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Abstract

For every 8 € (0, 00), B # 1, we prove that a positive measure subset A of the unit
square contains a point (xg, yo) such that A nontrivially intersects curves y — yp =
a(x — xg)P for a whole interval I < (0, co) of parameters a € I. A classical Nikodym
set counterexample prevents one to take § = 1, which is the case of straight lines.
Moreover, for a planar set A of positive density, we show that the interval I can be
arbitrarily large on the logarithmic scale. These results can be thought of as Bourgain-
style large-set variants of a recent continuous-parameter Sarkozy-type theorem by
Kuca, Orponen, and Sahlsten.
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1 Introduction

Geometric measure theory often tries to identify patters in sufficiently large, but oth-
erwise arbitrary, measurable sets. Recently, nonlinear or curved patterns have begun
to attract much attention [1-10]; most of these references will be discussed below. In
this note, we follow one of the many opened lines of research.

Kuca et al. [8] showed that there exists ¢ > 0 with the following property: every
compact set K C R? with Hausdorff dimension at least 2 — ¢ necessarily contains a
pair of points of the form

(.3 (@ y) + (,u?) (1.1)

for some u # 0. We can imagine that we started from a point (x, y) € K, translated
the parabola v = u? so that its vertex falls into (x, y), and moved along that parabola
to find another point in the set K; see Fig. 1. Their result can be thought of as a
continuous-parameter analogue of the classical Furstenberg—Sarkozy theorem [11,
12], on R? instead of Z. The parabola cannot be replaced with a vertical straight line
(see the comments in [8]); curvature is crucial.

The authors of [8] mention that a set A C [0, 1]? of Lebesgue measure at least
0 < § < 1/2 contains a pair of points (1.1) that also satisfy the gap bound

lu| > exp(—exp(8~©))

for some absolute constant C. This property is seen either by an easy adaptation of
Bourgain’s argument from [1] for quadratic progressions

X, x+z, x + 22,
or by merely considering the last two points of the three-point quadratic corner
(X, ), (x+2,3), (x,y+2),
studied by Christ, Roos, and one of the present authors [4, Theorem 4]. A gap bound

is needed in order to have a nontrivial result, as the Steinhaus theorem would identify
sufficiently small copies of any finite configuration inside a set of positive measure.

Fig.1 The two-point pattern
inside the set

(@) + (u,u?)
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Fig.2 Points in the set along
many parabolas

Namely, if A has positive measure, then the difference set A — A contains a ball around
the origin, so it certainly intersects the parabola v = u? in a point other than (0, 0).
More on polynomial patterns like these can be found in recent preprints [9] and [10].

It is natural to wonder if sets A C [0, 1]2 of positive measure also possess some
stronger property of Furstenberg—Sarkozy type. For instance, we can consider many
parabolas v = au? with their vertex translated to the point (x, y). Reasoning from the
previous paragraph applies equally well for any fixed a > O to the vertically scaled
set, giving a well-separated pair of points

(x, ), (x, )+ (u, au?) (1.2)

in the set A. However, it is not obvious if there exists a common starting point (x, y) €
A from which we could move along “many” parabolas and always find points in the
set A; see Fig. 2. This is the content of our main theorem below and here by many we
mean a whole “beam” of parabolas with parameter a running over a non-degenerate
interval /. In fact, a parabola can be replaced with any power curve v = au®, for a
fixed B # 1 and a varying a > 0.

Here is the main result of the paper. Let |E| denote the Lebesgue measure of a
measurable set E C R2.

Theorem 1 For a given B € (0, 00), B # 1, there exists a finite constant C > 1 with
the following property: for every 0 < 8 < 1/2 and every measurable set A C [0, 1]%
of Lebesgue measure |A| at least 8, there exist a point (x,y) € A and an interval
1 C (0, 00) such that

exp(—8~C) <infI < supl < exp(8~F),
1] > exp(—5~°),

and that for every a € I, the set A intersects the arc of the power curve
[, 9) + (u, auP) : exp(—=67C) < u < exp(6~9)}.

The following short argument shows that Theorem 1 fails in the limiting case
B = 1, i.e., when the power curves are replaced with straight lines through (x, y).
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Let N C [0, 1]2 be a Nikodym set, which is a set of full Lebesgue measure such that
through every point of N, one can draw a line that intersects N only at a single point;
let us call such lines exceptional. If Ry : R* — R? denotes the rotation about the
point (1/2, 1/2) by the angle &, while D..: R?> — R? denotes the dilation centered at
(1/2, 1/2) by the factor ¢ > 0, then

A= ( ﬂ DﬁRaN> n[o, 117 (1.3)

a€l0,27)NQ

is a Nikodym set such that its exceptional lines determine a dense set of directions
through each of its points. In particular, there can be no beam of lines

{e.y)+@w,au):u eR}, ael, IC(0,00)aninterval,

through any point (x, y) € A that would nontrivially intersect A for each a € I, as
required in Theorem 1. In fact, Davies [13] has already constructed a Nikodym set
whose exceptional lines though each of its points form both dense and uncountable
sets of directions. On the other hand, if we repeat the simple construction (1.3) starting
with a Nikodym-type set found by Chang et al. [14, Corollary 1.2], then we can also
rule out curves composed of countably many pieces of straight lines.

Finally, it is also legitimate to ask if an even stronger result holds for “really large”
sets, namely for the sets A € R? that occupy a positive “share” of the plane. Recall
that the upper Banach density of a measurable set A is defined as

AN ([x —R,x+ Rl x [y—R,y+R])|

8(A) :=limsup sup
R—o0 (x,y)e]Rz 4R2

Theorem 2 For a given B > 1 (resp. 0 < B < 1) and a measurable set A € R? with
8(A) > 0, there is a number aqg € (0, o00) with the following property: for every aj
satisfying 0 < a; < ag (resp. a1 > ag), there exists a point (x,y) € A such that for
everya € Rsatisfying ay < a < ag (resp. ay < a < ay)the set A intersects the power
curve

{G.y) + (u,auﬁ) u € (0,00)}.

In comparison with Theorem 1, an improvement coming from Theorem 2 is in the
fact that the interval I = [ay, ag] (resp. I = [ap, a1]) can have an arbitrarily small
(resp. large) left (resp. right) endpoint a;. It is not clear to us if the latter result also
holds with I = (0, 00); this extension would probably be very difficult to prove.
Our proof will rely on Bourgain’s dyadic pigeonholing in the parameter a, and as
such, it is unable to assert anything for every single value of a € (0, 00). Thus, it is
not coincidental that Theorem 2 is quite reminiscent of the so-called pinned distances
theorem of Bourgain [15, Theorem 1°]. Our proof will closely follow Bourgain’s proof
of that theorem, replacing circles with arcs of the curves v = au®? and also invoking
Bourgain’s results on generalized circular maximal functions in the plane [16].

@ Springer



A Strong-Type Furstenberg-Sarkozy Theorem Page50f16 255

Fig.3 The power arc, the
reflected arc, and the tangents

;/@N>
// /, (7)7 77’3)

Theorems 1 and 2 might also be interesting because they initiate the study of
strong-type (a.k.a. Bourgain-type) results for finite curved Euclidean configurations,
asserting their existence in A for a whole interval I of parameters/scales. The two-point
pattern (1.2) studied here could possibly be replaced with larger and more complicated
configurations in future.

2 Analytical Reformulation

It is sufficient to study the case 8 > 1. Afterward, one can cover 0 < 8 < 1 simply
by interchanging the roles of the coordinate axes and applying the previous case to
1/B. Note that all bounds formulated in Theorem 1 and the statement of Theorem 2
are sufficiently symmetric to allow such swapping. Thus, let us fix the parameter
B € (1, 00).

It is geometrically evident that one can realize an arc of the power curve v = u” asa
part of a smooth closed simple curve I', which has non-vanishing curvature and which
is the boundary of a centrally symmetric convex set in the plane. More precisely, take
parameters 0 < 1 < 6 such that

(%)ﬁ—ﬂ%<,3—l.

Figure 3 depicts how the arc
{w,ufy:n<u<o) .1

can be extended by its tangents at the endpoints to a boundary of a centrally symmetric
convex set. It is then easy to curve and smooth this boundary a little in order to make
it C*° with non-vanishing curvature while still containing the above arc. The trick of
realizing a power arc as a part of the boundary of an appropriate centrally symmetric
convex set with intention of applying Bourgain’s results [16] has already been used
by Marletta and Ricci [17, Section 1, p. 59].
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Define v to be the arc length measure of I". We can also parametrize the curve I'
by arc length (i.e., traversing it at unit speed) as

['={(r1(s), y2(8)) : s € [0, L)},

so that we have

L
ff(u,v)dV(u,v)=/ f(yi(s), ya(s)) ds
R2 0

for every bounded measurable function f. Now take a nonnegative smooth function
W such that its support intersects I" precisely in the arc (2.1), and which is constant 1
on a major part of that arc. Let o be the measure given by

W dv

do = ——;
“ JrWdv

note that it is normalized as o (R?) = ¢(I') = 1. Then

/ f(u, v)do (u, v) = / S uPyy ) du

R2 R

for every bounded measurable function f, where v (1) is a constant multiple of
WG, uP) o ).

Thus, ¥ is a nonnegative C* function whose support is contained in [, 8]. All con-

stants appearing in the proof are allowed to depend on I', B, n, 6, ¥ without further

mention.
If o; is the dilate of ¢ by a number ¢ > 0, i.e., 0;(E) := o (t~E), then we have

ub

/1;2 f(u,v)do;(u,v) = %/};f(u, tﬁ—_1>1//(%> du,

so oy 1s “detects” points on the curve v = auP, where
a=t""F, (2.2)

Finally, let 6 be the reflection of o, i.e., 6 (E) := o (—E). Note that

(60 % £)(x. y) = %/Rf(x+u,y+ tZ—i)w(?) du. 2.3)

Both theorems will be consequences of the following purely analytical result. Let
1 denote the indicator function of a set E C R2.
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Proposition3 Take 0 < § < 1/2 and a measurable set A < [0, 1]2 of measure
|A| > 8. Suppose that there exist dyadic numbers (i.e., elements of 2%)

l1>by>c1>by>cp>--->bjy>cy;>0

having the property
inf (o7 %1 , v )=0 2.4
. (61 % 1a)(x, y) 2.4)
for every point (x,y) € A and every index 1 < j < J. Then J < §¢ for some
constant C' > 1 independent of § or A.

Our main task is to establish Proposition 3 and its proof will span over the next
section.

3 Proof of Proposition 3

Let us write A < B and B 2 A if the inequality A < CB holds for a constant
C € (0, 00). This constant C is always understood to depend on I', 8, , 6, ¥ from
previous sections. Let T > 0 be a fixed positive number and o > 0 a fixed dyadic
number; their values will be small and they will be chosen later.

Take a measurable set A C [0, 1]2 with |A| > §. We write

f = ILA and g = ]1[0’1]2 - f

If we take an index j such that

1 diamI”
W, (3.1)

j Jo = ’V— lo
J = Jo ) 22
then

b, diamI”

< 272 diamT < T,

so for every (x,y) e ANJ[r,1— 1% andt € [cj,bj], we have
(61 % Lo p)(x, ¥) = 0;(R) = 0(R?) = L.
For such points (x, y), the assumption (2.4) then implies

fx,y) sup (G %g)(x,y) =1,

tG[Cj,bj]

which in turn leads to a lower bound

f- sup (6z*g)z/ f- sup (61 %g)
R2 telej.bjl AN[z,1—-1]2 telej,bjl
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=|Aﬂ[t,1—t]2|z|A|—4r:/ f—4r, (3.2
RZ

provided j is chosen large enough that (3.1) holds.
Let ¢; be the Poisson kernel on R2ie.,

t
2m (12 + x2 + y2)3/2

Pr(x,y) =

forevery t > 0, where the normalization is chosen such that fRz ¢; = 1. Forabounded
measurable function # we will write

P[hzgot*h.

Also, for k € Z let E; denote the martingale averages with respect to the dyadic
filtration, i.e.,

Echi= Y (|Q|1/Qh)1Q,

|QI=2-%

where h € LlloC (R?) and the sum is taken over all dyadic squares Q in R2? of area 2~

(and side length 275).
Take t € [cj, bj] and k; = —log,(oc;), which is an integer. We decompose

51*82(51*8—51*Ek_,g)
+ (&t *]Ekjg _&t * PQC_,'g) + (&t * PQng - &l‘ * Pg’lbjg)
+ (&[ * Pg—lbjg - nglhjg) + nglbjg'

Taking the triangle inequality and the supremum over ¢ gives

/f SUP (oz*g) </f Sup o7 * (g — Ex; 8 (3.3)
telce t€lcj,bj]
/f Sup e} *]Ekjg_at QL/g| (3.4)
telej,bjl

[ foSup 15y % Pooyg — 61 % Pyipgl  (3.5)

telcj,bj]

/f Sup [0y * Pp-1,,8 = Pp-1p,8]

telcj,bj]

+ / [Pyt 8. (3.6)
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We will estimate each of the terms separately, using Holder’s inequality. For the
first term on the right-hand side of (3.3), we will use the bound

sup 167+ (5 = Ex, )|, 0 < Cr” gl (3)

telej, 1)

whenever p > 2, where « is a positive constant depending only on p. (Any fixed finite
value of p greater than 2 will do.) This bound will follow from the central estimate
(10) in Bourgain’s paper [16], which can be written in our notation as

sup |o¢ * h|
16[2_”,2_"+|)

~

—a(i—n)
Ly S 2T L) (3.8)

whenever E;4 = 0, while n < i are positive integers and p, « are as before. Bourgain
[16, (10)] actually formulated (3.8) for the full arc length measure dv, but the very
same proof establishes it also for the smooth truncation W dv. In fact, Bourgain has
already performed several decompositions of v [16, Sections 3—6], and an additional
smooth angular finite decomposition of I' can be added freely to the proof of his upper
bound [16, (10)], making the proof insusceptible to a smooth truncation by W.

In order to prove (3.7), let d; = —log,(c;). We split [c;, 1) into dyadic intervals
[2—", 2_"+1), estimate the maximum in n by the £7-sum, write

')
8 _Ekjg = Z Am—&-kjgy
m=0

where A; = E; 1 — [E;, and use the triangle inequality, after which it suffices to show

3 N\ /P
H( Sp 131 % A 1) )
n=l m= Ote[2 27

S Qa||g||Lp(R2)~
L7 (R2)

The left-hand side can be rewritten as

(Z H Sup 167 % A g

P )1/1?
Ote [2—",2- n+1) LP(RZ)

and then estimated by Minkowski’s inequality with

) d;
=Y (2] s 16wl
m=0

=1 t€[2*",2”l+l)

p )1/17
L7 (R2) ’

Finally, the inequality (3.8) with i = m + k; bounds this by

o8] 1/[7
k —
<2 (§ 2P Ay g )

m=0 n=1
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o]

' 1/p
Z (22 Pot(m-‘rk/—n)”g”LP Rz))

S 2"‘(“’1 k’)“g”LP(RZ) = "llglur ),

as desired.
To control (3.4) and (3.5), we use Bourgain’s maximal estimate in the plane [16,
Theorem 1],

sup [0 * h| S allee g2
te(O,Ic)x:) t LP(R?) LPED
for p > 2. Here, it gives
SUp |6, % Py g — 61 % P ,g|’ <GP, 1y & — Poergllirme
eterp ST S 08,8 T Toes Bl @)
3.9
and
sup |&t * Ek_jg - 6t * PQC_/g| Lr(R2) =< CZHPQC_/g - Ek_/gllLl’(R2) (3.10)

IE[Cj,bj]

for an absolute constant C».
To estimate (3.6), we claim that for each (x, y) € R2, J.andt < bj,

(61 % Pyo1y,,8) (x, ¥) — (Pp15,8) (x, )| < C30 (3.11)

for some absolute constant C3. To see this, we first use that
(1 % Py1p,8) (6, ¥) = (Pp1p,8) 6, 9| < [ Gr % 9p1) = 0513, |1 oy €L 2)
for each (x, y) € RR2. Since ||g||LOO(Rz) < 1, it only remains to bound, using (2.3),

|G % 00-15) = 0015, | L1 @2,

Lo erm ) a2

ﬁ
ug urg ’
</th/“‘” gy p) e[ w () dudey,

where we also changed variables in x, y. By the mean value theorem, the last display

is
/R? ; /|V€01(Z w)I‘(b %, :;Ql)‘lﬁ<¥)dud(x,y)

d(x, y)
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for

B
- _ o, e
(z,w)=alx,y)+ (1 a)(x+ bj’y+bjt/3*1)

and some 0 < a < 1. This is further bounded by

< [t [0 Py G g () awaten

where we also used |u| <t < b; < 1, and dominated a non-centered |V | by a
centered integrable function. Integrating in # and (x, y), we obtain a bound by C3p.

Therefore, using (3.2) to obtain a lower bound, estimates (3.7), (3.9), (3.10), (3.11)
for upper bounds, and Holder’s inequality, we obtain

- f—4r < Co" + Coll Poc; 8 — Ex; 8llr w2y + C2||nglhjg — Poc; 8llLr w2

+C3Q+/ e Py-1p. 8, (3.12)
R2 !

provided j is large enough.
Next,

A;{zf'nglbjg=/sz'nglbj1[o,1]2 —/sz'nglbjf
and we have

/sz.pgflbjn[o,l]z < /sz (3.13)

/R P f 2 aof fR ) (3.14)

for some absolute constant ¢y > 0. The estimate (3.13) follows by the trivial L°° bound
for the convolution. To see (3.14), we note that by the Cauchy-Schwarz inequality, for

any k € Z,
[rmr=([ )

Then it remains to bound the martingale averages from above by the Poisson averages.
The reader can find the details in the proof of Lemma 2.1 in [3]. Therefore, from (3.12)
and [po f = |A| = 8, we get

and

c08% =41 < C10% + C30+ Call Poc; 8 — Bt 8 lLr w2y + C2ll Py1,8 — Poc; 8llLre2)-
(3.15)
which will turn out useful provided that 7 is small enough.
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Furthermore, we claim that for p > 2 and for any J > Jy, we have

J

Y IPp1y,8 = Pocy8llf ey < Ca(logy @) I8N, oy < Ca(logye™")
j=Jo+1

p

(3.16)
and
J
Y Poc;g —Ex;gllf, zo) < Callglly, o, < Ci (3.17)
j=Jo+1

with the constant C4 independent of Jy, J. These will be consequences of boundedness
on L”(R?), 1 < p < 0o, of the square functions

1/2
Sih = <Z |P2—i+]h — P2—ih|2) /
i€Z

and

Sohi= (3 |Pyih - Eih|2)1/2.

i€Z

Bound for S; follows from the classical Calderén-Zygmund theory [18, Subsections
6.1.3], while boundedness of S, was proven by Jones, Seeger, and Wright [19, Sections
3-4]. In fact, the emphasis of the paper [19] was on more general dilation structures
and more general martingales, while the square function estimate from the last display
is essentially due to Calderén; see [18, Subsection 6.4.4]. Now, (3.16) follows by
recalling p > 2 and writing

J

(%

j=Jo+1
1/p
< (logy,o ' + 1)(2 | Pyis1g — Pz_l-gllf,,(Rz,>

i€Z

1/p
(Z|P2—i+lg — Pz—ig|p)

i€eZ

p I/p
”PQ—lhjg - PQng”Lp(RZ))

< (logyo™)

LP(R2)

< (logy 0 MHIISigllLr@2) < (ogy 0™ gl @2)-
Similarly we deduce (3.17):
J

(%

1/p
”PQng - ]Ekjg”ip(RZ)) =< ”Szg”LP(]RZ) S./ ”g”LP(]RZ)'
Jj=Jo+l1
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To be completely determined, one can simply take p = 3. From (3.16) and (3.17),
we conclude that there exists j € {Jo+ 1, ..., J} such that

1Py-15,8 = Poc;@llLswe)s |1 Poc; & — Ex;gllisme) < 2Ca(J — Jo) ™)' logy 07
Together with (3.15) applied for this particular j and 7 = ¢p8>/8 we obtain

27 8% < C10” + C30 +2C2(2C4(J — Jo) H P logy 07",
ie.,

log, 0!

'%
2-1¢p82 — Cio% — C_o,Q) '

J—mg(

Now we recall that we actually chose Jy in (3.1) at the beginning of the proof, which
guarantees that Jy < log,(Cs8~2) for a suitable constant Cs. Taking o to be a small
multiple of min{6%/%, §2} we obtain J < §~C for a suitable constant C’.

4 Proofs of Theorems 1 and 2

In this section, we deduce the two main theorems from Proposition 3. Once again, it
is sufficient to consider 8 € (1, c0).

Proof of Theorem 1 Set J = LS’C/J + 1, where C’ is the constant from Proposition 3.
Let us simply choose consecutive dyadic scales, b; = 2727+l and ¢ = 272J for
every 1 < j < J. By the contraposition of Proposition 3 and using formula (2.3), we
conclude that there exist a point (x, y) € A and an index 1 < j < J such that for
every ¢; <t < bj, the set A contains a point of the form

MIB
(x—}—u,y—i——), nt <u < 06t. “.1)

tB—1
Substituting (2.2), we get
cj<t<b; < b,
which now means that for every
a el :=[2-DCi=D 2(-12)]
there exists

na VD <y < ga=1/ B

@ Springer



255 Page 140of 16 P. Durcik et al.

such that (x + u, y + auf) € A. Observing
inf I > 1,
sup I < 22B=DJ < o4(B=15""
17 =2771 -1,
and that any such u satisfies
T P s R N
u<p2 Htl <g
we finally establish Theorem 1. O

Proof of Theorem 2 Suppose that the claim does not hold for some measurable set
A C R? with §(A) > 0. Take § := 8(A)/2 and J = [§7C | + 1, where C’ is the
constant from Proposition 3. Inductively, we construct positive numbers

Ci>B1>Cy>By>--->Cy > By

satisfying C; 1 < B; /88~ and such that for each j > 1 and every point (x, y) € A,
there exists a € [B;, C;] with the property that A does not contain a point of the form

(x—l—u,y-l—auﬂ), u > 0.

After the change of variables (2.2), we see that for each j > 1 and every point
(x,y) € A, there exists

CTVED <y < VB

such that A does not contain a point of the form (4.1), so

(5’; * ]lA)(x, y) =0.

By the definition of the upper Banach density, there exist a number R > BJ_I/ 6D

and a point (xg, yo) € RR? such that
|AN (=R, R + (x0. y0))| > 6 - 4R*.
Define

, 1 11
Al = (ﬁ(A — (x0, ¥0)) + (5’ 5)) n[o, 11 4.2)

and let b; and ¢ respectively,be the number B;/E=D /2R rounded up to the nearest

JH1—j
dyadic number and the number C;i/l(f;l) /2R rounded down to the nearest dyadic
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number, i.e.,
—1/(B=1) —1/(6=1)
bj = ploga(B, 4y /2001 ¢ = ollogy (€455 7/2R)] (4.3)
forevery 1 < j < J.Finally, forevery (x, y) € A’ andevery | < j < J, this implies
(Grx1a)(x,y) =0

for some ¢; < t < bj, while we have chosen J so that J > 5—C'. Note that also
|A’| > 6, so the set (4.2) and the numbers (4.3) violate Proposition 3, which leads us
to a contradiction. O
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