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Bayesian Uncertainty Quantification for

Low-Rank Matrix Completion∗

Henry Shaowu Yuchi†,¶, Simon Mak‡,¶,‖, and Yao Xie§

Abstract. We consider the problem of uncertainty quantification for an unknown
low-rank matrix X, given a partial and noisy observation of its entries. This quan-
tification of uncertainty is essential for many real-world problems, including image
processing, satellite imaging, and seismology, providing a principled framework
for validating scientific conclusions and guiding decision-making. However, exist-
ing literature has mainly focused on the completion (i.e., point estimation) of the
matrix X, with little work on investigating its uncertainty. To this end, we pro-
pose in this work a new Bayesian modeling framework, called BayeSMG, which
parametrizes the unknown X via its underlying row and column subspaces. This
Bayesian subspace parametrization enables efficient posterior inference on matrix
subspaces, which represents interpretable phenomena in many applications. This
can then be leveraged for improved matrix recovery. We demonstrate the effective-
ness of BayeSMG over existing Bayesian matrix recovery methods in numerical
experiments, image inpainting, and a seismic sensor network application.

Keywords: Hierarchical modeling, Manifold sampling, Matrix factorization,
Matrix completion, Seismic imaging, Uncertainty quantification.

1 Introduction

Low-rank matrices play a vital role in modeling many scientific and engineering prob-
lems, including (but not limited to) image processing, satellite imaging, and network
analysis. In such applications, however, only a small portion of the desired matrix (which
we denote as X ∈ R

m1×m2 in this article) can be observed. The reasons for this are
two-fold: (i) the cost of observing all matrix entries can be high, requiring expensive
computational, experimental, or communication expenditure; (ii) there can be miss-
ing observations at individual entries due to sensor malfunction, experimental failure,
or unreliable data transmission. The matrix completion problem aims to complete the
missing entries of X from a partial (and often-times noisy) observation. Matrix comple-
tion has attracted much attention since the seminal works of Candès and Tao (2010),
Candès and Recht (2009), and Recht (2011). The theory and methodology behind point
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estimation are now well-understood for matrix completion, under the assumption that
X is low-rank, with various convex and non-convex optimization algorithms developed
for performing this recovery.

However, much of the literature (a detailed review is in Section 1.1) has focused on
the completion, i.e., point estimation, of X, with little work on exploring the uncer-
tainty of such estimates. In many scientific and engineering applications, such estimates
are much more useful when coupled with a measure of uncertainty. The principled char-
acterization (and reduction) of this uncertainty is known as uncertainty quantification
(UQ), see, e.g., Smith (2013). UQ is becoming increasingly important in various applica-
tions, providing a principled framework for validating scientific conclusions and guiding
decision-making.

In this paper, we address the problem of UQ for the matrix completion problem
from a Bayesian perspective. We propose a novel Bayesian modeling framework, called
BayeSMG, which quantifies uncertainty in the desired matrix X via posterior sam-
pling on its underlying subspaces. BayeSMG can be viewed as a hierarchical Bayesian
extension of the singular matrix-variate Gaussian (SMG) distribution (see Gupta and
Nagar, 1999; Mak and Xie, 2018), with hierarchical priors on matrix subspaces. A scal-
able posterior sampling algorithm is then derived for BayeSMG, which leverages the
efficient subspace sampling algorithms proposed in Hoff (2007) and Hoff (2009). By
integrating the subspace structure for posterior inference, we show that BayeSMG en-
joys improved recovery performance and better interpretability compared with existing
Bayesian models in extensive numerical experiments and a real-world seismic sensor
network application.

1.1 Existing literature

Much of the existing literature on inferring X from partial observations falls under the
topic of matrix completion – the completion (or point estimation) of X from observed
entries. Early works in this area include the seminal works of Candès and Tao (2010),
Candès and Recht (2009), and Recht (2011), which established conditions for exact
completion via nuclear-norm minimization, under the assumption that observations are
uniformly sampled without noise. This is then extended to the noisy matrix comple-
tion setting, where entries are observed with noise; important results include Candès
and Plan (2010), Keshavan et al. (2010), Koltchinskii et al. (2011), and Negahban and
Wainwright (2012), among others. There is now a rich body of work on matrix com-
pletion; recent overviews include Davenport and Romberg (2016) and Chi et al. (2019).
However, completion focuses solely on the point estimation of matrix entries and does
not provide uncertainty quantification on those unobserved. In scenarios where only a
few entries are observed(see motivating applications), this uncertainty can be as valuable
as point estimates in assessing the quality of the recovered matrix.

The current research literature has generally focused on point estimation of the
unknown matrix X. The problem of quantifying uncertainties in X has been relatively
unexplored, but it is nonetheless an important one given the motivating applications.
One recent pioneering work on this is Chen et al. (2019), which proposed entrywise
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confidence intervals for both convex and non-convex estimators on X, via debiasing
using low-rank factors of the matrix. The resulting debiased estimators admit nearly
precise nonasymptotic distributional characterizations, which in turn enable optimal
construction of confidence intervals for missing matrix entries and low-rank factors.
Our approach has several distinctions from this work. First, the latter is a frequentist
approach with appealing theoretical guarantees, whereas our approach is Bayesian and
yields a richer quantification of uncertainty on X via a hierarchical Bayesian model.
Second, to derive elegant theoretical results, the latter requires a sample size complexity
condition on X, similar to the minimum sample size condition in standard matrix
completion analysis (see, e.g., Candès and Recht, 2009). Our UQ approach, in contrast,
is applicable for any sample size n on X, particularly for the “small-n” setting where
observations are limited and uncertainty quantification is most needed.

Another approach for quantifying uncertainty is via Bayesian modeling. There is a
growing literature on Bayesian matrix completion, of which the most popular approach
is the Bayesian Probabilistic Matrix Factorization (BPMF) method in Salakhutdinov
and Mnih (2008). BPMF adopts the following probabilistic model on X: X = MNT ,
M ∈ R

m1×R, N ∈ R
m2×R, where R < m1 ∧ m2 := min(m1,m2) is an upper bound

on matrix rank. Each row of the factorized matrices M and N are then assigned
i.i.d. Gaussian priors N (µM ,ΣM ) and N (µN ,ΣN ), respectively. Conjugate normal
hyperpriors are then assigned on the row and column means µM ∼ N (0,ΣMβ), µN ∼
N (0,ΣNβ), with Inverse-Wishart hyperpriors on row and column covariance matrices
ΣM ∼ IW(R,W ),ΣN ∼ IW(R,W ). The hyperparameters β and W are typically
specified to provide weakly- or non-informative priors. This model allows for an efficient
Gibbs sampler, which performs conjugate sampling on each row of M and each row
of N , along with conjugate updates on the mean vectors (µM ,µN ) and covariance
matrices (ΣM ,ΣN ). With this, the BPMF can be shown to tackle problems as large as
the Netflix dataset, with millions of user-movie ratings. A similar Bayesian model was
proposed in Mai and Alquier (2015), with priors on each entry of M and N . Many
other existing Bayesian matrix completion methods (e.g., Lawrence and Urtasun, 2009;
Zhou et al., 2010; Babacan et al., 2011; Alquier et al., 2014) can be viewed as variations
or extensions of this BPMF framework.

From a modeling perspective, the key novelty in the BayeSMG model is that it re-
quires orthonormality in the factorized matrices, whereas the BPMF does not. Such a
factorization can be viewed as parametrizing X via its singular value decomposition
(SVD). This yields several advantages for our method, which we demonstrate later.
First, by explicitly parametrizing row and column subspaces as model parameters,
BayeSMG can incorporate prior knowledge on subspaces within the prior specification
of such parameters. This prior information is often available in many signal processing
and image processing problems, e.g., known signal structure or image features. Second,
BayeSMG allows for direct inference on subspaces of X via posterior sampling, which
is of direct interest in many problems, e.g., in sensor network localization (Zhang et al.,
2020; an application we tackle later on) and topology identification problems (Eriks-
son et al., 2012). For subspace inference, our approach avoids performing an additional
SVD step for every posterior sample (compared to the BPMF), which significantly
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speeds up inference for high-dimensional problems. Finally and perhaps most impor-
tantly, BayeSMG can leverage this posterior learning on subspaces to provide improved
inference on X. Compared to the BPMF, our approach can yield faster posterior con-
traction for unobserved entries when the underlying matrix has a low-rank structure, in
both numerical simulations and applications. It enables a more accurate estimate and
more precise uncertainty quantification of X over the BPMF.

The BayeSMG model also provides several novel theoretical insights. In Section 4,
we show that the maximum a posteriori (MAP) estimator takes the form of a regular-
ized matrix estimator, which provides a connection between the proposed method and
existing matrix completion techniques. We also show that the BayeSMG model pro-
vides a probabilistic model on matrix coherence (Candès and Recht, 2009). Coherence
has been widely used in the matrix completion literature as a theoretical condition for
recovery, which measures the “recoverability” of a low-rank matrix. Through this, we
then establish an error monotonicity result for BayeSMG, which provides a reassuring
check on the UQ performance of the proposed model.

The paper is organized as follows. Section 2 introduces the BayeSMG model. Sec-
tion 3 presents an efficient posterior sampling algorithm for X via manifold sampling
on its subspaces. Section 4 reveals connections between the BayeSMG model and coher-
ence, and its impact on error convergence. Section 5 investigates numerical experiments
with synthetic and image data. Section 6 explores a real-world seismic sensor network
application. Section 7 concludes with discussions.

2 The SMG model

We first describe the Singular Matrix-variate Gaussian (SMG) distribution, and how it
can be utilized for modeling matrix subspaces.

2.1 Problem set-up

Let X ∈ R
m1×m2 be the matrix of interest, and assume X is low-rank, i.e., R :=

rank(X) ≪ m1 ∧ m2. Let [m] := {1, · · · ,m}. Suppose X is sampled with noise at an
index set Ω ⊆ [m1]× [m2] of size |Ω| = n, yielding observations:

Yi,j = Xi,j + ǫi,j , (i, j) ∈ Ω. (2.1)

Here, Yi,j is the observation at entry indexed by (i, j), corrupted by noise ǫi,j . In this

work, we assume ǫi,j
i.i.d.
∼ N (0, η2), i.e., the noise on each entry follows an i.i.d. Gaussian

distribution with zero mean and variance η2. Furthermore, let YΩ := (Yi,j)(i,j)∈Ω ∈ R
n

denote the vector of noisy observations, and let XΩc be the vector of unobserved matrix
entries, where Ωc := ([m1]× [m2]) \ Ω is the set of unobserved indices.

With this framework, the desired goal of uncertainty quantification (UQ) can be
made more concrete. Given noisy observations YΩ, we wish to not only estimate the un-
observed matrix entries XΩc , but also quantify a notion of uncertainty on both observed
or unobserved entries (since observation noise is present).
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2.2 SMG model

We adopt the following SMG model for the low-rank matrix X, which we assume to be
normal with a zero mean.

Definition 2.1 (SMG model, Definition 2.4.1 of Gupta and Nagar, 1999). Let Z ∈

R
m1×m2 be a random matrix with entries Zi,j

i.i.d.
∼ N (0, σ2) for (i, j) ∈ [m1] × [m2].

The random matrix X has a singular matrix-variate Gaussian (SMG) distribution if

X
d
= PUZPV for some choice of projection matrices PU = UUT and PV = V V T ,

where U ∈ R
m1×R, UTU = I, V ∈ R

m2×R, V TV = I and R < m1 ∧ m2. We will
denote this as X ∼ SMG(PU ,PV , σ

2, R).

In other words, a realization from the SMG distribution can be obtained by first (i)
simulating a matrix Z from a Gaussian ensemble with variance σ2, i.e., a matrix with
i.i.d. N (0, σ2) entries, then (ii) performing a left and right projection of Z using the pro-
jection matrices PU and PV . Recall that the projection operator PU = UUT ∈ R

m1×m1

maps a vector in R
m1 to its orthogonal projection on the R-dimensional subspace U

spanned by the columns of U . By performing this projection, the resulting matrix
X = PUZPV can be shown to be of rank R < m1∧m2, with its row and column spaces
U and V corresponding to the subspaces for PU and PV . The matrix X also lies in the
space T :=

⋃

uk∈U,vk∈V span({ukv
T
k }

R
k=1). With a small choice of R, this provides a

flexible probabilistic model for the low-rank matrix X.

The SMG distribution provides several appealing properties for modeling low-rank
matrices. First, it provides a prior modeling framework on the matrixX involving its row
and column subspaces U and V . It is known from Chikuse (2012) that, for each projection
operator P ∈ R

m×m of rank R, there exists a unique R-dimensional hyperplane (or
an R-plane) in R

m containing the origin which corresponds to the image of such a
projection. It connects the space of rank R projection matrices and the Grassmann
manifold GR,m−R, the space of R-planes in R

m. Viewed this way, the projection matrices
parametrizing X ∼ SMG(PU ,PV , σ

2, R) encode useful information on the row and
column spaces of X. Second, since the projection of a Gaussian random vector is still
Gaussian, the left-right projection of the Gaussian ensemble Z results in each entry of
X being Gaussian-distributed as well. It is useful for deriving a UQ property of the
BayeSMG model.

We now show several distributional properties of the SMG model:

Lemma 2.1 (Distributional properties of SMG). Let X ∼ SMG(PU ,PV , σ
2, R), with

PU ∈ R
m1×m1 , PV ∈ R

m2×m2 , σ2 > 0 and R < m1 ∧m2 known. Then:

(a) The density of X is given by

p(X) = (2πσ2)−R2/2etr

{

−
1

2σ2
[(XPV)

T (PUX)]

}

, X ∈ T , (2.2)

where etr(·) := exp{tr(·)}.
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(b) Consider the block decomposition of PV ⊗ PU :

PV ⊗ PU =

(

(PV ⊗ PU )Ω (PV ⊗ PU )Ω,Ωc

(PV ⊗ PU )
T
Ω,Ωc (PV ⊗ PU )Ωc

)

. (2.3)

Conditional on the observed noisy entries YΩ, the unobserved entries XΩc follow
the distribution, [XΩc |YΩ] ∼ N (XP

Ωc ,ΣP
Ωc). Here, γ2 = η2/σ2, and

RN (Ω) := (PV ⊗ PU )Ω ∈ R
N×N ,

XP
Ωc := (PV ⊗ PU )

T
Ω,Ωc [RN (Ω) + γ2I]−1YΩ,

ΣP
Ωc := σ2{(PV ⊗ PU )Ωc − (PV ⊗ PU )

T
Ω,Ωc [RN (Ω) + γ2I]−1(PV ⊗ PU )

T
Ω,Ωc}.

(2.4)

(c) Conditional on the observed noisy entries YΩ, the corresponding entries in X,
namely XΩ, follow the distribution [XΩ|YΩ] ∼ N (XP

Ω ,ΣP
Ω), where ⊗ is the Kro-

necker product, and

XP
Ω := (PV ⊗ PU )Ω[RN (Ω) + γ2I]−1YΩ,

ΣP
Ω := σ2{(PV ⊗ PU )Ω − (PV ⊗ PU )

T
Ω[RN (Ω) + γ2I]−1(PV ⊗ PU )Ω}.

(2.5)

Remark. Lemma 2.1 reveals two key properties of the SMG model. First, prior to
observing data, part (a) shows that the low-rank matrix X lies on the space T , and
follows a degenerate multivariate Gaussian distribution with mean zero and covariance
matrix σ2(PV ⊗ PU ). Second, after observing the noisy entries YΩ, part (b) shows
that the conditional distribution of XΩc (the unobserved entries in X) given YΩ is
still multivariate Gaussian, with closed-form expressions for its mean vector XP

Ωc and
covariance matrix ΣP

Ωc in (2.4).

2.3 Can we directly use the SMG model for UQ?

Lemma 2.1 provides a closed-form posterior distribution for the low-rank matrix X

after observing the noisy observations YΩ. It points to a potential way for computing
confidence intervals on each entry in X, assuming the underlying row and column sub-
spaces U and V are known. Of course, in practice, such subspaces are never known with
certainty. One solution might be to plug in point estimates of U and V (estimated from
data) within the predictive equations in Lemma 2.1, to directly estimate unobserved
entries and their uncertainties. We investigate the efficacy of this plug-in approach via
a simple numerical example.

The simulation set-up is as follows. Let m = m1 = m2 = 8 be the row and column
dimensions of the matrix, and let R = 2 be its rank. We first simulate two random
orthonormal matrices U and V of size m × R, via a truncated SVD on an m × m
matrix with i.i.d. U [0, 1] entries. With PU = UUT and PV = V V T , the “true” low-
rank matrix is then simulated from the SMG model X ∼ SMG(PU ,PV , σ

2 = 1, R = 2).
Finally, noisy observations are sampled via (2.1) with noise variance η2 = 0.52. In total,
36 entries are observed (56.25% of total entries), with such entries chosen uniformly
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Figure 1: Plotted are the point estimates (blue points) and 95% Confidence Intervals
(blue intervals) for each matrix entry (64 in total), ordered by increasing point estimates.
Red points mark the true matrix values.

at random. From this, we can obtain point estimates of the subspaces U and V , by
first estimating X via nuclear norm minimization (Candès and Plan, 2010), a popular
method for matrix completion, and then taking the row and column subspaces for
this matrix estimate via SVD. These subspace estimates are then plugged into the
expressions in Lemma 2.1 for UQ. This process is then replicated for 50 times.

Figure 1(a) plots, for a representative simulation run, the point estimates and 95%
plug-in confidence intervals (CIs) for each matrix entry using Lemma 2.1, with its cor-
responding true value marked in red. We see that these intervals provide poor coverage
performance since many of the true matrix entries are not within these intervals. For
this replication, the coverage ratio is only 43.8%, and across the 50 replications, the av-
erage coverage ratio is only 46.1%, meaning only around half of the confidence intervals
cover the true entries. This poor coverage suggests that this CI approach (with plug-in
subspace estimates) can significantly underestimate the underlying uncertainty of point
estimates, which is unsurprising since uncertainty for subspace estimation is not incor-
porated when using Lemma 2.1. Figure 1(b) plots, for a representative simulation, the
point estimates and 95% posterior predictive intervals using the proposed BayeSMG
method, which accounts for subspace uncertainty by assigning hierarchical priors on
subspaces U and V from the SMG model. We see that our approach yields much better
coverage: the 95% intervals, which are now slightly wider, cover the true matrix entries
well. For this replication, the coverage ratio is at 95.3%, and across the 50 replications,
the average coverage ratio is 93.9%, which is much closer to the nominal coverage rate
of 95% than the earlier plug-in approach. This shows the proposed method can indeed
provide better uncertainty quantification of X via a fully-Bayesian model specification
on matrix subspaces.
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3 The BayeSMG model

3.1 Model specification

We now present the hierarchical specification for the proposed Bayesian SMG model, or
BayeSMG for short. We begin by first introducing the matrix von Mises-Fisher (vMF)
distribution, which will serve as prior models for the row and column orthonormal
frames U and V . We then present a Gibbs sampling algorithm that makes use of a
reparametrization of the SMG model for efficient posterior sampling.

The matrix von Mises-Fisher distribution (Khatri and Mardia, 1977; Mardia and
Jupp, 2009) provides a useful class of distributions on the row and column frames,
which lie on a so-called Stiefel manifold. A Stiefel manifold (Chikuse, 2012) consists of all
orthonormal subspaces of rank R in the space of Rm; this is denoted as VR,m hereafter.
The matrix vMF distribution assumes the following probability density function of
matrix W on VR,m:

p(W ;m,R,F ) =

[

0F1

(

;
m

2
;
F TF

4

)]−1

etr(F TW ), W ∈ VR,m, (3.1)

where 0F1(; ·; ·) is the hypergeometric function, and F ∈ R
m×R is the concentration

matrix. We denote this distribution by W ∼ MF(m,R,F ). The matrix vMF distri-
bution provides conditionally conjugate priors for a wide range of multivariate models,
including cluster analysis (Gopal and Yang, 2014) and factor models (Hoff, 2013). One
appeal of this class of distribution is that it can be efficiently sampled. Hoff (2009)
proposed a rejection sampling algorithm that sequentially samples each column of the
matrix W . Recently, Jauch et al. (2020) presented a general simulation framework on
the Stiefel manifolds using polar expansions; using such an expansion with Hamiltonian
Monte Carlo (Girolami and Calderhead, 2011) provides a better sampling efficiency over
competing Markov Chain Monte Carlo (MCMC) methods by an order of magnitude.
We will leverage this useful family of priors via the following reparametrization of the
BayeSMG model.

The following proposition gives a nice reformulation of the SMG model under uni-
form subspace priors on U and V :

Proposition 3.1 (SVD of BayeSMG). Suppose X ∼ SMG(PU ,PV , σ
2, R), with inde-

pendent uniform priors PU ∼ U(GR,m1−R), PV ∼ U(GR,m2−R), and fixed σ2 and R. Let
X = UDV T be the SVD of X, with singular values diag(D) = (dk)

R
k=1 not necessarily

in decreasing order. Then:

1. The singular vectors U and V follow independent priors MF(m1, R,0) and
MF(m2, R,0), respectively.

2. The singular values diag(D) = (dk)
R
k=1 follow the repulsed normal distribution,

with density:

1

ZR(2πσ2)R/2
exp

{

−
1

2σ2

R
∑

k=1

d2k

}

R
∏

k,l=1
k<l

|d2k − d2l |, dk > 0, k = 1, · · · , R. (3.2)
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Model Distribution

Observations [YΩ|X, η2]: Yi,j
i.i.d.
∼ N (Xi,j , η

2)
Low-rank matrix [X|PU ,PV , σ

2] : X ∼ SMG(PU ,PV , σ
2, R)

(equivalently) [X|U ,V , σ2] : X = UDV T , diag{D} ∼ RN (0, σ2)
Priors [PU ,PV , σ

2, η2] = [PU ] [PV ] [η
2][σ2]

Matrix subspaces [PU ] ∼ U(GR,m1−R)
[PV ] ∼ U(GR,m2−R)

Matrix variance [σ2] ∼ IG(ασ2 , βσ2)
Noise variance [η2] ∼ IG(αη2 , βη2)

Table 1: Model specification for BayeSMG.

The proof of this proposition is provided in the supplementary material (Yuchi
et al., 2022). The first part of the proposition shows that the use of uniform priors
on the projection matrices PU and PV corresponds to independent MF(m1, R,0) and
MF(m2, R,0) priors for the singular vectors U and V , which are uniform priors on
the Stiefel manifolds VR,m1 and VR,m2 , respectively. The second part shows that the
singular values in D follow the repulsed normal distribution, which is closely connected
with the distribution of singular values for a Gaussian ensemble (Shen, 2001).

This proposition then motivates the following reparametrization of the BayeSMG
model:

X = UDV T , U ∼ MF(m1, R,F1), V ∼ MF(m2, R,F2), diag(D) ∼ RN (0, σ2),
(3.3)

where RN (0, σ2) is the repulsed normal distribution in (3.2), and the priors on U , V
and D are independently specified. When little is known a priori on matrix subspaces,
one can set the concentration matrices as F1 = F2 = 0, which provides non-informative
priors on U and V . In problems where some prior information is available on matrix
subspaces, one can elicit a good choice of prior parameters for the vMF priors via
a moment matching approach (Wang and Zhou, 2009). We show in the next section
that this reparametrization allows for a Gibbs sampling algorithm which makes use of
conditionally conjugate priors for efficient posterior sampling.

Finally, we complete the Bayesian specification by assigning the following priors on
the variance parameters σ2 and η2:

[σ2] ∼ IG(ασ2 , βσ2), [η2] ∼ IG(αη2 , βη2), (3.4)

where IG(α, β) is the Inverse-Gamma distribution with shape and rate parameters α
and β. Table 1 summarizes the full Bayesian model specification for BayeSMG.

3.2 Posterior sampling

Using the reparametrized model (3.3), we now present a subspace Gibbs sampler for pos-
terior sampling on the BayeSMG model, specifically on the parameters Θ = {U ,D,V ,
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σ2} given partial and noisy observations YΩ. We first introduce the sampler under com-
plete observation of the noisy matrix Y , then describe a data imputation procedure for
posterior sampling under partial observations YΩ.

Consider first the setting where complete observations on Y are obtained. It can
then be shown (see supplementary material for a full derivation) that the full conditional
distributions of U , D, V and σ2 take the form:

[U |D,V ,Y , σ2, η2] ∼ MF(m1, R,Y V D/η2 + F1),

[V |D,U ,Y , σ2, η2] ∼ MF(m2, R,Y TUD/η2 + F2),

[D|U ,V ,Y , σ2, η2] ∼ RN
(

σ2diag(UTY V )/(η2 + σ2), η2σ2/(η2 + σ2)
)

,

[σ2|U ,D,V ,Y , η2] ∼ IG(ασ2 +R/2, βσ2 + tr(D2)/2),

[η2|U ,D,V ,Y , σ2] ∼ IG(αη2 +m1m2/2, βη2 + ‖Y −UDV T ‖2F /2).

(3.5)

Here, ‖M‖F =
√

∑

i,j M
2
i,j is the Frobenius norm of matrix M . One can then perform

the above full conditional updates cyclically for posterior sampling on [Θ|Y ] via Gibbs
sampling. These full conditional sampling steps are related to the Gibbs sampler pro-
posed in Hoff (2007) for probabilistic SVD. As mentioned previously, there are efficient
sampling algorithms for the matrix vMF distribution (Hoff, 2009; Jauch et al., 2020),
which enable efficient full conditional sampling on U and V . The full conditional dis-
tribution of D follows the aforementioned repulsed normal distribution with a location
shift of µ (denoted as RN (µ, δ2)), with density:

1

ZR(2πδ2)R/2
exp

{

−
1

2δ2

R
∑

k=1

(dk − μk)
2

}

R
∏

k,l=1;k<l

|d2k − d2l |, (3.6)

where dk > 0, k = 1, · · ·R. We have found that this can be quite efficiently sampled via a
Metropolis-Hastings sampler (Metropolis et al., 1953), with an “independent” proposal
distribution (i.e., independent of the current state) set as a non-central, multivariate
t-distribution with mean vector µ and scale parameter δ.

Consider now the setting where only partial noisy observations YΩ are available. We
describe a posterior sampling algorithm for [Θ|YΩ], which makes use of a modification on
the above Gibbs sampler on [Θ|Y ]. The idea is to first sample from the joint distribution
[Θ,YΩc |YΩ] of both the parameters Θ and unobserved noisy entries YΩc , then take only
the marginal samples of parameters Θ. With an initialization of Θ = Θ′, the joint
distribution [Θ,YΩc |YΩ] can be sampled via the following Gibbs sampling steps:

(i) Draw one sample from [YΩc |YΩ,Θ
′]. Since the missing entries YΩc is assumed to

be conditionally independent of the observed entries YΩ given X = UDV T , this
is equivalent to sampling [YΩc |X], which amounts to simulating the observation
noise in YΩc given ground truth XΩc .

(ii) Draw one sample Θ′ from the posterior distribution [Θ|YΩc ,YΩ] = [Θ|Y ] via the
Gibbs sampling steps in (3.5).
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Algorithm 1 BayeSMG(YΩ, R,F1,F2, ασ2 , βσ2 , αη2 , βη2): Gibbs sampler for BayeSMG.

Initialization:

• Complete X[0] from YΩ via nuclear-norm minimization in (3.8).
• Initialize [U[0],D[0],V[0]] ← svd(X[0]) and σ2

[0] > 0.

Gibbs sampling : T – total samples

for t = 1, . . . , T do

• Set X[t] ← U[t−1]D[t−1]V
T
[t−1]

• Impute missing entries YΩc by sampling Yi,j
i.i.d.
∼ X[t],i,j +N (0, η2), (i, j) ∈ Ωc.

• Sample U[t] ∼ MF(m1, R,Y V[t−1]D[t−1]/η
2
[t−1] + F1).

• Sample V[t] ∼ MF(m2, R,Y TU[t]D[t−1]/η
2
[t−1] + F2).

• Sample D[t] ∼ RN

(

σ2
[t−1]diag(U

T

[t]Y V[t])

(η2
[t−1]

+σ2
[t−1]

)
,

η2
[t−1]σ

2
[t−1]

(η2
[t−1]

+σ2
[t−1]

)

)

.

• Sample σ2
[t] ∼ IG(ασ2 +R/2, βσ2 + tr(D2

[t])/2).

• Sample η2[t] ∼ IG(αη2 +m1m2/2, βη2 + ‖Y −U[t]D[t]V
T
[t]‖

2
F /2).

Output: Return posterior samples {(X[t],U[t],D[t],V[t], σ
2
[t], η

2
[t])}

T
t=1.

Step (i) can be viewed as a data imputation step, which imputes missing entries in the
noisy matrix Y . Step (ii) performs the earlier posterior sampling steps for parameters
Θ given the full noisy matrix Y .

It is worth noting that step (i) depends on an implicit assumption that the entries
are either missing completely at random (MCAR) or missing at random (MAR); see
Little and Rubin (2019) for further discussion on missing data modeling. When the
entries are missing not at random (MNAR), the sampling of [YΩc |YΩ,Θ

′] can become
much more complicated, since it would depend on the underlying MNAR mechanism for
missing entries. One approach is to adopt a probabilistic model for the MNAR entries
(see, e.g., Hernández-Lobato et al., 2014 for one such model), then sample [YΩc |YΩ,Θ

′]
given this model. There are, however, several limitations to this approach: (i) the con-
ditional distribution [YΩc |YΩ,Θ

′] may be computationally expensive to sample from in
the MNAR setting, and (ii) in the case of misspecification for the MNAR model, the
resulting recovery of the matrix X can be highly biased and inaccurate. In the absence
of prior information on how matrix entries are missing (which is the case in many ap-
plications), it may be preferable to adopt Algorithm 1 for posterior inference. We will
show later (in Section 5.2) that the BayeSMG is empirically robust to mild violations
of this implicit MAR assumption for missing entries.

Algorithm 1 summarizes the above steps for the posterior sampling algorithm. The
algorithm is first initialized with estimates U[0], D[0], and V[0] obtained from a nuclear-
norm completion of X (Carson et al., 2012), and σ2

[0] is randomly initialized from the

prior (3.4). Next, the missing noisy entries YΩc are imputed using step (i), then a
posterior draw is made using step (ii) via the Gibbs steps in (3.5). This is then iterated
until a desired number of posterior samples is obtained. Using the posterior samples of
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(U[t],D[t],V[t]) at each iteration t, we can obtain a sample X[t] = U[t]D[t]V
T
[t] from the

desired posterior distribution [X|YΩ]. These posterior samples {X[t]}
T
t=1 can then be

used for the target goal of uncertainty quantification: the mean of such samples provides
a point estimate X̂ for the recovered matrix, and its variability around X̂ provides a
measure of uncertainty for this recovery.

While the computational complexity of this algorithm is difficult to establish given
the complex manifold sampling steps, we found this posterior sampler to be quite effi-
cient and scalable in practice. For a relatively large 256×256 matrix, the sampler takes
around 1 minute to generate T = 1000 samples on a standard laptop computer (Intel
i7 CPU and 16GB RAM), which is quite efficient given the size of the matrix. We will
report computation times for larger matrices in the numerical studies later.

3.3 Inference on matrix rank

The BayeSMG model as presented above assumes the rank of the matrix X is known,
which is often not the case in practice. There has been some literature on this problem
of rank estimation for matrix inference. Shapiro et al. (2018) investigates a lower bound
of the matrix rank needed for the matrix completion problem to be stable. Hoff (2007)
proposes a Bayesian dimension selection method that models the dimension of matrix
subspaces via a singular value decomposition (SVD), thus allowing for a Gibbs sampler
for sampling the matrix singular vectors, singular values, and rank. While one can
conceptually adopt a similar fully Bayesian approach for rank R here, we have found
such an approach to be too computationally expensive for the high-dimensional matrices
in later numerical experiments, where m1 and m2 can be on the order of thousands. This
is because Algorithm 1 needs to be performed for each choice of rank R, which can be
expensive for large m1 and m2. For such high-dimensional applications, we instead favor
the following maximum a posteriori (MAP) approach for rank inference, which sacrifices
a richer quantification of uncertainty for computational efficiency and scalability.

Consider the MAP estimate of the unknown matrix X, which can formulated as:

X̃ = argmax
X∈Rm1×m2

[YΩ|X][X|R][R]. (3.7)

Here, [X|R] follows the BayeSMG prior specification (3.3) given matrix rank R, and [R]
is a prior distribution assigned on matrix rank. Under uniform subspace priors and a flat
prior on R over {1, · · · ,m1 ∧m2}, it can be shown (see Section 4.1 for a full derivation)
that the MAP X̃ can be well-approximated by the nuclear-norm formulation:

argmin
X∈Rm1×m2

⎛

⎝

∑

(i,j)∈Ω

(Yi,j −Xi,j)
2 + λ‖X‖∗

⎞

⎠ . (3.8)

Here, ‖X‖∗ is the nuclear norm of X (the sum of its singular values, see Candès and
Tao, 2010), and λ is a regularization parameter. The optimization problem (3.8) can be
efficiently solved via convex optimization algorithms (see Section 1.1 for further details).
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In practice, λ can be estimated via cross-validation (Friedman et al., 2017) on the
observed entries YΩ. We first divide these entries into multiple folds. For each fold,
we first use nuclear-norm minimization (3.8) to estimate the entries of the particular
fold. Then we compute the cross-validation error for these estimates. We then select
the optimal tuning parameter λ∗ such that it is the λ that minimizes the sum of these
cross-validation errors for all folds.

With this estimate λ∗, an (approximate) MAP estimate X̃ can be obtained by
solving (3.8) with λ = λ∗. This in turn yields an approximate MAP estimate of R
via the rank of the matrix estimate X̃. Finally, this rank estimate can be plugged into
Algorithm 1 for uncertainty quantification on matrix X. For high-dimensional problems
with either m1 or m2 large, this plug-in MAP approach for rank estimation can yield
significant computational savings over a fully Bayesian treatment.

4 Theoretical insights

We now provide some theoretical insights on the BayeSMG model. We first discuss
an interesting link between the maximum-a-posterior (MAP) estimator and regularized
estimators in the literature, then present a connection between model uncertainty from
the BayeSMG model and coherence, which is then used to prove an error monotonicity
result on uncertainty quantification.

4.1 Connection to regularized estimators

The following lemma reveals a connection between the BayeSMG model and existing
completion methods:

Lemma 4.1 (MAP estimator). Assume the BayeSMG model in Table 1, with F1 =
F2 = 0, η2 and σ2 fixed, and a uniform prior on rank R. Conditional on YΩ, the MAP
estimator for X becomes

argmin
X∈Rm1×m2

(

‖YΩ −XΩ‖
2
2

η2
+ log(2πσ2)rank2(X) +

‖X‖2F
σ2

)

, (4.1)

where ‖X‖F =
√

∑

i,j X
2
i,j is the Frobenius norm of X.

The MAP estimator X̃ in (4.1) connects the proposed model with existing deter-
ministic matrix completion methods (see Davenport and Romberg, 2016 and references
therein). Consider the following approximation to the MAP formulation (4.1). Treat-
ing log(2πσ2)rank2(X) as a Lagrange multiplier, one can view this as a constraint on
rank2(X), or equivalently, on rank(X). Replacing rank(X) by its nuclear norm ‖X‖∗
(its tightest convex relaxation, see Keshavan et al., 2010), and treating this new con-
straint as a Lagrange multiplier, the optimization in (4.1) becomes:

argmin
X∈Rm1×m2

‖YΩ −XΩ‖
2
2 + λ

{

α‖X‖∗ + (1− α)‖X‖2F
}

, (4.2)



504 Bayesian UQ for Low-Rank Matrix Completion

Figure 2: A visualization of near-maximal coherence (red basis vector) and minimal
coherence (black basis vector) for subspace U .

for some choice of λ > 0 and α ∈ (0, 1). Using (4.2) to approximate (4.1), we can then
view the MAP estimator as an analogue of the elastic net estimator (Zou and Hastie,
2005) from linear regression for noisy matrix completion.

To see the connection between the MAP estimator X̃ and existing matrix completion
methods, set α = 1 in (4.2). The problem then reduces to the nuclear-norm formulation
in (3.8), which is widely used for deterministic matrix completion (Candès and Recht,
2009; Candès and Tao, 2010; Recht, 2011). This provides an intuitive connection between
the proposed Bayesian model and existing completion methods, which we leveraged
earlier for efficient inference on matrix rank.

4.2 Uncertainty and coherence

Consider next the following definition of subspace coherence from Candès and Recht
(2009), ignoring scaling factors:

Definition 4.1 (Coherence, Definition 1.2 of Candès and Recht, 2009). Let U ∈ GR,m−R

be an R-plane in R
m, and let PU be the orthogonal projection onto U . The coherence

of subspace U with respect to the i-th basis vector, ei, is defined as μi(U) := ‖PUei‖
2
2,

and the coherence of U is defined as μ(U) = max
i=1,...,m

μi(U).

In words, coherence measures how correlated a subspace U is with the basis vectors
{ei}

m
i=1. A large μi(U) suggests that U is highly correlated with the i-th basis vector ei,

in that the projection of ei onto U preserves much of its original length; a small value
of μi(U) suggests that U is nearly orthogonal with ei, so a projection of ei onto U loses
most of its length. Figure 2 visualizes these two cases using the projection of three basis
vectors on a two-dimensional subspace U . Note that the projection of the red vector
onto U retains nearly unit length, so U has near-maximal coherence for this basis. The
projection of the black vector onto U results in a considerable length reduction, so U
has near-minimal coherence for this basis. The overall coherence of U , μ(U), is largely
due to the high coherence of the red basis vector.
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In matrix completion literature, coherence is widely used to quantify the recover-
ability of a low-rank matrix X. Here, the same notion of coherence arises in a different
context within the proposed model’s uncertainty quantification. Lemma 2.1 provides
the basis for this connection. Consider first the case where no matrix entries have been
observed. From Lemma 2.1(a), vec(X) follows the degenerate Gaussian distribution
N{0, σ2(PV ⊗PU )}. The variance of the (i, j)-th entry in X can then be shown to be:

Var(Xi,j) = σ2(eTi PUei)(e
T
j PVej) = σ2μi(U)μj(V). (4.3)

Hence, before observing data, the model uncertainty for entry Xi,j is proportional to
the product of coherences for the row and column spaces U and V , corresponding to the
i-th and the j-th basis vectors. Put another way, BayeSMG assigns greater variation
to matrix entries with higher subspace coherence in either its row or column index.
It is quite appealing given the original role of coherence in matrix completion, where
larger row (or column) coherences imply greater “spikiness” for entries; our framework
accounts for this by assigning greater model uncertainty to such entries.

Consider next the case where noisy entries YΩ have been observed. Let us adopt a
slightly generalized notion of coherence:

Definition 4.2 (Cross-coherence). The cross-coherence of subspace U with respect to
the basis vectors ei and ei′ is defined as νi,i′(U) = eTi′PUei.

The cross-coherence νi,i′(U) quantifies how correlated the basis vectors ei and ei′ are,
after a projection onto U . For example, in Figure 2, the pair of red / blue projected basis
vectors have negative cross-coherence for U , whereas the pair of blue / black projected
vectors have positive cross-coherence. When i = i′, this cross-coherence reduces to the
original coherence in Definition 4.1.

Define now the cross-coherence vector νi(U) = [νi,in(U)]
N
n=1 ∈ R

N , where again
Ω = {(in, jn)}Nn=1. From equation (2.4) in Lemma 2.1, the conditional variance of entry
Xi,j for an unobserved index (i, j) ∈ Ωc becomes:

Var(Xi,j |YΩ) = σ2μi(U)μj(V)− σ2νT
i,j

[

RN (Ω) + γ2I
]−1

νi,j , (4.4)

where νi,j := νi(U) ◦ νj(V), and ◦ denotes the entry-wise (Hadamard) product. The
expression in (4.4) yields a nice interpretation. From a UQ perspective, the first term
in (4.4), μi(U)μj(V), is simply the unconditional uncertainty for entry Xi,j , prior to
observing data. The second term, νT

i,j [RN (Ω)+ γ2I]−1νi,j , can be viewed as the reduc-
tion in uncertainty, after observing the noisy entries YΩ. This uncertainty reduction is
made possible by the correlation structure imposed on X, via the SMG model; (4.4)
also yields valuable insight in terms of subspace correlation. The first term μi(U)μj(V)
can be seen as the joint correlation between (i) row space U to row index i, and (ii)
column space V to column index j, prior to any observations. The second term can be
viewed as the portion of this correlation explained by observed indices Ω.

4.3 Error monotonicity

This link between coherence and uncertainty then sheds insight on expected error decay.
This is based on the following proposition:
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Proposition 4.1 (Variance reduction). Suppose X follows the BayeSMG model in
Table 1, with F1 = F2 = 0 and fixed σ2 and η2. Let YΩ contain the noisy entries at
Ω ⊆ [m1]× [m2], and let YΩ∪(i,j) contain an additional noisy observation at (i, j) ∈ Ωc.
For any index (k, l) ∈ [m1]× [m2], the expected variance of Xk,l can be decomposed as

EU,V [Var(Xk,l|YΩ∪(i,j))] = EU,V [Var(Xk,l|YΩ)]− EU,V

[Cov2(Xk,l, Xi,j |YΩ)

Var(Xi,j |YΩ) + η2

]

, (4.5)

where Var(Xk,l|YΩ∪(i,j)) is provided in (4.4), and

Cov(Xi,j , Xk,l|YΩ) = σ2{νi,k(U)νj,l(V)− νT
i,j

[

RN (Ω) + γ2I
]−1

νk,l}.

Remark. Proposition 4.1 shows, given observed indices Ω, the reduction in uncertainty
(as measured by variance) for an unobserved entry Xk,l, after observing an additional
entry at index (i, j). The last term in (4.5) quantifies this reduction, and can be inter-
preted as follows. For an unobserved index (k, l) /∈ Ω∪ (i, j), the amount of uncertainty
reduction is related to the “signal-to-noise” ratio, where the signal is the conditional
squared-covariance between the “unobserved” entryXk,l and the “to-be-observed” entry
Xi,j , and the noise is the conditional variance of the “to-be-observed” entry.

The insight of error monotonicity then follows:

Corollary 4.1 (Error monotonicity). Suppose X follows the BayeSMG model in Ta-
ble 1, with F1 = F2 = 0 and fixed σ2 and η2. Let [(in, jn)]

m1m2
n=1 ⊆ [m1] × [m2] be

an arbitrary sampling sequence, where (in, jn) 
= (in′ , jn′) for n 
= n′. Let XP
k,l be the

(k, l)-th entry of the conditional mean in (2.4). Define the error term

ǫ2N (k, l) := EX

[

(

Xk,l −XP
k,l

)2
∣

∣

∣
YΩ1:N

]

, (k, l) ∈ [m1]× [m2].

Then ǫ2N+1(k, l) ≤ ǫ2N (k, l) for any (k, l) ∈ [m1]× [m2] and N = 1, 2, · · · .

Remark. This corollary shows that, for any sampling sequence and any index (k, l),
the expected squared-error in estimating Xk,l with the conditional mean XP

k,l is always
monotonically decreasing as more samples are collected. This is intuitive since one ex-
pects to gain greater accuracy and precision on the unknown matrix X as more entries
are observed. The fact that the proposed model quantifies this monotonicity property
provides a reassuring check on our UQ approach.

5 Numerical experiments

We now investigate the performance of the proposed BayeSMG method in numerical
experiments and compare it to the BPMF method (Salakhutdinov and Mnih, 2008), a
popular Bayesian matrix completion method in the literature.

5.1 Synthetic data

For the first numerical study, we assume the true matrix X ∈ R
24×24 is generated

from the SMG distribution, i.e., as X ∼ SMG(PU ,PV , σ
2 = 1, R = 2), with uniformly
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sampled subspaces U and V . The entries are assumed to be missing-at-random and
the observed entries are contaminated by noise with a variance η2 = 0.052, which we
presume to be known. The prior specifications are as follows. For BayeSMG, we assign
a weakly-informative prior σ2 ∼ IG(0.01, 0.01) on the variance parameter σ2, with
non-informative manifold hyperparameters F1 = F2 = 0. For BPMF, we assign the
recommended weak Inverse-Wishart priors on covariance matrices ΣM ∼ IW(R = 2, I),
ΣN ∼ IW(R = 2, I). We then ran 10,000 MCMC iterations for both methods, with
the first 2,000 samples taken as burn-in. Standard MCMC convergence checks were
performed via trace plot inspection (see Figure 3 (b)) and the Gelman-Rubin statistic
(Gelman and Rubin, 1992).

We employ two metrics to compare the posterior contraction and UQ performance
of these two methods. The first is the Mean Frobenius Error (MFE), defined as

MFE =
1

T

T
∑

t=1

‖X −X[t]‖F .

The MFE calculates the Frobenius norm of the difference between the posterior pre-
dictive samples {X[t]}

T
t=1 and the original matrix X. A smaller MFE suggests better

recovery and faster posterior contraction for the desired matrix X. The second metric
is the Mean Spectral Distance (MSD), defined as

MSD =
1

T

T
∑

t=1

dS(U ,U[t]), dS(U ,U
′) :=

√

1− ‖UTU ′‖22,

where U (or U ′) is any frame in subspace U (or U ′). The MSD calculates the spectral
distance (Calderbank et al., 2015) between the posterior samples {U[t]}

T
t=1 for the row

subspaces (equivalently, {V[t]}
T
t=1 for the column subspaces) and the true row subspace

U (equivalently, the true column subspace V). A smaller MSD suggests better recovery
and posterior contraction for matrix subspaces.

The first two plots in Figure 3(a) visualize the true matrix X and the observed YΩ,
with 20% of the entries observed uniformly-at-random. Here, the rank R is estimated via
the approximate MAP approach in Section 3.3. The two subsequent plots visualize the
posterior mean estimates for X using BayeSMG and BPMF. We see that the BayeSMG
method provides visually better recovery of the matrix X, with a lower posterior MFE
than the BPMF method. The first two plots in Figure 3(b) visualize the true and es-
timated row spaces using BayeSMG and BPMF. We again see that BayeSMG gives a
visually better recovery of the row space of X (the same holds for its column space),
with a lower posterior MSD than BPMF. The next two plots show the trace plots for
the first-row coherence μ1 and the first matrix entry X1,1, which is unobserved. We
see that the posterior samples for BayeSMG concentrate tightly around the true co-
herence and matrix values, whereas the posterior samples for BPMF fluctuate much
more around the truth. The above observations suggest that when the matrix is gener-
ated from the assumed prior model, BayeSMG yields much faster posterior contraction
than BPMF, leading to more accurate and precise estimates of X and its subspaces.
Next, we will show in the following image recovery and seismic sensor applications that
the BayeSMG method provides similar improvements over BPMF via modeling and
integrating subspace information.
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Figure 3: Recovery and UQ performance for a simulated 25 × 25 matrix.

5.2 Image inpainting

Image inpainting is a fundamental problem in image processing (Bertalmio et al., 2000;
Cai et al., 2010), which aims to recover and reconstruct images with missing pixels and
noise corruption. It appears in numerous applications where image data are susceptible
to unreliable data transmission and scratches. Take, for example, the problem of solar
imaging (Xie et al., 2012). When a satellite transmits an image of the sun back to the
earth, many pixels will inevitably be lost or corrupted due to the instabilities in the
transmission process. The missing pixels would become a problem when the image is
scaled up. In this case, the quantification of image uncertainty can be as important
as the recovery, since this UQ provides insight into the quality of recovered image
features in different regions. There has been some work on applying deterministic matrix
completion methods for image in-painting (e.g., Xue et al., 2017), but little has been
done on uncertainty quantification. Our method addresses the latter goal.

We consider the aforementioned solar imaging problem, where the matrix X is a
256 × 256 image solar flare. The pixel intensity value is encoded from 0 to 255 and
represents the use of pseudo-color in the images. We then normalize pixel intensities
to have zero mean and unit variance. Half of the pixels in this image are observed
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Figure 4: Performance comparison between BayeSMG and BPMF on a 256× 256 solar
flare image. The plots (from left to right) show the original image, the partially observed
image with noise, the recovered images using BayeSMG and BPMF, and the widths of
the entry-wise 95% HPD intervals from BayeSMG and BPMF.

uniformly at random, then corrupted by Gaussian noise η2 = 0.052. We note that, for
this problem, the recovery and UQ of the row and column subspaces are of interest as
well. This is because image features are often represented in the row and column spaces.
Here, these subspaces may represent domain-specific, interpretable phenomena, such as
different classes of solar flares, certain shapes, and sunspots. Furthermore, human eyes
are typically not as sensitive to high-frequency image features; therefore, a few SVD
components can often capture the vital features of an image, making its rank low. For
BayeSMG and BPMF, we estimate the rank to be R = 18 following the approximate
MAP approach in Section 3.3, and perform 1,000 iterations of MCMC, with a burn-
in period of 200. As before, MCMC convergence checks were performed via trace plot
inspection and standard diagnostics.

Figure 4 shows the original solar image, its partial observations, and the recovered
image using BayeSMG and BPMF via its posterior predictive mean, as well as its cor-
responding uncertainties via its 95% highest posterior density (HPD) interval width
(Hyndman, 1996). We see that the BayeSMG method provides a much better recovery,
with a noticeably lower MFE of 31.0 compared to the BPMF method (350.8). Visually,
we see that the BayeSMG recovery captures the key features of the image, e.g., different
types of solar flares. The BPMF recovery, on the other hand, loses much of the smaller-
scale features and contains significant blocking defects. One plausible explanation is
when a low-rank subspace structure is present in X (as is the case here), the proposed
method can better learn and integrate this structure for improved recovery. Apart from
that, an inspection of the HPD plots shows that the BayeSMG provides more accurate
estimates of the recovered image, with narrow posterior HPD intervals across the whole
matrix. In contrast, the BPMF is much more uncertain of its recovery: its entry-wise
posterior density intervals are considerably larger, particularly for pixels with low in-
tensities. Computation-wise, the posterior sampling for BayeSMG can be carried out
within one minute on a standard laptop (Intel i7 processor with 16GB RAM), which is
quite fast considering the relatively large image size.

Additionally, we study the effect of noise on BayeSMG performance. We consider
the same solar image problem, where half of the normalized matrix entries are ob-
served and corrupted with noise. We then tested Gaussian errors with various variances
η2 = 0.052, 0.12, 0.32, and 0.52. Figure 5 shows the recovered images and the poste-
rior estimate η̂ of the noise standard deviation in each case. The MFE for the four
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Figure 5: Performance of BayeSMG on a 256 × 256 solar flare image. The plots (from
left to right) show the recovered images when the noise level η = 0.05, 0.1, 0.3, and 0.5
and the estimated η in each case by BayeSMG.

Figure 6: Performance of BayeSMG on recovering a large 1911 × 3000 image of the
Georgia Tech campus. The four plots show (from left to right) the original image, the
partial observations, the recovered image using BayeSMG, and the widths of the entry-
wise 95% HPD intervals from BayeSMG.

cases are 31.00, 35.39, 57.48 and 75.83, respectively. The quality of recovery improves
as noise decreases, which is as expected. For small to moderate noise levels, we see that
BayeSMG yields a good recovery of the solar flare image, suggesting that it is quite
robust to noise. In all four cases, the posterior estimate η̂ is slightly larger than the
actual noise standard deviation η. One reason may be that the estimated noise level
η̂ captures both the true error, as well as small variations in estimating the low-rank
matrix X from the few observed entries. This difference becomes smaller as η increases,
which is unsurprising since the error variance would dominate the underlying low-rank
matrix signal.

To demonstrate the scalability of BayeSMG, we consider next a much higher-dimen-
sional image of the Georgia Tech campus. This image is converted to a gray-scale matrix
of size 1911×3000 and standardized to zero mean and unit variance. As before, half of the
pixels are observed uniformly at random, then corrupted by a Gaussian noise η2 = 0.052.
To reduce computation time for posterior sampling, we fix the rank as R = 30 for both
BayeSMG and BPMF, instead of estimating the rank using the procedure in Section 3.3.
We run the MCMC sampler for 500 iterations after a burn-in period of 100.

Figure 6 shows the true image, its partial observations, and the recovered image
from BayeSMG as well as its corresponding uncertainty. The MFE of this recovery is
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Figure 7: Performance of BayeSMG on MNAR image pixels. In the first row, the first
image is the original matrix, the second is the noisy matrix with entries sampled uni-
formly at random (MAR), and the third is its recovery estimate via the posterior mean
of BayeSMG. In the second row, the first image is the noisy matrix with entries sampled
MNAR, and the second image is its recovery estimate via BayeSMG.

1005.1, which is again noticeably smaller than that for the BPMF recovery (3004.8).
We see that the recovered BayeSMG image captures the original image’s main features,
which shows that the proposed method can learn and integrate the subspace structure
for recovery. As before, the BayeSMG is quite confident of this completion, with narrow
posterior HPD intervals over all pixels. Despite this being a much larger image, we can
still carry out BayeSMG on the same standard laptop, albeit with a time of close to
two hours. It suggests that the proposed method can yield effective probabilistic matrix
recovery in high-dimensional settings.

Recall from Section 3.2 that the proposed posterior sampler for BayeSMG implicitly
assumes the matrix entries are missing at random. To see how robust BayeSMG is to
slight deviations from this MAR assumption, we investigate the recovery performance
of BayeSMG for a 256 × 256 lighthouse image, where the entries are missing in a not-
at-random setting. In particular, we consider the MNAR case where image pixels with
a higher intensity value (i.e., darker) are more likely to be observed, and pixels with
a lower intensity value (i.e., lighter) are more likely to be missing. Here, 40% of the
entries with intensities higher than the population median are observed randomly, 25%
of entries with intensities equal to the median are observed randomly, and 10% of the
remaining entries are observed randomly. Overall, around 25.1% of image pixels are
observed using this scheme, but the probability of missing for a single pixel depends on
the true pixel intensity.

Figure 7 shows the sampled image pixels for this MNAR setting with its correspond-
ing image recovery via the posterior mean of the BayeSMG method. For comparison,
we also show the sampled pixels under an MCAR setting (where every entry is observed
independently with a probability of 25%), with its corresponding image recovery via
BayeSMG. We estimate the ranks in both scenarios via the procedure in Section 3.3.
For the MNAR case, the MFE is 154.35, compared to an MFE of 148.33 for the MCAR
case. While the error is slightly higher for the MNAR case (around 4% larger), we see
from Figure 7 that there is little discernible difference visually between the recovered
images in both cases. It suggests that the proposed BayeSMG sampler appears to be
quite robust to mild violations of the implicit missing-at-random assumption for Al-
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Figure 8: The location of all 133 sensors near the geyser in Yellowstone National Park.
The yellow circles indicate the sensors and the red pentagram indicates the location
of the geyser. (a) shows the distribution of all 133 sensors over the region close to the
geyser (see Wu et al., 2017 for details); (b) shows the locations of the 12 most significant
sensors and their relative direction from each other.

gorithm 1. However, if prior information on the MNAR nature of the missing entries
is known, then we can integrate such information within BayeSMG, yielding further
improvements in recovery performance (see Section 3.2).

6 Seismic sensor network recovery

Seismic imaging is applied widely for finding oil and natural gas beneath the surface of
the earth. Ambient Noise Seismic Imaging (ANSI) (Bensen et al., 2007) is a relatively
new technique for seismic imaging with great potential. It uses “ambient noises” instead
of actively collected signals and is non-invasive to the environment (compared to the
traditional active imaging techniques). ANSI has proved useful for imaging shallow earth
structures; it utilizes the pairwise cross-correlation function between signals recorded by
seismic sensors followed by time-frequency analysis. From these cross-correlations, we
can determine the time delay between each pair of sensors. These pairwise time delays
are then combined into a data matrix, which is useful for further seismic studies. In a
recent study (Xu et al., 2019) on the Old Faithful geyser at Yellowstone National Park,
133 sensors were deployed in its vicinity to collect ambient noise signals for investigating
geological structures. Figure 8(a) shows the locations of these sensors.

One shortcoming of ANSI, however, is that many pairwise cross-correlations do
not contain identifiable signals. In other words, the peak in the cross-correlation is
unobserved since ANSI works on weak ambient noises. This missing data then results in
missing entries in the 133× 133 data matrix. To determine whether a cross-correlation
is “missing”, we first identify which correlations have an unsatisfactory signal-to-noise
ratio (SNR), by inspecting the standard deviation ξ outside of the main wave lobe
relative to the magnitude of the wave peak g. The correlation is deemed missing if
g/ξ < 20. We note that entries on this cross-correlation matrix X are observed with
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Figure 9: Performance comparison between BayeSMG and BPMF on the ambient noise
cross-correlation time delay data matrix. The first plot (from the left) shows the observed
entries in the delay. matrix, with missing entries in white. The second plot shows the
completed matrix via the posterior mean from BayeSMG. The third and fourth plots
visualize the widths of the entry-wise 95% HPD intervals from BayeSMG and BPMF.

noise due to background vibrations caused by bubble collapse and boiling water. Here,
the standard deviation of the noise is estimated to be η = 0.05 from an inspection of
sensor readings during the period when only noise signals are present; this is then used
to initialize η in the Gibbs sampler. Figure 9 shows the observed noisy matrix entries YΩ.

To proceed with ANSI analysis, one would then need to estimate missing entries in
the delay data matrix X. Bensen et al. (2007) shows that such a matrix is indeed low-
rank. Here, uncertainty quantification is crucial for estimating geologic structure and
identifying the source of activities. With this uncertainty, engineers can better interpret
the wave tomography generated from time delay estimates, and identify parts where esti-
mates are accurate and where they are not. This in turn impacts the accuracy of analysis
downstream, which subsequently provides greater insight into reconstruction quality.

Figure 9 visualizes the recovery and UQ performance from BayeSMG and BPMF,
using an estimated rank of R = 15 via the approach in Section 3.3. We see that the
BayeSMG yields much more precise estimates (i.e., narrower HPD interval widths) com-
pared to the BPMF. In particular, when an entire row or column of X is missing, the
uncertainties returned by BPMF can be very high, which reduces the usefulness of its
recovered entries. On the contrary, the proposed BayeSMG method, by leveraging sub-
space information, can yield more precise inference on these missing rows and columns.
One underlying reason is that the BayeSMG approach explicitly integrates subspace
modeling for recovery and UQ. From the visualization of YΩ in Figure 9, we see that
there are clearly-seen bright stripes on the left and top edges of the plot, which strongly
suggests the presence of low-rank subspaces in X. It is not a surprise since we know
several sensors have highly correlated signals due to their proximity. The BayeSMG
appears to exploit this subspace structure to provide more confident predictions. The
BPMF yields much higher uncertainty in inference, particularly in rows and columns
with little to no observations. While the ground truth for the entire matrix X is not
known for this sensor network, we would expect from previous experiments that the
BayeSMG yields improved recovery performance over the BPMF, particularly in rows
and columns with few observations.
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With posterior samples on X in hand, we can then use its subspace information to
locate (or match) a few sensors that contain highly correlated signals with each other.
This sensor matching is helpful in seismology studies since we can use it to estimate
the dimension and the capacity of the hydrothermal reservoir of the geyser (Wu et al.,

2017). We first perform an SVD step on the posterior mean X̂, and find the singular

vector with the largest singular value. We then inspect all the rows of the matrix X̂, and
select the rows most aligned with this vector. We check these rows to locate the most
significantly correlated sensors. Figure 8(b) shows the locations of the 12 most correlated
sensors and their relative directions from each other. The identified sensors are among
the closest to the Old Faithful geyser, and their related observations are dominated
by the highly fractured and porous geological structure underground adjacent to the
geyser. Using readings from these sensors, researchers can identify a different pattern
of the waveform in tremor signals, which suggests a variety of geological structures
underneath the geyser.

7 Conclusion

We proposed a new BayeSMG model for uncertainty quantification in low-rank ma-
trix completion. A key novelty of the BayeSMG model is that it parametrizes the un-
known matrix X via manifold prior distributions on its row and column subspaces.
This Bayesian subspace parametrization allows for direct posterior inference on matrix
subspaces, which we can use for improved matrix recovery. We introduced a Gibbs sam-
pler for posterior inference, which provides efficient posterior sampling even for matrices
with dimensions on the order of thousands. Additionally, we showed that BayeSMG pro-
vides a probabilistic interpretation for subspace coherence, which we can use to show an
error monotonicity result for UQ. We then showed the effective recovery and UQ per-
formance of BayeSMG on simulated data, image data, and an application for seismic
sensor network recovery. Codes for the BayeSMG sampler with illustrative examples
will be released in a package in MATLAB.

For future work, it would be interesting to design locations for observations to control
the uncertainties, exploring the connection with experimental design literature, e.g., in-
tegrated mean-squared error designs (Sacks et al., 1989) or distance-based designs (Mak
and Joseph, 2018). The exploration of this Bayesian uncertainty quantification for guid-
ing sequential sampling of entries (see Mak et al., 2021) is also of interest. We would
also like to investigate further the problem of rank estimation for matrix completion,
including theoretical guarantees and an efficient fully Bayesian implementation, extend-
ing the work of Hoff (2007). Another interesting topic to explore is an extension of the
i.i.d. Gaussian error assumption to account for skewed or spatially correlated errors.

Supplementary Material

Supplementary Material for “Bayesian Uncertainty Quantification for Low-Rank Matrix
Completion” (DOI: 10.1214/22-BA1317SUPP; .pdf).
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