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ABSTRACT

The Expected Improvement (El) method, proposed by Jones, Schonlau, and Welch, is a widely used Bayesian
optimization method, which makes use of a fitted Gaussian process model for efficient black-box opti-
mization. However, one key drawback of El is that it is overly greedy in exploiting the fitted Gaussian
process model for optimization, which results in suboptimal solutions even with large sample sizes. To
address this, we propose a new hierarchical El (HEI) framework, which makes use of a hierarchical Gaussian
process model. HEI preserves a closed-form acquisition function, and corrects the over-greediness of El by
encouraging exploration of the optimization space. We then introduce hyperparameter estimation methods
which allow HEI to mimic a fully Bayesian optimization procedure, while avoiding expensive Markov-
chain Monte Carlo sampling steps. We prove the global convergence of HEI over a broad function space,
and establish near-minimax convergence rates under certain prior specifications. Numerical experiments
show the improvement of HEI over existing Bayesian optimization methods, for synthetic functions and a
semiconductor manufacturing optimization problem. Supplementary materials for this article are available
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1. Introduction

Bayesian optimization (BO) is a widely-used optimization
framework, which has broad applicability in a variety of prob-
lems, including rocket engine design (Mak et al. 2018), nanowire
yield optimization (Dasgupta et al. 2008), and surgery planning
(Chen et al. 2020). BO aims to solve the following black-box
optimization problem:

x" = argmin f(x). (1)
xeQ

Here, x € R? are the input variables, and @ C R? is the
feasible domain for optimization. The key challenge in (1) is that
the objective function f(-) : € — R is assumed to be black-
box: it admits no closed-form expression, and evaluations of f
(which we presume to be noiseless in this work) typically require
expensive simulations or experiments. For such problems, an
optimization procedure should find a good solution to (1) given
limited function evaluations. BO achieves this by first assign-
ing to f a prior model capturing prior beliefs on the objective
function, then sequentially querying f at points which maxi-
mize the acquisition function—the posterior expected utility of
a new point. This provides a principled way to perform the so-
called exploration-exploitation tradeoff (Kearns and Singh 2002):
exploring the black-box function over €2, and exploiting the
fitted function when appropriate for optimization.

Much of the literature on BO can be categorized by (i) the
prior stochastic model assumed on f, and (ii) the utility function

used for sequential sampling. For (i), the most popular stochastic
model is the Gaussian process (GP) model (Santner et al. 2018).
Under a GP model, several well-known BO methods have been
derived using different utility functions for (ii). These include
the expected improvement (EI) method (Mockus, Tiesis, and
Zilinskas 1978; Jones, Schonlau, and Welch 1998), the upper
confidence bound (UCB) method (Srinivas et al. 2010), and
the Knowledge Gradient method (Frazier, Powell, and Dayanik
2008; Scott, Frazier, and Powell 2011). Of these, EI is arguably
the most popular method, since it admits a simple closed-form
acquisition function, which can be efficiently optimized to yield
subsequent query points on f. EI has been subsequently devel-
oped for a variety of black-box optimization problems, includ-
ing multi-fidelity optimization (Zhang, Han, and Zhang 2018),
constrained optimization (Feliot, Bect, and Vazquez 2017), and
parallel/batch-sequential optimization (Marmin, Chevalier, and
Ginsbourger 2015).

Despite the popularity of El, it does have key limitations.
One such limitation is that it is too greedy (Qin, Klabjan,
and Russo 2017): EI focuses nearly all sampling efforts near
the optima of the fitted GP model, and does not sufficiently
explore other regions. In terms of the exploration-exploitation
tradeoft (Kearns and Singh 2002), EI over-exploits the fitted
model on f, and under-explores the domain; this causes the
procedure to get stuck in local optima and not converge to
any global optimum x* (Bull 2011). In recent work, an effec-
tive way to address this greediness is by integrating uncer-
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tainty on model parameters within the EI acquisition func-
tion. Snoek, Larochelle, and Adams (2012) proposed a fully
Bayesian EI, where GP model parameters are sampled using
Markov chain Monte Carlo (MCMC); this incorporates param-
eter uncertainty within EI via a fully Bayesian framework, which
enables improved optimization by encouraging exploration.
Chen, Wang, and Wu (2017) proposed a variation of EI under
an additive Bayesian model, which encourages exploration by
increasing model uncertainty. However, by integrating parame-
ter uncertainty, a significant bottleneck of these methods is that
it requires expensive MCMC sampling, which can be very costly
to integrate within the maximization of the acquisition function.
This computational burden diminishes a key advantage of EI:
efficient queries via a closed-form criterion.

Another remedy, proposed by Bull (2011), is to artificially
inflate the maximum-likelihood estimator of the GP variance,
and use this inflated estimate within the EI acquisition func-
tion for sequential sampling. This, in effect, encourages explo-
ration of the black-box function by inflating the uncertainty
of the fitted model. The work further employs an “e-greedy”
modification of the EI, where at each sampling iteration, one
selects the next point uniformly-at-random with probability
€ € (0,1). With a sufficiently large ¢, this again forces the
procedure to explore the feasible domain. While the EI with such
modifications (we call this the e-EI later) allows for appealing
theoretical properties, such an approach may yield suboptimal
optimization performance for black-box problems with limited
function evaluations, as we show later in numerical experiments.
One reason is that such adjustments, while indeed encouraging
exploration, does so in a rather ad-hoc manner from a modeling
perspective. As such, when evaluations are limited, the €-EI
can be suboptimal for striking a good balance between explo-
ration and exploitation, particularly for higher-dimensional
problems.

To address these limitations, we propose a novel Hierarchical
EI (HEI) framework for effective Bayesian optimization with
limited function evaluations. Similar to Snoek, Larochelle, and
Adams (2012) and work thereafter, the HEI integrates parameter
uncertainty on model parameters, but does so via the hierarchi-
cal GP model in Handcock and Stein (1993), which we show
yields a closed-form acquisition function for Bayesian optimiza-
tion. This closed-form enables efficient sequential sampling,
without the need for integrating expensive MCMC samples in
optimizing subsequent queries. With this hierarchical frame-
work, we further introduce hyperparameter estimation meth-
ods, which allow the HEI to mimic a fully Bayesian optimization
procedure (the “gold standard” for uncertainty quantification)
while avoiding expensive MCMC steps. Under certain prior
specifications, we then prove that the HEI indeed converges to
a global optimum x* over a broad function space for f and
achieves a near-minimax convergence rate. These theoretical
guarantees are similar to those achieved by the €-EI (Bull 2011)
and more recent results (see, e.g., Wynne, Briol, and Giro-
lami 2020), but are achieved under a principled hierarchical
Bayesian framework, without the need for ad-hoc variance infla-
tion or e-greedy sampling. As such, the proposed HEI pro-
vides a principled balance between exploration and exploita-
tion guided by the underlying hierarchical GP model, which
in turn yields improved practical performance given limited

function evaluations. We finally demonstrate the sample-
efficient performance of HEI over existing methods in a suite
of numerical experiments and an application to semi-conductor
manufacturing.

We note that a special case of HEI, called the Student EI (SEI),
was proposed earlier in Benassi, Bect, and Vazquez (2011). The
proposed HEI has several key advantages over the SEI: the HEI
incorporates uncertainty on process nonstationarity, and can
mimic a fully Bayesian optimization procedure via hyperparam-
eter estimation. We also show that the HEI has provable global
convergence and convergence rates for optimization, whereas
the SEI (with the recommended hyperparameter specification)
can fail to converge to a global optimum x*. Numerical experi-
ments and a semiconductor manufacturing application show the
improved performance of the HEI over existing BO methods,
including the SEI approach in Benassi, Bect, and Vazquez (2011)
and the e-EI approach in Bull (2011).

The article is organized as follows: Section 2 reviews the GP
model and the EI method. Section 3 presents the HEI method
and contrasts it with existing methods. Section 4 provides
methodological developments on hyperparameter specification
and basis selection. Section 5 proves the global convergence
for HEI and its associated convergence rates. Sections 6 and
7 compare HEI with existing methods in a suite of numerical
experiments and for a semiconductor manufacturing problem,
respectively. Concluding remarks are given in Section 8.

2. Background and Motivation

We first introduce the GP model, then review the EI method
and its deficiencies, which will help motivate the proposed HEI
method.

2.1. Gaussian Process Modeling

We first model the black-box objective function f as the follow-
ing Gaussian process model:

ux) =p' (x)B, Zx) ~ GP(0,0°K),
(2)

J&®) = px®) + Z(x),

where w(x) is the mean function of the process, p(x) =
[P1(X),....pq x)]" are the q basis functions for u(x), and
B € R1 are its corresponding coeflicients. Here, we assume
the residual term Z(x) follows a stationary Gaussian process
prior (Santner et al. 2018) with mean zero, process variance o2
and correlation function K(,-), which we denote as Z(x) ~
GP(0,52K). The model (2) is known as the universal kriging
(UK) model in the geostatistics literature (Wackernagel 1995).
When the modeler does not have prior information on appropri-
ate basis functions to use, one can employ the so-called ordinary
kriging (OK) model (Olea 2012), which sets a constant mean for
n(x), that is, p1 (x) = 1 and g = 1. In what follows, we assume
that the kernel K is radial with length-scale parameters 6; this is
more formally defined later in Section 5 (see (24)).

Suppose noiseless function values y; = f(x;) are observed at
inputs x;, yielding data D, = {(x;, y)} . Lety, = (y)i_, be
the vector of observed function values, k,(x) = (K(x,x;))I_,
be the correlation vector between the unobserved response f (x)



and observed responses y,, K,, = (K(x;, Xj))?,jzl be the correla-

tion matrix for observed points, and P, = [p(x1),..., px)]T
be the model matrix for observed points. Then the posterior
distribution of f (x) at an unobserved input x has the closed form
expression (Santner et al. 2018):

F@[Dal ~ N (f 00,075, ) )

Here, the posterior mean fn (x) is given by
10 =pT 0B, + k[0, (ya~PuB,). @)

the posterior variance o253 (x) is given by

022 (x) = o2 (K(x, x) — kI 0K 'k, (x) +h! (x)G;lhn(x)> ,
(5)

where B, = G, 'P/K; 'y, is the maximum likelihood esti-
mator (MLE) for 8, G, = P]K,'P, and h,(x) = p(x) —
PIK; 'k, (x). These expressions can be equivalently viewed as
the best linear unbiased predictor of f(x) under the presumed
GP model and its variance (see sec. 3 of Santner et al. 2018 for
further details).

2.2, Expected Improvement

The EI method (Jones, Schonlau, and Welch 1998) then makes
use of the above closed-form equations to derive a closed-form
acquisition function. Let y; = min[_, y; be the current best
objective value, and let (y}; — f(x))+ = max{y} — f(x),0} be
the improvement utility function. Given data D,,, the expected
improvement acquisition function can be written as

I, I,
By, 0 —f(0)+ = Li(0® ( S ) T (ﬂ) .

05,(X) 05,(X)
(6)
Here, ¢(-) and ®(-) denote the pdf and cdf of the standard
normal distribution, respectively, and I,,(x) = y}: — fn (x). For
an unobserved point x, Efp, (y; — f(x))+ can be interpreted
as the expected improvement to the current best objective value
over X, if the next query is at point x.

In order to compute the acquisition function in (6), we would
need to know the process variance o2, In practice, however, this
is typically unknown and needs to be estimated from data. A
standard approach (Bull 2011) is to compute its MLE:

o1 A T 3
62 = —yn P,B,) 'K, (yn — PuB,), (7)

then plug-in this into the acquisition function (6). This gives the
following plug-in estimate of the EI acquisition function:

I, n In
B0 = L0 (520 ) 6,000 (20) . ®
Exploitation Exploration

In practice, the length-scale parameters 6 of the GP are typically
estimated via MLE and plugged into the estimated EI criterion
(8) as well.
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With (8) in hand, the next query point x,+ is obtained by
maximizing the EI acquisition function EI,, (x):

Xpt1 < argmax El, (x). 9)
xeQ
This maximization of (8) implicitly captures the aforemen-
tioned exploration-exploitation tradeoff: exploration of the fea-
sible region and exploitation near the current best solution. The
maximization of the first term in (8) encourages exploitation,
since larger values are assigned for points x with smaller pre-
dicted values fn (x). The maximization of the second term in (8)
encourages exploration, since larger values for points x indicate
larger (estimated) predictive standard deviation 6,5, (x).
However, one drawback of EI is that it fails to capture the full
uncertainty of model parameters within the acquisition function
El,(x). This results in an over-exploitation of the fitted GP
model for optimization, and an under-exploration of the black-
box function over 2. This over-greediness has been noted in
several works, for example, Bull (2011) and Qin, Klabjan, and
Russo (2017). In particular, Theorem 3 of Bull (2011) showed
that, for a common class of correlation functions for K (see
Assumption 1 later), there always exists some smooth function f
within a function space Hg (£2) (defined later in Section 5) such
that EI fails to find a global optimum of f. This is stated formally
below:

Proposition 1 (Theorem 3, Bull 2011). Suppose Assumption 1
holds with v < 0o. Suppose initial points are sampled according
to some probability measure F over Q. Let (x;)72; be the points
generated by maximizing EI,, in (8), with plug-in MLEs for GP
length-scale parameters @ satisfying Assumption 2 (introduced
later). Then, for any € > 0, there exist some f € Hg(2) and
some constant § > 0 such that

. >k _ . _
Pr (nlingoyn ;Iélgl’zlf(x) > 8) >1-—e.

This proposition shows that, even for relatively simple objective
functions f, the EI may fail to converge to a global minimum
due to its over-exploitation of the fitted GP model. This is
concerning not only from an asymptotic perspective, but also
in practical problems with limited samples. As we show later,
this overexploitation can cause the EI to get stuck on suboptimal
solutions, resulting in poor empirical performance compared to
the HEL

2.3. Existing Solutions and Limitations

As mentioned in the introduction, there are several notable
methods in the literature which aim to tackle this over-
exploitation. One approach which has proven effective is to inte-
grate uncertainty on GP model parameters within the EI criterion.
An early work in this direction is Snoek, Larochelle, and Adams
(2012), which made use of a fully Bayesian formulation of the EI
with a full quantification of uncertainty in all GP model parame-
ters. This integration of parameter uncertainty has subsequently
been developed in recent works; see, for example, Chen, Wang,
and Wu (2017). While effective, a key limitation with these
methods is that this integration of uncertainty requires not only
MCMC sampling of model parameters, but also the use of such
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samples within the optimization of the estimated EI criterion (9).
Particularly in higher dimensions, where many MCMC samples
are required, this can greatly slow down and even worsen the
optimization performance of subsequent points via (9).

Another approach, as recommended in Bull (2011), is to
encourage further exploration via an artificial inflation of the
MLE for the variance parameter. In particular, in place of the
MLE 672, one instead uses the inflated estimator n6? within the
estimated EI criterion (8). Along with an e-greedy modification,
where points are added uniformly-at-random with probability €
at each iteration, Bull (2011) proved this modified EI approach
(which we call the €-EI) can indeed achieve convergence and
a near-minimax convergence rate for global optimization, thus,
addressing the earlier limitation from Proposition 1. Despite its
appealing theoretical properties, the €-EI may yield a subopti-
mal tradeoff between exploration and exploitation, particularly
with limited function evaluations. This may be due to the use
of an artificially inflated variance parameter (which is ad-hoc
from a modeling perspective), or the use of uniformly-random
points within e-greedy sampling (which may be inefficient).
This then results in suboptimal optimization performance given
limited function evaluations, which we show later in numerical
experiments.

3. Hierarchical Expected Improvement

To address the aforementioned limitations, we present a new
Hierarchical EI (HEI) method, which integrates parameter
uncertainty within a closed-form acquisition function, thus,
allowing for efficient optimization of sequential queries. In
employing a hierarchical Bayesian framework for expected
improvement, the HEI can be shown to enjoy similar theoretical
convergence guarantees as the ¢-EI in Bull (2011) for global
optimization, thus, addressing the limitation from Proposition 1
for the standard EI. In contrast to the €-EI, however, the HEI
achieves this purely via a hierarchical Bayesian model, without
a need for an ad-hoc variance inflation or €-greedy sampling.
As such, the HEI can provide an improved tradeoff between
exploration and exploitation in practice, which then translates
to better optimization performance given limited function eval-
uations, as we show later.

A key ingredient for the HEI is a hierarchical GP model on
f(x). Let us adopt the universal kriging model (2), but now with
the following hierarchical priors assigned on two independent
parameters (8, 02):

(Bl x 1, [0%] ~ 1G(a, b). (10)
In words, the coeflicients 8 are assigned a flat improper (i.e.,
noninformative) prior over R4, and the process variance o
is assigned a conjugate inverse-Gamma prior with shape and
scale parameters a and b, respectively. The idea is to leverage
this hierarchical structure on model parameters to account for
estimation uncertainty, while preserving a closed-form criterion
for efficient sequential sampling. In what follows, we first intro-
duce the HEI for fixed GP length-scale parameters @ for ease of
exposition; Section 4.3 then presents the full HEI procedure with
estimated length-scales, with corresponding theoretical analysis
in Section 5.

The next lemma provides the posterior distribution of f(x)
under this hierarchical model:

Lemma 1. Assume the universal kriging model (2) with hierar-
chical priors (10) and n > g. Given data D,,, we have

[02|Dn] ~ IG(an,bn) and [ﬁ|Dn] ~ Tq(2an,ﬁn,&fG;1),
(11)

where a, = a+ (n— q)/2, by, = b+ n62/2, 6% = by/ay, and
Tq(v, p, X) is a g-dimensional non-standardized t-distribution
with degrees of freedom v, location vector g and scale matrix X.
Furthermore, the posterior distribution of f (x) is

[f(x)|Dn] ~ T (Za +n— q,ﬁ,(x),(}nsn(x)). (12)

The proof of this lemma follows from chap. 4.4 of Santner
et al. (2018). Lemma 1 shows that under the universal kriging
model (2) with hierarchical priors (10), the posterior distribu-
tion of f (x) is now a non-standarized ¢t-distribution, with closed-
form expressions for its location and scale parametersf‘n (x) and
Opsp(X).

Comparing the predictive distributions in (3) and (12), there
are several differences which highlight the increased predictive
uncertainty from the hierarchical GP model. First, the new
posterior (12) is now ¢-distributed, whereas the earlier posterior
(3) is normally distributed, which suggests that the hierarchical
model imposes heavier tails. Second, the scale term 5,% in (12)
can be decomposed as

62 = (2b+n62)/2a+ (n—q) > n/Qa+ (n—q)) - 62
(13)

When a < ¢q/2 (which is satisfied via a weakly informative prior
on o2), 62 is larger than the MLE 6?2, which again increases
predictive uncertainty.
Similar to the EI criterion (6), we now define the HEI acqui-
sition function as
HEL (x) = Efp, (v, — f(®)+ (14)
where the conditional expectation over [f(x)|D,] is under the

hierarchical GP model. The proposition below gives a closed-
form expression for HEI,, (x):

Proposition 2. Assume the universal kriging model (2) with
hierarchical priors (10) and n > g. Then:

HEL(0) = [,()®,, (f”(x) ) (15)

Onsn(X)

Exploitation

] I,(x)
+ MyuOuSy (x)¢vn_2 (m> ’

Exploration

where m,, = /v,/(vy —2), v, = 244, and ¢, (x), Dy, (x)
denote the pdf and cdf of a Students t-distribution with v,
degrees of freedom, respectively.



Proposition 2 shows that the HEI criterion preserves the desir-
able properties of original EI criterion (8): it has an easily-
computable, closed-form expression, which allows for efficient
optimization of the next query point. This HEI criterion also has
an equally interpretable exploration-exploitation tradeoft. Simi-
lar to the EI criterion, the first term encourages exploitation near
the current best solution x7, and the second term encourages
exploration of regions with high predictive variance.

More importantly, the differences between the HEI (15) and
the EI (8) acquisition functions highlight how our approach
addresses the over-greediness issue. There are three notable
differences. First, the HEI exploration term depends on the ¢-pdf
¢y, —2, whereas the EI exploration term depends on the normal
pdf ¢. Since the former has heavier tails, the HEI exploration
term is inflated, which encourages exploration. Second, the
larger scale term &,f (see (13)) also inflates the HEI exploration
term and encourages exploration. Third, the HEI contains an
additional adjustment factor +/v,/(v, — 2) in its exploration
term. Since this factor is larger than 1, HEI again encourages
exploration. This adjustment is most prominent for small sample
sizes, since the factor /v, /(v, — 2) — 1assample sizen — oo.
All three differences correct the over-exploitation of EI via a
principled hierarchical Bayesian framework. We will show later
that these modifications for the HEI address the aforementioned
theoretical and empirical limitations of the EIL

Finally, we note that the Student EI, proposed by Benassi,
Bect, and Vazquez (2011), can be viewed as a special case of the
HEI criterion, with (i) a constant mean function p(x) = u, and
(ii) “fixed” hyperparameters a and b (in that it does not scale
with sample size n) for the inverse-Gamma prior in (10). We
will show later that the HEI, by generalizing (i) and (ii), can
yield improved theoretical and empirical performance over the
SEL For (i), instead of the stationary GP model used in the SEI,
the HEI instead considers a broader nonstationary GP model
with mean function u(x) = p' (x)8, and factors in the uncer-
tainty on coefficients B for optimization. This allows HEI to
integrate uncertainty on GP nonstationarity to encourage more
exploration in sequential sampling. For (ii), Benassi, Bect, and
Vazquez (2011) recommended a “fixed” hyperparameter setting
for the SEI, where the hyperparameters a and b do not scale
with sample size n. However, the following proposition shows
that the SEI (under such a setting) can fail to find the global
optimum, under mild regularity conditions (see Assumptions 1
and 2 later).

Proposition 3. Suppose Assumptions 1 and 2 hold with v < oo.
Suppose initial points are sampled according to some probability
measure F over Q2. Given fixed hyperparameters a and b, let
(x;)°, be the points returned by the SEI procedure. Then, for
any € > 0, there exist some f € Hg(£2) and some constant§ > 0
such that

. * . _
Pr (nll)ngoyn ;rélgrzlf(x) > 8) >1—e

The proofis provided in Appendix A.2, supplementary material.
This proposition shows that the SEI with “fixed” hyperparame-
ters has the same limitation as the EI: it can fail to converge to
a global minimum for relatively smooth objective functions f.
We will show later in Section 5 that, under a more general prior
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specification which allows the hyperparameter b to scale with
sample size n (more specifically, b = ©(n)), the HEI not only
has the desired global convergence property for optimization,
but also a near-minimax convergence rate.

4. Methodology and Algorithm

Using the HEI acquisition function (15), we now present a
methodology for integrating this for effective black-box opti-
mization. We first introduce hyperparameter estimation tech-
niques which allow the HEI to mimic a fully Bayesian opti-
mization procedure, then present an algorithmic framework for
implementing the HEI. For ease of exposition, Sections 4.1 and
4.2 are presented with fixed GP length-scale parameters ; Sec-
tion 4.3 then presents the full algorithm with estimated length-
scales, with corresponding theoretical analysis in Section 5.

4.1. Hyperparameter Specification

We present below several plausible specifications for the hyper-
parameters (a, b) in the hierarchical prior [0?] ~ IG(a,b) in
(10), and discuss when certain specifications may yield better
optimization performance.

(i) Weakly Informative. Consider first a weakly informative spec-
ification of the hyperparameters (a,b), witha = b = ¢
for a small choice of €, for example, ¢ = 0.1. This reflects
weak information on the variance parameter o2, and provides
regularization for parameter inference. The limiting case of
€ — 0 yields the non-informative Jeffreys” prior for variance
parameters.

While weakly informative (and noninformative) priors are
widely used in Bayesian analysis (Gelman 2006), we have found
that such priors can result in poor optimization performance
for HEI (Section 6 provides further details). One reason is that,
for many black-box problems, only a small sample size can be
afforded on the objective function f, since each evaluation is
expensive. One can perhaps address this with a carefully elicited
subjective prior, but such informative priors are typically not
available when the objective f is black-box. We present next two
specifications which may offer improved optimization perfor-
mance, both in theory (Section 5) and in practice (Sections 6
and 7).

(ii) Empirical Bayes. Consider next an empirical Bayes (EB,
Carlin and Louis 2000) approach, which uses the observed data
on f to estimate the hyperparameters (a, b). This is achieved by
maximizing the following marginal likelihood for (a, b):

p(yns a,b) =/L’(ﬂ,az;y,l)n(ﬂ)n(az;a,b) dBds>.  (16)

Here, L£(B,0%y,) is the likelihood function of the universal
kriging model (2) (see Santner et al. 2018 for the full expres-
sion), and 7 (B) and m(c%;a,b) are the prior densities of 8
and o2 given hyperparameters a and b. The model with esti-
mated hyperparameters via EB provides a close approximation
to a fully hierarchical Bayesian model (Carlin and Louis 2000),
where additional hyperpriors are assigned on a and b. The latter
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can be viewed as a “gold standard” quantification of model
uncertainty, but typically requires MCMC sampling, which can
be more expensive than optimization. Here, an EB estimate of
hyperparameters (a, b) would allow the HEI to closely mimic
a fully Bayesian optimization procedure (the “gold standard”),
while avoiding expensive MCMC sampling via a closed-form
acquisition function.

Unfortunately, the proposition below shows that a direct
application of EB for the HEI yields unbounded hyperparameter
estimates:

Proposition 4. The marginal likelihood for the universal kriging
model (2) with priors (10) is given by:

b* T'(a+ (n—q)/2)
@ (b4 w7

p(yus a,b) = det(G,K,) "2 . (17)

AT A
where w, = (v, K 'y, — B,, GuB,,) /2. Furthermore, the maxi-
mization problem:

argmax p(yn; a, b) (18)

a>0,b>0

is unbounded for all values of y,,.

The proof of Proposition 4 is provided in Appendix A.3.

To address this issue of unboundedness, one can instead use
a modified EB approach, called the marginal maximum a pos-
teriori estimator (MMAP, Doucet, Godsill, and Robert 2002).
The MMAP adds an additional level of hyperpriors 7 (a, b) to
the marginal likelihood maximization problem, yielding the
modified formulation:

argmax p(yn;a,b) := argmax p(yn; a,b)w(a, b). (19)

a>0,b>0 a>0,b>0

The MMAP approach for hyperparameter specification has been
used in a variety of problems, for example, scalable training of
large-scale Bayesian networks (Liu and Ihler 2013). The next
proposition shows that the MMAP indeed yields finite solutions
for a general class of hyperpriors on (a, b):

Proposition 5. Assume the following independent hyperpriors
on (a, b):

[a] ~ Gamma(¢, ), [b] x 1, (20)

where ¢ and ¢ are the shape and scale parameters, respec-
tively. Then the maximization of p(yy;a, b) is always finite for
(a,b) e RZ.

The proof of Proposition 5 is provided in Appendix A.4.

In practice, we recommend a weakly-informative specifica-
tion of the hyperparameters (¢,t) (i.e., with { = ¢ set to be
small), which appears to yield robust optimization performance
for the HEI-MMAP. We note that the specification (20) is simply
one which works well in our implementation; given prior knowl-
edge, a modeler has the flexibility of specifying an alternate prior
which captures such information. By mimicking a fully Bayesian
optimization procedure, this MMAP approach can consistently
outperform the weakly informative specification for HEI; we will
show this later in numerical studies.

(iii) Data-Size-Dependent (DSD). Finally, we consider the so-
called “data-size-dependent” (DSD) hyperparameter specifica-
tion. This is motivated from the prior specification needed for
global optimization convergence of the HEI, which we present
and justify in the following section. The DSD specification
requires the shape parameter a to be constant, and the scale
parameter b to grow at the same order as the sample size n, that
is, b = «n for some constant ¥ > 0. One appealing property of
this specification is that it ensures the HEI converges to a global
optimum x* (see Theorem 1 later).

For the DSD specification, we can similarly use the MMAP
to estimate hyperparameters (a, k), to mimic a fully Bayesian
EI procedure. Suppose data Dy, ; are collected from n;y; initial
design points (more on this in Section 4.3). Then the hyperpa-
rameters a and « can be estimated via the MMAP optimization:

(a*,k*) = argmax {p(ynim;a,/mini)n(a,/c)} , (21)

a>0,k>0

where 7 (g, «) is the hyperprior density on a and «. One pos-
sible setting for m(a,x) is a Gamma hyperprior on a and a
noninformative hyperprior [«] o« 1 (independent of a). By
Proposition 5, this specification again yields a finite optimization
problem for MMAP. Using these estimated hyperparameters,
subsequent points are then queried using HEI with a = a* and
b = «*n, where n is the current sample size.

4.2. Order Selection for Basis Functions

In addition to hyperparameter estimation, the choice of basis
functions in p(x) and the order selection of such bases
are also important for an effective implementation of the
HEL In our experiments, we take these bases to be com-
plete polynomials up to a certain order I Letting M®
denote the polynomial model with maximum order I, we have

p(x) = 1 for model MO (a constant model), px) =
[1,x1,...,%4]" for model M® (a linear model), p(x) =
(1L, X015« s Xds X s X2 XX, o X1 K> X2 X3, - . Xd—1X4] | fOT

model M@ (a second-order interaction model), etc. One can
also make use of other basis functions (e.g., orthogonal polyno-
mials; Xiu 2010) depending on the problem at hand.

A careful selection of order /is also important: an overly small
estimate of [ results in over-exploitation of a poorly-fit model,
whereas an overly large estimate results in variance inflation
and over-exploration of the domain. We found that the standard
Bayesian Information Criterion (BIC) (Schwarz 1978) provides
good order selection performance for the HEI. Given initial data
D,,..., the BIC selects the model M) with order:

I* = argmin { — 2log LM P) + g/ log(miny) }.
leN

(22)

Here, £(M®) denotes the likelihood of model M® (this like-
lihood expression can be found in Santner et al. 2018), and g;
denotes the number of basis functions in model M. With this
optimal order selected, subsequent samples are then obtained
using HEI with mean function following this polynomial
order.



Algorithm 1 Hierarchical Expected Improvement for
Bayesian Optimization

Initialization

 Generate njy; space-filling design points {xy, . .
on 2.

o Evaluate function points y; = f(x;), yielding the initial
dataset D,,,, = {(xi, yi)}?ji.

0 X”ini }

Model selection

o Select model order via BIC using (22).
o Estimate hyperparameters (a, b) via MMAP using (19).

Optimization
for n < njyj to Nyt — 1 do

« Given D,, estimate length-scale parameters 6 via MAP
and compute HEL, (x).

 Obtain the next evaluation point x,,+; by maximizing
HEI, (x):

Xpt1 < argmax HEL, (x). (23)

xeQ

o Evaluate y,41 = f(X,41), and update data D, =
D,U {(Xn+1)yn+l)}-

Return: The best observed solution x;+, where i* =

argmin?:i f(xi).

4.3. Algorithm Statement

Algorithm 1 summarizes the above steps for HEI. First, initial
data on the black-box function f are collected on a “space-
filling” design, which provides good coverage of the feasible
space 2. For the unit hypercube © = [0, 1], we have found
that the maximin Latin hypercube design (MmLHD, Morris and
Mitchell 1995) works quite well in practice. For non-hypercube
domains, more elaborate design methods on non-hypercube
regions (e.g., Lekivetz and Jones 2015; Mak and Joseph 2018;
Joseph, Gul, and Ba 2019) can be used. The number of initial
points is set as nip; = 10d, as recommended in Loeppky, Sacks,
and Welch (2009). Using this initial data, the model order for
the hierarchical GP is selected using (22). The hyperparameters
a and b are also estimated from data (if necessary) using the
methods described in Section 4.1. Next, the following two steps
are repeated until the sample size budget n is exhausted: (i)
the GP length-scale parameters @ are fitted via maximum a
posteriori (MAP) estimation! using the observed data points,
(ii) a new sample f (x) is collected at the point x which maximizes
the HEI criterion (15).

5. Convergence Analysis

We present next the global optimization convergence result for
the HEI then provide a near-minimax optimal convergence rate

"In numerical experiments, we use an independent uniform prior 6; ~iid

U[0, 100] for this MAP estimate.
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for the proposed method. In what follows, we will assume that
the domain €2 is convex and compact.
Let us first adopt the following shift-invariant form for the

kernel K:
X1 —21 Xd — 24
Ko(x,2) :=C ety >
ooe2) < 01 0 >

where C is a stationary correlation function with C(0) = 1 and
length-scale parameters@ = (0, . . ., 0,). From this, we can then
define a function space—the reproducing kernel Hilbert space
(RKHS, Wendland 2004)—for the objective function f. Given
kernel Ky (which is symmetric and positive definite), define the
linear space

(24)

N
fa(Q) = {Z(X,‘Ko(-,xi) :N e N+,X,‘ € Q,Oli € R} > (25)
i=1

and equip this space with the bilinear form

N M N M
<Z aiKp (i), Y ¥iKo (',yj)> =YY K (xi,y)).
i=1 j=1 K, i=1i=1
(26)
The RKHS Hg (2) of kernel Ky is defined as the closure of Fy (2)
under (-, -),, with its inner product (-, -)3;, induced by (-, -)g,
(Wendland 2004).
Next, we make the following two regularity assumptions. The
first is a smoothness assumption on the correlation function C:

Assumption 1. C is continuous, integrable, and satisfies:
Cx) — Q)| = O (Ix3"(~ log [IxI|2)**) ~ as

for some constants v > 0 and « > 0. Here, r = [2v] and Q,(x)
is the rth order Taylor approximation of C(x). Furthermore, its
Fourier transform

C) = f e 28N CO(x) dx

Ix]l2 — 0,

is isotropic, radially nonincreasing and satisfies either: as
lIx]l2 = o0

Cx) =0 (||x||2—2”—d) or Cx)=0 (||x||2_2)‘_d> for
any A > 0.

Note that in Assumption 1, since we assume C is continuous
and integrable, its Fourier transform C must exists. A widely-
used correlation function which satisfies this assumption is the
Matérn correlation function (see Cressie 1991 and Bull 2011).

The second assumption is a bounded assumption on the prior
7 (@) for the GP length-scale parameters 6.

Assumption 2. We assume that the prior 7 (6) is bounded and

bounded away from 0. Thus, given data D, if we let 8,, be the
MAP of 0 under prior 7 (0), it follows that for any n > g:

0L <6, <0V for some constants 8,0V € Ri. (27)
Note that the above equation indicates component-wise inequal-
ities. This is similar to Definition 2 in Bull (2011).

Under these two regularity assumptions, we can then prove
the global optimization convergence of the HEI method (more
specifically, for HEI-DSD).
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Theorem 1. Suppose Assumptions 1 and 2 hold. Further suppose
the hyperparameter a is a constant (in n) and b = ©(n),
with basis functions p;(x) € Hqu(R2). Let (x;)7°, be the points
generated by maximizing HEI, in (15), with iterative plug-in
MAP estimates 8,,. Then, for any f € Hqu (R2) and any choice
of initial points {x;}"}, we have:

Om"4logn)®), v <1,

v

On=114), > 28)

Yp — minf(x) = {

The proof of this theorem is given in Appendix A.5, where its
dependence on other parameters (e.g., #* and #V) are made
explicit. The key idea is to upper bound the prediction gap
f(x) — fn (x) by the posterior variance term sf, (x) in (5), which
is a generalization of the power function used in the function
approximation literature (see, e.g., Theorem 11.4 of Wendland
2004). We then show that the hyperparameter assumption b =
@ (n) prevents the estimator &, from collapsing to 0, and allows
us to apply approximation bounds on s? (x) to obtain the desired
global convergence result. This proof is inspired by Theorem 4
of Bull (2011).

Theorem 1 shows that, for all objective functions f in the
RKHS H,yu(£2), the HEI indeed has the desired convergence
property for global optimization. This addresses the lack of
convergence for the EI from Proposition 1 and the SEI from
Proposition 3. It is worth nothing that, when C is the Matérn
correlation with smoothness parameter v (Cressie 1991), the
RKHS Hg(£2) consists of functions f with continuous deriva-
tives of order v/ < v (Santner et al. 2018). Hence, for the
Matérn correlation, the HEI achieves a global convergence rate
of O(n=1/4) for objective functions f € H(2) with v > 1,
and O(n_”/d(log n)“) for objective functions f € H4u ($2) with
v <1.

At first glance, the prior specification in Theorem 1 may
appear slightly peculiar, since the hyperparameter b = ®(n)
depends on the sample size n. However, such data-size-
dependent priors have been studied extensively in the con-
text of high-dimensional Bayesian linear regression, particu-
larly in its connection to optimal minimax estimation (see, e.g.,
Castillo, Schmidt-Hieber, and Van der Vaart 2015). The data-
size-dependent prior in Theorem 1 can be interpreted in a simi-
lar way: the hyperparameter condition b = ® (n) is sufficient in
encouraging exploration in the sequential sampling points, so
that HEI converges to a global optimum for all f in the RKHS
Hou ().

If an additional y-stability condition (Wynne, Briol, and
Girolami 2020) holds, we can further show that the HEI achieves
the minimax convergence rate for Bayesian optimization (we
provide discussion on this minimax rate at the end of the sec-
tion). This condition is stated below:

Condition 1. Let (x;)72, be the sequence of points generated by
the HEL We assume that

Si’l(xn-'rl) Z V”Sn(x)”oo foraun = 1)2$~--) (29)

for some constant y € (0, 1].

In words, this requires that every sequential point x,4+; has a
posterior standard deviation term s,(x,+1) (from (5)) at least

as large as y ||, (X) || oo, Where ||5,(X) [|oo is the maximum poste-
rior standard deviation term over domain 2. If this condition
holds, we can then show a quicker convergence rate for global
optimization:

Theorem 2. Suppose Assumptions 1 and 2 hold, along with
Condition 1. Further suppose the hyperparameter a is a constant
(in n) and b = ©(n), with basis functions p;(x) € Hyuv(2). Let
(x1)2, be the points generated by maximizing HEI, in (15) with
iterative plug-in MAP estimates @,. Then, for any f € Hou (€2)
and any initial points, we have:

y5 — minf(x) = O(n~"/%). (30)

xXeQ

Further details on this theorem are provided in Appendix A.6.

Condition 1 is unfortunately quite difficult to guarantee the-
oretically, but appears to be satisfied empirically for the rec-
ommended HEI-DSD and HEI-MMAP methods in all of our
later numerical experiments. Figure 1(a) shows the log-ratio
log{sy(Xn+1)/lIsn(x)|loc} for HEI-DSD using the Branin func-
tion (in our later simulation study). As can be seen, the log ratio
appears to be bounded away from zero as n increases, which
suggests that the HEI with data-size-dependent hyperparameter
specification indeed satisfies Condition 1 for a sufficiently small
y > 0. This is not surprising, since while a sensible optimization
algorithm would place more points around the optimum, the
hierarchical nature of the HEI encourages further exploration,
thus, ensuring the sequential points explore the domain from
time to time such that no point has overly high predictive
variance. The same y -stability assumption was used in Wynne,
Briol, and Girolami (2020) for proving convergence of existing
BO methods.

It is crucial to note that, while these rates provides a reassur-
ing check for HEI convergence, such asymptotic analysis does not
tell the full story on the effectiveness of a Bayesian optimization
method. Bull (2011) proved that, of all optimization strategies
for minimizing f € Hg(2) under Assumption 1, the minimax
rate for the optimization gap y* — minyeg f(x) is O(n~"/%), that
is, there does not exist an optimization strategy with a quicker
asymptotic rate. The HEI rate in Theorem 2, in this sense, is
precisely the minimax rate. However, Bull (2011) also showed
that the simple (nonadaptive) strategy of optimization via a
quasi-uniform sequence (see, e.g., Niederreiter 1992) can also
achieve this minimax rate! Such a strategy, however, typically
performs terribly in practice and is not competitive with existing
BO methods (Bull 2011), since it is nonadaptive to observed
function evaluations. This shows that such asymptotic analysis,
while providing a reassuring check, cannot be used as a sole
metric for gauging the practical effectiveness of different methods,
particularly given the current setting of limited sample sizes.

We further note that analogous rates to Theorems 1 and 2
have been also shown for various Bayesian optimization meth-
ods in the literature. In particular, similar rates to Theorem 1
were proved for the €-EI (Bull 2011), and our results leverage
an adaptation of their proof techniques to show convergence
for the HEI. Similarly, the y -stability assumption (Condition 1)
was used in Wynne, Briol, and Girolami (2020) to establish
similar optimization rates as Theorem 2 for certain Bayesian
optimization methods. The novelty for the HEI is thus not
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Figure 1. Visualizing select statistics for HEl methods on the Branin numerical experiment.

in terms of improved asymptotic rates over existing methods;
such rates primarily serve to provide theoretical footing for our
approach. Instead, the key contribution of the HEI is method-
ological: the proposed hierarchical framework provides a prin-
cipled exploitation-exploration tradeoff via a closed-form acqui-
sition function, which as we show later, allows for improved
optimization performance with limited samples.

6. Numerical Experiments

We now investigate the numerical performance of HEI in com-
parison to existing BO methods, for a suite of test optimization
functions. We consider the following five test functions, taken
from Surjanovic and Bingham (2015):

e Branin (two-dimensional function on domain € = [0, 1]?):
fX) = (xy — 5.1/ (4m?) - x3 4+ 5/7 - x1 — 6)*
+ 10(1 — 1/(8m)) cos(x1) + 10,

o Three-Hump Camel (two-dimensional function on domain
Q=[-2,2]%):

f(x) = 2x% — 1.059511 + x?/6 + x1x2 + x%,
o Six-Hump Camel (two-dimensional function on domain Q =
[—2,2]%):
fx)=4- 2.1x% + x‘ll/3)x% + x1% + (—4 + 4x§)x§,

o Levy Function (six-dimensional function on domain Q =
[—10,10]°):

5
f) = sin’(rwy) + Y _(0; — D’[1 + 10sin’ (rw; + 1)]
i=1
+ (ws — D*[1 + sin® 2w we)],
wherew; =1+ (x; — 1)/4fori=1,...,6,

o Ackley Function (10-dimensional function on domain Q =
[~5,5]'°):

f(x) = —20exp (—%lenz)

| Qo
— exp (E ; cos(ZJTx,-)) + 20 + exp(1).

The simulation set-up is as follows. We compare the pro-
posed HEI method under different hyperparameter specifica-
tions (HEI-Weak, HEI-MMAP, HEI-DSD), with the EI method
under ordinary kriging (EI-OK) and universal kriging (EI-
UK), the Student EI (SEI) method with fixed hyperparameters
(0.2,12) as recommended in Benassi, Bect, and Vazquez (2011),
the UCB approach under ordinary kriging (UCB-OXK, Srinivas
etal. 2010) with default exploration parameter 2.96, the e-greedy
EI approach (Bull 2011) under ordinary kriging (e-EI-OK) and
universal kriging (e-EI-UK) with € = 0.1 as suggested in Sutton
and Barto (2018), and the y -stabilized EI method (Wynne, Briol,
and Girolami 2020) under universal kriging (Stab-EI-UK) with
¥ = min(0.1d, 0.8)2. For HEI-Weak, the hyperparameters (a, b)
are set as a = b = 0.1; for HEI-MMAP and HEI-DSD, the
hyperparameters (¢,t) are set as ¢ = ¢ = 2. All methods
use the Matérn correlation with smoothness parameter 2.5, and
are run for a total of T = 120 function evaluations. Here, the
kriging model is fitted using the R package kergp (Deville, Gins-
bourger, and Roustant 2019). As mentioned in Section 4.3, all
methods are initialized using maximin Latin hypercube designs
(Morris and Mitchell 1995). Simulation results are averaged over
20 replications except the Ackley function, due to the heavy
computation burden for fitting the high-dimensional GP model.

Figure 2(a)-(d) and (f) show the log-optimality gap
log,,(f(x};) — f(x*)) against the number of samples n for
the first three functions, and Figure 2(e) shows the optimality
gap f(x)) — f(x*) for the Levy function. We see that the three
HEI methods outperform the existing Bayesian optimization
methods: the optimality gap for the latter methods stagnates
for larger sample sizes, whereas the former enjoys steady
improvements as n increases. This shows that the proposed
method indeed corrects the over-greediness of EI, and
provides a more effective correction of this via hierarchical
modeling, compared to the e-greedy and Stab-EI-UK methods.
Furthermore, of the HEI methods, HEI-MMAP and HEI-
DSD appear to greatly outperform HEI-Weak. This is in line
with the earlier observation that weakly informative priors
may yield poor optimization for HEl; the MMAP and DSD
specifications give better performance by mimicking a fully
Bayesian optimization procedure. This is further supported by

2Stab-EI-UK requires the next query point x,y1 to satisfy sp(Xp41) >

Y 11sn (%) |lco- In our implementation, we randomly sample 109+2 points to
find ||sn(X)|loc @and set y = min(0.1d, 0.8).
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initial points, black stars: global optima, red triangles: UCB-OK points, blue circles: HEI-DSD points).

Figure 1(b), which shows the posterior estimate &, of the scale
parameter as a function of sample size #n for the HEI methods
in the Branin experiment. We see that both the HEI-DSD and
HEI-MMAP provide larger estimates than HEI-DSD, which
shows that the former methods are indeed integrating further

uncertainty for exploration. The steady improvement of HEI-
DSD also supports the data-size-dependent prior condition
needed for global convergence in Theorems 1 and 2.

Figure 2(b) shows the sampled points from HEI-DSD and
UCB-OK for one run of the Branin function. The points for
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Figure 3. A visualization of the laser heating process of a silicon wafer (left), and the simulated temperature profile from COMSOL Multiphysics (right).

HEI-Weak and HEI-MMAP are quite similar to HEI-DSD, and
the points for EI-OK, EI-UK, and SEI are quite similar to UCB-
OK, so we only plot one of each for easy visualization. We see
that HEI indeed encourages more exploration in optimization:
it successfully finds all three global optima for f, whereas existing
methods cluster points near only one optimum. The need to
identify multiple global optima often arises in multiobjective
optimization. For example, a company may wish to offer multi-
ple product lines to suit different customer preferences (Mak and
Wu 2019). For such problems, HEI can provide more practical
solutions over existing methods.

Lastly, we compare the performance of HEI with the SEI
method (Benassi, Bect, and Vazquez 2011). From Figure 2(e),
we see that the SEI performs quite well for the Levy function:
it is slightly worse than HEI methods, but better than the
other methods. However, from Figure 2, the SEI achieves only
comparable performance with EI-OK for the Branin function
(which is in line with the results reported in Benassi, Bect, and
Vazquez 2011), and is one of the worst-performing methods.
This shows that the performance of SEI can vary greatly for
different problems.

Finally, we note that for higher-dimensional problems, the
HEI (and indeed, all GP-based Bayesian optimization methods)
will likely require more sophisticated GP models to work well.
In particular, such GP models should ideally be able to learn
low-dimensional embeddings of the objective function over
the high-dimensional domain; see, for example, recent work in
Seshadri, Yuchi, and Parks (2019) and Zhang, Mak, and Dunson
(2022). Integrating such low-dimensional structure within the
HEI will be the topic of future work.

7. Semiconductor Manufacturing Optimization

We now investigate the performance of HEI in a process opti-
mization problem in semiconductor wafer manufacturing. In
semiconductor manufacturing (Jin, Chang, and Shi 2012), thin
silicon wafers undergo a series of refinement stages. Of these,
thermal processing is one of the most important stage, since it
facilitates necessary chemical reactions and allows for surface
oxidation (Singh, Fakhruddin, and Poole 2000). Figure 3(a)
visualizes a typical thermal processing procedure: a laser beam
is moved radially in and out across the wafer, while the wafer
itself is rotated at a constant speed. There are two objectives
here. First, the wafer should be heated to a target temperature
to facilitate the desired chemical reactions. Second, temperature

Table 1. Design ranges of the five control parameters, where rpm (revolutions per
minute) measures the rotation speed of the wafer.

Thickness Rotation speed Laser period Laser radius Power

[5,15]s

[160,300] s [2,50]rpm [2,10]mm [10,20]W

fluctuations over the wafer surface should be made as small as
possible, to reduce unwanted strains and improve wafer fabri-
cation (Brunner et al. 2013). The goal is to find an “optimal”
setting of the manufacturing process which achieves these two
objectives.

We consider five control parameters: wafer thickness, rota-
tion speed, laser period, laser radius, and laser power (a full
specification is given in Table 1). The heating is performed over
60 sec, and a target temperature of 7* = 600 F is desired over
this timeframe. We use the following objective function:

60

fx) = ;gaeagcm(s,x) T (31)
Here, s denotes a spatial location on the wafer domain S, t =
1,...,60 denotes the heating time (in seconds), and 7¢(s; x)
denotes the wafer temperature at location s and time ¢, using
control setting x € R>. Note that f(x) captures both objectives
of the study: wafer temperatures 7; close to 7 * results in smaller
values of f(x), and the same is true when 7;(s;x) is stable over
seS.

Clearly, each evaluation of f (x) is expensive, since it requires
a full run of wafer heating process. We will simulate each run
using COMSOL Multiphysics (COMSOL 2018), a reliable finite-
element analysis software for solving complex systems of partial
differential equations (PDEs). COMSOL models the incident
heat flux from the moving laser as a spatially distributed heat
source on the surface, then computes the transient thermal
response by solving the coupled heat transfer and surface-to-
ambient radiation PDEs. Figure 3(b) visualizes the simulation
output from COMSOL: the average, maximum, and minimum
temperature over the wafer domain at every time step. Exper-
iments are performed on a desktop computer with quad-core
Intel 17-8700K processors, and take around 5 min per run.

Figure 4(a) shows the best objective values f(x}) for HEI-
MMAP and HEI-DSD (the best performing HEI methods from
simulations), and for the UCB-OK, SEI, and e-greedy EI meth-
ods. We see that UCB-OK and SEI perform noticeably poorly,
whereas the proposed HEI-MMAP and HEI-DSD methods pro-
vide the best optimization performance, with the e-greedy-EI
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Figure 4. (a) shows the best objective value f(x;) for the five compared methods. (b)—(f) show the average, maximum, and minimum temperature of the wafer over time,
for each of the tested BO methods. The dotted green line marks the target temperature of T* = 600 F.

method slightly worse. This again shows that the proposed HEI
can provide a principled correction to the over-greediness of
EI via hierarchical modeling, which translates to more effective
optimization performance over the compared existing methods.

The remaining plots in Figure 4 show the average, maximum,
and minimum temperature over the wafer surface, as a function
of time. For HEI-DSD and HEI-MMAP, the average temperature

quickly hits 600 F, with a slight temperature oscillation over the
wafer. For SEI, the average temperature reaches the target tem-
perature slowly, but the temperature fluctuation is much higher
than for HEI-DSD and HEI-MMAP. For UCB-OXK, the average
temperature does not even reach the target temperature. The two
proposed HEI methods (and €-EI-UK, although its performance
is slightly worse) return noticeably improved settings compared



to the two earlier methods, thereby providing engineers with
an effective and robust wafer heating process for semiconductor
manufacturing.

8. Conclusion

In this article, we presented a hierarchical expected improve-
ment (HEI) framework for Bayesian optimization of a black-box
objective f. HEI aims to correct a key limitation of the expected
improvement (EI) method: its over-exploitation of the fitted GP
model, which results in a lack of convergence to a global solution
even for smooth objective functions. HEI addresses this via a
hierarchical GP model, which integrates parameter uncertainty
of the fitted model within a closed-form acquisition function.
This provides a principled way for correcting over-exploitation
by encouraging exploration of the optimization space. We then
introduce several hyperparameter specification methods, which
allow HEI to efficiently approximate a fully Bayesian optimiza-
tion procedure. Under certain prior specifications, we prove
the global convergence of HEI over a broad function class for
f, and derive near-minimax convergence rates. In numerical
experiments, HEI provides improved optimization performance
over existing Bayesian optimization methods, for both simu-
lations and a process optimization problem in semiconductor
manufacturing.

Given these promising results, there are several intriguing
avenues for future work. One direction is to explore potential
extensions of the HEI for the high-dimensional setting of d > n,
where the dimension of the problem may exceed the number
of function evaluations. This presents interesting challenges for
both theory and methodology, and may require more sophisti-
cated GP models which can learn low-dimensional embeddings
in high dimensions (see, e.g., Zhang, Mak, and Dunson 2022).
Another interesting direction is to study the dependence of the
optimization rates on the constant y in Condition 1.

Supplementary Materials

The online supplementary materials provide proofs of technical results in
the paper.
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