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ABSTRACT
Topological data analysis (TDA) provides a set of data analysis tools for extracting embedded topological
structures from complex high-dimensional datasets. In recent years, TDA has been a rapidly growing field
which has found success in a wide range of applications, including signal processing, neuroscience and
network analysis. In these applications, the online detection of changes is of crucial importance, but this
can be highly challenging since such changes often occur in low-dimensional embeddings within high-
dimensional data streams. We thus propose a new method, called PERsistence diagram-based ChangE-
PoinT detection (PERCEPT), which leverages the learned topological structure from TDA to sequentially
detect changes. PERCEPT follows two key steps: it first learns the embedded topology as a point cloud
via persistence diagrams, then applies a nonparametric monitoring approach for detecting changes in
the resulting point cloud distributions. This yields a nonparametric, topology-aware framework which can
efficiently detect online geometric changes. We investigate the effectiveness of PERCEPT over existing
methods in a suite of numerical experiments where the data streams have an embedded topological
structure. We then demonstrate the usefulness of PERCEPT in two applications on solar flare monitoring
and human gesture detection.
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1. Introduction

Topological Data Analysis (TDA) is a thriving field at the
intersection of statistics, machine learning, and algebraic topol-
ogy, which has gained traction in recent years. TDA methods
provide a set of tools for studying the shapes of complex
high-dimensional datasets, by extracting their underlying
low-dimensional geometric structures. This field of study has
found success in a wide range of applications, including signal
processing (Perea and Harer 2015), computational biology
(Cang et al. 2015), time series analysis (Seversky et al. 2016),
and neuroscience (Sizemore et al. 2019).

Despite promising developments in recent years, there has
been little work on integrating topological structure for sequen-
tial change-point detection, which is a fundamental problem in
many of the aforementioned applications. Change-point detec-
tion here refers to the detection of a possible change in sig-
nal distribution over time. Traditional change-point detection
methods largely focus on likelihood ratio tests, which presume
that observations are independently and identically distributed,
both before and after the change (Siegmund 1985; Poor and
Hadjiliadis 2008; Basseville and Nikiforov 1993; Tartakovsky
et al. 2015). When the pre- and post-change distributions are
known, one can apply the cumulative sum (CUSUM) detec-
tion rule, which has been proved to be optimal (Lorden 1971;
Moustakides 1986). In practice, the post-change distribution is
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typically unknown, in which case one can sequentially estimate
it and construct a generalized likelihood ratio test (Lai 1998).

However, a key limitation with these traditional methods is
that they may perform poorly for high-dimensional data with
complex low-dimensional structure. This is because the distribu-
tions in such setting would typically be difficult to approximate
well using parametric families, and the required density ratio
would thus be difficult to estimate as well. One solution in
this high-dimensional setting is to first extract the underlying
low-dimensional structure from data, and then construct detec-
tion statistics based on the extracted information. CUSUM-type
detection algorithms were proposed in Xie et al. (2020) and Jiao
et al. (2018) to detect changes characterized by an unknown sub-
space structure in the covariance matrix. These methods work
well when the true low-dimensional embedding is precisely the
embedding used in the detection procedure, that is, a linear
subspace. In complex problems where the true embedding is
nonlinear, however, this model misspecification may result in
considerable deterioration in detection performance (Molloy
and Ford 2017). There is thus a need for a high-dimensional
change detection method which can integrate a broader yet
realistic framework for modeling low-dimensional structure.

In recent years, the rise of TDA methods suggests that,
for many problems, the underlying data may have embedded
topological structure. Indeed, in such problems, the extracted
topology from TDA often captures intuitive features from
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high-dimensional data which are interpretable for the practi-
tioner. For example, in computer vision, topological features
can represent segmented regions of a 3D shape (Beksi and
Papanikolopoulos 2016). Similarly, for time series, periodic
signals can be captured by topological features via Taken’s
Embedding (Seversky et al. 2016). However, the integration
of such structure for change detection has largely remained
unexplored. A recent work (Islambekov et al. 2019) proposed
a TDA detection approach for time series data, by converting
this to a sequence of so-called Betti numbers (Edelsbrunner and
Harer 2008), which capture the number of k-dimensional holes
on a topological surface. However, Betti numbers are known
to provide a weak summary of topology (Ghrist 2008) and
thus may be insensitive to certain topological changes. Another
recent work (Ofori-Boateng et al. 2021) used a richer topological
summary called a persistence diagram (Edelsbrunner and Harer
2008), which uniquely captures the topological features of the
data at different spatial resolutions (more on this in Section 2.1).
With persistence diagrams computed at each point in time, the
method then makes use of the Wasserstein distance between
diagrams from adjacent times as the detection test statistic.
However, there are two limitations with this approach: (i)
it relies on the Wasserstein distance, which may not fully
capture the topological differences between two persistence
diagrams (more on this later), and (ii) its test statistic relies on
information from only the immediate past, which can greatly
reduce detection efficiency.

To address this, we propose a new nonparametric, topology-
aware framework called PERsistence diagram-based ChangE-
PoinT detection (PERCEPT). As in Ofori-Boateng et al. (2021),
PERCEPT leverages the extracted persistence diagrams (which
capture topological features of the data at each time) for change
detection. However, instead of using the Wasserstein distance
of diagrams from adjacent times, PERCEPT extends a recent
nonparametric change detection method (Xie and Xie 2021) to
detect changes directly on the diagram point clouds. This yields
two advantages: (i) it offers a distribution-based approach which
amplifies changes in topological features; and (ii) its test statistic
makes use of data within a past time window, which addresses
information loss. We demonstrate the effectiveness of PERCEPT
over existing methods in a suite of simulation experiments and
in applications to solar flare monitoring and human gesture
detection.

The rest of the article is organized as follows. Section 2
provides preliminaries on persistent homology and motiva-
tions. Section 3 outlines the PERCEPT methodology. Section 4
demonstrates the effectiveness of this method in numerical
experiments. Section 5 applies the method to solar flare mon-
itoring and human gesture detection.

2. Preliminaries and Motivation

We first provide a brief overview of TDA, then discuss two
baseline methods, the Hotelling’s T2 statistic and the Wasser-
stein distance approach in Ofori-Boateng et al. (2021), for high-
dimensional change-point detection. We then motivate the pro-
posed PERCEPT method via our motivating solar flare detec-
tion application.

2.1. TDA Preliminaries

A primary tool in TDA is persistent homology, which extracts
topological features (e.g., connected components, holes, and
their higher-dimensional analogues) from point cloud data.
In what follows, we provide a brief overview of persistent
homology, following Ghrist (2008) and Edelsbrunner and
Harer (2008). For a given point cloud dataset, persistent
homology provides a representation of this as a simplicial
complex, defined as a set of vertices, edges, triangles, and
their higher-dimensional counterparts. A common simplicial
complex is the Rips complex, which depends on a single scale
parameter ε. At a given radius ε > 0, the Rips complex contains
all edges between any two points whose distance is at most
ε, and contains triangular faces for any three points whose
pairwise distances are at most ε. Figure 1 (adapted from Han
et al. 2018) illustrates this for a toy dataset. Clearly, a single
ε cannot capture all geometric structures embedded in the
data. Thus, a sequence of scale parameters is used to build a
sequence (or filtration) of simplicial complexes. This filtration
provides a means for extracting topological structure from the
data: zero-dimensional holes (or connected components), one-
dimensional holes, and their higher-dimensional analogues.

Under this framework, suppose a topological feature appears
in the filtration at some radius ε and disappears at a larger radius
ε′ > ε. The pair (ε, ε′) gives the persistence of the feature, with
ε and ε′ being its birth and death, respectively. A prominent
topological feature in the point cloud data would have long
persistence, whereas a small or noisy topological feature would
have short persistence. The persistence information from all
topological features can be captured by an (untilted) persistence
diagram (PD), a collection of points in R

2 where each feature
is represented by a point (ε, ε′), with ε is its birth time and ε′
is its death time. Figure 1 illustrates the persistent homology
pipeline from point cloud data to a persistence diagram. We will
distinguish this untilted PD from its tilted variant later.

We use a simple example to illustrate this pipeline from
topological structures to a PD. Figure 2 (left) shows the point
cloud data generated from two disjoint circles with radii 1, and
Figure 2 (right) shows the corresponding PD of this data. For the
zero-dimensional homology, which captures connected compo-
nents (black points in Figure 2 right), we observe many points
with small persistence, but one point which persists for a long
time. This last point with large persistence suggests the data has
two connected components, which is indeed true. For the one-
dimensional homology, which captures one-dimensional holes
(red points in Figure 2 right), we observe two red points with
large persistence, which reflects the two holes within the circles.
The choice of zero-dimensional or one-dimensional homology
for change detection will depend on prior knowledge of the data,
and will be discussed later in numerical experiments.

From a dimension reduction perspective, one might wonder
how the low-dimensional (namely, two-dimensional) nature of
persistence diagrams can serve as an effective feature extrac-
tion tool. One reason is that, when such topology is present
in data, the embedded geometric structure is typically low-
dimensional enough to be captured on the two-dimensional
persistence diagrams, even when the data is high-dimensional.
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Figure 1. An illustration of the persistent homology pipeline, from point cloud data to a filtration of simplicial complexes to a persistence diagram. The Rips complex with
radius ε in the left plot corresponds to the second simplicial complex in the filtration.

Figure 2. (Left) Point cloud data generated from two disjoint circles, and (right) its corresponding persistence diagram for zero-dimensional and one-dimensional holes.

This targeted extraction of topological features thus allows for a
reduced dimension of the feature space over other dimension
reduction approaches. See Chazal (2016) for further discussion,
with high-dimensional applications in signal processing (Perea
and Harer 2015) and neuroscience (Sizemore et al. 2019).

One potential limitation of PDs for change detection, how-
ever, is its inability to distinguish translation shifts in data. One
can show that for any point cloud data, its PD representation
remains the same after any translation shifts. This is not neces-
sarily a drawback for persistent homology, which aims to extract
geometric structure rather than translation shifts. For problems
both geometric changes and translation shifts are important to
detect, we propose later a simple modification which addresses
this in Section 3.2.

2.2. Existing Baseline Methods

A classic baseline change detection approach for multivariate
data is the Hotelling’s T2 statistic (Hotelling 1947), which makes
use of the mean and covariance structure of data. Given data
xt ∈ R

p at time t, t = 1, . . . , T, the Hotelling’s T2 statistic is
defined as

(x̄ − μ0)
ᵀ�−1

0 (x̄ − μ0), (1)
where x̄ is the sample mean vector, μ0 and �0 is the nominal
mean vector and covariance matrix, respectively (this is typically

given or estimated from reference data). The vanilla Hotelling’s
T2 statistic is calculated using only data at the current time t,
with all historical data discarded. To compute the test statistic
more efficiently, it can be coupled with the CUSUM scheme
(Page 1954), which makes use of a cumulative sum of the statistic
over time. The resulting detection statistic SH

t is then given by:

SH
t = (SH

t−1)
+ + (μ̄t−w,t − μ̂0)

ᵀ�̂−1
0 (μ̄t−w,t − μ̂0)− dH , SH

0 = 0,
(2)

where (x)+ = max(x, 0), μ̄t−w,t denotes the sample average of
the data vectors {xt−w, . . . , xt}, and μ̂0 and �̂0 are the pre-change
mean vector and covariance matrix estimated from historical
data. Here, dH is a drift parameter that can also be estimated
using historical data. When the data is known to be concentrated
on a linear subspace, one can adapt the Hotelling’s T2 test by first
performing Principal Component Analysis (PCA), then using
the resulting principal components as data within Equation (2).
With this, a change-point is then declared at time t when the
statistic SH

t first exceeds a prespecified threshold b.
The second baseline method, the Wasserstein distance

approach in Ofori-Boateng et al. (2021), integrates topology
in the following way. The Wasserstein distance (of order 1)
between two distributions P and Q on sample space � is defined
as

W1(P, Q) := min
γ∈�(P,Q)

{
E(ω,ω′)∼γ

[
c(ω, ω′)

]}
.
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Figure 3. (a) Snapshots of the solar flare around the true change-point t∗ = 49. (b,c) Hotelling’s T2 and Wasserstein distance statistics at each time t; the true change-point
t∗ is marked in red.

Here, c(·, ·) is a metric on � (we use the Euclidean norm), and
�(P, Q) denotes the collection of all (Borel) probability mea-
sures on � × � with marginal distributions P and Q. With this,
the Wasserstein distance method is straight-forward. First, at
each time t, the persistence diagram Dt ∈ R

2 is computed from
data xt . Next, the Wasserstein distances SW

t = W1(Dt ,Dt+1)
are computed between the PDs from adjacent time frames. One
then declares a change-point at time t when the statistic SW

t
exceeds a pre-specified threshold b.

We investigate these two baseline methods for a motivating
solar flare monitoring application (more on this in Section 5).
The data consists of image snapshots (232×292 pixels) of a solar
flare, captured by the Solar Dynamics Observatory1 at NASA.
Figure 3(a) shows several snapshots before and after the true
change-point at t∗ = 49, where the flare bursts become more
pronounced and bright. However, such a change can be quite
subtle visually, thus, making monitoring a challenging task (Xie
et al. 2012). We applied the above two baseline methods, with
the Hotelling’s T2 applied by first vectorizing the image data,
then applying PCA to extract the top 15 principal components.
Figure 3(b) and (c) show the detection statistics as a function of
time t. We see that both methods experience a large detection
delay from the true change-point at t∗ = 49. For the Hotelling’s
T2, the test statistic increases slowly after the change-point,
which suggests it does not capture well the changed image
features. Similarly, the Wasserstein distance statistic appears
highly unstable and unable to detect the change-point. Given
the limitations of the two baseline methods, we introduce next
a new nonparametric, topology-aware method which provides
a new framework for integrating low-dimensional geometric
information for online monitoring.

1See https://sdo.gsfc.nasa.gov/assets/docs/SDO_Guide.pdf .

3. Persistence Diagram-Based Change Detection

We now introduce the proposed PERsistence diagram-based
ChangE-PoinT (PERCEPT) monitoring method. We first
describe the histogram binning for PDs, then show how
the extracted histograms can be used for change detection.
We then present useful insights for PERCEPT, and discuss
methodological developments for bin and weight optimization.
Figure 4 visualizes the workflow for PERCEPT; we will describe
each step in detail below.

3.1. Persistence Histogram Binning

The first step in PERCEPT is to construct the so-called persis-
tence histograms, a novel histogram representation which cap-
tures persistence information from the computed PDs. This
histogram binning serves two purposes: it provides a robust way
for filtering noise in the PD data, and allows us to leverage recent
developments in histogram-based change detection methods
within PERCEPT (shown next). To facilitate this, we assume all
PDs are given in their tilted representation, where a feature is
represented by a point (ε, ε′ − ε), with ε is its birth time and
ε′ − ε is its persistence time. Figure 1 provides an illustration.

Assume, as before, that the PDs Dt ∈ R
2 are computed for

the data xt at each time t = 1, . . . , T. Further assume that the
birth range for the PDs (i.e., the x-axis on Dt) is partitioned into
the L bins: [0, b1), [b1, b2), . . ., [bL−1, bL), where bl is the right
break-point for the lth bin. With this, we can now bin the point
cloud data Dt . Let ft,l be the sum of persistences for points in Dt
within the lth bin, that is:

ft,l =
∑

(u,v)∈Dt ,u∈[bl−1,bl)

v, (3)

https://sdo.gsfc.nasa.gov/assets/docs/SDO_Guide.pdf
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Figure 4. Visualizing the general workflow for PERCEPT. The data can take a variety of forms, including images, time series or point cloud data. Persistence homology is used
to extract useful geometric features from data to persistence diagrams (Section 2.1). These diagrams are then binned using either persistence histograms or persistence
clusters (Sections 3.1 and 3.4, respectively), then used within an �2 test statistic for monitoring (Section 3.2).

Figure 5. (a) Persistence histograms for a pre-change and post-change solar flare image. (b) Visualizing the intervals used for the weighted �2 detection statistic.

where v = ε
′ − ε is the persistence time of point (u, v),

and let ωt,l = ft,l/
∑L

l′=1 ft,l′ be its corresponding proportion.
The histogram frequencies and distribution of the PD Dt can
thus be represented by the vectors f t = (ft,1, . . . , ft,L) and
ωt = (ωt,1, . . . , ωt,L), respectively. We will call ωt the persistence
histogram of the PD Dt . Figure 5(a) visualizes this binning
procedure. We will discuss the choice of L in Section 3.5.

In the absence of prior information on pre- and post-change
data, the persistence histogram breakpoints b1, . . . , bL can be
placed in such a way that the resulting histogram bins have
equal widths. The same bins are then used throughout the
monitoring procedure. When there is prior information on only
the pre-change data, the breakpoints b1, . . . , bL can be chosen
such that there is (roughly) an equal sum of persistences within
each histogram bin. When prior information are available on
both pre- or post-change data, one can employ more elaborate
binning approaches; see Section 3.4 for further discussion.

As an illustration, consider again the solar flare images from
Figure 3. Using the lower star filtration (Bendich et al. (2011),
discussed later in Section 5.1), we can obtain persistence dia-
grams for each flare image. Figure 5(a) shows the binned per-
sistence histogram (with L = 10 bins) of a PD computed from

a pre-change flare image, and Figure 5(b) shows the persistence
histogram for a “post-change” image using the same bins. Given
a significant change in topological structure, the corresponding
pre- and post-change persistence histograms (which capture
topology information) should be sufficiently different to capture
this change. We will leverage this next to formulate our test
statistic.

3.2. Test Statistic

The second step in PERCEPT is to use the extracted persistence
histograms to construct a monitoring test statistic. The idea
is as follows. Suppose the bins [0, b1), [b1, b2), . . ., [bL−1, bL)
are fixed. Then, at each time t, one can treat the observed
persistence histograms f t as data sampled from an underlying
discrete distribution with L levels. Let ppre denote this so-called
persistence distribution (with L levels) prior to the change, and
ppost be the persistence distribution after the change. The goal of
detecting topological changes can then be thought of as testing
for differences between the persistence distributions ppre and
ppost. We thus desire a test which investigates the following
hypotheses:
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H0 : ppre = ppost, HA : ppre �= ppost. (4)

To test (4), we extend a recent nonparametric test in Xie and
Xie (2021) for detecting changes on discrete distributions. At the
current time t, we search for all possible change points at time
k < t within a fixed-sized window. To investigate whether time
k is a change point, we will consider four consecutive time inter-
vals (see Figure 5(b)): the first two intervals are immediately
before time k, and the last two intervals are immediately after
k. All four intervals have the same time length of �(t − k)/2�.
We call the first group of intervals (representing potential pre-
change times) as “Group 1,” and the latter group (representing
potential post-change times) as “Group 2.”

Suppose the histogram breakpoints b1, . . . , bL are given.
Consider now the persistence histogram proportions within the
two time intervals in Group 1 and the two intervals in Group
2; we denote this as ω

[1,1]
t,k , ω

[1,2]
t,k , ω

[2,1]
t,k , and ω

[2,2]
t,k , respectively.

This nonparametric weighted-�2 statistic can then be defined as

χt,k = (ω
[1,1]
t,k − ω

[2,1]
t,k )ᵀ�(ω

[1,2]
t,k − ω

[2,2]
t,k ). (5)

Here, � = diag{σ1. . . . , σL} is the diagonal weight matrix,
where σl ≥ 0, l = 1, . . . , L. Note that, if time k were indeed a
change point, the resulting test statistic χt,k would likely be large,
thus, providing evidence for a change. In the absence of prior
information on pre- and post-change data, an intuitive choice
of � is the identity matrix, which assumes equal weights over
persistence histogram bins. However, when some prior data are
available on either the pre- or post-change PDs, the weights in �

can be optimized to better highlight distributional differences.
Section 3.5 provides further discussion on this.

Using the statistic (5), an online detection procedure is then
given by the stopping time:

T = inf{t : χmax
t ≥ b}, χmax

t = max
0≤k≤t

χk,t , (6)

where b is a pre-specified threshold parameter. Here, T is the
time at which the procedure raises an alarm indicating a change-
point has occurred before time t. In other words, when the test
statistic χmax

t exceeds a certain threshold, a change is declared
indicating the persistence histograms before and after time k are
sufficiently different.

The threshold b in (6) can be set by controlling the false
alarm rate to a desired pre-specified level, or, equivalently, by
controlling the average run length (ARL, more on this later)
to be above a pre-specified level. For the above weighted-l2
statistic, theoretical approximations are available for the ARL as
a function of threshold b (Xie and Xie 2021):

E∞[T ] = 1
2

b−1eb2/(2σ 2
p )[2πσ 2

p ]1/2∫ [4b2/(m0σ 2
p )]1/2

[4b2/(m1σ 2
p )]1/2 yν2(y)dy

(1 + o(1)).

Here, σ 2
p = 4[∑L

l=1 σ 2
i p2

i (1 − pi)2 + ∑
i �=j σiσjp2

i p2
j ], p =

ppre is the pre-change distribution, m0 and m1 are two known
constants, and ν(·) is a special function that is easy to calculate.
Further details can be found in Xie and Xie (2021). With this,
one can set the threshold b to bound the ARL E∞[T ], which
then controls the false alarm rate. Furthermore, for computa-
tional efficiency, one may adopt a window-limited procedure

which considers only k ∈ [t − m1, t − m0] in (6), instead of
searching over all possible change-points k < t. Typically, m1
is set to be larger than the desired detection delay, and m0 is
set to ensure the reliable estimation of the persistence histogram
distribution. In later experiments, we set m0 = 20 and m1 = 80,
which seems to provide good performance.

As discussed earlier, one potential limitation of PDs for
change detection is that it might not capture translation shifts
of the data. For problems where both geometric changes and
translation shifts are of interest, an easy fix is as follows. One
can perform the proposed PERCEPT procedure (6) (which can
detect geometric changes) in parallel with standard procedures
which are adept at mean-shift detection, such as Shewhart
control charts (Shewhart 1925), exponential weighting mean
average charts (Roberts 1959), CUSUM test (Page 1954; Lau
et al. 2018), etc. The joint monitoring of these two statistics will
enable the joint tracking of both geometric changes and mean
shifts.

3.3. Connection between EDD and Topology

We now provide a useful connection between the expected
detection delay (EDD) and topology, which sheds light on how
PERCEPT may be useful for topological change detection. Con-
sider two fundamental metrics in online change-point detec-
tion: EDD and Average Run Length (ARL). Let E∞ denote
the expectation under the probability measure when there is
no change-point, and let E0 denote the expectation under the
probability measure when the change happens at time 0. For a
given stopping time T of a monitoring procedure, its ARL is
defined as E∞[T ], the expected run length to false alarm when
there is no change, and the EDD is defined asE0[T ], the number
of samples needed to detect the change. Theoretically, the EDD
is known to be linearly related to the log(ARL) (Tartakovsky
et al. 2015).

Next, we introduce the bottleneck distance, a standard met-
ric for topological distance (Ghrist 2008). Suppose, for two
point cloud datasets with different topologies, one computes its
(untilted) PDs D1 and D2, respectively. The extracted topologi-
cal features in these PDs can then be compared via a matching η.
This matching is performed in two steps: (i) it pairs each point
in the first PDD1 with a point in the second PDD2 or a point on
the diagonal line, and (ii) it pairs each point in D2 with a point
in D1 or a point on the diagonal. The bottleneck distance (Ghrist
2008) between the PDs D1 and D2 is then defined as

dB(D1,D2) = inf
η

sup
y∈D1

||y − η(y)||∞.

Here, the supremum is taken over all matched points in D1, and
the infimum is taken over all possible matchings η. The bottle-
neck distance can also be viewed as the Wasserstein distance
of order ∞. Clearly, a larger bottleneck distance indicates the
extracted features from the first PD are quite different from that
for the second PD (and vice versa). This then suggests the topol-
ogy for the first dataset is markedly different from that for the
second dataset. This link between the bottleneck distance and
topological differences is formalized by the Stability Theorem
(Cohen-Steiner et al. 2007), a key theorem in TDA.



168 X. ZHENG ET AL.

With this, the EDD of the proposed PERCEPT method can
then be linked to the bottleneck distance of the topologies of
the pre- and post-change data. Recall that PERCEPT makes use
of the nonparametric l2-statistics on the underlying persistence
diagrams. It is known (Xie and Xie 2021) that the EDD for such
a procedure can be upper bounded by

EDD ≤ 2b
(mini �ii)||ppre − ppost||22

, (7)

where b is the prespecified detection threshold and �ii is the ith
diagonal entry of �. In other words, the larger the �2-difference
between the pre- and post-change persistence distributions ppre
and ppost, the smaller the EDD for PERCEPT. We can then show
(technical details in Appendix 6) that, under certain asymptotic
approximations, ||ppre − ppost||22 can be lower bounded by the
bottleneck distance between a pre-change PD Dpre and post-
change PD Dpost, which quantifies the change in topology. This,
together with (7), suggests that, for PERCEPT, the greater (or
smaller) the topological difference is between pre- and post-change
data, the smaller (or greater) its expected detection delay tends to
be, which is as desired.

3.4. Persistence Cluster Binning

The persistence histogram binning approach in Section 3.1 can
be viewed as partitioning the persistence space into vertical
rectangular regions, which are then used to bin the PDs for mon-
itoring. This may have two limitations. First, since persistences
are summed within each bin, the procedure can distinguish
topological features with different birth times, but not features
with similar birth times but different persistences. Second, the
restriction of partitions to be vertical and rectangular may ham-
per the identification of regions of greatest change between
the pre- and post-change distributions. When training data are
available on either the pre- or post-change PDs, we present an
alternate novel persistence clustering approach which can yield a
more informed partition of the persistence space.

Consider first the case where training data are available for
both pre- and post-change regimes. The idea is to find a clus-
tering of these point clouds, so that the corresponding par-
tition of the persistence space can discriminate well the pre-
and post-change distributions. We construct these persistence
clusters as follows. First, we perform k-means clustering (Lloyd
1982) on the pre-change PD point clouds, which returns Cpre
cluster centers Cpre = {c1, . . . , cCpre}. Then we do the same
on the post-change PDs to obtain Cpost cluster centers Cpost =
{c′

1, . . . , c′
Cpost

}. Using the combined centers C = Cpre ∪Cpost, we
then form a Voronoi diagram using centers C (Aurenhammer
1991), that is, a partition of R2 to its closest point in C. Figure 6
visualizes this persistence clustering procedure. The number of
clusters can be determined by the elbow method in k-means
clustering (Ketchen and Shook 1996).

Guided by prior knowledge, the modeler may choose to use
alternate clustering approaches in lieu of k-means clustering,
such as BIRCH (Zhang et al. 1996), DBSCAN (Ester et al. 1996),
and spectral clustering (Shi and Malik 2000). In particular,
distribution-based clustering methods, for example, DBSCAN
or other recent methods (Krishna et al. 2019), may be able to

capture distributional features on the PD space, thus, leading
to clusters which can better discriminate pre- and post-change
distributions. We make use of the standard k-means clustering
for persistence binning in later experiments, which turns out
to perform quite well, but aim to explore more sophisticated
clustering approaches as future research.

There may, of course, be cases where only pre-change (and
not post-change) data are available, that is, when the modeler
has prior information on data topology before a change but
not after. In such cases, one may perform k-means clustering
(or other clustering approaches) on the pre-change PDs for
persistence binning.

With these clusters, we then employ the same weighted-�2
test statistic in (5). The only difference is that, instead of taking
ω

[1,1]
t,k , ω

[1,2]
t,k , ω

[2,1]
t,k , and ω

[2,2]
t,k as persistence histogram propor-

tions, we take these as the proportions over persistence clus-
ters. As Figure 6(b) shows, these persistence clusters may yield
improved discrimination between the pre- and post-change
distributions compared to the earlier persistence histograms,
particularly when there is a large number of points (or features)
captured in the persistence diagrams. When there is only a small
number of features, however, we would recommend the use of
the persistence histogram approach instead, since there may be
insufficient data to fit the more complex persistence clusters. We
will demonstrate this later in numerical experiments.

3.5. Weight Optimization

Similarly, given available training data on both the pre-change
and post-change PDs, the weights � = diag{σ1, . . . , σL} in
the test statistic (5) can also be carefully specified to amplify
differences between the pre- and post-change distributions. For
this, we adopt the weight optimization approach in Xie and Xie
(2021), which aims to find weights � to maximize the worst-
case weighted �2 distance. This can be formulated as

max
σ≥0,g(σ )≤1

f (σ ), g(σ ) := max
ppre∈�

∑
i

σ 2
i p2

pre,i,

f (σ ) := min
ppre,ppost

{∑
i

σi(ppre,i − ppost,i)
2 : ppre, ppost ∈ �,

||ppre − ppost||2 ≥ ρ

}
. (8)

Here, ppre,i and ppost,i denote the ith entry in the vector ppre
and ppost, respectively. The minimization in f (σ ) is taken over
all possible pre- and post-change distributions ppre and ppost
(within the probability simplex �) that are ρ-separable for a
given ρ > 0. The choice of ρ depends on the scale of change
that one wants to detect; in our experiments later, ρ is set
to be 0.1. For persistence histograms, the optimal number of
bins L can be optimized simultaneously by selecting L which
yields the highest f (σ ) in (8). In practice, the training pre- and
post-change data are required for estimating the persistence
distributions ppre and ppost. Further details on this optimiza-
tion can be found in Xie and Xie (2021). These optimized
weights can then be used within the test statistic (5) for change
detection.
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Figure 6. (a) A sample pre-change (orange) and post-change (green) PD. (b) Pre- and post-change cluster centers and its corresponding persistence cluster via Voronoi
diagrams.

In implementation, we have found that a small modification
of (8) can yield noticeably improved performance. Note that
when ppre,i/ppost,i or ppost,i/ppre,i is exceedingly larger from 1,
and |ppre,i − ppost,i| is small for some i, it may be difficult to
pick out bin i as an important bin using the above formulation.
However, such a bin i distinguishes the pre- and post-change
distributions because their relative difference is large. Thus, we
see that this optimization is distribution-dependent; when ppre
and ppost are extremely different from the uniform distribution,
the above weights may not be ideal for distribution discrimi-
nation. In practice, we suggest using the relative difference of
ppre and ppost instead of the absolute difference in the above
formulation, that is, minimizing

∑
i σi{(ppre,i − ppost,i)/ppost,i}2

instead of
∑

i σi(ppre,i − ppost,i)2 for f (σ ) in (8).
As before, there may be scenarios where only pre-change

data are available. In such a setting, one could use the weights
which minimize the best-case weighted �2 distance over just
the pre-change distributions. Specifically, we can divide the pre-
change data into two groups, with binned distributions denoted
as ppre1 and ppre2 . We then replace ppre,i and ppost,i with ppre1,i
and ppre2,i, take the maximization in f (σ ), and choose weights
which minimize f (σ ) in (8). With such a choice, the detection
statistics are expected to be small prior to the change-point, and
increase after the change-point.

4. Simulation Experiments

We now explore the performance of PERCEPT in a suite of
simulation studies where the data is generated with topological
structure. We investigate several change scenarios, including
topology changes, noise changes, and its scalability in higher
dimensions.

Three baseline methods are used here for comparison. The
first is the aforementioned parametric Hotelling’s T2 test, using
the 15 extracted principal components from PCA on the orig-
inal data. The second is the Wasserstein distance method pro-
posed in Ofori-Boateng et al. (2021), which makes use of the
Wasserstein distance between PDs in adjacent times. Details on
both methods can be found in Section 2.2. The third method
is the maximum mean discrepancy (MMD) test (Gretton et al.
2012; Li et al. 2015), a widely used nonparametric change detec-
tion method. Given a class of functions F and two distributions
p and q, the MMD distance between p and q is defined as
MMDF (p, q) = supf ∈F (Ex∼p[f (x)] − Ey∼q[f (y)]). When F
is a reproducing kernel Hilbert space (RKHS) associated with
kernel function K(·, ·), this MMD statistic can be written as

SM
t = 1

n2
pre

npre∑
i,i′=1

K(xi, xi′ ) + 1
n2

post

npost∑
j,j′=1

K(xj, xj′ )

− 2
nprenpost

npre∑
i=1

npost∑
j=1

K(xi, xj). (9)

In our implementation, we used the standard Gaussian radius
basis function (RBF) kernel K(·, ·), where the kernel bandwidth
is chosen using the so-called “median trick” (Bernhard et al.
2018), that is, set to be the median of the pairwise distances
between data points.

The simulation set-up is as follows. We simulate data
x1, . . . , xT with T = 400, and the change-point is set at time
t∗ = 200. In other words, x1, . . . , x200 are generated from the
pre-change distribution, and x201, . . . , x400 are generated from
the post-change distribution. In our simulations, this point
cloud data is generated with topological structure from two
simple geometric shapes, the unit sphere and the ellipsoid (in
varying dimensions). A quick inspection of the PDs shows the
presence of many persistence features, thus, we decided to use
the persistence clustering approach across all simulation studies.
The goal is to have PERCEPT learn this topological structure
from data, then leverage such structure to quickly identify
the change-point. Here, we make use of the one-dimensional
homology for PERCEPT (see Section 2.1), since both the circle
and ellipsoid have a hole structure.

4.1. Shape Change

We first consider the case of geometric shape changes, where
the pre-change data is sampled with noise from the unit two-
dimensional circle, and the post-change data is sampled with
noise from a two-dimensional ellipse. Two noise settings are
considered for this experiment: N(0, 0.05) and N(0, 0.10). Fig-
ure 7 shows the detection statistics from PERCEPT, Hotelling’s
T2 and MMD under the two noise settings. We see that both
PERCEPT and MMD are able to quickly detect the change: both
monitoring statistics peak up immediately after the change-
point at t = 200. The Hotelling’s T2 statistic, however, shows
a relatively larger delay, which is unsurprising since such a
method is adept at detecting mean and covariance shifts, but
not shape changes. This suggests that, by integrating topological
structure, PERCEPT can yield improved performance over the
Hotelling’s T2. For the Wasserstein distance method, the statistic
experiences a large spike at exactly t = 200 for the noise setting
N(0, 0.05), but is unable to detect the change at the larger noise
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Figure 7. (a) Test statistics using PERCEPT, Hotelling’s T2, MMD and Wasserstein distance at each time t, for the setting of Gaussian noise N(0, 0.05). The vertical red dashed
lines indicate the true change-point t∗ = 200. (b) The same comparison for the setting of Gaussian noise N(0, 0.10).

level N(0, 0.10). This affirms the earlier observation that the
Wasserstein distance is a weaker metric which may not be able
to distinguish local topological differences.

4.2. Noise Change

Next, we consider the case of noise changes, where the pre-
and post-change data are generated from the same unit two-
dimensional circle (or ellipse), but with noise levels N(0, 0.05)

and N(0, 0.10), respectively. Figure 8 shows the test statistics
from PERCEPT and the Hotelling’s T2 for the circle and ellipse.
We see that PERCEPT can quickly detect the underlying change:
its pre-change test statistic is quite stable, and it peaks up quickly
after the change-point at t = 200. The Wasserstein distance
approach also seems to perform quite well here, although its
pre-change statistic is noticeably more unstable, which may lead
to frequent false alarms (i.e., lower ARL). On the other hand,
the Hotelling’s T2 statistic increases noticeably more slowly
after the change, which suggests a larger detection delay; this
indicates that Hotelling’s T2 can indeed be slow at detecting
small variance changes. For the MMD statistic, we see that while
it peaks up after the change-point, its pre-change statistic is quite
unstable and volatile, which again leads to frequent false alarms.
This is not unexpected, since the MMD approach does not lever-
age the underlying topological structure for change detection,
which may result in inefficient monitoring performance.

4.3. Increasing Dimensionality

We now investigate how well these methods perform on data
generated on higher-dimensional geometric structures, namely,
the three-dimensional and four-dimensional unit spheres and
ellipsoids. We consider here the same noise change as in Sec-
tion 4.2, and we compared the performance of PERCEPT with
the classic parametric Hotelling’s T2 test, MMD statistics and
Wasserstein distance. Figure 9(a) shows the detection statistics
for the four-dimensional sphere, and the detection statistics
for the three-dimensional sphere can be found in the Appen-
dices. We see that the proposed PERCEPT method consistently
outperforms existing methods: its pre-change statistics are sta-
ble, and its post-change statistics peak up quickly after the
change. Comparatively, the increase in the Hotelling-T2 statistic
is more subdued after the change (which results in greater
detection delay), and the MMD statistic pre-change is noticeably
more unstable (which results in increased false alarms). A likely
reason for the poorer performance of the MMD statistic is
that it does not integrate topological structure, which when
present, can improve monitoring performance. The Wasserstein
distance approach is again unable to detect this change, for
similar reasons as before. Furthermore, comparing with the
lower-dimensional setting in Figure 8, PERCEPT appears to
yield greater improvements over existing methods, which is
unsurprising since it leverages the underlying low-dimensional
topological structure in the high-dimensional data. Figure 9(b)
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Figure 8. (a) The test statistics using PERCEPT, Hotelling’s T2, MMD and Wasserstein distance at each time t for the two-dimensional circle, where the noise changes from
N(0, 0.05) to N(0, 0.10). Again, the vertical red dashed lines indicate the true change-point at t∗ = 200.

shows the detection statistics for the four-dimensional ellip-
soid, and the detection statistics for the three-dimensional ellip-
soid can be found in the Appendices. Again, we see that PER-
CEPT yields improved performance over the existing bench-
marks, despite having slightly more unstable pre-change statis-
tics. These experiments suggest that, by learning and integrat-
ing low-dimensional topological structure, PERCEPT can effi-
ciently detect changes when such structures are present in high-
dimensional data.

4.4. EDD versus ARL

Finally, we compare the performance of these methods via the
two metrics introduced in Section 3.3: the Average Run Length
(ARL) and the Expected Detection Delay (EDD). Recall that
ARL measures the expected run length to a false alarm when
there is no change, and EDD measures how quickly the change
is detected. A method with large ARL and small EDD is desired,
since this means fewer false alarms and a smaller detection delay.
We approximate the ARL and EDD of the compared methods
using different thresholds b, under the two-dimensional cir-
cle experiment with Gaussian noise N(0, 0.05) for pre-change
regime and Gaussian noise N(0, σ 2) for post-change regime,
where σ 2 = 0.09, 0.10, and 0.11. We adopted the experiments
from Xie and Xie (2021), and details can be found in Appendix 6.

Figure 10 plots the EDD versus log-ARL curves for the
two-dimensional circle experiment. There are two interesting
observations. First, for all noise levels and ARL levels, we see that
PERCEPT yields much lower EDD compared to the Hotelling’s
T2 procedure, which suggests that it indeed yields improved
detection performance by integrating topological structure. Sec-
ond, the proposed method is more robust to noise perturba-
tions. As the noise level decreases, the EDD for the Hotelling’s
T2 becomes noticeably larger for fixed ARL levels. Again, this is
not surprising, since this change is difficult to detect without first
identifying the underlying topological structure. In contrast,
the EDD for PERCEPT is more stable and nearly remains the
same as the noise level decreases, which shows the robustness
of PERCEPT. The relationship between ARL and EDD for the
four-dimensional case is not shown here since it is expensive
to compute, but similar conclusions are expected from earlier
results.

5. Applications

5.1. Solar Flare Change Detection

We now demonstrate the effectiveness of PERCEPT in the ear-
lier motivating solar flare detection problem. A solar flare is an
intense emission of radiation on the Sun’s atmosphere, and the
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Figure 9. (a) The test statistics using PERCEPT, Hotelling’s T2, MMD and Wasserstein distance at each time t for the four-dimensional sphere, where the noise changes from
N(0, 0.05) to N(0, 0.10). Again, the vertical red dashed lines indicate the true change-point at t∗ = 200. (b). Same for four-dimensional ellipsoids.

Figure 10. EDD–ARL curves for two-dimensional circle experiment with noise change, using varying post-change noise levels for PERCEPT, Hotelling’s T2, MMD, and the
Wasserstein distance method.

monitoring of such changes via satellite imaging is critical for
predicting geomagnetic storms (Xie et al. 2012). This detection
can be highly challenging, however, as noted in Section 2.2,
due to the high dimensionality of images and the subtlety of
such a change. Recent work in image processing shows that a
wide range of image features can be captured via topology (Ben-
dich et al. 2011), which suggests our topology-aware approach
may provide a solution. The data used here are T = 100
image snapshots taken by the SDO at NASA, where the true
change-point is at t∗ = 49. Further details can be found in
Section 2.2.

To apply PERCEPT, we need to first map the image data to a
filtration, or a sequence of simplicial complexes (see Section 2.1
for details). We will make use of the so-called lower star filtra-
tion, which has shown success in capturing useful topological
features in image data (Bendich et al. 2011). Let f (x) be a
mapping from each pixel location x to its intensity value, and
for a given ε, define the sublevel set of f as X(ε) = {x|f (x) ≤ ε}.
One can then form a simplicial complex from X(ε) by first
considering image pixels as vertices on a grid, then triangulating
this grid by placing an edge between two points that are horizon-
tally, vertically, or diagonally adjacent, and a triangular face for
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Figure 11. (a) Freudenthal triangulation of the solar flare image. (b) “Tilted” persistence diagram of the solar flare image in (a).

Figure 12. Detection statistics for each method in the solar flare monitoring application. Vertical red dashed lines indicate the true change-point at t∗ = 49.

any three adjacent points forming a triangle. This is known as
the Freudenthal triangulation (Freudenthal 1942). Figure 11(a)
visualizes this mapping from image to simplicial complex. For a
sequence 0 < ε1 < ε2 < · · · < εm, the sublevel set filtration of
the image is defined as Xi = X(εi), i = 1, . . . , m, which forms
a sequence of nested simplicial complexes. This filtration can be
used to construct a PD (Figure 11(b)) as described in Section 2.1.
One can view this filtration pipeline as a way to extract impor-
tant image topological features as a PD point cloud. Here, the
zero-dimensional homology is used for PERCEPT, since differ-
ent solar flares can be characterized by connected components
in the lower star filtration.

With the mapped PD in hand for each image, we can then
proceed with the detection framework outlined in Section 3.
Since there is a wide range of solar flares, we assume here that
only pre-change training data are available, and we use the
persistence binning approach in Section 3.1 and equal weights
over persistence histogram bins. A quick inspection of the com-
puted PDs show only a small amount of points (or features),
thus, we decided to use persistence histograms instead of persis-
tence clusters (see Section 3.4). Here, the histogram breakpoints
b1, . . . , bL are chosen such that there is (roughly) an equal sum
of persistences within each histogram bin in the first solar flare
image. The Hotelling’s T2 is performed using the 30 extracted
principal components from PCA on the image data, and the
MMD test is performed on the image data directly, with the RBF

kernel, and the bandwidth is chosen using the “median trick”
as described in Section 4. The Wasserstein distance approach is
performed on the mapped PDs from the lower star filtration.

Figure 12 shows the proposed detection statistic χmax
t using

L = 10 histogram bins, the Hotelling’s T2, the MMD test
statistics and the Wasserstein distance statistic. For PERCEPT,
we note a sudden increase in the test statistic after the true
change-point t∗ = 49 (vertical red dashed line), which sug-
gests the proposed method is able to pick out the underlying
topological change in the images with little detection delay.
Comparatively, for the Hotelling’s T2, the increase in its test
statistic is much more subdued and gradual, which indicates a
much larger detection delay. The MMD approach yields poor
performance here: its pre-change statistics are highly volatile
and unstable, and its post-change statistics experience a decrease
after the change-point. The Wasserstein distance approach is
not able to detect the change, since its test statistic does not
increase significantly at the change-point. This is in line with
results from earlier simulations, and an in-depth discussion of
plausible reasons is provided there. By learning and integrating
low-dimensional topological structure within a nonparametric
change detection framework, PERCEPT can yield significant
improvements over existing methods when such structure is
indeed present for image data.

Despite the required mapping from images to PDs via the
lower star filtration, PERCEPT appears to be quite efficient. This
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Figure 13. (a) Visualizing the two gestures: taking a bow (top) and throwing an object (bottom). (b) Embedding of a multivariate time series to point cloud (PC) data via
Taken’s embedding, to a persistence diagram via persistence homology. (c) “Tilted” persistence diagram of the embedded point cloud at t = 510.

Table 1. Total computation time (in seconds) for the compared methods on the
solar flare application.

PERCEPT Hotelling MMD Wasserstein

32.3 sec 2.1 sec 3.4 sec 341.8 sec

NOTE: Computation is performed on a standard desktop computer using an AMD
Ryzen 5 2600 processor with 6 cores and 12 threads.

is due in part to the availability of well-maintained packages
for TDA algorithms. Table 1 summarizes the computation time
for each method in this application, where persistence homol-
ogy (for PERCEPT) is performed using the Python package
Ripser (Tralie et al. 2018). Here, the lower star filtration on
100 images takes around 30 sec on a standard desktop computer,
which is fast given these images are quite large (232 × 292 pix-
els). The Wasserstein distance approach takes quite long due to
optimal matching. With this filtration computed, the detection
statistic χmax

t can then be evaluated with minimal additional
computation, thus, enabling efficient detection.

5.2. Human Gesture Change Detection

Next, we investigate the performance of PERCEPT in a human
gesture detection application. The detection of human body
gestures is an important task in computer vision (Turaga et al.
2008), and has immediate applications in visual surveillance and
sign language interpretation (Oh et al. 2011). One challenge for
this detection lies in the high-dimensional time series data, and
the low-dimensional embedding of human body gestures within
such data. Recent developments in time series analysis suggest
that many time series features can be captured via TDA (further
details below), and thus PERCEPT may be promising for this
task. To explore this, we will use the human gestures dataset
from the Microsoft Research Cambridge-12 Kinect (Fothergill
et al. 2012), which consists of time series observations of human
skeletal body part movements, collected from 20 sensors on 30
people performing 12 distinct gestures. We study in particular
the transition of gestures from a “bow” to a “throw” sequence,
as shown in Figure 13(a).

To apply PERCEPT, we need to first transform the multi-
dimensional time series to point cloud data, on which the
usual TDA pipeline (see Section 2.1) can then be performed.
A popular transformation is Taken’s embedding (Gidea and
Katz 2017), which is widely used in TDA. Suppose we observe
the d-dimensional time series {zk(t), t ≥ 0}, k = 1, . . . , d (here,
d = 20 × 3 = 60, since each of the 20 body sensors return a
three-dimensional coordinate). For each time t, define the point
zt = (z1(t), . . . , zd(t)) as the cross-section of the multivariate
time series. With a given window size w, Taken’s embedding
returns the point cloud representation Zt = {zi, . . . , zi+w−1} at
each time t. After this transformation, one can then perform the
standard TDA filtration in Section 2.1 to convert the point cloud
Zt to a persistence diagram Dt . It can be shown (Gidea and Katz
2017) that this embedding captures key periodicity and dynamic
system information on the multivariate time series. Figure 13(b)
provides a visualization of Taken’s embedding. Here, we set
the window size w to be approximately the periodicity of the
gestures, which is based on prior knowledge. We further make
use of one-dimensional homology for PERCEPT, since it is
known that periodicity of time series can be represented as
one-dimensional holes via Taken’s embedding (Gidea and Katz
2017).

With this, we can then apply PERCEPT for detecting ges-
ture changes. A quick inspection shows that there are limited
points in the computed PDs Dt . Thus, we use the persistence
histograms in Section 3.1 rather than the persistence clusters in
Section 3.4. We then used 60 frames from “bow” and “throw”
sequences to choose the number of histogram bins and optimize
weights. The Hotelling’s T2 is performed using the 30 extracted
principal components from PCA on the embedded point cloud
dataZt , and the MMD test is performed on the embedded point
cloud data Zt directly with the RBF kernel, and the bandwidth
is chosen using the “median trick” as described in Section 4. The
Wasserstein distance approach is performed on the mapped PDs
from the Rips filtration.

Figure 14 shows the proposed detection statistic χmax
t using

L = 2 histogram bins, the Hotelling’s T2, the MMD test statis-
tics, and the Wasserstein distance over time, with the vertical
line indicating the true change-point (i.e., the transition from
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Figure 14. Detection statistics for each method in the human gesture change detection application. Vertical dashed lines indicate the true change-point from “bow” to
“throw.”

“bow” to “throw”). For PERCEPT, we see the test statistic is rel-
atively stable pre-change and experiences a large jump immedi-
ately after the change. This suggests our method has a large ARL
and small detection delay, which is as desired. The Hotelling’s T2

again experiences a much more subtle and gradual increase after
the change, which indicates a large detection delay. As before,
the MMD method performs poorly: its pre-change statistic is
highly unstable pre-change and experiences a notable decrease
post-change, which suggests it is unable to detect the change
at all. The Wasserstein distance method is again not able to
detect the change-point. This demonstrates the advantages of
a topology-aware nonparametric change detection framework:
when such a low-dimensional structure exists and can be lever-
aged, one can achieve efficient monitoring performance even
with high-dimensional data.

6. Conclusion

We have proposed a novel topology-aware, nonparametric
monitoring framework called the Persistence Diagram-based
Change-Point Detection (PERCEPT) method, which leverages
tools from topological data analysis for change detection.
The idea is to first extract the topological structure of the
data via persistence diagrams, then leverage a nonparametric,
histogram-based change detection approach on these diagrams
to sequentially detect topological changes. A suite of simulation
experiments and two applications show that, when the under-
lying change is topological in nature, the proposed PERCEPT
approach yields noticeably improved detection performance
over existing approaches.

There are several interesting future directions for refining
PERCEPT for broader applications. First, we are exploring a
more localized detection approach, which can pinpoint and
monitor local changes (e.g., local translation/rotation shifts) in
topology. Second, there has been recent work on two-parameter
persistence (Wright and Zheng 2020), particularly on its robust-
ness in extracting topological structure in the presence of noise;
integrating such ideas within PERCEPT would allow for a more
robust topology-aware monitoring approach. Third, we aim to
explore a broader range of clustering approaches for persis-
tence binning, including DBSCAN. Finally, we will investigate
broader uses of PERCEPT in applications for which TDA has

found recent success, particularly neuroscience (Wang et al.
2020, 2022) and complex physical systems (Mak et al. 2018).

Appendices

Appendix A: Experiments for Approximating the ARL
and EDD

Experiment 1: To compute the ARL, we generate n sequences of pre-
change samples of length m. We create a random pool with M pre-
change samples to reduce the computational cost. For each sequence, m
samples are drawn randomly from the pool with replacement, and we
repeat this process n times. Let T be the stopping time of the detection
procedure, and if there is no change-point in the sequence of length
m (all samples are drawn from the pre-change distribution), from the
discussion in Xie and Xie (2021) we have:

P(T > m) = P( max
0≤t≤m

χt < b) ≈ exp{−m/λ},

where λ is the estimation of the ARL. For any given threshold b,
we could get the estimation of the ARL based on the percentage of
sequences whose maximum online statistics is below the threshold,
among all n sequences. More specifically, we approximate the ARL as
m/(− ln p̂), where p̂ is the percentage.

Experiment 2: To compute the EDD, we generate n sequences of
pre-change samples of length m′ followed by post-change samples of
length m. The pre-change samples are only used as historical data, in
order to construct the pre-change histograms ω

[1,1]
t,k , ω[1,2]

t,k as shown in
Figure 5(b). The online test statistics are calculated only from the onset
of post-change samples to obtain the detection delay. We consider the
same list of threshold b as we used in computing the ARL, and find the
average detection delay over n sequences.

Figure B.1. Visualizing a regular point (left) and a saddle point (right) in the lower
star filtration.



176 X. ZHENG ET AL.

Figure D.1. (a) The test statistics using PERCEPT, Hotelling’s T2, MMD and Wasserstein distance at each time t for the three-dimensional sphere, where the noise changes
from N(0, 0.05) to N(0, 0.10). Again, the vertical red dashed lines indicate the true change-point at t∗ = 200. (b) Same for three-dimensional ellipsoids.

Appendix B: Details on the Lower Star Filtration

When a new vertex is added in the sublevel set, the topological change
depends on whether the vertex is a maximum, minimum, regular, or a
saddle of the function. Figure B.1 visualizes a regular point and saddle
point (in yellow), and the edges and faces in the sublevel sets (in blue).
The topological features do not change after introducing a regular
point, but the number of connected components decreases by one after
introducing a saddle point.

Appendix C: Connection on Distributional and Bottle-
neck Distances

Here, we elaborate further on the connection between the difference
between the pre- and post-change persistence distributions, ‖ppre −
ppost‖2, and its corresponding bottleneck distance dB(Dpre,Dpost).
Since the bottleneck distance is defined on the sampled PDs Dpre and
Dpost at a given time t, we will make this connection on the empirical
pre- and post-change persistence distributions p̂pre and p̂post at time t,
respectively.

The following proposition provides a link between the empirical
persistence distribution difference ‖p̂pre − p̂post‖2 and the bottleneck
distance of its corresponding persistence diagrams Dpre and Dpost,
under asymptotic conditions.

Proposition 1. Let Dpre and Dpost be the PDs of samples from pre- and
post-change data at time t, and let p̂pre and p̂post be the corresponding

persistence histograms given a fixed partition of L bins at time t. Sup-
pose all birth times are unique, and suppose the number of histogram
bins L are sufficiently large such that the persistence histograms at each
time has at most one point in each bin. Then ||p̂pre − p̂post||22 ≥
d2

B(Dpre,Dpost).

In other words, as the number of histogram bins L goes to infinity, the
distributional difference ||p̂pre − p̂post||2 can be lower bounded by the
bottleneck distance dB(Dpre,Dpost). This, combined with Equation (7)
of the main article, suggests that the greater the topological difference
is between pre- and post-change data, the smaller its detection delay, as
desired.

Appendix D: Increasing Dimensionality on Geometrix
Structures

In Section 4.3, we investigate how well the methods perform on
data generate on higher dimensional geometric structures under
noise change, and Figure D.1 shows the detection statistics for three-
dimensional sphere and ellipsoids.
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