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ABSTRACT

Deep learning has enjoyed tremendous success in a variety of applications but its application to quantile
regression remains scarce. A major advantage of the deep learning approach is its flexibility to model
complex data in a more parsimonious way than nonparametric smoothing methods. However, while deep
learning brought breakthroughs in prediction, it is not well suited for statistical inference due to its black
box nature. In this article, we leverage the advantages of deep learning and apply it to quantile regression
where the goal is to produce interpretable results and perform statistical inference. We achieve this by
adopting a semiparametric approach based on the partially linear quantile regression model, where covari-
ates of primary interest for statistical inference are modeled linearly and all other covariates are modeled
nonparametrically by means of a deep neural network. In addition to the new methodology, we provide
theoretical justification for the proposed model by establishing the root-n consistency and asymptotically
normality of the parametric coefficient estimator and the minimax optimal convergence rate of the neural
nonparametric function estimator. Across several simulated and real data examples, the proposed model
empirically produces superior estimates and more accurate predictions than various alternative approaches.
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1. Introduction

With advances in computational power and the availability of
large data, deep learning has emerged as a powerful data anal-
ysis tool in a wide variety of applications, such as computer
vision (Krizhevsky, Sutskever, and Hinton 2012), economics
(Heaton, Polson, and Witte 2017) and business (Nolle, Seeliger,
and Mithlhiuser 2018). Deep learning estimates a function from
data using neural networks which compose multiple (parame-
terized) nonlinear transformations. These inferred transforma-
tions are jointly optimized end-to-end in order to produce the
optimal overall map rather than independently estimating each
transformation in a separate stage.

Roughly speaking, a neural network, which consists of several
layers and neurons between the input and output layers, is
a composite function [see formula (1)] with a recursive con-
catenation of an affine linear function and a simple nonlinear
map. The success of neural networks is attributed to their pow-
erful capacity to represent unknown functions. For example,
Cybenko (1989) and Hornik, Stinchcombe, and White (1989)
showed that any continuous functions can be approximated by
shallow neural networks to any degree of accuracy. Telgarsky
(2016) and Yarotsky (2017) further showed that deep neural net-
works enjoy a better representational power than their shallow
counterparts.

Despite their superior empirical performance, deep learning
models, mostly a black box, often lack intepretability and the-
oretical support. Different approaches have emerged in recent

works to examine various aspects of interpretable deep learning
models. For instance, the saliency-based (Zeiler and Fergus
2014) method aims at providing post hoc explanations for a cer-
tain type of neural networks. Chernozhukov et al. (2017) and Mi
etal. (2021) employed neural networks in semiparametric mean
regression models to study the causal effect between variables.
For additional work on intepretable deep learning models, we
refer readers to the recent review paper by Rudin (2019) and
references therein.

Unlike the above approaches, this article adopts the statistical
model-based approach for interpretability by constructing neu-
ral networks for a partially linear quantile regression (PLQR)
problem. Specifically, we model the covariates of interest with
a linear predictor for interpretability and statistical inference
and model the nonparametric component with neural networks.
The proposed deep learning method for PLQR is abbreviated as
DPLQR. As a semiparametric approach, DPLQR not only offers
interpretibility for the parametric component but also allows
model flexibility for the nonparametric component. Impor-
tantly, it avoids the curse of dimensionality of nonparametric
smoothing methods through the strength of neural networks
to detect the structure, often low-dimensional, of the data. We
further provide mathematical support for the DPLQR, which
not only quantifies the uncertainty of the inference but also
reveals why deep learning works.

Since the seminal work of Koenker and Bassett (1978), quan-
tile regression has been extensively investigated, including linear
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quantile regression (Koenker and Bassett 1978; Portnoy 1991),
nonparametric quantile regression (Samanta 1989; Jones and
Hall 1990; Chaudhuri 1991; Li and Racine 2008; Guerre and
Sabbah 2012; Kong, Linton, and Xia 2013; Fang, Li, and Yan
2021) and semiparametric quantile regression (He and Shi 1996;
Lee 2003; Wu, Yu, and Yu 2010; Cai and Xiao 2012; Kong and Xia
2012; Noh, Ghouch, and Van Keilegom 2015; Fan and Liu 2016;
Ma and He 2016; Bhattacharya, Gimenes, and Guerre 2021). For
a comprehensive introduction of quantile regression, we refer to
the monographs by Koenker (2005) and Koenker et al. (2017).
Compared to the least squares regression approach that focuses
on the conditional mean of the response, quantile regression
offers a more expansive view of the effect of covariates on the
response. Moreover, quantile regression is more robust against
outliers when the distribution of the response is heavy-tailed or
skewed (Koenker 2005).

While linear and nonparametric quantile regression have
been well developed, theory and methodology for partially lin-
ear quantile regression models are lagging and existing work
mainly focuses on the partially linear additive quantile regres-
sion (Lian 2012; Hoshino 2014; Sherwood and Wang 2016) and
partially linear single-index quantile regression (Wu and Yu
2014; Zhang, Lian, and Yu 2017, 2020). This approach incorpo-
rates linear regression effects for some covariates and an additive
or single-index model with smooth but unknown regression
functions for the remaining covariates. Such approaches alle-
viate the curse of dimensionality but they are not amenable
to interactions or non-single-index structure among covariates.
Meanwhile, existing fully nonparametric approaches suffer from
a severe curse of dimensionality, so they are only effective
for very low-dimensional covariates. In contrast, the proposed
DPLQR not only retains the linear component of the model to
interpret the effects of primary covariates, such as the effect of a
treatment, but also enjoys the flexibility of a fully nonparametric
model that is more resilient to the curse of dimensionality.

Applications of deep learning to quantile regression have
emerged in recent years, such as in climate prediction (Hatalis
et al. 2017) and electricity and power systems (Gan et al. 2018).
However, theoretical understanding of quantile regression with
neural networks remains scarce and limited to nonparamet-
ric quantile regression. Romano, Patterson, and Candes (2019)
employed conformal methods to construct prediction inter-
vals for the response but did not address estimation of the
conditional quantile function. Jantre, Bhattacharya, and Maiti
(2020) developed consistency results for nonparametric quantile
function estimators with a single-hidden-layer neural network.
However, the implementation of their procedure requires expo-
nential time for the computation, compared to polynomial time
for deep neural networks (Rolnick and Tegmark 2017). As we
were wrapping up the first version of our research findings, we
became aware of a related work that was independently devel-
oped by Padilla, Tansey, and Chen (2020). Although this work
also explored the convergence rate of the conditional quantile
function estimator, it is substantially different from ours. First,
they focused on a black-box nonparametric approach to esti-
mate the quantile function, while we are interested in both esti-
mation and interpretability, as well as statistical inference for the
model. For instance, it is of interest to study whether maternal
education has an effect on birth weight of infants, since low birth

weight is associated with subsequent health problems (Badshah
etal. 2008). The vanilla version of the deep learning approach in
Padilla, Tansey, and Chen (2020) is not geared toward provid-
ing statistical inference for the effect of maternal education. In
contrast, the proposed model not only addresses the inference
issue but also achieves comparable prediction errors for Natality
Birth Data as shown in Section 6. Second, the theoretical analysis
of their work only holds for continuous covariates while our
theory covers both continuous and discrete covariates, and we
establish asymptotic normality for the estimates of the linear
component. Recently, another related approach was considered
by Shen etal. (2021). Clearly, there is rising interest in employing
deep learning to quantile regression.

To summarize, the major contributions of our article are

4-fold.

1. We introduce DPLQR to shed new light on an interpretable
deep learning model which overcomes the drawback of a
black-box deep learning approach. Previous attempts fail to
provide uncertainty quantification. In contrast, we develop
confidence intervals for the effects of linear covariates, which
are of interest to practitioners. Our approach can thus be
viewed as a bridge between machine learning and statistical
inference.

2. We provide theoretical justification for the deep learning
approach by establishing minimax optimal convergence rates
(up to a poly-logarithmic factor) of the nonlinear component
of the DPLQR. We further establish root-n convergence and
asymptotic normality of the regression coefficient estimator
for both homoscedastic and heteroscedastic random errors.
This substantially distinguishes our theoretical contributions
from previous purely nonparametric approaches (Bauer and
Kohler 2019; Padilla, Tansey, and Chen 2020; Schmidt-Hieber
2020; Shen et al. 2021). The asymptotic normality involves
the derivation of the influence function, which is a nontrivial
task that includes the empirical processes of the subgradient
of the check loss function and controlling the order of the
remainder term.

3. The proposed DPLQR model is flexible and includes a large
number of previously-studied quantile regression models.
Specifically, DPLQR reduces to linear quantile regression
when the nonparametric component is absent and to non-
parametric quantile regression in the absence of linear pre-
dictors. The DPLQR model also includes the partially linear
additive or single-index quantile regression models as special
cases.

4. Our methodology is able to identify the underlying intrinsic
dimension of the data, which circumvents the curse of dimen-
sionality that greatly limits the applicability of nonparametric
smoothing approach. For example, when the true model cor-
responds to a partially linear additive quantile regression, the
resulting neural network estimators automatically detect this
and enjoy a one-dimensional nonparametric convergence
rate (up to a poly-logarithmic factor).

The rest of the article proceeds as follows. In Section 2, we
briefly introduce the fundamental concept of neural networks
and quantile regression. Asymptotic properties of the estimators
are presented in Section 3. The implementation of the proposed
approach is discussed in Section 4, along with the calculation of



the asymptotic covariance matrix for the vector parameter. Sec-
tions 5 and 6 provide simulation studies and a data application
comparing the proposed method with linear quantile regres-
sion and partially linear additive quantile regression. Section 7
discusses some potential extensions. The online supplementary
material provides mathematical proofs and additional numeri-
cal results.

2. Preliminaries
2.1. Neural Networks

We first briefly present the relevant background on deep neural
networks. For some integer L > 2,let ¢ = (qo,q1,...,q1) " €
NEFL An L-layer neural network with input dimension qo and
output dimension g is a function m : R% — R that satisfies
the following recursive relation:

m(z) = Wimp_1(2) + by,
mp_1(2) = EWr_1mp_2(2) 4+ br_1)s. .., (1)
mi(z) = E(Wiz + by),

where Wk and by are a gk X qk—1 matrix and gi-dimensional
column vector, respectively, and £ is a prior deterministic func-
tion which operates component-wise on vectors, that is, £ (v) =
(EW),.. ., EW)) T, for a vector v = (vi,...,v) . We call L
the depth of the neural network; my, for 1 < k < L — 1,
the kth hidden layer; and £ : R — R the activation function.
A two-layer (L = 2) neural network is often called a shallow
neural network. At the kth hidden layer, there are gx neurons, or
nodes, and g is called the width of the kth layer. The activation
function £ links adjacent layers and is often set to be a simple
nonlinear function. In this article, we consider the rectified linear
unit (ReLU) activation function £(z) = max(z,0) since it is
computationally efficient and often achieves best performance in
practice (Krizhevsky, Sutskever, and Hinton 2012). The matrices
V~Vk and vectors I;k are often referred to as the “weight” and
“bias”, respectively in the machine learning literature, but we
avoid using these terms here to prevent confusion. We write
Wi = (Wk, Z)k) € R#*@k-111 Then the neural network in
(1) can be succinctly expressed as

m(z) = Wié o --- o WoE(W132), )

whereE(v) = (), DT andz = (", 1) 7. Figure 1 illustrates
a three layers neural network with q = (4,5,5, DT, For an
overview of the structure of neural networks, see the recent
papers by Yuan et al. (2020), Fan, Ma, and Zhong (2021) and
the monograph by Goodfellow, Bengio, and Courville (2016).
Note that the total number of parameters in (2) is
Z{;zl qk(qk—1 + 1), which can be very large and may lead to
overfitting. Han et al. (2015), Bauer and Kohler (2019), and
Schmidt-Hieber (2020) mitigated against this by deactivating
some of the links of neurons between the adjacent hidden layers.
Following this strategy, fors € N, L > 2, A > Oand q =
(90-q1>----q1) T € NEFL we consider a sparsely connected
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Figure 1. A three-layer neural network with four input variables and one output.

neural network class
M(s, L,q,A)

= {m@ = Wi o0 WaE(W12) | Wy € RI*@r 4D,

L
IWilloo < 1fork=1,...,L, > [[Wglo < sand
k=1
Imloe < A},
(3)
where || - || oo is the sup-norm of a matrix or function and || - [|o
is the number of nonzero elements of a matrix.

2.2. Partially Linear Quantile Regression Model and
Estimation

Consider a univariate continuous random variable Y and a
multivariate random variable U = (X,Z) € R’ x RY, where
X may include treatment (indicator) variables and continuous
covariates of interest. Let Fy|y(-|u) be the conditional distribu-
tion function of Y given U = u. For some 0 < v < 1, the rth
conditional quantile of Y given U = u is defined as

hy(u) = inf{y | Fyju(ylu) > t}.
yeR

In this article, we assume #;(X,Z) = X'6; + m;(Z), which
leads to the following partially linear quantile regression model:

Y =X"0; + m(Z) +€,P(e <0|U) =1, (4)

where 6; € R? is an unspecified parameter without an intercept
term, m; : R?9 — R is an unknown function and the error ¢
may be heteroscedastic by allowing it to vary with u = (x, 2).

Let {(X;,Z;,Y;)) : i = 1,...,n} denote independent and
identically distributed realizations of (X, Z,Y). For simplicity,
we use the notation My to denote the neural network class
M(s, L, q,A) in (3) with g0 = ¢, g1 = 1 and some large enough
A. To estimate the vector 6; and the function m;, we minimize
the loss function:

. R
O i) = argmin =Y p (Vi = X0 — m(Z)), (5)
(0,m) R, x My L

where p; (t) = t{t — I(t < 0)} is called the check function with
I(-) being an indicator function and IR{IZ ={0 eR: |0 <
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A}. This loss function becomes the absolute value L!-loss when
7 = 0.5 which leads to the median estimators. For brevity, we
suppress the subscript T and write

(60, mo) = (67, mr) and (8, 71) = (By, iy). (6)

3. Theory

In this section, we establish the theoretical properties of the esti-
mators  and 7. We first introduce a class of smooth functions
in which my resides.

Let ¥ and B be two positive constants and |y | denote the
largest integer strictly less than y. We call a function h : T C
R? — R a (y, B)-Holder smooth function if it satisfies

alelp
0%z ...0%z,

sup (z)‘ <B, forall = (Otl,...,Olq)T € N1

zeT
1

and o =) o <y,
i=1

and
alelp
9z ... 9%z,

alelp
z
0%z) ... 0%z,

(z")

sup
z,z*eT

<Blz—2*|}"Y), forall |a|=[y].

Denote the class of all such (y, B)-Ho6lder smooth functions
as HY(T,B). Let] € Ny = (yi,....ypT € R, d =
(q,dl,...,d])T € Ntlandd = ((_11,...,(_11)T e N with
(_11 < g and c_ik < di_1,k = 2,...,]. We further define a
composite function class:

1(,y.d,d,B)
={h=ho. . .om:T— Rk =0, )" and

hyj € H2(lag, b, B) for some |y, [by] < B}.
(7)
This class of functions, first proposed by Schmidt-Hieber (2020),
contains two kinds of dimension d and d. We call d the intrin-
sic dimension of the function h in H(J,y,d,d,B). Its effec-
tive smoothness is defined as y = (71,...,7)) with jx =
Yk ]_[{:kﬂ(yi A1),k =1,...,]—1and 9 = yj. To establish
the convergence rate with sample size # in Theorem 3.1 below,

we denote

Yk

= max n ktd,
kef{1,....]}

(8)

As an illustration, consider the function

h(z) =h31(ha1 (h11(21, 22), h12(23, 24)), h2a (h13(25, 26), h14(27))),
)
where all hjj are (y,1)-Holder smooth with y > 1. It is clear
thath € H(J,y,d.d,B)with] =3,y =y = (y,y,y) . d =
(7,4,2,)",d=(2,2,2)",B=landr, = n V/®+2_
With different choices of J,y, d and d, H(J,y.d,d,B)
includes a large number of function classes that have been
considered in the statistical and economics literature. Below we
provide two examples to illustrate the ubiquity of such function
classes. We say a function h is (0o, B)-Holder smooth if it is
(v, B)-Holder smooth for all y > 0.

Example 3.1 (Additive functions). A function h : R? — R is
additive if it can be represented a sum of univariate functions of
each component (Stone 1985), that is, for z = (z), . .. ,zq)T,

h(z) = hi(z)) + -+ hq(zq), (10)

where i,k = 1,...,q are univariate (y, B)-Holder smooth
functions with y > 1. Here ] = 2,y =y = (y,00)T,d =
@aDTd= 09", rn=n"Y hy(z) = h(z), k =
1,....,qand ha1(y) = y1 + -+ + yg where y = (y1,...,y9) .

Example 3.2 (Single/multiple index functions). A single index
function, first introduced by Ichimura (1993) and later extended
to multiple indices by Hristache et al. (2001), is given by

hz) = h(z oy, ...,z ak), (11)

where ai, k = 1,...,K are unknown parameters and ZTOlj are
the index functions. It is easy to see that hji(z) = 2Tk =
1,...,Kand hy1(y) = h1(y). Thus,if h; is (v, B)-Hélder smooth
withy > Ly =y = (co,y),d =KD", d=@,KT
with d; = maxg{||akllo}, and r, = n~ 1/ @r+D),

For the covariate X = (X1, ... ,Xp)T, we define

of = argmin E[f (0| D) {Xx — o)} L k=1,...,p, (12)
9el2(Pz)

where L?(Pz) = {¢ | Ep*>(Z) < oo} and f(-|U) is the con-
ditional density of error € in (4). Let ¢*(Z2) = (¢;(2),...,
0327, and

2 =Et(1 - DX — o*DOHX — 0*(2)} "],

2 = E[f0lU){X — o*(DHX — 0* (D)} I. (13)

It is easy to show that ¢* = [E(X|Z) if the conditional error
density f(-|U) is independent of U at zero, see also Lian (2012)
and Hoshino (2014) for partially linear additive regression.

Next, we state the assumptions for the deep partially linear
quantile regression model.

Assumption 1. The true vector parameter 6y belongs to a com-
pact subset ® C RP bounded by B, the true nonparametric
function my in (6) belongs to X = H(J,y,d,d,B), and A in
(5) satisfies B < A.

Assumption 2. The covariates (X, Z) take values in a compact
subset of RP that without loss of generality will be assumed to
be [0, 1]P74. In addition, the probability density function (PDF)
of Z is bounded away from zero and from infinity.

Assumption 3. The conditional PDF f(-|u) of the random error
€ given the covariate U = u has continuous derivative f (-|u),

and there exist positive constants by and ¢y such that 1/¢p <
f(tlu) < coand |f (Hlu)| < co forall [t| < by, u € [0, 1]P14.

Assumption 4. The depth L, width vector ¢ = (40,41 - - -> qL)T
and number of nonzero parameters s of the neural network
class (3) satisfy L = O(logn),s = O(nr’logn) and nr: <
ming_;. 1{qx} < maxy—i . 1{qx} < n, where r, is defined
in (8).



Assumption 5. The matrices ¥ and ¥, in (13) are both positive
definite.

Assumption 6. maxkzl,...,p(E|Xk|4) < ooand y; > t_i,-(/Z, where
k is the index to achieve the maximum value in (8).

The boundedness of both the parameters and covariate
spaces in Assumptions 1 and 2 are standard for semiparamet-
ric/nonparametric regression. In Assumption 3 we postulate that
the PDF of the error and its derivative are bounded to guarantee
that the true parameter (6, my) is a well-separated point of the
minimum of the expected check loss function. In Assumption 4,
we assume that the size of neural networks M used in (5) grows
with the sample size n at a certain rate to balance the approxi-
mation and estimation errors of the estimators. Assumptions 5
and 6 are common conditions for asymptotic normality of the
vector estimator § in semiparametric regression (He and Shi
1996; Wang, Zhu, and Zhou 2009; Sherwood and Wang 2016),
where Assumption 5 is used to develop the asymptotic variance,
while Assumption 6 guarantees /n-consistency.

We are now ready to state the convergence rate of the
estimators.

Theorem 3.1. Under Assumptions 1-5, we have

lim lim sup P(||m —m > Cr, log? n) = 0.
C—>oon—>oomO€P;_t ( 0||L2([0)1]q)_ nlog” n)

From the proof of Theorem 3.1 one can see that the con-
vergence rate is the result of a tradeoff between estimation
error and approximation error. Here the approximation error
is defined as the distance between the true parameter my and
the neural network set M, that is, mine apm [|m — mo | 12(j0,179)-
It is known that a more complex neural network structure is
more flexible and thus leads to a smaller approximation error
(Anthony and Bartlett 1999; Yarotsky 2017; Bauer and Kohler
2019; Schmidt-Hieber 2020). However, too many parameters,
for example the number of nonzero weights s in (3), will lead
to high variance. Hence, there is an implicit “bias-variance”
tradeoft that is reflected in the growth of neural networks.

Note that the convergence rate of the estimator 71 is deter-
mined by both the intrinsic dimension d = (d;,.. ., d])T and
the effective smoothness y = (y1,.. ., 71T of the true function
mo € H(J,y,d,d,B) in (7), rather than the dimension g of
the covariate Z. For example, if m( has the composite struc-
ture in (9), the convergence rate for the proposed method is
n~v/@r+2) Jog? n. In contrast, the convergence rate for a non-
parametric method, such as kernel or spline smoothing is of the
order n=¥/@r*7) (Simonoff 2012). This shows that our method
is able to detect the low dimensional structure of the data and
thus circumvents the curse of dimensionality.

In particular, when mg reduces to an additive or a single
index function, as shown in Examples 3.1 and 3.2, respectively,
the resulting estimators have one-dimensional nonparametric
rates of convergence (up to a poly-logarithmic factor). This
is similar to results of Stone (1985) and Ichimura (1993) for
nonparametric regression.

The next theorem establishes the minimax lower bound for
estimating myo, which implies that the resulting estimator 1 in
Theorem 3.1 is rate-optimal.
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Theorem 3.2. Let F be the class of probability density functions
that satisfy Assumption 3. Then we have

lim lim inf sup IP’(@O,mO,f)(llrh — moll2qoa) = Cr,,) =1,

C—00n=00 7y (B0,mo.f)ERP x H x F
where the infimum is taken over all possible predictors # based
on the observed data.

Below we show that the estimator 6 for the parameter vector
is asymptotically normal at the \/n rate.

Theorem 3.3. Under Assumptions 1-6, we have
V@ —60) - N0, 2,5, 5;,
where X; and ¥, are two p-by-p matrices defined in (13).

When f(0]U) is a constant function, the solution of (12)
would be ¢*(Z) = E(X|Z), which leads to ¥; = (1 —
Tvar{X — E(X|2)}, £, = f(0)var{X — E(X|Z)} and more
generally, the following corollary.

Corollary 3.1. Under the assumptions of Theorem 3.3 and when
f(0]U) is a constant function, we have

Vn@ —6y) — N, %),
where ¥ = (1 — 7)[var{X — E(X|2)}1"!/£%(0).

For partially linear quantile regression with homoscedastic
error, the random error € is independent of the covariate U,
which implies that f(0|U = u) = f(0), for all u € [0,1]P"4,
hence, Corollary 3.1 holds.

4. Implementation and Asymptotic Covariance

Estimation of 6 and m: Since the check function in (5) is not
differentiable at the origin, the Newton-Raphson algorithm and
its variants cannot be directly used to find the solution for linear
quantile regression. Koenker and Ng (2005) proposed several
algorithms, such as the interior point algorithm for linear pro-
gramming, to solve this optimization problem. However, with
the layer-by-layer structure of the neural network and the large
number of parameters involved, this approach is infeasible for
our purpose. We resort to the Adam algorithm (Kingma and
Ba 2014), a variant of the stochastic gradient descent (Robbins
and Monro 1951), in the Python package PyTorch (Paszke et al.
2019) to solve the optimization problem (5). This algorithm
is widely used in the deep learning field due to its computa-
tional and memory efficiency. For our purpose, since we have
a parametric and a nonparametric component, we wrap the
linear predictor 6 " X and m(Z) together and iteratively estimate
the corresponding parameters simultaneously. That is, with the
neural network m in (2), we use Adam to update the parameters
{0, W1, ..., Wr}. Here we use the default values in PyTorch for
the initial values #® and W,EO), k=1,...,L

The algorithm also requires the specification of tuning
parameters, such as the depth L, width g, step size, minibatch
size, the number of iterations, early stopping, the constraint
of sparsity parameter s and boundedness of weights Wy, k =
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1,...,L of neural network m for the class M(s,L,q,A) in (3).
Here the minibatch size is defined as the subsample size used to
calculate the gradient of the objective function for each iteration,
and early stopping prevents overfitting by specifying the number
of iterations to continue when the model does not improve any
more on a hold-out validation dataset. We enforce a certain
proportion of elements in each row of the weight matrix Wj to
be zero and keep them at zero during the training. We set the
proportion to be 50% since a different choice leads to similar
results as shown in Table 12 of the Supplementary material. After
the training, we set the elements of Wy, whose absolute values
are greater than 1, to equal to 1 or —1, according to the sign of
the elements.

In the simulation study, we randomly split the data into a
training and validation set in a 80:20 ratio, where the tuning
parameters were selected based on the 20% validation set. In
the data analysis, where the ground truth is not available, we
randomly reserved 20% of the data as testing set and then
randomly selected 20% of the remaining data as a validation
set to select the tuning parameter for the training set, which is
64% of the original data. Based on minimizing the check loss
on the validation set, we used grid search to choose the tuning
parameters among a set of candidates for both the simulation
and data application. The choice of the grid points are provided
in Tables 13 and 14 of the supplementary material.

Asymptotic Covariance Estimation: To conduct inference for the
parameter 6y, we need to estimate the asymptotic covariance
matrix of § in Theorem 3.3 or Corollary 3.1. For simplicity, we
demonstrate how to estimate the asymptotic covariance matrix
for the case of homoscedastic random errors. The first step is
to obtain a density estimate for f(O) from the residuals {€; =
Yi— Y| ¥ = XITGA + m(Z;),i = 1,...,n}, for which we use
the function density in the R package stats. Then, we employ the
deep neural network to estimate the projections ¢/, k = 1,...,p
empirically, that is,

X 1y
@f = argmin — Z{Xik — p(Z))?,
peMy M0

where Xj; is the kth component of covariates X and M; is
a class of neural networks. Let ¢* = (@5, ... ,@;)T, VvV, =
Xi—¢"(Z), V=L Vi/nand Q = {31 (Vi— V)(Vi —
V)T}/(n—1). We estimate the asymptotic covariance matrix by
(1l — r)fZ_l
120

For heteroscedastic random errors, we can estimate the corre-
sponding asymptotic covariance matrix by a bootstrap method,

see Feng, He, and Hu (2011) and Wang, Van Keilegom, and
Maidman (2018) for details.

= (14)

5. Simulations

In this section, we demonstrate the numerical performance of
the proposed deep quantile regression method and compare
it with linear quantile regression and partially linear additive
quantile regression, abbreviated as LQR and PLAQR, respec-
tively. The code is available at https://github.com/qxzhong/dplqr.

5.1. Simulation I: Homoscedastic Errors

We first generated Z=(Z1,...,710) " where (Z1,...,Z10)" is
from a Gaussian copula on [0, 2] with correlation parameter 0.5.
Marginally, each coordinate of Z is a uniform distribution on
[0,2]. We then set Z = (Z1,...,7Z3) " and X = (X1, X>) " with
X, = I(Zy > 1) and X, = Zj as covariates. The response Y
was generated from

Y =0"X+mZ) +e, (15)

where 6 = (61,6;) = (1, —1) T, and the error ¢, independent of
(X, Z), is a Student’s t-distribution with zero mean and 3 degrees
of freedom. Three choices of m were implemented:

Case 1 (linear): m(z) = 0.56 x 22:1 2k

Case 2 (additive): m(z) = 0.82 x {(z1 — 1)* — z% +3lz3 — 1| +
0.6 sin(7rz4) +1og(z5+0.5) ++/2z6 + 0.5+3 cos(0.1 z7) +3(z5 —
1+|zg — 1D}

Case 3 (deep): m(z) = 0.61 x [exp {z1(1 + 22 — wz324) /2}(25 +
0.2) + z5(z4 — 0.3)/(]1224 — 1| + 1) + 25sin(zs5)|z526 — 0.6] +
log(zs + z723)]

The first two cases correspond to, respectively, the LQR and
PLAQR model, and the third case is designed for DPLQR. The
factors 0.56,0.82, and 0.61 in each case were scaled to attain a
signal-to-noise ratio around 5.

For each setting, we generated Q = 200 datasets, each with
sample sizes n = 1000 and 2000, respectively. Throughout the
simulation, we split the data into training data and validation
data in a 80:20 ratio. That is, 80% of the data were used for
estimation and the remaining 20% were used for the selection
of tuning parameters as introduced in Section 4. To evaluate the
performance of the estimation and prediction, we additionally
generated a test data with sample size N = 5000 in each
simulation. Specifically,

The performance of 1, was assessed by the relative mean
squared error (RMSE):

LN (e (Z) — me(Z))?
L3N ime (Z))?

RMSE(#1;) = (16)

where m, and m; are evaluated on the covariates Z;,i =
1,...,N of the test data (N = 5000). Moreover, with the
estimates @, and 71, we use ¥; = XITQA, + M. (Z;) to predict
the tth quantile of Y; and evaluated its performance through the
excess risk error (Van der Vaart and Wellner 1996):

N
N 1 A
ERE() = & > (o (Vi = Yi) — po (Y] — YD)},
i=1

where p. (-) is the check loss function defined in (5) and Y} =
XT0r + me (Z).

Table 1 presents the biases and standard deviations of the
estimates, 6, based on 200 simulation runs at three quantile
levels T = 0.25,0.50,0.75. In general, both the bias and vari-
ance decrease steadily for all three methods as the sample size
increases from 1000 to 2000. As expected, the mean squared
error of the resulting estimates are the smallest at the median
(r = 0.5) level. Under Case 1 (linear) and Case 2 (additive),
the proposed DPLOR method performed comparably with the
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Table 1. Bias and standard deviation (in parentheses) of §1 for the LQR, PLAQR, and DPLQR methods under homoscedastic random errors.

T =025 T =0.50 T =075
0 Case n LQR PLAQR DPLQR LQR PLAQR DPLQR LQR PLAQR DPLQR
1000 0.0896 0.0944 0.1235 0.0219 0.0413 0.0636 —0.0721 0.0836 0.1203
Case 1 (0.1402) (0.1428) (0.1446) (0.1116) (0.1199) (0.1235) (0.1389) (0.1411) (0.1439)
(linear) 2000 0.0742 0.0821 0.1078 —0.0148 0.0304 0.0483 —0.0679 —0.0795 0.0983
(0.0970) (0.0998) (0.1074) (0.0796) (0.0812) (0.0925) (0.0988) (0.1003) (0.1118)
1000 0.0764 —0.0297 0.0360 —0.0611 —0.0124 0.0338 —0.0757 —0.0210 —0.0307
P Case 2 (0.1384) (0.1253) (0.1301) (0.1158) (0.1008) (0.1116) (0.1493) (0.1364) (0.1417)
1 (additive) 2000 0.0710 —0.0145 0.0229 0.0506 0.0099 0.0158 —0.0727 0.0112 —0.0266
(0.1086) (0.0970) (0.0976) (0.0794) (0.0782) (0.0785) (0.0943) (0.1060) (0.0984)
000 0.1244 —0.1060 0.0762 0.1068 —0.0902 0.0403 —0.1322 —0.1095 0.0604
49993 (0.1787) (0.1647) (0.1394) (0.1444) (0.1337) (0.0998) (0.1718) (0.1691) (0.1330)
(deep) 2000 0.1170 —0.0935 0.0556 —0.0951 —0.0630 0.0297 —0.1212 —0.0942 —0.0445
(0.1231) (0.1146) (0.0951) (0.1046) (0.0978) (0.0848) (0.1165) (0.1146) (0.0941)
Table 2. Empirical coverage probability of the 95% confidence interval for 61 by the LQR, PLAQR, and DPLQR methods under homoscedastic random errors.
T =025 T =0.50 T =075
0 Case n LQR PLAQR DPLQR LQR PLAQR DPLQR LQR PLAQR DPLQR
Case 1 1000 0.910 0.900 0.895 0.975 0.915 0.905 0.900 0.910 0.905
(linear) 2000 0.925 0.920 0.915 0.945 0.940 0.935 0.930 0.920 0.925
P Case2 1000 0.855 0.910 0.895 0.960 0.955 0.945 0.865 0.915 0.910
1 (additive) 2000 0.885 0.925 0.915 0.960 0.945 0.955 0.895 0.935 0.930
Case 3 1000. 0.865 0.885 0.910 0.885 0.875 0.930 0.870 0.895 0.925
(deep) 2000 0.900 0.925 0.935 0.915 0.920 0.955 0.905 0.920 0.945
Table 3. Relative mean squared error of m for the LQR, PLAQR, and DPLQR methods under homoscedastic random errors.
T =0.25 T =0.50 T =0.75
Case n LQR PLAQR DPLQR LQR PLAQR DPLQR LQR PLAQR DPLQR
Case 1 1000 0.0071 0.0080 0.0086 0.0064 0.0070 0.0081 0.0074 0.0083 0.0089
(linear) 2000 0.0036 0.0043 0.0047 0.0034 0.0038 0.0040 0.0037 0.0044 0.0049
Case 2 1000 0.0097 0.0072 0.0074 0.0062 0.0053 0.0059 0.0093 0.0074 0.0080
(additive) 2000 0.0059 0.0040 0.0044 0.0034 0.0027 0.0030 0.0051 0.0039 0.0045
Case 3 1000 0.0997 0.0872 0.0390 0.0679 0.0539 0.0209 0.0976 0.0820 0.0342
(deep) 2000 0.0904 0.0812 0.0298 0.0633 0.0508 0.0159 0.0883 0.0774 0.0275

optimal method (LQR and PLAQR, respectively) with slightly
larger mean squared errors. However, under Case 3 (deep), the
DPLQR method clearly outperforms LQR and PLAQR. We also
construct the 95% confidence intervals for 0; based on the esti-
mates of the asymptotic variance in Section 4. Table 2 reports the
empirical coverage probabilities of the 95% confidence intervals.
For all three cases, the empirical coverage probabilities of the
proposed method generally approach 95% as n increases. In
addition, the proposed method is comparable to the other two
methods under Case 1 (linear) and Case 2 (additive), and has
more accurate coverage rates under Case 3 (deep). We also com-
pare the empirical overage probabilities of the 95% bootstrap
confidence intervals for # and variance estimate of § in Table
7 of the supplementary material and the proposed method is
seen to outperform the bootstrap method in terms of coverage
probability.

The average relative mean squared errors of the estimated
nonparametric function 1 over 200 repetitions are given in
Table 3. They decline with the increasing sample sizes as
expected. When the true model is Case 3 (deep), the proposed
method substantially outperforms LQR and PLAQR, while it
performs slightly worse under Case 1 (linear) and Case 2
(additive).

Based on the 200 simulation runs, Table 4 shows the mean
and standard deviation of the excess risk errors for the prediction
at three quantile levels T = 0.25,0.50,0.75. This reveals that
the proposed DPLQR is competitive with the optimal procedure
(LQR in Case 1 (linear) and PLAQR in Case 2 (additive)) and
superior in Case 3 (deep).

5.2. Simulation II: Heteroscedastic Errors

We also studied the performance of the proposed method for
heteroscedastic errors. The covariates U = (X, Z), coefficient 6
and nonparametric function m are similar to the settings in Sec-
tion 5.1 but the response Y now comes from the heteroscedastic
regression model:

Y=X"0+mZ) + (X 2)e.

Here € follows the Student’s t-distribution with zero mean and 3
degrees of freedom. The function o (X, Z) was chosen with three
settings:

Case 4 (linear): o (x,2) = (x1 + x1 + Zi:l zr)/10;
Case 5 (additive): o (x,z) = {x1 + x1 + Zz=1(zk —1)%}/10;
Case 6 (deep): o (x,z) = (x1 + x1)/10 + CD(Zi:l(zk - 1)/8)
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Table 4. Mean and standard deviation (in parentheses) of the excess risk to evaluate prediction for the LQR, PLAQR, and DPLQR methods under homoscedastic random

errors.

T =025 T = 0.50 T =075
Case n LQR PLAQR DPLQR LQR PLAQR DPLQR LQR PLAQR DPLQR
1000 0.0053 0.0061 0.0067 0.0054 0.0065 0.0069 0.0049 0.0053 0.0056
Case 1 (0.0026) (0.0036) (0.0038) (0.0029) (0.0040) (0.0045) (0.0026) (0.0033) (0.0040)
(linear) 2000 0.0026 0.0042 0.0045 0.0032 0.0049 0.0053 0.0026 0.0040 0.0041
(0.0014) (0.0019) (0.0020) (0.0019) (0.0026) (0.0031) (0.0014) (0.0018) (0.0021)
1000 0.0141 0.0111 0.0124 0.0158 0.0124 0.0143 0.0146 0.0106 0.0127
Case 2 (0.0054) (0.0039) (0.0050) (0.0065) (0.0043) (0.0053) (0.0056) (0.0039) (0.0052)
(additive) 2000 0.0105 0.0081 0.0098 0.0129 0.0096 0.0113 0.0102 0.0076 0.0100
(0.0041) (0.0024) (0.0039) (0.0048) (0.0032) (0.0040) (0.0040) (0.0025) (0.0037)
1000 0.0141 0.0123 0.0116 0.0160 0.0130 0.0128 0.0140 0.0125 0.0110
Case 3 (0.0064) (0.0050) (0.0051) (0.0071) (0.0065) (0.0058) (0.0062) (0.0056) (0.0048)
(deep) 2000 0.0108 0.0099 0.0089 0.0128 0.0103 0.0092 0.0099 0.0103 0.0088
(0.0046) (0.0044) (0.0039) (0.0054) (0.0049) (0.0040) (0.0044) (0.0041) (0.0037)
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Figure 2. Histogram (left panel) and empirical cumulative distribution function (right panel) of birth weight on 200 thousand randomly selected subjects.

with the cumulative distribution function ®(-) of the standard
normal distribution.

These lead to 6; = 6 + t,.0™ and m.(z) = m(z) + t;m*(2)
where f; is the t quantile of Students t-distribution with
zero mean and degree of freedom 3 and (0% m*(z))
takes (0.1, Y412, 2/10), (0.1, %_,(zx — 1)2/10) and
0.1, CID(ZLI(zk — 1)/8)) in Case 4 (linear), Case 5 (additive)
and Case 6 (deep), respectively. The simulation results,
summarized in Tables 8-11 of the supplementary material,
are comparable to those in Simulation I in Section 5.1.

In summary, when the true model is linear or partially lin-
ear additive quantile regression, our method is competitive for
both the parametric coefficients and nonparametric function
estimates, and the coverage probabilities for the parametric
coefficients are close to the 95% nominal level as sample sizes
increase. Furthermore, the proposed method is superior to the
LQR and PLAQR methods when the true model comes from the
deep partially linear quantile regression.

6. An application to Natality Birth Data

We apply DPLQR to analyze the relationship between mater-
nal education and the birth weight of infants using the 2020
Natality Birth Data published by National Center for Health
Statistics. The data, available at https://www.nber.org/research/
data/vital-statistics-natality-birth-data, consists of more than

3.6 million births with demographic and health information.
It is well documented that low birth weight is associated with
several short-term and long-term consequences, such as high
risk of mortality (Badshah et al. 2008) and impaired language
development (Zerbeto, Cortelo, and C Filho 2015). Scientists are
interested in whether maternal education beyond high school is
associated with birth weight (Shi et al. 2004; Gage et al. 2013).
We focus on singleton births to white mothers who were over 30
as very few continued to get a college degree after 30.

Along with birth weight of the baby in kilograms (Y) and
indicator for education beyond high school (X), where X is 0 if
the mother’s education is high school or less and 1 else, six con-
tinuous variables [mother’s age (Z;), mother’s body mass index
(Z,), mother’s weight gain during pregnancy (Z3), gestation
period (Z4), number of cigarettes the mother smoked during
pregnancy (Zs), and father’s age (Z¢)] and seven categorical
variables [gender of infant (Z7), mother’s marital status (Zg),
pre-pregnancy diabetes indicator (Zy), usage of induction of
labor (Z10), usage of antibiostic during labor (Z;1), receipt of the
Special Supplemental Nutrition Program for Women, Infants,
and Children (Z;5), indicator for father’s education beyond high
school (Z;3)] are included.

After excluding subjects with missing values in any variable,
there are about 978,000 subjects left. From these, we randomly
select 200,000 subjects in our study to reduce the computational
burden. Figure 2 shows the histogram and empirical cumulative
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Figure 3. Estimation for 6; with 7 € [0.02,0.98] and 95% confidence interval using DPLQR (left panel), LQR (middle panel), and PLAQR (right panel) in Natality Birth Data.

distribution function of birth weight for 200,000 infants, for
which the mean (standard deviation) and median (median abso-
lute deviation) are 3.38 (0.52) and 3.40 (0.46), and 20.21% of the
mothers have no more than a high school degree.

With the above variables we consider the following DPLQR
model:

Y=0,X4+m(Zy,...,Z13) + €. (17)
We randomly reserve 20% of the data as testing set and then
randomly select 20% of the remaining data as a validation set
to select the tuning parameters for the training set, which is
64% of the data, to estimate the unknown 6; and m, for T
0.020 4 0.005k, k = 0, ..., 192. The left panel of Figure 3 shows
the estimated coeficient 6;, where the shaded area is the 95%
confidence interval. Under the DPLQR model (17), a positive 6,
implies that mother with education beyond high school tends to
have a heavier infant and vice versa for a negative 6;.

Along the quantile levels 7, the estimated 6 in the left panel
of Figure 3 starts with a largest positive value, but goes down
fast before t = 0.15 and declines relatively slowly to zero at
about 7 0.52. Then 6, flattens out up to T = 0.85, and
finally decreases to —0.028 at t = 0.98. The 95% confidence
intervals (shaded regions) cover zero at t € [0.45,0.89]. The
results also show that a lower level of maternal education is
significantly associated with lower birth weight for newborns
with low birth weights (below 7 = 0.45 quantiles). The effect
decreases monotonically as the quantile increases from t = 0 to
T = 0.45. This is consistent with existing knowledge (Shi et al.
2004; Gage et al. 2013) that mothers with less education are more
likely to deliver low birth weight infants.

We also model the data with the linear quantile regres-
sion (LQR) and partially linear additive quantile regression
(PLAQR), where the unknown m; in (17) is a linear and non-
parametric additive function, respectively. The middle and right
panels of Figure 3 provide the point estimates and associated
95% confidence intervals. Generally, both estimates 6; also have
a downward trend as the quantile levels T increases from 0.02
t0 0.98.

However, PLAQR produces inconsistent results, namely that
education is statistically significant for all birth weights before
7 = 0.40 quantile levels but not at an interval around v = 0.18.

The 95% confidence intervals of LQR appear significant for 7 <
0.55, which implies that the education level of a mother also has
an effect on normal-birth-weight (0.45 < v < 0.55) infants.
This is scientifically questionable and not supported by the other
two methods.

Intriguingly, the proposed DPLQR method produces nar-
rower confidence intervals than LQR and PLAQR. The areas
covered by the 95% confidence intervals (shaded regions) are
0.0186, 0.0184, and 0.0168 for LQR, PLAQR, and DPLQR,
respectively. We conclude that DPLQR provides the best fit and
interpretation of the maternal education effect for the Natality
Birth Data.

We next compare the prediction results of DPLQR with
LQR, PLAQR, and the deep nonparametric quantile regression
(DNQR) approach in Padilla, Tansey, and Chen (2020) and Shen
et al. (2021), which are not amenable to checking the effect of
maternal education on birth weight. The evaluation criterion is
the check loss (CL) at 7 and the average check loss (ACL),

N 1
1 ~
CL(t) = N E pz(Y; — Y;) and ACL = / CL(t)dz, (18)
i=1 0

where N = 40,000 is the size of the test set, Y; is the birth
weight of the ith infant in the test set, and Y; is the predicted
quantile level of this subject. The results in Figure 4 suggest that
the proposed DPLQR is superior to LQR and PLAQR, while it
is as good as DNQR. This means that DPLQR does not sacrifice
much prediction accuracy compared to the larger DNQR model,
yet it provides an interpretable model.

Opverall, the proposed method yields more stable, accurate
and convincing results.

7. Conclusion

We provide an interpretable-yet-flexible deep learning model
with partially linear quantile regression, where we leverage neu-
ral networks to represent the nonparametric function and the
linear predictor to obtain inference. The proposed method is
able to detect the parsimonious structure of the data auto-
matically, thereby producing a better convergence rate for the
nonparametric estimator /1 than conventional nonparametric



10 Q. ZHONG AND J.-L. WANG

Prediction performance
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Figure 4. Check loss evaluated on test set with quantile levels r € [0.02,0.98]
under four models: LQR, PLAQR, DPLQR, and DNQR. Dotted line: LQR (ACL=0.1298);
dashed line: PLAQR (ACL=0.1265); solid red line: DPLQR (ACL=0.1245); dot-dashed
line: DNQR (ACL=0.1244). Solid line and dot-dashed line almost overlap.

smoothing methods. Furthermore, the estimator of the param-
eter 0 attains 4/n-consistency and asymptotic normality. These
features substantially distinguish our method from the nonpara-
metric approaches of Padilla, Tansey, and Chen (2020), Schmidt-
Hieber (2020), Shen et al. (2021) and opens up a myriad of future
research opportunities for semiparametric regression models.

So far, we have developed estimation and statistical inference
for the linear parameters of the proposed DPLQR model. Model
checking for the linearity assumption is a challenging problem
of future interest. An ad hoc lack-of-fit test for linearity could
be implemented by randomly spliting the data into a training
and test set with 8:2 ratio, where the nonparametric component
is estimated on the training set, giving an estimate 1 (-). Then
one can employ methods such as in Zheng (1998), He and Zhu
(2003), and Escanciano and Goh (2014) to conduct a lack-of-
fit test for linear quantile regression with the “observations”
(X;,Y:),i = 1,...,N on the test set, where Y; = Y; — 1, (Z))
and N is the sample size of the test set.

A possible extension is to investigate the quantile regression
process instead of fitting quantiles at fixed levels. Chao, Volgu-
shev, and Cheng (2017) and Belloni et al. (2019) studied con-
vergence results uniformly on t for quantile functions approx-
imated by linear combinations of basis functions, for example,
polynomial, Fourier, spline and wavelet bases. However, their
approaches cannot easily be extended to the deep learning set-
ting because of the layer structure in a neural network.

In additional, one can use techniques like monotonic con-
strained regression (Barlow et al. 1972; Bondell, Reich, and
Wang 2010) to ensure noncrossing of the estimated quantile
functions, that is, 9:[ x + mg (z) < 9:2 x + Mg, (z) whenever
71 < 17

As we focus in this article on a fixed but moderate size of the
linear covariates X, future work of interest is to study DPLQR
with high-dimensional covariates, where the number of linear
covariates may grow at a certain rate with sample size. A special
case for PLAQR was studied in Sherwood and Wang (2016),
which may shed some light on extending the DPLQR approach.
Another future direction is to test whether a particular set of

covariates contributes significantly to prediction, which includes
testing whether the function my satisfies mp(z) = 0, for all
z € [0,1]9. Reliable estimates of the unknown parameters are
fundamental to the hypothesis test procedures. The proposed
methods provide a stepping stone to establish the asymptotic
normality of the neural network estimates via Donsker Theo-
rems [see, e.g., chap. 2 in Van der Vaart and Wellner (1996)] or
of neural network test statistics via sample splittings (Dai, Shen,
and Pan 2021).

Supplementary Materials

Mathematical proofs and additional numerical results are given in the
supplementary material file.
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