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Axial Higgs mode detected by quantum 
pathway interference in RTe3

Yiping Wang1, Ioannis Petrides2, Grant McNamara1, Md Mofazzel Hosen1, Shiming Lei3, 
Yueh-Chun Wu4, James L. Hart5, Hongyan Lv6, Jun Yan4, Di Xiao7,8, Judy J. Cha5, 
Prineha Narang2, Leslie M. Schoop3 & Kenneth S. Burch1 ✉

The observation of the Higgs boson solidified the standard model of particle physics. 
However, explanations of anomalies (for example, dark matter) rely on further 
symmetry breaking, calling for an undiscovered axial Higgs mode1. The Higgs 
mode was also seen in magnetic, superconducting and charge density wave (CDW) 
systems2,3. Uncovering the vector properties of a low-energy mode is challenging, and 
requires going beyond typical spectroscopic or scattering techniques. Here we 
discover an axial Higgs mode in the CDW system RTe3 using the interference of 
quantum pathways. In RTe3 (R = La, Gd), the electronic ordering couples bands of 
equal or different angular momenta4–6. As such, the Raman scattering tensor 
associated with the Higgs mode contains both symmetric and antisymmetric 
components, which are excited via two distinct but degenerate pathways. This leads 
to constructive or destructive interference of these pathways, depending on the 
choice of the incident and Raman-scattered light polarization. The qualitative 
behaviour of the Raman spectra is well captured by an appropriate tight-binding 
model, including an axial Higgs mode. Elucidation of the antisymmetric component is 
direct evidence that the Higgs mode contains an axial vector representation (that is, a 
pseudo-angular momentum) and hints that the CDW is unconventional. Thus, we 
provide a means for measuring quantum properties of collective modes without 
resorting to extreme experimental conditions.

Emergent order brings new modes whose properties are linked to a 
change in topology or symmetry. A well-studied example is the breaking 
of translation symmetry in charge density wave (CDW) systems, result-
ing in Nambu–Goldstone (phase) and Higgs (amplitude) modes. In a 
superconductor the inclusion of electromagnetism results in gapping 
of the phason or giving mass to the W and Z bosons of the electroweak 
theory. This Anderson–Higgs mechanism leaves the amplitude mode 
largely unchanged, and thus it is often referred to as the Higgs boson2,3,7. 
Despite its close resemblance to superconductivity and first prediction 
in 1958, all CDWs to date have revealed s-wave condensation with a 
scalar Higgs. Indeed, detecting unconventional order requires prob-
ing the vector nature of the order parameter or collective excitations: 
for example, attempts to extend the standard model by enlarging the 
symmetry breaking. This produces additional particles, including a 
spin-1 Higgs boson, and dark matter candidates1. Thus the detection 
of a Higgs mode with finite angular momenta (that is, an axial Higgs) 
heralds the discovery of a previously unseen symmetry breaking and 
phase of matter.

Pathway interference can meet this challenge by exploiting wave–
particle duality to uncover quantum properties of excitations8. Quan-
tum pathway interference has revealed the topological properties of 
band structures9,10, unconventional superconducting order11–13 and 

the non-trivial statistics of collective excitations14–16. Despite their 
elegance, these experiments have not been applied to the Higgs mode. 
In part, this results from the challenge of performing quantum inter-
ference in condensed matter settings, which typically require extreme 
experimental conditions: low temperatures, ultrafast lasers, high 
magnetic and/or electric fields. The need for such conditions could 
be overcome by CDW systems, with well-defined Higgs and phase 
modes readily observed using optical techniques at large energy 
scales5,17–22. Furthermore, the CDWs can be tuned by pressure, exfolia-
tion or ultrafast lasers23–25 and offer next-generation nano-oscillator, 
logic and memory devices26.

Here we study quantum pathway interference of the axial Higgs mode 
to reveal the unconventional CDW phase in RTe3. This is achieved at 
room temperature with Raman scattering, which measures the energy, 
symmetry and excitation pathways of modes27–29. We build on previous 
inelastic light-scattering experiments in non-interacting systems, which 
revealed chiral phonons, crystal field excitations, interband transi-
tions and changes in quantum pathway or coherence on gating30–33. 
These previous single-particle experiments chose the intermediate 
states (that is, quantum pathways) by the combination of excitation 
wavelength, momentum conservation and light polarization via selec-
tion rules34,35.
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Rare-earth tritellurides
We focused on the CDW system RTe3 (R = Gd, La), exploiting its high 
transition temperatures (T = 380CDW

Gd  K, T > 600CDW
La  K), unidirectional 

CDW and multiple nesting conditions, which  enable quantum pathway 
selection. The RTe3 crystal structure consists of double layers of van der 
Waals-bonded square-planar Te sheets separated by RTe slabs (Fig. 1a), 
with an orthorhombic structure in the space group Bmmb. RTe3 is nearly 
tetragonal (a – b ≈ 0.01 Å)6 with an incommensurate CDW propagating 
along the b axis (confirmed via transmission electron microscopy 
(TEM); Supplementary Information). The bands near the Fermi energy 
are mainly composed of the px and py orbitals of the tellurium sheet 
(Fig. 1b), as the pz orbital is much lower in energy. Because the RTe3 slab 
is less densely packed within the ab plane, the chosen unit cell (Fig. 1a) 
results in the Fermi surface shown in Fig. 1c, in which hybridization 
between the two orbitals happens only at isolated points due to 
next-nearest-neighbour interaction36.

The incommensurate CDW ordering vector (qCDW) is (2/7) *b , where 
b* is the reciprocal lattice vector, consistent with nesting between 
the original px-derived band of the Te sheet and the folded px band of 
the three-dimensional, enlarged unit cell4,5. Another nesting condition 
arises from the reciprocal lattice vector, where b q* − CDW connects 
px(py)- to py(px)-derived bands. Due to the orthorhombicity, these 
nesting conditions are not satisfied along the a axis. Thus the CDW 
gap has a node, suggesting an unconventional order. Similarly, the 
requirement to change angular momentum when connecting the px 
to py states with * − CDWb q  implies that the Higgs mode has finite angu-
lar momenta. The interference between the two pathways associated 
with this mode, the axial nature of the Higgs, the sign change of the 
gap (that is p-wave order) and the unconventional CDW have yet to 
be explored.

As seen in Fig. 2a, b, the intermediate states have either the same or 
different angular momenta and thus follow different selection rules. 
The selection rules depend on the polarization relative to the crystal 
axis, the presence of single domains and clean surfaces. We achieved 
this with our low-temperature glovebox Raman system (Methods)37,38, 
which ensured that the sample surface was free from contamination 
and enabled identification of the crystal axes using the sharp edges 
(see Supplementary Information).

Raman results
Turning to the polarization dependence of the Higgs mode, Fig. 1d 
shows representative Raman spectra using a 532 nm excitation of GdTe3 
at 300 K in parallel and cross-polarization configurations. For example, 
ab (xy 0°) refers to the incident (scattered) light polarized along the 
crystal a(b) axis. Similarly, a′b′(xy 45°) represents the crystal rotated 
by 45 degrees from the ab configuration, where a′ = a + b, b′ = a − b. 
The 5 meV broad peak is the CDW Higgs mode and all other sharp peaks 
are phonons. The shaded region indicates the Higgs and CDW folded 
phonons. Both the phonons and the Higgs mode are observed in paral-
lel polarization along aa (xx 0°), bb (xx 90°) or a′a′(xx 45°) directions. 
Typically, the phonon modes have the same intensity when the con-
figuration is changed from a′b′ (xy 45°) to b′a′(xy 135°). Indeed, the 
measured Raman intensities (I) for a given excitation are proportional 
to the square of the product of incident light polarization e(ˆ)i , Raman 
tensor (R) and the scattered electric field e(ˆ )f : I e R e= |ˆ ⋅ ⋅ ˆ |i f

2.
However, the Higgs mode behaves quite differently. As seen in Fig. 1d, 

the scattering intensity of the Higgs is strong in a′b′ but dramatically 
reduced in b′a′. Other than the CDW Higgs mode, phonons coupling 
with the CDW at 7.4 meV and 10.7 meV also showed intensity differ-
ence between a′b′ and b′a′ configurations. The Higgs mode is strongly 
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Fig. 1 | RTe3 structure and representative Raman spectra. a, RTe3 crystal 
structure and unit cell (black line). b, px (orange) and py (blue) orbitals in the  
Te layer. c, Fermi surface versus in-plane momentum (Ka, Kb) with orbital 
content labelled using the same colours as in b. The black arrow indicates the 
CDW vector (qCDW) with the red arrow indicating the second nesting condition 
with the reciprocal lattice vector ( * − )CDWb q . d, Raman spectra at 300 K of 
GdTe3. Top plot is taken in parallel-linear polarization, with incident and 

scattered light aligned with different crystal axes. The Higgs mode and  
CDW folded phonons are shaded. The bottom plot is taken in cross-linear 
polarization, for incident light aligned with the a′ (45° off a axis) direction and 
scattered light along b′ (45° off b axis) direction (green solid line). On swapping 
the incident and scattered polarization (dashed line), the response of all 
phonons modes is identical, whereas the amplitude mode is suppressed.
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mixed with 7.4 meV and 10.7 meV phonons39, and they disappear above 
the CDW transition temperature36. Four other modes (7.9, 9.3, 9.9 and 
15.9 meV) revealed responses in xx, which also appear anomalous. 
However, the 9.3 meV mode strongly overlaps with the Higgs, and as 
such it is hard to accurately extract its full angular dependence. For the 
other three modes, we find that their angular dependence is straight-
forwardly described by nearly or accidentally degenerate Ag and Bg 
phonons. Nonetheless, the angular dependence in xy polarization of 
the four phonons behaves as expected for Bg modes (four-fold sym-
metry). Thus their response does not affect our main conclusions (see 
Supplementary Information).

To understand the change in the Higgs mode intensity on swapping 
the incident and scattered polarization, it is useful to consider the role 
of the CDW in the RTe3 quantum pathways. From symmetry, the inelas-
tic, q ≈ 0 excitations must fall in one of the irreducible representations 
Γ = A + B + B + BRaman g 1g 2g 3g  leading to a symmetric Raman tensor 

R R( = )ij ji
40. As seen in Figs. 2 and 3, this produces a four-fold angular 

dependence of the intensity of the phonon modes in xy. However, due 
to the periodicity of the CDW, there are two quantum pathways that 
involve different intermediate states separated by | |CDWq  or | * − |CDWb q  
(Figs. 1c and 2a, b). First, an x(y) polarized incident photon excites the 
electron into an intermediate state p p| ⟩(| ⟩)x y

, which is scattered to a p| ⟩x  
p(| ⟩)y

 state by the Higgs mode with wave vector qCDW. Subsequently, the 
electron recombines with a hole and emits an x(y) polarized photon. 
Such a process results in a symmetric response, as it involves scattering 
between states with identical polarization. Although the symmetric 
response could be a Raman tensor with the form of Ag, Bg or a sum of 
the two, in fitting the Higgs mode angular dependence, we find that 
the off-diagonal symmetric terms (Bg vertex) are nearly zero.

The second scattering pathway involves a Higgs mode connecting 
p p| ⟩ (| ⟩)x y

 to states with different angular momenta p p| ⟩(| ⟩)y x
 via 

| * − |CDWb q . The change in angular momenta suggests that the Higgs 
mode requires an axial vector representation. Nonetheless, on recom-
bination, a y(x)-polarized photon is produced. Noting that the excita-
tion from the p| ⟩z  band to p| ⟩x  or p| ⟩y

 bands matches the visible excitation 
laser energy5, the Higgs mode is a resonant electronic response. This 
resonance, combined with the angular momentum change, induces a 
non-zero antisymmetric (namely, R R= −ij ji) contribution to the Raman 
tensor30, which by itself would produce a signal only in xy and not in xx 
configurations. Ultimately the interference of this antisymmetric pro-
cess with the symmetric diagonal component produces the two-fold 
response in the cross-polarized Raman. In the Supplementary Informa-
tion our calculation reproduces the asymmetric transition, depending 
on the pathway. This asymmetry primarily comes from the points in 
the Fermi surface with nesting vector * − CDWb q  and is enhanced by  
the orbital mixing due to next-nearest-neighbour interaction36. Fitting 
the experimental data we found a Raman tensor for the Higgs mode:
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where d, e, f and g are independent coefficients. Here we briefly 
describe the key results (details are in the Supplementary Informa-
tion). The p p| ⟩ → | ⟩x x  pathway gives the same response for a′b′ and b′a′ 
configurations: I e f= |( − )|2. However, p p| ⟩ → | ⟩x y

 pathway gives I d= |2 |2 
under a′b′ polarization and I d= |− 2 |2 under b′a′ polarization. As such, 
if the two pathways did not interfere (that is, intensities are added) we 
would not observe any difference when swapping the incident and 
scattered polarization (namely, four-fold Raman response in xy; 
Fig. 2d). However, the pathway interference produces a Higgs mode 
intensity I e f d= |( − ) + 2 )|b a′ ′

2  producing the constructive interfer-
ence term and I e f d= |( − ) − 2 )|b a′ ′

2 the destructive interference term, 
and thus a nearly two-fold angular response in cross-polarized Raman 
(Fig. 2c).

Angular dependence
To reveal the quantum interference of the pathways, we focus on the 
Raman response angular dependence (details in Supplementary Informa-
tion). The colour maps in Fig. 3a, b present parallel and cross-polarization 
data and the green lines are the selected polarizations. The shaded region 
indicates the Higgs mode. Consistent with quantum interference, these 
maps clearly show that the Higgs has a two-fold response. For closer 
examination, we plot the intensity versus crystal angle for the Higgs 
mode and representative phonons of Ag and Bg symmetry (Fig. 3c–e). 
In the Supplementary Information we derive the Raman tensor for each 
mode using a generic representation in the orthorhombic crystal group. 
We find that both the Ag and Bg phonons follow the expected angular 
dependence for symmetric Raman tensors with four-fold modulation.

On the other hand, the Higgs mode reveals clear two-fold, modulated 
intensities in both parallel and cross-polarization (Fig. 3e), which is well 
described by the Raman tensor RCDW, where both pathways are summed. 
To the best of our knowledge this is the first such observation in any 
Raman experiment. This result highlights the utility of the full angular 
dependence of the Raman experiment in revealing and potentially 
controlling the quantum pathways in a CDW system.

Robust quantum interference
We now discuss alternative origins of the anomalous Higgs response. Two 
of these are the intrinsic angular momentum from the Gd moments and 
the competing phase with a secondary CDW in GdTe3. The latter is seen 
for rare-earth atoms that are smaller than Gd, for which a bidirectional 
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CDW appears at low temperatures. The role of fluctuations of this bidi-
rectional CDW is unclear. In our TEM measurements some GdTe3 flakes 
revealed very weak secondary CDWs (see Supplementary Information).

We eliminated the complexities from Gd (magnetism and multid-
omains), by testing the response of LaTe3, which possesses TCDW > 600 K 
and contains no magnetic moments or secondary CDW. Nonetheless, as 
all the LaTe3 have a similar electronic structure5, the quantum pathway 
interference should remain. As shown in Fig. 4a, the angular depend-
ence of the Higgs mode in LaTe3 also reveals a two-fold symmetry in 
both parallel and cross-polarization, whereas the Bg phonon shows 
the expected four-fold response (Fig. 4b). The LaTe3 result confirms 
that the interference is not due to intrinsic moments or competing 
phases, but from the band structure and quantum pathway selection. 
To ensure the reproducibility of our results, we also tested another 

flake, exfoliated from a different GdTe3 crystal from another growth 
and using a separate Raman set-up with a shorter wavelength excitation 
laser (488 nm). As the 488 nm is still in resonance, it reveals the same 
angular dependence of the Raman intensity (Fig. 4c).

As a final check of the robustness of the quantum interference, we 
turned to the temperature dependence. Due to a large change in the 
Higgs mode energy, its interaction with a nearby phonon varies with 
temperature (Fig. 4e)19. Consistent with previous measurements, the 
Higgs intensity decreases and softens on heating. This is expected for 
a Higgs mode, as the free energy potential is reduced on approaching 
the CDW transition temperature. In addition, the Higgs mode displays 
an avoided crossing with the 7.4 meV phonon, which is consistent with 
it revealing the same symmetry as the Higgs (see Supplementary Fig. 6). 
This is consistent with this phonon being folded to q = 0 by the CDW 
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and thus it undergoes the same quantum pathway interference19,39. 
Therefore, we chose three temperatures to test the quantum interfer-
ence via the cross-polarization modulated intensities: 8 K, below the 
avoided crossing (140 K) and well above the avoided crossing (300 K). 
As seen in Fig. 4d, the Higgs mode has identical angular dependence at 
all temperatures. This demonstrates that the quantum interference is 
robust to the mixing of the Higgs mode with nearby phonons.

Conclusions
Our study provides the first detection of an axial Higgs mode, exploit-
ing the quantum pathway interference in Raman scattering. The finite 
angular momentum of the Higgs provides compelling evidence that 
the charge density wave order in RTe3 is unconventional. Using a phe-
nomenological description of the Fermi surface, we elucidate the role 
of next-nearest-neighbour interaction in the observed asymmetry 
of Raman transitions involving a change of angular momentum. The 
methodology used can be applied to search for new symmetry-broken 
and topologically ordered states via their novel collective modes. Fur-
thermore, the straightforward application of tuning the interference 
with light polarization could enable manipulation of the quantum 
properties of collective excitations to reveal new states.
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Methods

Crystal growth
High-quality RTe3 single crystals were grown in an excess of tellurium 
(Te) via a self-flux technique. Te (metal basis >99.999%, Sigma-Aldrich) 
was first purified to remove oxygen contamination and then mixed with 
the rare earth (>99.9%, Sigma-Aldrich) in a ratio of 97:3. The mixture 
was sealed in an evacuated quartz ampoule and heated to 900 °C over a 
period of 12 h and then slowly cooled down to 550 °C at a rate of 2 °C h−1. 
The crystals were separated from the flux via centrifugation at 550 °C.

Sample preparation and vacuum transfer
GdTe3 and LaTe3 flakes were exfoliated and characterized using unpo-
larized Raman in an argon-filled glovebox. Then, they were loaded 
into a 10−6 mbar vacuum suitcase and directly transferred into a 
low-temperature cryostat37. This ensured that the sample surface 
was free from contamination, atomically flat, contained single CDW 
domains and enabled identification of the crystal axes using the sharp 
edges.

Angle-resolved Raman spectroscopy
The 532 nm Raman experiments were performed with a custom-built, 
low-temperature microscopy set-up38. A 532 nm excitation laser, with 
spot diameter of 2 μm, was used, with the power limited to 10 μW to 
minimize sample heating while enabling a strong enough signal. At both 
room and base temperature (10 K), the reported spectra were averaged 
from three spectra in the same environment to ensure reproducibility. 
The spectrometer had a 2,400 grooves per mm grating, with an Andor 
CCD, providing a resolution of approximately 1 cm−1. Dark counts were 
removed by subtracting data collected with the same integration time 
with the laser blocked. Freshly cleaved samples were transferred to a 
cryostat with an optical window and pumped down to a vacuum level 
of 10−6 torr. The 488 nm (2.54 eV) emission line from an argon laser 
was used as the excitation source. The incident laser was reflected by 
a 90/10 non-polarizing cube beam splitter and then focused to a spot 
size of 2 μm on the sample using a ×50 objective lens (numerical aper-
ture, 0.35). The laser power on the sample was 700 μW. The incident 
beam and collected optical signal were linear polarization resolved 

using a combination of Fresnel rhomb retarders and linear polarizers. 
The Raman signal was dispersed by a Horiba T64000 spectrometer 
equipped with a gratings with 1,800 grooves per mm, and detected 
with a liquid-nitrogen-cooled CCD camera. We used a Fresnel rhomb 
to measure the angular-dependent Raman spectra in both set-ups.

Data availability
The datasets generated and/or analysed during the current study are 
available from the OSF storage https://osf.io/87bxy/. 
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