
The Journal of Geometric Analysis (2023) 33:255
https://doi.org/10.1007/s12220-023-01309-7

A Strong-Type Furstenberg–Sárközy Theorem for Sets of
Positive Measure

Polona Durcik1 · Vjekoslav Kovač2 ·Mario Stipčić1
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Abstract
For every β ∈ (0,∞), β �= 1, we prove that a positive measure subset A of the unit
square contains a point (x0, y0) such that A nontrivially intersects curves y − y0 =
a(x− x0)β for a whole interval I ⊆ (0,∞) of parameters a ∈ I . A classical Nikodym
set counterexample prevents one to take β = 1, which is the case of straight lines.
Moreover, for a planar set A of positive density, we show that the interval I can be
arbitrarily large on the logarithmic scale. These results can be thought of as Bourgain-
style large-set variants of a recent continuous-parameter Sárközy-type theorem by
Kuca, Orponen, and Sahlsten.
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1 Introduction

Geometric measure theory often tries to identify patters in sufficiently large, but oth-
erwise arbitrary, measurable sets. Recently, nonlinear or curved patterns have begun
to attract much attention [1–10]; most of these references will be discussed below. In
this note, we follow one of the many opened lines of research.

Kuca et al. [8] showed that there exists ε > 0 with the following property: every
compact set K ⊆ R

2 with Hausdorff dimension at least 2 − ε necessarily contains a
pair of points of the form

(x, y), (x, y) + (u, u2) (1.1)

for some u �= 0. We can imagine that we started from a point (x, y) ∈ K , translated
the parabola v = u2 so that its vertex falls into (x, y), and moved along that parabola
to find another point in the set K ; see Fig. 1. Their result can be thought of as a
continuous-parameter analogue of the classical Furstenberg–Sárközy theorem [11,
12], on R

2 instead of Z. The parabola cannot be replaced with a vertical straight line
(see the comments in [8]); curvature is crucial.

The authors of [8] mention that a set A ⊆ [0, 1]2 of Lebesgue measure at least
0 < δ ≤ 1/2 contains a pair of points (1.1) that also satisfy the gap bound

|u| ≥ exp(− exp(δ−C ))

for some absolute constant C . This property is seen either by an easy adaptation of
Bourgain’s argument from [1] for quadratic progressions

x, x + z, x + z2,

or by merely considering the last two points of the three-point quadratic corner

(x, y), (x + z, y), (x, y + z2),

studied by Christ, Roos, and one of the present authors [4, Theorem 4]. A gap bound
is needed in order to have a nontrivial result, as the Steinhaus theorem would identify
sufficiently small copies of any finite configuration inside a set of positive measure.

Fig. 1 The two-point pattern
inside the set
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Fig. 2 Points in the set along
many parabolas

Namely, if A has positive measure, then the difference set A− A contains a ball around
the origin, so it certainly intersects the parabola v = u2 in a point other than (0, 0).
More on polynomial patterns like these can be found in recent preprints [9] and [10].

It is natural to wonder if sets A ⊆ [0, 1]2 of positive measure also possess some
stronger property of Furstenberg–Sárközy type. For instance, we can consider many
parabolas v = au2 with their vertex translated to the point (x, y). Reasoning from the
previous paragraph applies equally well for any fixed a > 0 to the vertically scaled
set, giving a well-separated pair of points

(x, y), (x, y) + (u, au2) (1.2)

in the set A. However, it is not obvious if there exists a common starting point (x, y) ∈
A from which we could move along “many” parabolas and always find points in the
set A; see Fig. 2. This is the content of our main theorem below and here by many we
mean a whole “beam” of parabolas with parameter a running over a non-degenerate
interval I . In fact, a parabola can be replaced with any power curve v = auβ , for a
fixed β �= 1 and a varying a > 0.

Here is the main result of the paper. Let |E | denote the Lebesgue measure of a
measurable set E ⊆ R

2.

Theorem 1 For a given β ∈ (0,∞), β �= 1, there exists a finite constant C ≥ 1 with
the following property: for every 0 < δ ≤ 1/2 and every measurable set A ⊆ [0, 1]2
of Lebesgue measure |A| at least δ, there exist a point (x, y) ∈ A and an interval
I ⊆ (0,∞) such that

exp(−δ−C ) ≤ inf I < sup I ≤ exp(δ−C ),

|I | ≥ exp(−δ−C ),

and that for every a ∈ I , the set A intersects the arc of the power curve

{
(x, y) + (

u, auβ
) : exp(−δ−C ) ≤ u ≤ exp(δ−C )

}
.

The following short argument shows that Theorem 1 fails in the limiting case
β = 1, i.e., when the power curves are replaced with straight lines through (x, y).
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Let N ⊆ [0, 1]2 be a Nikodym set, which is a set of full Lebesgue measure such that
through every point of N , one can draw a line that intersects N only at a single point;
let us call such lines exceptional. If Rα : R2 → R

2 denotes the rotation about the
point (1/2, 1/2) by the angle α, while Dc : R2 → R

2 denotes the dilation centered at
(1/2, 1/2) by the factor c > 0, then

A :=
( ⋂

α∈[0,2π)∩Q
D√

2RαN

)
∩ [0, 1]2 (1.3)

is a Nikodym set such that its exceptional lines determine a dense set of directions
through each of its points. In particular, there can be no beam of lines

{
(x, y) + (u, au) : u ∈ R

}
, a ∈ I , I ⊆ (0,∞) an interval,

through any point (x, y) ∈ A that would nontrivially intersect A for each a ∈ I , as
required in Theorem 1. In fact, Davies [13] has already constructed a Nikodym set
whose exceptional lines though each of its points form both dense and uncountable
sets of directions. On the other hand, if we repeat the simple construction (1.3) starting
with a Nikodym-type set found by Chang et al. [14, Corollary 1.2], then we can also
rule out curves composed of countably many pieces of straight lines.

Finally, it is also legitimate to ask if an even stronger result holds for “really large”
sets, namely for the sets A ⊆ R

2 that occupy a positive “share” of the plane. Recall
that the upper Banach density of a measurable set A is defined as

δ(A) := lim sup
R→∞

sup
(x,y)∈R2

|A ∩ ([x − R, x + R] × [y − R, y + R])|
4R2 .

Theorem 2 For a given β > 1 (resp. 0 < β < 1) and a measurable set A ⊆ R
2 with

δ(A) > 0, there is a number a0 ∈ (0,∞) with the following property: for every a1
satisfying 0 < a1 < a0 (resp. a1 > a0), there exists a point (x, y) ∈ A such that for
every a ∈ R satisfying a1 ≤ a ≤ a0 (resp. a0 ≤ a ≤ a1) the set A intersects the power
curve

{
(x, y) + (

u, auβ
) : u ∈ (0,∞)

}
.

In comparison with Theorem 1, an improvement coming from Theorem 2 is in the
fact that the interval I = [a1, a0] (resp. I = [a0, a1]) can have an arbitrarily small
(resp. large) left (resp. right) endpoint a1. It is not clear to us if the latter result also
holds with I = (0,∞); this extension would probably be very difficult to prove.
Our proof will rely on Bourgain’s dyadic pigeonholing in the parameter a, and as
such, it is unable to assert anything for every single value of a ∈ (0,∞). Thus, it is
not coincidental that Theorem 2 is quite reminiscent of the so-called pinned distances
theorem of Bourgain [15, Theorem 1’]. Our proof will closely follow Bourgain’s proof
of that theorem, replacing circles with arcs of the curves v = auβ and also invoking
Bourgain’s results on generalized circular maximal functions in the plane [16].
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Fig. 3 The power arc, the
reflected arc, and the tangents

Theorems 1 and 2 might also be interesting because they initiate the study of
strong-type (a.k.a. Bourgain-type) results for finite curved Euclidean configurations,
asserting their existence in A for awhole interval I of parameters/scales. The two-point
pattern (1.2) studied here could possibly be replaced with larger andmore complicated
configurations in future.

2 Analytical Reformulation

It is sufficient to study the case β > 1. Afterward, one can cover 0 < β < 1 simply
by interchanging the roles of the coordinate axes and applying the previous case to
1/β. Note that all bounds formulated in Theorem 1 and the statement of Theorem 2
are sufficiently symmetric to allow such swapping. Thus, let us fix the parameter
β ∈ (1,∞).

It is geometrically evident that one can realize an arc of the power curve v = uβ as a
part of a smooth closed simple curve �, which has non-vanishing curvature and which
is the boundary of a centrally symmetric convex set in the plane. More precisely, take
parameters 0 < η < θ such that

(θ

η

)β − β
θ

η
< β − 1.

Figure3 depicts how the arc

{
(u, uβ) : η ≤ u ≤ θ

}
(2.1)

can be extended by its tangents at the endpoints to a boundary of a centrally symmetric
convex set. It is then easy to curve and smooth this boundary a little in order to make
it C∞ with non-vanishing curvature while still containing the above arc. The trick of
realizing a power arc as a part of the boundary of an appropriate centrally symmetric
convex set with intention of applying Bourgain’s results [16] has already been used
by Marletta and Ricci [17, Section 1, p. 59].
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Define ν to be the arc length measure of �. We can also parametrize the curve �

by arc length (i.e., traversing it at unit speed) as

� = {(γ1(s), γ2(s)) : s ∈ [0, L)},

so that we have

∫

R2
f (u, v) dν(u, v) =

∫ L

0
f (γ1(s), γ2(s)) ds

for every bounded measurable function f . Now take a nonnegative smooth function
� such that its support intersects � precisely in the arc (2.1), and which is constant 1
on a major part of that arc. Let σ be the measure given by

dσ = � dν
∫
�

� dν
;

note that it is normalized as σ(R2) = σ(�) = 1. Then

∫

R2
f (u, v) dσ(u, v) =

∫

R

f (u, uβ)ψ(u) du

for every bounded measurable function f , where ψ(u) is a constant multiple of

�(u, uβ)(γ −1
1 )′(u).

Thus, ψ is a nonnegative C∞ function whose support is contained in [η, θ ]. All con-
stants appearing in the proof are allowed to depend on �, β, η, θ,� without further
mention.

If σt is the dilate of σ by a number t > 0, i.e., σt (E) := σ(t−1E), then we have

∫

R2
f (u, v) dσt (u, v) = 1

t

∫

R

f
(
u,

uβ

tβ−1

)
ψ

(u
t

)
du,

so σt is “detects” points on the curve v = auβ , where

a = t1−β. (2.2)

Finally, let σ̃ be the reflection of σ , i.e., σ̃ (E) := σ(−E). Note that

(
σ̃t ∗ f

)
(x, y) = 1

t

∫

R

f
(
x + u, y + uβ

tβ−1

)
ψ

(u
t

)
du. (2.3)

Both theorems will be consequences of the following purely analytical result. Let
1E denote the indicator function of a set E ⊆ R

2.
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Proposition 3 Take 0 < δ ≤ 1/2 and a measurable set A ⊆ [0, 1]2 of measure
|A| ≥ δ. Suppose that there exist dyadic numbers (i.e., elements of 2Z)

1 > b1 > c1 > b2 > c2 > · · · > bJ > cJ > 0

having the property
inf

t∈[c j ,b j ]
(
σ̃t ∗ 1A

)
(x, y) = 0 (2.4)

for every point (x, y) ∈ A and every index 1 ≤ j ≤ J . Then J ≤ δ−C ′
for some

constant C ′ ≥ 1 independent of δ or A.

Our main task is to establish Proposition 3 and its proof will span over the next
section.

3 Proof of Proposition 3

Let us write A � B and B � A if the inequality A ≤ CB holds for a constant
C ∈ (0,∞). This constant C is always understood to depend on �, β, η, θ,� from
previous sections. Let τ > 0 be a fixed positive number and � > 0 a fixed dyadic
number; their values will be small and they will be chosen later.

Take a measurable set A ⊆ [0, 1]2 with |A| ≥ δ. We write

f := 1A and g := 1[0,1]2 − f .

If we take an index j such that

j > J0 :=
⌈1
2
log2

diam �

τ

⌉
, (3.1)

then

b j
diam �

2
≤ 2−2 j diam � < τ,

so for every (x, y) ∈ A ∩ [τ, 1 − τ ]2 and t ∈ [c j , b j ], we have
(
σ̃t ∗ 1[0,1]2

)
(x, y) = σt (R

2) = σ(R2) = 1.

For such points (x, y), the assumption (2.4) then implies

f (x, y) sup
t∈[c j ,b j ]

(
σ̃t ∗ g

)
(x, y) = 1,

which in turn leads to a lower bound
∫

R2
f · sup

t∈[c j ,b j ]
(σ̃t ∗ g) ≥

∫

A∩[τ,1−τ ]2
f · sup

t∈[c j ,b j ]
(
σ̃t ∗ g

)
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= |A ∩ [τ, 1 − τ ]2| ≥ |A| − 4τ =
∫

R2
f − 4τ, (3.2)

provided j is chosen large enough that (3.1) holds.
Let ϕt be the Poisson kernel on R

2, i.e.,

ϕt (x, y) := t

2π(t2 + x2 + y2)3/2

for every t > 0, where the normalization is chosen such that
∫
R2 ϕt = 1. For a bounded

measurable function h we will write

Pth = ϕt ∗ h.

Also, for k ∈ Z let Ek denote the martingale averages with respect to the dyadic
filtration, i.e.,

Ekh :=
∑

|Q|=2−2k

(
|Q|−1

∫

Q
h

)
1Q,

where h ∈ L1
loc(R

2) and the sum is taken over all dyadic squares Q inR2 of area 2−2k

(and side length 2−k).
Take t ∈ [c j , b j ] and k j = − log2(�c j ), which is an integer. We decompose

σ̃t ∗ g = (σ̃t ∗ g − σ̃t ∗ Ek j g)

+ (σ̃t ∗ Ek j g − σ̃t ∗ P�c j g) + (σ̃t ∗ P�c j g − σ̃t ∗ P�−1b j
g)

+ (σ̃t ∗ P�−1b j
g − P�−1b j

g) + P�−1b j
g.

Taking the triangle inequality and the supremum over t gives

∫
f · sup

t∈[c j ,b j ]
(σ̃t ∗ g) ≤

∫
f · sup

t∈[c j ,b j ]
|σ̃t ∗ (g − Ek j g)| (3.3)

+
∫

f · sup
t∈[c j ,b j ]

|σ̃t ∗ Ek j g − σ̃t ∗ P�c j g| (3.4)

+
∫

f · sup
t∈[c j ,b j ]

|σ̃t ∗ P�c j g − σ̃t ∗ P�−1b j
g| (3.5)

+
∫

f · sup
t∈[c j ,b j ]

|σ̃t ∗ P�−1b j
g − P�−1b j

g|

+
∫

f · P�−1b j
g. (3.6)
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We will estimate each of the terms separately, using Hölder’s inequality. For the
first term on the right-hand side of (3.3), we will use the bound

∥∥∥ sup
t∈[c j ,1)

|σ̃t ∗ (g − Ek j g)|
∥∥∥
Lp(R2)

≤ C1�
α‖g‖Lp(R2) (3.7)

whenever p > 2, where α is a positive constant depending only on p. (Any fixed finite
value of p greater than 2 will do.) This bound will follow from the central estimate
(10) in Bourgain’s paper [16], which can be written in our notation as

∥∥∥ sup
t∈[2−n ,2−n+1)

|σ̃t ∗ h|
∥∥∥
Lp(R2)

� 2−α(i−n)‖h‖Lp(R2) (3.8)

whenever Ei h = 0, while n ≤ i are positive integers and p, α are as before. Bourgain
[16, (10)] actually formulated (3.8) for the full arc length measure dν, but the very
same proof establishes it also for the smooth truncation � dν. In fact, Bourgain has
already performed several decompositions of ν [16, Sections 3–6], and an additional
smooth angular finite decomposition of � can be added freely to the proof of his upper
bound [16, (10)], making the proof insusceptible to a smooth truncation by �.

In order to prove (3.7), let d j = − log2(c j ). We split [c j , 1) into dyadic intervals
[2−n, 2−n+1), estimate the maximum in n by the �p-sum, write

g − Ek j g =
∞∑

m=0

�m+k j g,

where �i = Ei+1 −Ei , and use the triangle inequality, after which it suffices to show

∥∥∥∥

( d j∑

n=1

( ∞∑

m=0

sup
t∈[2−n ,2−n+1)

|σ̃t ∗ �m+k j g|
)p

)1/p∥∥∥∥
Lp(R2)

� �α‖g‖Lp(R2).

The left-hand side can be rewritten as

( d j∑

n=1

∥∥∥
∞∑

m=0

sup
t∈[2−n ,2−n+1)

|σ̃t ∗ �m+k j g|
∥∥∥
p

Lp(R2)

)1/p

and then estimated by Minkowski’s inequality with

≤
∞∑

m=0

( d j∑

n=1

∥∥∥ sup
t∈[2−n ,2−n+1)

|σ̃t ∗ �m+k j g|
∥∥∥
p

Lp(R2)

)1/p
.

Finally, the inequality (3.8) with i = m + k j bounds this by

�
∞∑

m=0

( d j∑

n=1

2−pα(m+k j−n)‖�m+k j g‖p
Lp(R2)

)1/p
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�
∞∑

m=0

( d j∑

n=1

2−pα(m+k j−n)‖g‖p
Lp(R2)

)1/p

� 2α(d j−k j )‖g‖Lp(R2) = �α‖g‖Lp(R2),

as desired.
To control (3.4) and (3.5), we use Bourgain’s maximal estimate in the plane [16,

Theorem 1],

∥∥∥ sup
t∈(0,∞)

|σ̃t ∗ h|
∥∥∥
Lp(R2)

� ‖h‖Lp(R2)

for p > 2. Here, it gives

∥∥∥ sup
t∈[c j ,b j ]

|σ̃t ∗ P�c j g − σ̃t ∗ P�−1b j
g|

∥∥∥
Lp(R2)

≤ C2‖P�−1b j
g − P�c j g‖Lp(R2)

(3.9)

and
∥∥∥ sup
t∈[c j ,b j ]

|σ̃t ∗ Ek j g − σ̃t ∗ P�c j g|
∥∥∥
Lp(R2)

≤ C2‖P�c j g − Ek j g‖Lp(R2) (3.10)

for an absolute constant C2.
To estimate (3.6), we claim that for each (x, y) ∈ R

2, j , and t ≤ b j ,

∣∣(σ̃t ∗ P�−1b j
g
)
(x, y) − (

P�−1b j
g
)
(x, y)

∣∣ ≤ C3� (3.11)

for some absolute constant C3. To see this, we first use that

∣∣(σ̃t ∗ P�−1b j
g
)
(x, y) − (

P�−1b j
g
)
(x, y)

∣∣ ≤ ∥∥(σ̃t ∗ ϕ�−1b j
) − ϕ�−1b j

∥∥
L1(R2)

‖g‖L∞(R2)

for each (x, y) ∈ R
2. Since ‖g‖L∞(R2) ≤ 1, it only remains to bound, using (2.3),

∥∥(σ̃t ∗ ϕ�−1b j
) − ϕ�−1b j

∥∥
L1(R2)

=
∫

R2

∣∣∣∣
1

t

∫

R

(
ϕ�−1b j

(
x + u, y + uβ

tβ−1

)
− ϕ�−1b j

(x, y)

)
ψ

(u
t

)
du

∣∣∣∣ d(x, y)

≤
∫

R2

1

t

∫

R

∣∣∣ϕ1

(
x + u�

b j
, y + uβ�

b j tβ−1

)
− ϕ1(x, y)

∣∣∣ ψ
(u
t

)
du d(x, y),

where we also changed variables in x, y. By the mean value theorem, the last display
is

≤
∫

R2

1

t

∫

R

|∇ϕ1(z, w)|
∣∣∣
(u�

b j
,

uβ�

b j tβ−1

)∣∣∣ ψ
(u
t

)
du d(x, y)
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for

(z, w) = a(x, y) + (1 − a)
(
x + u�

b j
, y + uβ�

b j tβ−1

)

and some 0 < a < 1. This is further bounded by

�
∫

R2

1

t

∫

R

(
1 + |(x, y)|2)−3/2

∣∣∣
(u�

b j
,

uβ�

b j tβ−1

)∣∣∣ψ
(u
t

)
du d(x, y),

where we also used |u| � t ≤ b j < 1, and dominated a non-centered |∇ϕ1| by a
centered integrable function. Integrating in u and (x, y), we obtain a bound by C3�.

Therefore, using (3.2) to obtain a lower bound, estimates (3.7), (3.9), (3.10), (3.11)
for upper bounds, and Hölder’s inequality, we obtain

∫

R2
f − 4τ ≤ C1�

α + C2‖P�c j g − Ek j g‖Lp(R2) + C2‖P�−1b j
g − P�c j g‖Lp(R2)

+ C3� +
∫

R2
f · P�−1b j

g, (3.12)

provided j is large enough.
Next,

∫

R2
f · P�−1b j

g =
∫

R2
f · P�−1b j

1[0,1]2 −
∫

R2
f · P�−1b j

f

and we have ∫

R2
f · P�−1b j

1[0,1]2 ≤
∫

R2
f (3.13)

and ∫

R2
f · P�−1b j

f ≥ c0
( ∫

R2
f
)2

(3.14)

for some absolute constant c0 > 0. The estimate (3.13) follows by the trivial L∞ bound
for the convolution. To see (3.14), we note that by the Cauchy-Schwarz inequality, for
any k ∈ Z,

∫

R2
f · Ek f ≥

( ∫

R2
f
)2

Then it remains to bound the martingale averages from above by the Poisson averages.
The reader can find the details in the proof of Lemma 2.1 in [3]. Therefore, from (3.12)
and

∫
R2 f = |A| ≥ δ, we get

c0δ
2 −4τ ≤ C1�

α +C3�+C2‖P�c j g−Ek j g‖Lp(R2) +C2‖P�−1b j
g− P�c j g‖Lp(R2),

(3.15)
which will turn out useful provided that τ is small enough.
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Furthermore, we claim that for p > 2 and for any J > J0, we have

J∑

j=J0+1

‖P�−1b j
g − P�c j g‖p

Lp(R2)
≤ C4

(
log2 �−1)p‖g‖p

Lp(R2)
≤ C4

(
log2 �−1)p

(3.16)
and

J∑

j=J0+1

‖P�c j g − Ek j g‖p
Lp(R2)

≤ C4‖g‖p
Lp(R2)

≤ C4 (3.17)

with the constantC4 independent of J0, J . Thesewill be consequences of boundedness
on Lp(R2), 1 < p < ∞, of the square functions

S1h :=
( ∑

i∈Z

∣∣P2−i+1h − P2−i h
∣∣2

)1/2

and

S2h :=
( ∑

i∈Z

∣∣P2−i h − Ei h
∣∣2

)1/2
.

Bound for S1 follows from the classical Calderón-Zygmund theory [18, Subsections
6.1.3], while boundedness of S2 was proven by Jones, Seeger, andWright [19, Sections
3–4]. In fact, the emphasis of the paper [19] was on more general dilation structures
and more general martingales, while the square function estimate from the last display
is essentially due to Calderón; see [18, Subsection 6.4.4]. Now, (3.16) follows by
recalling p > 2 and writing

( J∑

j=J0+1

‖P�−1b j
g − P�c j g‖p

Lp(R2)

)1/p

≤ (2 log2 �−1 + 1)

( ∑

i∈Z
‖P2−i+1g − P2−i g‖p

Lp(R2)

)1/p

� (log2 �−1)

∥∥∥∥
( ∑

i∈Z
|P2−i+1g − P2−i g|p

)1/p∥∥∥∥
Lp(R2)

≤ (log2 �−1)‖S1g‖Lp(R2) � (log2 �−1)‖g‖Lp(R2).

Similarly we deduce (3.17):

( J∑

j=J0+1

‖P�c j g − Ek j g‖p
Lp(R2)

)1/p

≤ ‖S2g‖Lp(R2) � ‖g‖Lp(R2).
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To be completely determined, one can simply take p = 3. From (3.16) and (3.17),
we conclude that there exists j ∈ {J0 + 1, . . . , J } such that

‖P�−1b j
g − P�c j g‖L3(R2), ‖P�c j g − Ek j g‖L3(R2) ≤ (2C4(J − J0)

−1)1/3 log2 �−1.

Together with (3.15) applied for this particular j and τ = c0δ2/8 we obtain

2−1c0δ
2 ≤ C1�

α + C3� + 2C2(2C4(J − J0)
−1)1/3 log2 �−1,

i.e.,

J − J0 �
( log2 �−1

2−1c0δ2 − C1�α − C3�

)3
.

Now we recall that we actually chose J0 in (3.1) at the beginning of the proof, which
guarantees that J0 ≤ log2(C5δ

−2) for a suitable constant C5. Taking � to be a small
multiple of min{δ2/α, δ2} we obtain J ≤ δ−C ′

for a suitable constant C ′.

4 Proofs of Theorems 1 and 2

In this section, we deduce the two main theorems from Proposition 3. Once again, it
is sufficient to consider β ∈ (1,∞).

Proof of Theorem 1 Set J = �δ−C ′ � + 1, where C ′ is the constant from Proposition 3.
Let us simply choose consecutive dyadic scales, b j = 2−2 j+1 and c j = 2−2 j for
every 1 ≤ j ≤ J . By the contraposition of Proposition 3 and using formula (2.3), we
conclude that there exist a point (x, y) ∈ A and an index 1 ≤ j ≤ J such that for
every c j ≤ t ≤ b j , the set A contains a point of the form

(
x + u, y + uβ

tβ−1

)
, ηt < u < θ t . (4.1)

Substituting (2.2), we get

c j ≤ t ≤ b j ⇐⇒ b1−β
j ≤ a ≤ c1−β

j ,

which now means that for every

a ∈ I := [
2(β−1)(2 j−1), 2(β−1)2 j ]

there exists

ηa−1/(β−1) < u < θa−1/(β−1)
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such that (x + u, y + auβ) ∈ A. Observing

inf I ≥ 1,

sup I ≤ 22(β−1)J ≤ 24(β−1)δ−C ′
,

|I | ≥ 2β−1 − 1,

and that any such u satisfies

u ≥ η2−2 j ≥ η2−2J ≥ η2−2δ−C ′
,

u ≤ θ2−2 j+1 ≤ θ

we finally establish Theorem 1. ��
Proof of Theorem 2 Suppose that the claim does not hold for some measurable set
A ⊆ R

2 with δ(A) > 0. Take δ := δ(A)/2 and J = �δ−C ′ � + 1, where C ′ is the
constant from Proposition 3. Inductively, we construct positive numbers

C1 > B1 > C2 > B2 > · · · > CJ > BJ

satisfying C j+1 ≤ Bj/8β−1 and such that for each j ≥ 1 and every point (x, y) ∈ A,
there exists a ∈ [Bj ,C j ]with the property that A does not contain a point of the form

(x + u, y + auβ), u > 0.

After the change of variables (2.2), we see that for each j ≥ 1 and every point
(x, y) ∈ A, there exists

C−1/(β−1)
j ≤ t ≤ B−1/(β−1)

j

such that A does not contain a point of the form (4.1), so

(
σ̃t ∗ 1A

)
(x, y) = 0.

By the definition of the upper Banach density, there exist a number R ≥ B−1/(β−1)
J

and a point (x0, y0) ∈ R
2 such that

∣∣A ∩ ([−R, R]2 + (x0, y0)
)∣∣ ≥ δ · 4R2.

Define

A′ :=
(

1

2R

(
A − (x0, y0)

) +
(1
2
,
1

2

))
∩ [0, 1]2 (4.2)

and let b j and c j ,respectively,be the number B−1/(β−1)
J+1− j /2R rounded up to the nearest

dyadic number and the number C−1/(β−1)
J+1− j /2R rounded down to the nearest dyadic
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number, i.e.,

b j := 2�log2(B−1/(β−1)
J+1− j /2R)�

, c j := 2�log2(C−1/(β−1)
J+1− j /2R)� (4.3)

for every 1 ≤ j ≤ J . Finally, for every (x, y) ∈ A′ and every 1 ≤ j ≤ J , this implies

(
σ̃t ∗ 1A′

)
(x, y) = 0

for some c j ≤ t ≤ b j , while we have chosen J so that J > δ−C ′
. Note that also

|A′| ≥ δ, so the set (4.2) and the numbers (4.3) violate Proposition 3, which leads us
to a contradiction. ��
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