )HL2
12 v(-)|I3 2, we obtain

A (Zuo) [+ e (L0(0) 22+ 1230 24
= i (Zuo) 2+ 1 e(Zuo) 2+ 20l +2 [ (£Flu], 2v)as
+/0t||$G[u]||i2ds+2/0t (ZGlu]dW (s),.2V)
= A ||div (L) |7 + 1 [€(Lwo)lIg2 + - LVollg2 + 11 + B+ .

By equation (2.32), the expectation of the first term /; can be bounded by
E [2/0[ (.,%F[u],.,%v)ds} < /OtIE [|-ZFu]|)?,]ds + /OIE[szHiz}ds (2.43)
< CC3Cy +CC3C3 + /(:E (12 v]I5 2] ds
By equation (2.33), the expectation of the second term /; can be bounded by
E [ /0 2G| ds} < CC3Cy) +CC2C3. (2.44)

The third term /3 is a martingale, and [E[I5] = 0. Taking the exception on the both side of
(2.42) and using Gronwall’s inequality, we have

E[Adiv (Zw)|f +ple(2w)l:] +E |2V ] (2.45)
< (B[ I-2volli2] +EIR [ div(Luo)lIf- + 1 [le(Lu0)F] + CCR(Cor +Ca))e”
The proof of Lemma 2.3 is complete. U

Based on Lemma 2.3, we can establish Holder continuity in time of the solution u in L2-
norm, H!-seminorm, and H2-seminorm. These results play a key role in the error analysis.
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Lemma 2.6. Let (u,v) be a strong solution to problem (2.6)—(2.9). Under the assumptions
(2.1)—(2.5), for any s,t € [0,T], we have

E|[u() —u@)lf] <Cali=sP?,  246)
E [/1 [div (u() —u(s))|[5+ g || e (u(r) — us)) }|i’;: <Cplt —s?7, (2.47)
E [||.z(u(t) —u(s)) }|i2: <Cyult —s[2. (2.48)

Proof. Note that u(t) —u(s) = [ v(€)d&, and then we get

1 12
t 2 t 2
E () —u(s) %] <E || (/ |V(§)|2dg> </ 1d5) (2.49)
N N L2
t 5 p
<tz |( [ In@iaz) |
N
< sup B[IVr)132] Ir— s
0<t<T
Hence, (2.46) holds when applying (2.12) in Lemma 2.3. The inequality (2.47) and (2.48)
could be derived similarly. U

The next Lemma establishes some Holder continuity in time results for the solution v with
respect to L2-norm, H'-seminorm and H2-seminorm.

Lemma 2.7. Let (w,v) be a strong solution to problem (2.6)—(2.9). Under the assumptions
(2.1)—(2.5), for any s,t € [0,T], we have

E [Hv(t)—v(s)Hiz: <Cyslt —s|, (2.50)
E [/1 [div (v(1) = v(s)) |72+ || & (v(£) = v(s)) Hiz: <Cylt — |, (2.51)
B[]l (v() = v(5)[52] <Cale—s], 2.52)

where

Cys = e (CCAC,1 +4C3),
Css = €! (CC3Cy1 +CC3Cy1 +2C3),
Cy7 = CC5(Cy1 +Cip +Cy4).

Proof. Step 1: Fix s > 0. Applying Itd’s formula to ®s(u(-)) := A||div(u(-) —u(s))Hi2 +
e (u(-) —u(s)) Hiz we have

A |div (u(r) = u(s)) |12 + 1 [l (u(e) — us)[|f (2.53)
— 2/s (A (div (u(&) —u(s)),div (v(£))) +u(eu(&) — u(s)),g(v(g»))dg_
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Applying 1td’s formula to Dg(v(-)) :=||v(:) — v(s) ||i2 and using (2.53), we get
V() — V()32 + A [|div (u(r) —u(s)) |2+ 1 e (@) —u(s) [ @54)
=2 [ (Fu(&)].v(&) ~v(s)dz + | [Glu()]If2d8
+2 [ (@) vE) - V)W ()

=L+hL+5.

Similar to the analysis in (2.18)—(2.20), and by equation (2.12), we have

[ @08+ [ IGku(E: a8 @59

t
<G} [ (A ldiv (W + u [le(w) 2 ) d +4C3e — s
< (CCHCy1 +4CH)r —sl.

Then the first term and the second term on the right-hand side of (2.54) can be bounded by

2/ ) —v(s d§+/||c[u IR, dé (2.56)
< / V&)~ V208 + [ (I3 + IGRu(E) I3z )ag

t

< [ 11¥(8) = v(9) I dE + (CCECo +4CH) |t — |-

The third term is a martingale and E [ [{ (G[u(&)],v(§) — v(s)] = 0. Taking the expectation
on both sides of (2.54), we get

E [Hv(z) - v(s)uiz} VE [z [div (u() —u(s)) |7, + 1 || & (u(e) —u(s)) ||i2] (2.57)
< [E [Iv&) ~v(s) 2] a& + (cchea + 4Rl s
Using Gronwall’s inequality yields

E [||v(z) —v(s)||iz} +E [x [div (u(r) —u(s)) |7, + || € (u(t) —uls)) ||i2] (2.58)
< el (CC3Cy1 +4CF)|t — ).

Step 2: Fix s > 0. Applying Itd’s formula to ®7(u(-)) = || Lu(:) —fu(s)Hiz and using
integration by parts yield

|Zu(t) — Lu(s)|f> = 2/; (Lu(&) — Lu(s), Lv(&))dE. (2.59)
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Applying It6’s formula to ®g(v(-)) = A||div (v(-) —v(s)) Hiz + ul[e(v() —v(s)) ||i2 and
using (2.59) yield

|Zu(r) <>||iz+sziv ()= v 72+ u e (v() = v(s) I (2.60)
<2 [ (2(av (s ). div (Flu(£))))
+u(e(v(E) (). eFlu(E))) )& + [ IGIu(E)Eaa
12 / (div (v $))dW (€), div (Glu(&)]))d&
+2 [ (e (v(E) —¥(5))aW (&), e(Glu(E)) o

=hL+hL+L+14.

By equations (2.2) and (2.12), and the Korn’s inequality, the first term /; can be bounded by
2 [ (aiv (v(&) = (), div (FIu@)) + A (e(¥(E) —v(s)) e(FIu@)) Jd&  261)
_[sz @[22+ [ nlle(FuE) oz
+ [ (2 aiv (vE) = V) [+ e (¥(E) —¥(5) 128
<CE [ (2 aiv (&) [} + 1 (&) )
+ [ 2 aiv (vE) ~ V) 1208+ [ ulle(vE) V) o
< [ (o (&) v [ + 1 [ (¥(E) —¥(5) )& + CCRCialr 1.

Similar to equation (2.20), by the Poincaré inequality, Korn’s inequality, and equations (2.1),
(2.5) and (2.12), the second term I; can be bounded by

t t
/ IG[ul [, ds gccg/ A ldiv (u)| 22 + p ()| ds +2C2 )t — | (2.62)
S N
<(CC3Cy1 +2C3)|1 — .

The last two terms /3 and I; are martingales, so E I3+ ;] = 0. Taking the expectation on
both sides of equation (2.60) and using (2.61)-(2.62) give

E[I2u() - Zu(s) 3] +E A |[div (v() =) 1+ 1 e (v~ V) ] @63

< B [ flaiv (&) ~v0) 72 + e (v(E) v 2] a

+ (CC3Cy1 + CC3Cy1 +2C3) |1 — 5],
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Then by Gronwall’s inequality we obtain
E [l [div (v(1) = v(s)) |22+ || e (v(e) = ¥(s )HLz} (2.64)
< el (CCCy1 +CC3Cs +2C3) |t — 5.
Step 3: Fix s > 0. Applying It6’s formula to
o (u()) = 2 [[div (Lu() —Lu(s)) 12+ [e(Lul) ~ Luls) |1
and then we get
A||div (Lu(t) — Lu(s)) |7 + 1 ||e(Lu() — Lu(s)) |7 (2.65)
—2 / (div (Lu(&) — 2u(s)).div (Lv(E)))
+1(e(Lu(E) - Lu(s)),e(£¥(E)) ).

Applying 1t8’s formula to @1 (v(-)) = ||£V(-) — £¥(s)||12, and using integration by parts
and equation (2.65), we have

FAIGEE% ()\|i2+lHdiv($u(t) u(s))[[2, + p||e(Lu(r) - Lu(s))|;.  (2.66)
=2 [[(£%(&) - 2v() 2Fu@))aE + [ 2Gu(@) a8
2 [ (2vE) - 236, ZGlu@)aw (€)
=L+hL+1.

Similar to the estimation of equation (2.44). we have

[ 12PN+ 126l ds @67
<G} [ Alaiv (2w +a e(2u) R+ 2l
+CG [ Alaiv () s+ # fle(w) s
< Ccf\(csi +Cyo+Cya)lt — 5.

By equation (2.67), the first and second terms on the right-hand side of (2.66) could be written
as

2 [[(#%(&) ~ 2v(). 2P + [ 1. 2G(E)Fag 2.69)
< / | LR + 12 Gl E a8 + [ 12v(E) - 2v(5) a8

t
< CCHC +Ca+Cli=sl+ [ - 2(E) ~2v(s) &
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The third term I3 is a martingale and I [l5] = 0. Taking the exceptation on both sides of
(2.66), we get

E [||$v(t) —,,s,ﬂv(s)niz} (2.69)
+E[Alldiv (Lu(r) — Lu(s)) 132 + 1 lle(Lul) — Luls)) ]

t
< GG +Ca+Clt = sl + [ E[I2v(E) ~ 2v(s):] dé.
S
Then the Gronwall’s inequality yields
E[Il2v(t)— 2v(s)I}; | < CCR(C +Coa+Cua)li . (2.70)

The proof is complete. O

3. SEMI-DISCRETIZATION IN TIME

In this section we propose a time semi-discrete scheme to approximate the nonlinear stochas-
tic elastic wave equations. The goals are to prove some stability results and to establish the error
estimates.

3.1. Time semi-discrete scheme. Let0 <k << T andt,:=nkforn=0,1,2,--- N be uniform
meshes with size k on the interval [0, T].

Scheme 1. Ler u® be an F1,-measurable and H(l)-valued random variable and v° be an Fiy-
measurable and H(l)-valued random variable. For each n > 1, find (Hﬁ X Lz)-valuea’ and
{F,., }-measurable random variables (w""' ,v* ™) such that P-a.s.

(w —u",¢) =k(v'*',9) Vo eL?, (3.1
(V' =V ) = — kA (div (03), div (y)) — k(e 2),e(y)) (3.2)
+ (G[u"]AW,,, v) + k(F[u"], y) Yy € H|,

where AW, := W (t,41) — W (t,) and uts = %(U"Jrl +u").

Remark 3.1. (a) At each time step, the above scheme is a nonlinear random PDE system for
(wt! v"*1) whose well-posedness can be proved by a standard fixed point argument based on
the stability estimates to be given in the next subsection.

(b) Following [16], a possible improvement to Scheme 1 is the following modified scheme:
Seeking (H x L?)-valued and .%,,, -measurable random variables (u" !, v**1) such that P-a.s.

(w" —u",9) =k(v"*',9) V¢ € L2, (3.3)
(VP v ) = — kA (div (u™2), div () — ku (e(u™2), e(y)) (3.4)
+ (G"AW,, y) + k(Flu"], y) vy € Hy,

where u2 ;= LGRS T O )

However, such an improvement could not be realized unless some more involved higher order
treatment of the noise term is adopted as demonstrated in [18] for the corresponding stochastic
acoustic wave equations.
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3.2. Stability analysis of the time semi-discrete scheme. Definie the following energy func-

tional:
1 .
I =) = 5 (V2 + Aldiv () + e )] ). (3.5)

The following lemma gives the estimate for the expectation of the above energy functional.

Lemma 3.2. Let Iy := {t,})\_ be uniform meshes with size k satisfying 0 < k < ko < T and
(u,v9) = (ug,vo) € (H2NH)) x H}, be given. Then there holds

0 0 2\ ,CC3
jmax E [J(",v")] < (E[J(u°,v")] +4Cy)e 5. (3.6)
Proof. Fix @ € Q and choose y = v**! in (3.2), and then we get
1 2 2 2
: vl = IV + v = v (3.7)
— k(.,i”u”%,v”“) + (GU"|AW,,, V') + k(F[u"],v* ™).
Choose ¢ = — U7 in (3.1), and then we get
(W —ut, - Zut) = —k(.ﬂu“%,vnﬂ). (3.8)
Combining (3.7) and (3.8) and taking the expectation on both sides yield
(3.9)

B [(unJrl _— —fu’”%)] —l—% (E [an+1 HiZ} _E [anniz]

E (v —v))
=E [(G[u”]AWn,V"H)} +E [k(F[u"],v”“)] =1L+Dh.

For the first term on the right-hand side, note that E [(G[u"]AW,,v")]| = 0. Similar to the

estimation of (2.20), and by It6’s isometry, we obtain

E[(Gu")AW,,v'*1)] = E[(Gu"]AW,,v* ™ —v")] (3.10)
< B[V —vI] + k2 [IGReIE:
< %E [V = v | + CCRRE |2 [ldiv (@)1 + e ()12 | +2C3k.
Similar to the estimation of (2.18), the second term /; can be bounded by
(3.11)

KE [(Flu"],v*™1)]
< kE [Hv”*luiz] + CCRE [/1 Idiv (u") |2, + Hs(u”)uiz} +2C3k.
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The left-hand side of (3.9) can be written as

L[ = iR+ v v B[ —wzwth] G
1
_ EE |:(an+lHi2 _ anniz + an-H _VnHiz ]

[ (A |div (u™*h) HL2+“H8 ) HL2 }
~ [ (v () 2+ e )]
= [J(u”“,v"“)} —E[J(u",v")] —}—%E[HVH—H —VnHiz].

Putting (3.10)-(3.12) together yields

2
E [J(uI’H-I VH-I Z]E |:H I+1 ‘ :| (313)
<E[J®,¥0)] +4C3 + CCak Z E [J(ul,v’ )] .
=0
By the discrete Gronwall’s inequality, we obtain
E[J(u" v < (B [J(u,v0)] +4C3) . (3.14)
The proof is complete. U

Since previous stability results are not sufficient to establish the convergence results of fully
discrete finite element methods, we will prove some stability results in stronger norms. Consider
the following energy functional:

~ 1 '
T vy = 3 (120 + & div (V) |2 + ()12 (3.15)
we will establish the stability for the expectation of the above energy functional.

Lemma 3.3. Let (u®,v°) = (ug,vo) € (H2NH}) x H} be given. The solution {(u",v");1 <n <
N} of (3.1)—(3.2) satisfies

max E[f(u",v")} (CCACs1+E[J( 0 O)De . (3.16)

1<n<N
Proof. By choosing ¢ = Z?u™*2 in (3.1), we get
(Zut - 2u, puty) = k(v 2utt ). (3.17)
By choosing y = —2Zv"t! in (3.2), we get
(VI’H-l gvn-i-l) (gun-Fz ZVVH-I) (318)
+1 (le (G[u"|AW,),div (V”“)) +u (S(G[u”]AWn), S(V'H_l))
+ kA (div (Flu"]),div (v”“)) +u (S(F[u"]), e(v”“)) .
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Combining (3.17) and (3.18) yields

T vy — (v (3.19)
(A aiv 0 v+ e HLz)
= A (div (G[u"]AW,), div ( (vt ) + 1 (e(Gu"] £(V”+1))
+ kA (div (F[u"]),div (v*T1)) + p (e (F[u”]),e(v”“))
=Lh+hL+5L+14.
Note that
E [A (div (G[u"]AW,),div (v")) + u (e(G[u"]AW,),e(v"))] = 0. (3.20)

Similar to the estimation of equation (2.26), and by 1t0’s isometry, we have

Bt < 5 (Adiv (G 32 + 1 (G (321)
+3 (Ml (= e v )
< % <7L | div (v**! —V")||i2 +u||e(v't! —V")H?}) +CC4Cyik.
Similar to the estimation of equation (2.25), we have

L+l < ’5‘ (Aldiv (v [+ 1 e 12 ) +CCRCak (3.22)

Taking the expectation and summation over n from O to / on the both sides of (3.19), using
equations (3.20)—(3.22), and then switching » and /, we have

E[f(u"“,v"“)} <ccAcsl+E[J( 0 0)} +kiE[f(ul,vl)}. (3.23)
=0

Then the discrete Gronwall’s inequality yields
E [f(u"“,v"“)] (ccAcsl +E [J( 0 O)D el (3.24)

The proof is complete. 0
3.3. Error estimates for the time semi-discrete scheme. In this section, we derive error esti-

mates in both H!-norm and L2-norm for the time semi-discrete scheme.

Theorem 3.4. Let (u,v) be the solution of (2.10)—(2.11) and {(0",v");1 < n < N} be the
solution of (3.1)—(3.2). Under the assumptions (2.1)—(2.5), there holds

max E ||[u(s,) — "\|§Il+uv(zn)—vnui2] < Cy6e“Cik. (3.25)

1<n<N



FINITE ELEMENTS FOR NONLINEAR STOCHASTIC ELASTIC WAVE EQUATIONS

Proof. By (2.10)—(2.11), we have
(ultus1) — (i) 9) =( [ vis)ds.0).
(¥t =V ) = [ (2o s+ [ (Fluto)y)ds
([ saw.w).

By (3.1)—(3.2), we have

(un-i-l_un’(p) Zk(Vn—H,(])) V(p ELZ,
(V' =V ) = — kA (div (3), div (y)) — k(e 2), e (y))
+ (Gu" A1 W, ) + k(Flu"], ) Yy € Hj.

1
. n+s
Define notations e, €, and e, * by

el =ty ) —u"l, el i=v(t, ) -V,
1
2

et “(fn+1)2+ u(tn) - eﬁ+12+ eﬁ‘

Subtracting (3.28) from (3.26) and (3.29) from (3.27) yield
In+1
(et o) = ([ () - vl as0 ) k(& 0),
e = [ (2 (a0 - )y gy

k(2 )+ [ (Fla(s)] - Flu, w)ds

In

([ (G- 6uhaw . v).

1
By choosing ¢ = — Zen % in (3.30), we have

tI‘L b3
k(e ) =(e e zen ) - (/ (V) ¥ltne1) ) ds, £ eﬁ%) |

By choosing y = eﬁ“ in (3.31), we obtain

In
(eg—i-l _ec7e:+l) _ / + (g(u(s) . u(tn+l>2+u(tn)>7e$+l> ds
In

n+3 n+1 fnt1 ny .n+l1
k(e e )+/ (Flu(s)] — F[u®],e"+1)ds
In

¥ ( [ @t - G[u”])dw<s>,ez“) |

17

(3.26)

(3.27)

(3.28)
(3.29)

(3.30)

(3.31)

(3.32)

(3.33)



18 XIAOBING FENG, YUKUN LI, YUJIAN LIN

Combining (3.32)-(3.33) yields

J(emt ety — y(el el) + - He"+1 —el,

Int n-+=
:_/ (L€ ¥(s) — V(b)) ds
In

n l:”“ (.,%(u(s) _ u(t"+1)2+u(t")>,e3ﬂ> ds

Int1

+k(Flu(t,)] — F[u"), el ™) + (Flu(s)] — Flu(s)], el !)ds

In

+ (/:H (Glu(s)] —G[u”])dW(s),eg“)

=h+L+5L+1L+15.

By equation (2.51), the expectation of the first term /; can be bounded by

Bl <2 [ E[4div(v(5) = Vi) 1
(e (¥(5) — Vlanin)) 2] ds
k . n
+ 2B [ div (€[l + fle(eh ™

JE [2lliv (€0)122 + e lle(el) -
k
<Cook® + 7B [ |div (€57, + w [leer™) 7]

k o n
+5E [z div (ep) 12 + 1 lle(eu)lliz] :

By equation (2.48), the expectation of the second term I, can be bounded by

E D] S%/:H E [H.z(u(s) —u(rn))lliz} ds

1

. t’”“ E {112 (u(s) —u (i)} | ds+ KB |[[et ] 1]

1 n
< Cok® +KE [ 1]

(3.34)

(3.35)

(3.36)
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By the Poincaré inequality, the Korn’s inequality, and equations (2.46) and (2.47), we have

k
E[5) <7E [[Flu(,)] —Flo)F2] +KE [[ef 7] (3.37)
k s n n n n
< CHE [Adiv (DI, + e (@), + llehlF,] +KE [[er |7
<KCCRE [A][div (eI, + mlle(el)F,] +KE | e 2]
B < [ E[|Flus)] - F 2 | ds+kE [ ||en |7 3.38
L)< [ B | IFu(s)] ~ Flal)]l: | ds-+ k2 | ey (3.38)

<3G [ (B2 i (u(s) —div w12

+E 1 le(u(s)) - £(ae) 72| + B [lu(s) —u(e) 2] )ds+ k8 [ e ]|1]

<CC33(Cy +Cya) +KE [He@“ }|i2] .

For the term s, note that E [(fti”*' (Glu(s)] — G[u"])dW (s),e?)] = 0. Then by the Poincaré
inequality, the Korn’s inequality, Itd’s isometry, and equations (2.46) and (2.47), we have

E[I5] =E [((G[u(ty)] — G[u"]) AW, el —el)] (3.39)
n1 n+1 n
+E| ([ (Glu(s)) ~ Glu(r)])aw (5). 4" — ¢
<1 n+l _ n|2 21 |4 |1di ny (2 ny (2 n|2
<;E ey —ey||i2| +2KCEE | A [|div (ef)[IL> + w lle(el) T2 + lledllia
Z‘n+l .
+265 [ B [A iy (u(s) w2+ s eu(s) o)) o
Int1
+263 [ B [Juls) - u(w)|E:] ds
In
1
<;E [He3“ - e$||i2] + CCEKE[J (el €")] + CC23 (Cy1 + Ca).
Combining (3.34)-(3.39) together, we have
E /(e ey )] ~ElJ(ehel)] + ;B [Hev“ —evHLz} < CCRKE[J (€, e")] + Cyok?.  (3.40)

Then the discrete Gronwall’s inequality yields

E[J(el )] < Cype k. (3.41)
where we use the fact that £ [J (u®, VO)] = 0. Then the theorem is proved. 0J
Theorem 3.4 states that the time semi-discrete convergence order in H'-norm is % The

next theorem establishes the time semi-discrete L2-error of u”, and it states that the time semi-
discrete convergence order in L?-norm is 1. Its proof is inspired by a similar proof for the
stochastic scalar wave equation given in [18].
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Theorem 3.5. Let (u,v) be the solution of (2.10)—(2.11) and {u",v"}, be the solution of (3.1)-

(3.2). Under the assumptions (2.1)—(2.5) and the assumptions that
IG(0)]|7: <Ck  and  |lkvo— (u' —u®)||7, < Ck*,

there holds

2 2
llgaz(NE [||u(t,,) ”HLz] < CCyk”.

) 1—
Proof. Note that dyu! = (“_k—ul) Then by (3.2), we have

(du™ —dpul,y) + kA (div u'tz,div V) +ku (s(u”%),e(w))
= (Glu']AW;, y) +k(F[u'], ).

(3.42)

(3.43)

n
Denote &+2 = ¥ u'*2. Taking the summation over / from / = 1 to / = n and multiplying k

I=1
on both sides of (3.43) yield

(un—H _un7w) _k2 (gl—ln—f—%, II/) —k(dtlll, ll/)

—k (Z G[u']AW,, w) + k2 (Z F[u'], 1//) :
=1 =1

Besides, using (2.10) and (2.11), we get
n+1
(W(tpsr) - / / (Lu(E), y)dEds — k(vo, )
Iy

_ (/:“/O Gu(E)]dW (&)ds w) /:H/ y)dEds.

Subtracting (3.44) from (3.45) leads to

(! el ) — (Lo y)

_ (/,1 /Os.,iﬂu(é)déds—kzif(w)ﬂlf)
+</:“/OSG[u<é>1d ds—kZG AWW)
n (/:“ /OSF[u(g)]dgds—kzléF[ul],w>

— (kvo— (u' —u"), y).

(3.44)

(3.45)

(3.46)
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1

Borrowing an idea of [18], we write [;d& = Z ftl“ d& + [’ d& and choosing y = eﬁ+7 in
(3.46) yield
3 (lles 12— e (3.47)
2 2 2 1 2
+kl(dw(”a —div (@ ?)|| + ||div (el ?) )
2 L2 1.2 L2
k> 1 12 2
+T“( ey )| —lle@ )| + e(eﬁ+2) )
L2 L2 L2
::Il+l2+"'—|—115,
where
n 1 n t[ 1 t t
I+ +14_ ' /+< (—(’m;"(l)) n+2)d§ds (3.48)
1 Th+1 1
2y [ e &g /+ (rute) e
In
[ll tn 1
-H/ +1 ! Z)d‘g’ds’
tht1 l1+1
ety [TOR [T (@) - Flu() ) dgas (3.49)
-1
! 1 1 [ta+1 fh
+ 2 (Z( [u(ty)] ~ F [l]),eﬁ+2>+5t [ (@ )agas
n 0
n n 1 [+t [latd aal
e agas 3 [ [T (Flue)) ek agas
tn 2 ty s
and
n 1
ho+-++ha:= | kY (Glu(n)] - G ])AW, e (3.50)
=1

</tn[”ﬂ i"l/:“ Glu Glu(t,)]|dW (€)ds, en+2>
- (/:H Glu(&)] - Glu(z,)ldW (£)ds, ”ﬂ)

B (/ln+l /fn+1G £)ds en+2> (/ n+1 /ll (£)ds, en+§),
1 tn fo

~

Tyt

=
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By equation (2.48), the first term /; can be bounded by

E[1] S/[:”Hé/[::llﬁl [(3(“(5)_“(’”1);“(5)_“(”)), ﬁ“)} déds

/’"IHH 1n1 /I:IT] < [”"%(u(g) — u(tl“); u(é)— u(tz)) l

)
el
)

Int1 " 141 )
/ / CCyukE

<kE [Heﬁ“ Ig2] +4E | lepli?2 ] +ccur.

n+2

n+2

By equation (2.48), the second term I, can be bounded by

sl <y ["E | [ (200 - ut). & )az] s
+% :H E [/rl (2 (u(n)), n+2)d§} ds

Iy

<KE [Heﬁ“ﬂiz] 4 KE [Heﬁ”iz} +CCuk +CR.

(3.51)

(3.52)

By equation (2.48), the summation of the third term and the fourth term can be bounded by

E[L+14] < /tn /tn u(tn))>eﬁ+%)d§ds
T2 /:H /an+1 (£ (w(€) —u(t).€s2)deds

5 () ([ [ ez [T [ azas)

<KE [[Jeft 2] +KE [llet 2] + CCa®.

By equations (2.2) and (2.46), we have
Iy I+1
B < [T % 1B [P - a4
-1
+kE [He"+1 2] +#E [HeﬁuLz}
Int1 " 141
X[ @) —uiagos
-1

+kE [Heﬁ“ 2] +4E [Heﬁ“iz}

< CCuI* + KE [ e[ 1] +AE [ehl12-]

(3.53)

(3.54)
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By equation (2.2), the sixth term can be bounded by

<k2f g HF[u(z)]—F[ul]]2 gl
> =~ 4 / 12 T u L2
n l’l+l 2 1
<CkZZIE[Hu(t1)—ulH ]+kIE ey ’
=1 L2 |

2
|+ [l 1]+ e sl

By equations (2.2) and (2.46), the seventh term I7 can be bounded by

Bl <3 [B | [ (@) - Fiu(o). e )az] s

0

+ % t:”“ E [ /t ! (F[u(to)],eﬁJr;)d&} ds

0

<KE [[est" |12 + KB [eal1F-] +CCai +Ci

23

(3.55)

(3.56)

By equation (2.2), the summation of the third term and the fourth term can be bounded by

—F[u(t,,)],eﬁ+%)d§ds

B[l + 1] <2 / [ (P

tat1 / F[u(tn)],eﬁ+%)d€dS

1 + i1 fInt1
+§( el 7) / /dcﬁds—/l / dé ds)

<KE [[leg! HLZ} +KE | lle}]172] +CCuk’.

By Young’s inequality and equation (2.2), the tenth term /1o can be bounded by

Elho] =E KX (G Glu')) AW, ”*2)]
1 2 n 2
<kE||ew?|| |+CKE |||} (Glu(n)] - Glu'])aW,
L2 =1 L2

2
[
4

<48 [l 2] + k2 1] + R LB

(3.57)

(3.58)
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For the eleventh term /7y, by Itd’s isometry, Young’s inequality, and equations (2.2) and
(2.46), we get

el <c "y / 2 [IG (&) - Glu()] 3] das (3.59)

In i

+kE[Heg+1HL2 + B [l 3

Y el - wo i age

In i

+KE [Heﬁ“HLz_ +E [l 3

< CC I +KE | [[ea | o] -+ | ez

By It6’s isometry, Young’s inequality, and equations (2.2) and (2.46), the term Ij> can be
bounded by

el < [ [ E[IG(E) - Glut)] -] dgds (3.60)
+KE [He"“Hiz} +KE [ let )

Int1 fn+1 7
[ E[Iu(@) ~u(e) - agas

/4 n

+ K e[| + K [ leg

< Ok +KE | [[ea | o] +4E | ez

By equations (3.30) and (2.50), and Theorem 3.4, the term /13 can be bounded by

E[13] = E|Gu(r,)]( tt"“WonH) —W(s)ds, e"“)] (-61)
- 5El(G! <rn>1</:+1W<rn+1> W(s)ds, e —ey)]
= B[] [ Wit - Wi k)

In

Int1
< CK+ 2|l 12, +k/ 1v(s) = v(ts1)[|72ds
tl‘l

< CK? + CyseCCEk3 + Csk3.
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By It6’s isometry, Young’s inequality, and equations (2.2) and (2.46), the term Ij4 can be
bounded by

E[l] = ( / / ! Glu(0))dw (&)ds, "*2) (3.62)

+ ( /t " /m th[u(O)]dW( £)ds, e”+2>

< CCuk* 1 k[elt? |12, + CR |G lu(0)] |25
<kHeu+2HL2+Ck3

Combining (3.47)-(3.62) and taking the summation, we have

B[] <cey & o

1 CyseCCB? + Cy5k?.

L1 H 2} 4 CCk2 +CCy K+ CR (3.63)

Then the discrete Gronwall’s inequality yields
E[lest! ] < cour, (3.64)

where we use el = 0. 0J

4. FINITE ELEMENT DISCRETIZATION IN SPACE

In this section we discretize the time semi-discrete scheme in space using the finite element
methods and give detailed error analysis for the fully discrete scheme.

4.1. Finite element fully discrete scheme. Let .7, be a quasi-uniform triangulation of & with
diameter 4. We consider the finite element spaces

Uzl:{uhEHliuthEPrl(K) VKE%},
:{VhEHIZVthGPrZ(K) VKG%},

where P,(K) donates the space of polynomials with degree not exceeding a given integer r on
K € 7. Next, we define two types of projection as follows.

Definition 4.1. (1) The L2-projection &7, : L? — U}! is defined by
(PnW, Vi) = (W,Vp),

forall w e L? and v, € U}
(2) The H'-projection %), : Hj — V}? is defined by

A (div (Zyw), div (vy)) + 1 (e(Znw), €(vi)) = A(div (W), div (v4)) + i (e(w), €(v)),

for all w € H} and v;, € V}2,
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The following error estimate results are well-known [4, 13].

|W — 2w 12 <Co, K1) [y (4.1)
W — Zyw||p2 <Cop, ™21 ||w| g, (4.2)
l .
(Alidiv (w = 224w |72 + 1 e (w = w132 ) <Cor 2D Wil (43)

Scheme 2. Let (u),v9) = (Z,u’, 2,v°). Seeking a U}! x V}2-valued {.%,, , }-adapted solution

(w1, v+ 1) such that P-almost surely

(wy ™t =i 0,) =k(vi™,95), (4.4)
n+3 n n
(VZ+1 - VZ? lllh) :k(ghuh+2 ) ll/h) + (G[uh]An+lW7 l//h) +k<F[uh]7 ll/h)v (45)
for all (¢, y,) € U}! x V;2.

Remark 4.2. At each time step, the above scheme is a nonlinear random algebraic system for

(uZJrl , VZ+1) whose well-posedness can be proved by a standard fixed point argument based on

the stability estimates of the next lemma.

Since the proof of the next lemma is similar to that of Lemma 3.2, we will omit it to save
space.

Lemma 4.3. Assume 0 < k << ko < T and choose (ug,vg) = (%, 2,V°). Then there holds

max E [J(uZH,VZ“)] < (E [J(uo,vo)} +4Cf‘)ecclz?. (4.6)

1<n<N-1

4.2. Error estimates for the finite element fully discrete scheme. The linear finite elements
are used in this section, and r; = r, = 1 are chosen in the finite element space. We start with
the discretization of the operator .Z.

Definition 4.4. The discrete operator .Z, : U}l — V}l is defined by
(—=Lywh, Vi) = A(div (wy),div (v4)) + i (e(wg), €(vn)), (4.7)
for all (w;,,v,) € U} x V}.
Define Ey :=u" —uj and E{ := v" — v}, we now derive the estimates for Ej and Ej.

Theorem 4.5. Suppose {u",v"}, solves (3.1)~(3.2) and {u}, v} solves (4.4)—(4.5). (u),v)) =
(Zu°, 2,v°) and (0°,v°) € H? x H! are given. Under the assumptions (2.1)~(2.5), we have

n n2 n ni2 n|2
max, E [0~ + v = Vi ] < CE [ 2 (48)
Proof. Subtracting (4.4) from (3.1) leads to
(Ey™' —Eg,0,) =k(Ey™,9,), (4.9)
1
(B2 —EL y,) =k(ZLEa 2, ) + ((G[u"] — G[u}]))AW,,, v, (4.10)

+k(Fu") = Fu}], v,).
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1
Choosing ¢, = —%,%,Ey ? in (4.9) yields
n+1 n ”+% n+1 "JF%
(Eu —E,, £ ZhEy ) = k(EV R Ey )
Choosing v, = Z,E**! in (4.10), we have
(En—H _E. En—H) _ k(XEH% P En+1)
v vy < hiby - u < hly
+ ((G[u"] — G[W}])AW,,, Z,EXTY) + k(F[u"] — Flu}], Z,E).
Based on the definitions of &,, ., and .%,, we have
1 1
(LB, 2B ) = (L% 7, Z,E)
1
— (LREn 2, PE)
1
— (LB 2 BT,
Besides, the left-hand side of (4.12) can be written as
(EY*! —Ey, Z,EyH)
= (2B — 2 EL 2 EN

1 1 1
= SIZE T = S| ZhEIE: + 5 | PHEV — 23|
Combining (4.11)-(4.14), we have
1 2
HRE DY)~ I, P4 + 5B || 2B = 2]
= k(F[u"] - F[u}], Z,E:) + ((G[u"] — Gu}])) AW, Z,EH)
=1 +Db.
By equation (4.2), the first term /; could be bounded by
E [k(F[u"] - Flu}], Z,Ei)]
k 2
< KE [IIP(w"] - Flug)IE:] + 5 [ 20 |12
k 2
. 2 2 2
< KCFE | |[div (EQ) F+ 1 e (B2 + BT | + 7B || 2280 |1
< KCEE | A div (Z4ED)[F2 + 1 | e(ZED - + |2 -
+KCEE | A|div (" — ") |2 + e (w” — 0" -
k 2
+ o — 2| + 7B [[| 207
< KCCHE [ |[div ()|} + 1 e (ZAE) 1} -

FACHC E o] + SB[ 2B 5]

27

4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)
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Let M; = ((G[u"] — G[u}])AW,,, Z,E}), M, is a martingale and E [M;] = 0. Similar to the
estimation of (4.16), the second term I, goes to

E[((G[u"] — G[u}]) AW, Z,EHT) (4.17)
<k [|GIw') - Gl ] + £ [| 2 - 2iE 7
< KCCRE [ |ldiv (45 |7 + k| e(ZHED) |1 |
+KCECE, R |3 | + %]E (|24~ 25|

Combining (4.15)—(4.17), we have
E [J(ZEyT, 2By B (Z4Ey, Z)EY)] (4.18)
< KCCHE [J (A, P4E)] +KCRCh, W [ [uFe]
Then the discrete Gronwall’s inequality yields
E [J(ZEL, 2E)] < C3CY HE [|\u”||§lz} eCCh. (4.19)
Combining equations (4.19), (4.1), and (4.3), we get the conclusion. ]
Theorem 4.5 states that the linear finite element discrete convergence order in H'-norm is 1.

The next theorem states that the linear finite element discrete convergence order in LZ-norm is
2.

Theorem 4.6. Let {u",v"}, solves (3.1)~(3.2), (u),v?) = (Z,u°, 2,v°) and (u°,v°) e H> x H!
be given. Assume that Fu] and G[u] are linear in u and conditions (2.1)- (2.5) hold, then we
have

_ < cc [ } s .
] <4 s e

Proof. Plugging v, = dyul := k! (ul — 2 1 into (4.5), we have

(doult! - dtuh,¢h)+kl(dlv( )dlv () +ku(e (u, ) e(9,)) (4.21)
= (G[u)]AW,, 9,,) + k(F[u}],9,).

n
Setting uj; = ). ufi and taking the summation give
I=1
+
(! — i 0,) =K (L, 0) + (w) — uj, 0) (4.22)

n

+k (Z Gluj,]AW,, ¢h) + i (Z F[ué,],rph) :
=1 =1

Subtracting (4.22) from (3.44) leads to

1

+u(e(Ey ?),e(0y)) (4.23)

n)
k() (G G[w,))AW;, ;) +&° (Z :¢h>‘
=1 =1

(Ept! —EL,¢,) + KA (div (Ey 2),div (¢
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Choosing ¢, = ﬁhEﬁ“ in (4.23), the first term on the left-hand side of (4.23) can be written
as

(B! —El 1) (4.24)
_ (@ Et — 2L )
= —IIc@ E T - —||%E”||Lz +—||¢%E”+1 PiEyllf»-
Besides, note that
A (div (ELF2), div(%E"“)) + u (e(Ey +2),ze(9f>hl+:;§“)) (4.25)
= A(div (ZELT) . div (2L 4 (e(ELTT), e( ZER))
(G, P
—(%%hEﬁJr%,Eﬁ“)
(LT R (B ED)).

Define another energy functional & (E}}) by
SEY) =5 | PELR+ 5 (7L v (BB |5+ m|eEY ). 426)
Choosing ¢, = @hE”H in (4.23) and using (4.24)—(4.25) yield

1
E(E) — 8B + 5 | 2Est - 2B @.27)
(i —F[u})]) %E{’,“)
(Z G[ul,]) AW, %E"H)

=1L +D.

Using the linearity assumption of F' and G in u, the /1 term can be bounded by

k(Y (F] Flu})), Z,Et) (4.28)

=1
—E [k2 (Fla] - Flaj), 2L |

< CORE||[By|7.] + k8 [| 20|
< CCRRE |1 |[div (B [[f + 1 [|e(2iE) .|

2
+CCh* max B |[[u" | +KE || 2B 1]
Sisn
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Let M, = k ( Y (Gu'] — G[ul))AW,, %E{;) . Then M is a martingale and E [M,] = 0. Sim-

ilarly, using the l_inearity assumption of F and G in u, the I, term can be bounded by
n—1

k (Z (G[u] — G[u}]) AW, %Eﬁ“)
=0

—E [k((G[ﬁ’] — Gl ) AW,,, Z,Eyt! — QhEﬁ)}

E[h] =E (4.29)

< CGRE (Bl + 17k ~ 2k ]

u

< CCAE [/1 [div (ZhE)|[7 > + 1 ||e(Z4EL) ||iz]

u

+CCakh* lrglagxnIE [Hu”||%p] + %E [H PEM — 2 En Hiz} .
Combining (4.27)-(4.29), we obtain
E[£(EX)] —E[£(EL)] + %E [H PLEIT %Eﬁuiz} (4.30)
< CCKE [&(EL)] 4 CCakh* lrgle?nE [||u”||%lz] .
Then the discrete Gronwall’s inequality yields

E[£(E)] < € max E [||u"||%12] K. 4.31)

1<i<n

The proof is complete. ([l

5. NUMERICAL EXPERIMENTS

In this section, we present two two-dimensional numerical experiments using the fully dis-
crete Scheme 2 to test and validate our theoretical results. Our computations are done using the
software package FEniCS [11].

Test 1. We consider the following stochastic elastic wave equation with linear multiplicative
noise:

uy(1,x) —div (o (u(t,x))) = F[u] +G[u]% in 2x0,7T],

u(z,x) =0 on 07 x0,T],
u(0,x) =uy, ue(0,x) =uy in [0,7],

where 2 = [0,1] x [0, 1], F[u] = |u|>u, and G[u] = Su. Notice that G is linear in u.
The datum functions are chosen as

sin® X1 Sin 27Xy,
Uy = . .2 s
sin27wxy sin” Txy
u; = —0.311().
Choose the noise intensity parameter 0 = 0.1, final time 7' = 0.5, and the numerical solution

with k,.; = 1/500 as the numerical exact solution for verifying convergence orders in time.
Table 1 and Figure 1 list the temporal error and convergence order results of Test 1.
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TABLE 1. Temporal errors of Test 1. Uniform meshes with h = 1/256 at T =
0.5, and 500 samples are selected.

Scheme 2 E[Hu(T)—umH E[HV(T)—VJ}Y”]
h k L? error order H! error order L? error order
1/50 9.84x103 — 8.11x1072 — 1.69x1072 ——

1775 6.88x 1073 0.88 6.80x1072 044 1.46x1072 0.37
1/256  1/100 5.17x 1073 0.99 597x1072 045 1.30x1072 0.39
1/150 3.43x 1073 1.01 4.87x107%2 050 1.09x1072 0.44
1200 251 x 1073 1.09 4.16x107%2 055 9.57x1073 0.45

101 4

Error

T
6x 1073 10-2 2x1072

FIGURE 1. Rates of the temporal error convergence of Test 1 in L?- and H'-norm.
Here T = 0.5, h = 1/256, and k € {50~,7571,100~!,150~",200~}.
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Now we fix k. r =1 /500 and choose r=1 /512. Table 2 and Figure 2 list the spatial error

and convergence order results of Test 1.

TABLE 2. Spatial errors of Test 1. The reference solution is given by h,.r =
1/512 and 500 samples are selected.

Scheme 2 E [||u(T) —u)|[]
k h L~ error order H, error order
1/64 938x107° —— 1.76x1073 ——

1/500  1/128 2.37x107™> 198 9.52x107* 0.89
11256 5.71x107% 2.06 4.44x107* 1.10
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103 4

104 4

Error

— llulle=
— llullaz
079 ae=2
——- rate=1

T
10-2 2x1072 3x 1072
At

FIGURE 2. The spatial convergence rates of Test 1 in L?- and H!-norm. Here 7 = 0.5,
k=1/500, and h € {2(-6+) i =0,1,2}.

Finally, to verify the stability of the proposed numerical methods, we compute the energy
norm numerically and draw the graph of the energy norm over time, as shown in Figure 3.

Test 2. We consider the stochastic elastic wave equations with nonlinear multiplicative noise
as given below.

wi(t, %) — div (o (u(t,x))) = Flu] + G[u]% in 7 x (0,7,

u(z,x) =0 ond% x[0,T],

u(0,x) =ug, ue(0,x) =uy in [0,7],

where 2 = [0,1] x [0, 1], F[u] = |u|>u and G[u] = §(|u/?> + 1)u. Notice that both F and G are
nonlinear in u.
The datum functions are chosen as

[ sin37x; Sin27x;,
0= \ sin27x; sin37mx, )’

u; = 0.
Choose the noise intensity parameter 0 = 0.1, final time 7' = 0.5, and the numerical solution

with k,.; = 1/500 as the numerical exact solution for verifying the time convergence order.
Table 3 and Figure 4 list the temporal error and convergence order results of Test 1.
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T
0.0

T T T T T T T T T T
0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4
t t

(@) k=1/50 (b) k=1/75

T
0.5

T
0.0

T T T T T T T T T T
0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4
t t

(c) k=1/100 ) k=1/150

T
0.5

0.0

0.1 0.2 03 0.4 0.5 0.0 0.1 0.2 0.3 0.4
t t

(e)k:1/200 (f) k:kref

FIGURE 3. Energy norm in Test 1 over time based on different time step sizes.
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TABLE 3. Temporal errors of Test 2. Uniform meshes with h = 1/256 at T =
0.5, and 500 samples are selected.

Scheme 2 E[Hu(T)—umH E[HV(T)_Vm”
h k L? error order H& error order L? error order
/50 132x1070 —— 1.65x10° —— 442x107" ——

/75 9.46x 1072 0.82 1.41x10° 039 3.76x10~! 0.40
1/256 17100 7.27x1072 0.92 1.24x10° 043 3.32x107" 043
1/150 4.88x 1072 098 1.03x10° 047 2.79x10°! 043
1200 3.65x 1072 1.01 8.96x10~! 050 241x10~! 0.51

//’,/?

107 mm===21

-

— llulle:

N
107- 1
. —
[Ivllez

— rate=1
=== rate=0.5

Error

T
6x 103 10-2 2x10°2
Af

FIGURE 4. Rates of the temporal error convergence of Test 2 in L?- and H'-norm.
Here T = 0.5, h = 1/256, and k € {50~,751,100~!,150~",200~}.

Now we fix k,.r = 1/500 and choose &, = 1/512. Table 4 and Figure 5 list the spatial error
and convergence order results of Test 2.

TABLE 4. Spatial errors of Test 2. The reference solution is computed by using
ey =1 /512 and 500 samples are selected.

Scheme 2 ]E[”u(T)—uﬁle
k h L? error order H(} error order
1/64 756x107% —— 3.10x1072 ——

1/500  1/128 2.30x 1074 1.72 1.77x1072 0.81
1/256 5.94x 107> 195 9.10x1073 0.96
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Error

— llullxz
10747 — rate=2
—-—- rate=1

10-2 2x1072 3x1072
At

FIGURE 5. Rates of the spatial error convergence of Test 2 in the L?- and H'-norm.
T=0.5,k=1/500and h € {20-5%) j=0,1,2}.

Finally, to verify the stability of the proposed numerical method, we compute the energy
norm numerically and draw the graph of the energy norm over time, as shown in Figure 6.

6. CONCLUSION

In this paper, we proposed a semi-discrete in time scheme and a fully discrete finite element
method for nonlinear stochastic elastic wave equations with multiplicative noise. We proved
various properties for the strong solution such as stability and Holder continuity estimates. We
also established the stability and error estimates for the semi-discrete numerical solution, which
show that the L?-norm of the temporal error has first order convergence, while the H'-norm of
the error has one half order convergence. Moreover, we proved that, for the linear finite element,
the L2-norm of the spatial error has second order convergence, and the H'-norm of the error
has first order convergence. Two-dimensional numerical experiments were also presented using
the proposed numerical methods to validate the theoretical results proved in the paper.

To the best of our knowledge, no numerical analysis result for stochastic elastic wave equa-
tions has been reported in the literature. The work of this paper fills the void in this area. Like in
the numerical analysis of stochastic parabolic PDEs, a key idea and technique for overcoming
the difficulty caused by the noise is to establish and make use of the Holder continuity in time
of the weak solution in various spatial norms. We also note that the results of this paper could
be improved in light of the recent work [18]. In particular, it is possible to construct better time-
stepping schemes which can achieve the optimal % order of convergence for the displacement
approximation, which in turn requires higher order approximation for the multiplicative noise
term. In addition, the classical Monte Carlo (MC) method is computationally inefficient, more
efficient quasi-MC methods could be used to speed up the computation of the expected values.
Moreover, other numerical methods such as the stochastic spectral method [39] could be used
to process and analyze the noise term. Finally, the analysis techniques of this paper may not
be able to handle more general nonlinear functions F[u] and G[u], new analysis techniques are
needed for the job. We plan to continue addressing those issues in a future work.
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30.0 30.0
275 4 27.5
25.0 25.0 4
225 225
& )
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10.0 1 — T . T . T 10.0 11— . T . T .
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(a) k=1/50 (b) k=1/75
30.0 30.0
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25.0 25.0 4
225 4 22,54
& &
g 20.0 4 @ 20.0
& &
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100 L — ' : ' : ' 10.0 L— ! ' : ' :
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
t t
(c) k=1/100 (d) k=1/150
30.0 30.0
B
2754 27.54
25.0 25.0 4
225 22.5 4
& &
g 20.0 T 20.0
& &
17.5 4 17.5
15.0 - 15.0 |
12.5 12.5
100 +— . T . . T 10.0 -— T . . T .
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
t t
(e) k=1/200 (1) k= Ator

FIGURE 6. Energy norm of Test 2 over time, using different time step sizes.
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