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New bootstrap tests are proposed for linear hypotheses testing of high-dimensional means. 
In particular, they handle multiple-sample one- and two-way MANOVA tests with unequal 
cell sizes and unequal unknown cell covariances, as well as contrast tests in elegant and 
unified way. New tests are compared theoretically and on simulations studies with existing 
popular contemporary tests. They enjoy consistency, computational efficiency, very mild 
moment/tail conditions. They avoid the estimation of correlation or precision matrices, 
and allow the dimension to grow with sample size exponentially. Additionally, they allow 
the number of groups and the sparsity to grow with the sample size exponentially, thus 
broadening their applicability.
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1. Introduction

There are K independent groups of random vectors-columns Vk,i ∈ Rp, i = 1, . . . , n, k = 1, . . . , K , drawn from K popula-
tions with means μ1, . . . , μK ∈ Rp . We are interested in generalized linear hypothesis testing (GLHT) for the group means, 
which includes MANOVA and contrast tests as particular cases.

These vectors do not have to come from the same distribution. Also we can let the dimension p grow with n or the 
number of groups K grow with n or both. This is quite rare in the literature but it is a very useful setup in practice. Santo 
and Zhong (2021) argued that functional data can be viewed this way. We adopt this viewpoint in the real data example 
later in this paper. This setup was recently used in Lin et al. (2021).

Let [Vk,i]q denote the q-th entry of the i-th observation from the k-th group, where q = 1, . . . , p; i = 1, . . . , n; k =
1, . . . , K . Given a class of non-singular matrices A(l) ∈ RKp×Kp, l = 1, . . . , L with components A(l)

j j′ , j, j
′ = 1, . . . , Kp, we pro-

pose the test statistics of the form

Tn = max
l=1,...,L

max
j=1,...,Kp

n−1/2
n∑

i=1

K∑
k=1

p∑
q=1

A(l)
j(q+(k−1)p)

[Vk,i]q.

Intuitively, in Tn short p-column-vectors V1,i, . . . , V K ,i are stacked into long Kp-vectors that are then multiplied by matrices 
A(l) , averaged over i, normalized and finally maximized over the components of the resulting long vector and over the class 
of matrices (over l).
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Next, introduce the multiplier bootstrapped form of the test statistics

T e
n = max

l=1,...,L
max

j=1,...,Kp
n−1/2

n∑
i=1

K∑
k=1

p∑
q=1

A(l)
j(q+(k−1)p)

ei[Vk,i − V̄k]q,

where a vector e = (e1, . . . , en) of i.i.d. N(0, 1) random variables is independent of all Vk,i ’s and V̄k = 1
n

∑n
i=1 Vk,i, k =

1, . . . , K , are the groupwise averages. Intuitively, the symmetrized sums would have distribution that approximates the 
distribution of the original test statistics under the null hypothesis that all the group means are equal (MANOVA) or are 
related linearly (GLHT).

The proposed bootstrap test at the significance level α ∈ (0, 1) rejects if

Tn ≥ Qα := inf{u ∈R : Pe(T
e
n ≤ u) ≥ 1− α},

where Pe stands for the probability with respect to the Gaussian vector e only.
We show that these bootstrap tests have excellent level and power performance for MANOVA and GLHT in high dimen-

sional setup including contrasts tests. Our approach produces a whole class of tests that are flexible and can be tuned to 
many different scenarios. Indeed, the class of matrices A(l), l = 1, . . . , L, serves as a tuning mechanism, where this class 
can be chosen to maximize components of A(l)[μ1, . . . , μK ] under alternative in order to gain good empirical power. Our 
tests do not need sparsity assumptions on the means and/or covariances. We require the moment and tail assumptions on 
the distributions that are commonly used and at times less stringent than those in the existing literature. Our approach 
allows data from multivariate sub-exponential distributions, some heavy-tailed distributions, skewed distributions, and thus, 
it broadens the regime of its practical use.

The high dimensional MANOVA problem for testing H0 : μ1 = · · · = μK for K > 2 has been a focus of many recent 
works due to its growing importance in genomics, econometrics, and neuroimaging among many other fields of science. 
For example, Fujikoshi et al. (2004) considered the ratio of the traces of between-sample covariance and within-sample co-
variance. Meanwhile, Schott (2007) proposed a test based on the difference of those two traces. Srivastava (2007) used the 
Moore-Penrose inverse of the within-sample covariance matrix to construct a test. Cai and Xia (2014) proposed a test based 
on the maximum-norm of the squared differences between K groups. All mentioned tests either have been formulated 
under the assumption that the data is generated from a multivariate normal population or under some stringent distribu-
tional or sparsity assumptions. Moreover, all these tests assume equal covariance structure among all the groups. Recently 
Chen et al. (2019) proposed a thresholded L2-norm-type statistics assuming sparsity in means, mixing, and multivariate 
sub-Gaussianity. They consider different sparse covariance matrices across different groups. The sparsity assumptions on 
the means and covariances were very important and crucial in their work. In this work, we eliminate the need for these 
assumptions.

From a different point of view, this work also extends the recent work by Xue and Yao (2020) for K = 2 to the case 
K > 2. This extension is elegant and less technical than the direct reproving of the results in Xue and Yao (2020), where 
one would have to tackle intricate block-type dependency structures and work with U -statistics similar to what was done 
in Chen (2018). The class of our tests enjoys all the good properties of the tests in Xue and Yao (2020). In particular, our 
tests are computationally fast and simple, since they do not require the estimation of covariance and/or precision matrices. 
Our tests do not need for the sample size ratios between groups to converge, they can merely stay bounded in an interval. 
Our tests have one extra advantage of being versatile, so they can be just as easily adopted to solve MANOVA or to test for 
a linear structure on the means such as contrasts. Even for a scenario with sparse means, our tests have comparable power 
performance than more complicated and computationally slower tests by Chen et al. (2019) and Cai and Xia (2014), which 
are specifically designed for this scenario.

The technical basis for our tests lies in the introduction of the class of sparse convex sets which are intersections of 
a finite number of half-spaces in the context of investigation of quality of Gaussian approximations for sums. This class 
generalizes hyper-rectangles and half-spaces that were proposed by Chernozhukov et al. (2017). Unlike previous works our 
tests have tractable dependence on sparsity specifier. The details are given in the Appendix.

The rest of the paper is organized as follows. Section 2 contains main theoretical results devoted to the statistical appli-
cations: one- and two-way MANOVA and GLHT in high-dimensional setup. Section 3 establishes the connection with other 
recent tests that are related to our approach. In section 4 we perform detailed high-dimensional simulation study where 
we compare our method with two existing competitors by Chen et al. (2019) and Cai and Xia (2014). We consider various 
distributions and sparsity scenarios. We illustrate the practicality of our test on a real data example about fish shape com-
parisons in section 5, which is followed by a discussion with a conclusion in section 6. Technical conditions, details, and 
proofs are gathered in the Appendix.

2. Main results

We obtain different rates of approximation of test statistic Tn by its bootstrapped counterpart T e
n under various moment 

and tail conditions on V s and conditions on K and L. Those approximations allow us to study theoretically the properties 
of our tests. These conditions are quite technical and given in the Appendix.
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Roughly speaking for a particular case of i.i.d. Vk,i, i = 1, . . . , n, for each group k = 1, . . . , K , these conditions allow 
log(LKp) to grow with the sample size n as

• o(n1/3(logn)−2/3) for bounded random variables;
• o(n1/4) for some sub-Gaussian random variables with finite 4-th moments;
• o(n1/4(logn)−1/2) when both Vk,i and maxk, j[Vk,i] j have finite 4-th moments;
• o(n1/3(logn)−2/3 ∨n1/2−1/q(logn)−1/2) when Vk,i have finite 4-th moments and maxk, j[Vk,i] j have finite q-th moments 

for some q > 4;
• o(n1/5) for some random variables with exponential tails and finite 4-th moments;
• o(n1/5 ∨ n(q−2)/(3q−2)) when Vk,i have finite 4-th moments and maxk, j[Vk,i] j have finite q-th moments for some q > 2.

The case of non-identical Vk,i is also allowed. In this case the average 4-th moments are allowed to grow as nα for some 
α < 1/3 or 1/4 or 1/5, but then the rate of growth for log(LKp) would need to grow slower than the rates listed above for 
i.i.d. cases. The details are explained in the Appendix.

Meanwhile, we also impose conditions on the class of matrices:
(A1) 

∑d
m=1 |A(l)

jm| ≤ s ∀ j = 1, . . . , d, ∀l = 1, . . . , L;

(A2) 
∑K

k=1 A(l)
j(q+(k−1)p)

= 0 ∀ j = 1, . . . , d ∀q = 1, . . . , p ∀l = 1, . . . , L;
(A3) min1≤l≤L min1≤ j≤d[A(l)�̄(A(l))T ] j j ≥ b > 0 for some fixed constant b, where �̄ is defined as a Kp × Kp block matrix 

of the covariances

1

n

n∑
i=1

Cov(Vk1,i, Vk2,i),

stacked by varying k1, k2 = 1, . . . , K .
Condition (A1) can be viewed as a sparsity control on matrices, where parameter s characterizes the amount of sparsity. 

We allow sparse regimes of just a few non-zero components and dense regimes of many near-zero components for matrices, 
while the underlying distribution does not need any sparsity assumptions. Note that if all covariance matrices are the same 
and A(l) is an identity matrix we recover condition (M.1) in Chernozhukov et al. (2017).

Condition (A2) comes from the null hypothesis discussed in the next subsection. Meanwhile, condition (A3) ensures that 
the smallest eigenvalues of A(l)�̄(A(l))T are bounded away from 0. Note that these matrices are the covariance matrices of 
the averaged long Kp-vectors that serve as building blocks in the test statistics Tn .

We consider several linear hypotheses: MANOVA (balanced case), MANOVA (unbalanced case), two-way MANOVA, and 
contrasts.

2.1. Balanced MANOVA

We are interested in the hypotheses

H0 : μ1 = · · · = μK vs HA : otherwise.

For the i-th vector in the k-th group Vk,i we denote its components by [Vk,i]q, q = 1, . . . , p. Recall that we propose the test 
statistic

Tn = max
l=1,...,L

max
j=1,...,Kp

n−1/2
n∑

i=1

K∑
k=1

p∑
q=1

A(l)
j(q+(k−1)p)

[Vk,i]q,

where each matrix A(l) with components A(l)
j j′ , j, j

′ = 1, . . . , Kp, satisfies conditions (A1)-(A3). Recall that the bootstrapped 
version of the test statistics is

T e
n = max

l=1,...,L
max

j=1,...,Kp
n−1/2

n∑
i=1

K∑
k=1

p∑
q=1

A(l)
j(q+(k−1)p)

ei[Vk,i − V̄k]q.

Also recall that

Qα = inf{u ∈ R : Pe(T
e
n ≤ u) ≥ 1− α}, α ∈ (0,1).

Under certain moment and tail conditions on Vis, say (C), given in the Appendix we obtain consistency of the tests. To 
formulate it, we stack group mean vectors μk ∈Rp, k = 1, . . . , K , into a long vector μ ∈RKp .
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Theorem 1. Under (A1)-(A3) and (C) we have as n → ∞
P (Tn ≥ Qα |H0) → α

and

P (Tn ≥ Qα |HA) → 1,

provided that there exist j = 1, . . . , Kp and l = 1, . . . , L such that the j-th component of A(l)μ is non-zero: [A(l)μ] j �= 0.

We also remark that p-vectors Vk,i, i = 1, . . . , n, can come from different distributions with the same mean vector μk . 
Our test can accommodate the non-identically-distributed scenario which is rare in the existing literature.

Next, in order to assess the local power of the test, we consider a class of contiguous alternatives which converge to the 
null hypothesis as n → ∞. Let

H (n)
A : μ1, . . . ,μK ∈Rp : min

l=1,...,L
min

j=1,...,Kp
[A(l)μ] j ≥ cnn

−1/2,

where the sequence cn → ∞ diverges slowly as n → ∞. Recall that Kp is allowed to grow with the sample size n.

Corollary 1. Suppose conditions of Theorem 1 are satisfied. With probability tending to 1

P (Tn ≥ Qα |H (n)
A ) → 1 as n → ∞.

This corollary indicates that the proposed test would successfully reject alternatives that are quite close to the null 
hypothesis by as little as almost a factor of n−1/2, which is almost a parametric rate (up to cn).

2.2. Unbalanced MANOVA

Suppose that now samples have different sample sizes nk, k = 1, . . . , K . Introduce a modified test statistic

T̃n = max
l=1,...,L

max
j=1,...,Kp

K∑
t=1

nt∑
i=1

p∑
q=1

n−1/2
t A(l)

j(q+(t−1)p)
[Vt,i]q.

Then introduce its bootstrapped version and quantile as

T̃ e
n = max

l=1,...,L
max

j=1,...,Kp

K∑
t=1

nt∑
i=1

p∑
q=1

n−1/2
t A(l)

j(q+(t−1)p)
ei[Vt,i − V̄ t]q

and

Q̃α = inf{u ∈ R : Pe(T̃ e
n ≤ u) ≥ 1− α}, α ∈ (0,1).

With a slight abuse of notation denote n = min1≤k≤K nk , which is heuristically the effective sample size. Renumber groups 
so that the first group has the smallest sample size. Assume

(D)
nk
n

= λk,n ∈ [1,∞), k = 2, . . . , K ,

where ratios λk,n do not have to converge as n → ∞ but should remain bounded.
We decompose T̃n into a version of Tn by grouping terms into blocks of the same size n as follows

T̃n = max
l=1,...,L

max
j=1,...,Kp

K∑
t=1

p∑
q=1

[ n∑
i=1

n−1/2λ
−1/2
t,n A(l)

j(q+(t−1)p)
[Vt,i]q

+ n−1/2λ
−1/2
t,n

λt,nn∑
i=n+1

A(l)
j(q+(t−1)p)

[Vt,i]q
]

≈ max
l=1,...,L

max
j=1,...,Kp

K∑
t=1

p∑
q=1

[ n∑
i=1

n−1/2λ
−1/2
t,n A(l)

j(q+(t−1)p)
[Vt,i]q

+ n−1/2[λt,n]−1/2
n∑ [λt,n]−1∑

A(l)
j(q+(t−1)p)

[Vt,n+(m−1)(λt,n−1)+r]q
]

m=1 r=1

4
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≈ max
l=1,...,L

max
j=1,...,Kp

K∑
t=1

p∑
q=1

n−1/2
n∑

i=1

A(l)
j(q+(t−1)p)

λ
1/2
t,n

× [λt,n]−1
[
Vt,i +

[λt,n]−1∑
r=1

Vt,n+(m−1)([λt,n]−1)+r

]
q
,

where γn ≈ δn means limn→∞ γn
δn

= 1 with probability 1. The approximation appeared due to use of integer parts of λt,n, t =
1, . . . , K . Define a new matrix Ã(l) with components

˜

A(l)
j(q+(t−1)p)

= A(l)
j(q+(t−1)p)

λ
1/2
t,n .

Finally, define new variables as

Ṽ t,i = [λt,n]−1
[
Vt,i +

[λt,n]−1∑
r=1

Vt,n+(m−1)([λt,n]−1)+r

]
, t = 1, . . . , K , i = 1, . . . ,n.

Note that EṼ t,i = μt and the samples of these new variables are independent. Also note that T̃n is an analogue of Tn with 
V replaced by Ṽ . We remark that Ṽ i, i = 1, . . . , n, are independent but they will not be identically distributed even if the 
original observations Vi ’s are.

Corollary 2. Suppose the conditions of Theorem 1 are satisfied for Ṽ t,i, i = 1, . . . , n, t = 1, . . . , K , and Ã(l), l = 1, . . . , L. Moreover, 
assume condition (D) holds for nk, k = 2, . . . , K . We have as n → ∞

P (T̃n ≥ Q̃α |H0) → α

and

P (T̃n ≥ Q̃α |HA) → 1 provided ∃ j∃l : [ Ã(l)μ] j �= 0.

This corollary establishes the consistency of the proposed test in the unbalanced MANOVA setup.

2.3. Two-way MANOVA

Consider the setup in Watanabe et al. (2020)

Yijk = μ0 + αi + β j + γi j + εi jk,k ∈ {1, . . . ,Nij}, i = 1, . . . , I, j = 1, . . . , J ,

where μ0, αi, β j, γi j are unknown p × 1 vectors of parameters, while εi jk are mean zero p × 1 random vectors with un-
known covariances �i j . For identifiability we are given a sequence of positive weights wij, i = 1, . . . , I, j = 1, . . . , J , so that ∑I

i=1 wi·αi = 0, 
∑ J

j=1 w · jβ j = 0, 
∑I

i=1 wijγi j = 0, 
∑ J

j=1 wijγi j = 0, and 
∑I

i=1
∑ J

j=1 wijγi j = 0, where wi· = ∑ J
j=1 wij and 

w · j = ∑I
i=1 wij .

Consider the null hypothesis

H0 : α1 = · · · = αI = 0.

Then look at the setup in the previous subsection with K = I groups and the comparison of means μk = μ0 +
αk when there are nk = ∑ J

j=1 Nkj non-identically distributed observations (Vk,1, . . . , Vk,nk ) = (Yk11, . . . , Yk1Nk1 , Yk21, . . . , 
Yk2Nk2 , . . . , Yk J1, . . . , Yk JNk J ). Then the test statistic T̃n would be well-defined and the test rejects H0 if T̃n > Q̃α . Analo-
gously, for the null hypothesis

H0 : β1 = · · · = β J = 0

consider K = J groups and the comparison of means μk = μ0 +βk when there are nk = ∑I
i=1 Nik non-identically distributed 

observations (Vk,1, . . . , Vk,nk ) = (Y1k1, . . . , Y1kN1k , Y2k1, . . . , Y2kN2k , . . . , Y Ik1, . . . , Y IkNIk ). Then the test statistic T̃n would be 
well-defined and the test rejects H0 if T̃n > Q̃α . Finally, consider the null hypothesis

H0 : γ11 = · · · = γ1 J = · · · = γI J .

This time one needs to look at K = I J groups and the comparison of means μ0 + αi + β j + γi j when there are nij obser-
vations Vk,m = Yijm, k = i + ( j − 1)I, i = 1, . . . , I, j = 1, . . . , J . Then the test statistic T̃n would be well-defined and the test 
rejects H0 if T̃n > Q̃α .
5
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Unlike L2-based tests proposed by Watanabe et al. (2020), our tests do not need to estimate the unknown unequal 
covariances �i j and do not need to compute computationally expensive estimator of the standard deviation of the test 
statistic. Thus, our tests are more computationally efficient than theirs.

Finally, we remark that it is straightforward to extend our framework to the 3-way, 4-way and so on, multi-level 
MANOVA setup especially given that we can let the number of groups K grow exponentially in n.

2.4. GLHT

Similar to Zhang et al. (2017), we are now interested in the hypotheses

H0 : Gμ = 0 vs HA : Gμ �= 0,

where G is a known q × Kp matrix of the rank q < Kp. This setup includes contrast tests and MANOVA. Note that (GGT )−1

exists.
Consider Kp × Kp matrices A(l) such that A(l) = M(l)[GT (GGT )−1G]T for some non-singular Kp × Kp matrices M(l) for 

all l = 1, . . . , L. The expression in squared brackets is related to Moore-Penrose matrix inverse of G . This condition on A(l)

replaces condition (A2). Under H0 we have A(l)μ = 0, while under any alternative A(l)μ �= 0. Then the test described above 
works for this setup, and Theorem 1 holds with (A2) replaced by this new structure of matrices A(l) .

Let (c1, . . . , cK ) be a non-zero vector of constants in RK . As an illustrative example consider the following hypotheses

H0 : c1μ1 + · · · cKμK = 0 vs HA : c1μ1 + · · · cKμK �= 0.

In this case G = (c1Ip, . . . , cK Ip) with Ip being a p × p identity matrix and let

A(l) = M(l)

‖c‖22

⎡
⎢⎢⎣

c21Ip c1c2Ip · · · c1cK Ip
c1c2Ip c22Ip · · · c2cK Ip
· · · · · · · · · · · ·
c1cK Ip c2cK Ip · · · c2K Ip

⎤
⎥⎥⎦ ,

where ‖c‖22 = ∑K
k=1 c

2
k and M(l) is an arbitrary non-degenerate Kp ×Kp matrix. As in balanced MANOVA define test statistics 

as

T̃n = max
l=1,...,L

max
j=1,...,Kp

K∑
k=1

nk∑
i=1

p∑
q=1

n−1/2
k A(l)

j(q+(k−1)p)
[Vk,i]q.

Then the bootstrapped test statistics are

T̃ e
n = max

l=1,...,L
max

j=1,...,Kp

K∑
k=1

nk∑
i=1

p∑
q=1

n−1/2
k A(l)

j(q+(k−1)p)
ei[Vk,i − V̄k]q.

Define quantiles of the bootstrapped distribution as

Q̃α = inf{u ∈ R : Pe(T̃ e
n ≤ u) ≥ 1− α}, α ∈ (0,1).

We reject H0 if

T̃n ≥ Q̃α.

Since A(l)μ = 0 holds if and only if H0 holds, then P (T̃n ≥ Q̃α |H0) → α and P (T̃n ≥ Q̃α |HA) → 1 provided that conditions 
of Theorem 1 are satisfied. This test allows to treat high-dimensional MANOVA and contrast tests in the unified framework 
unlike L2-norm-based tests by Cai and Xia (2014) and Chen et al. (2019).

3. Connection with other tests

In this section we show that the tests introduced in Xue and Yao (2020) and those in Lin et al. (2021) fit into our 
framework, which increases its versatility.
6
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3.1. 2-sample test by Xue and Yao (2020)

Consider the setup in Xue and Yao (2020). There are K = 2 independent groups of random vectors Vi1, Vi2, i = 1, . . . , n, 
drawn from 2 populations in R2p with means μ1, μ2 ∈ Rp . Their test statistics are the maximums of AS X

n , where the 
matrix A ∈ R2p×2p is tri-diagonal. It has 1 on the main diagonal and -1 on the diagonals that start from a1(p+1) and 
a(p+1)1. Indeed, X = (Vi1, Vi2)

T ∈ R2p and

AXi = ([Vi1 − Vi2]1, . . . , [Vi1 − Vi2]p, [Vi2 − Vi1]1, . . . , [Vi2 − Vi1]p)T .

Then

AS X
n = (SV1

n − SV2
n , SV2

n − SV1
n )T .

Therefore, their test statistic is

‖SV1
n − SV2

n ‖∞ = max
q=1,...,p

|[SV1
n − SV2

n ]q| = max
j=1,...,2p

[AS X
n ] j .

Note that condition (A2) holds for this A. Then L = 1 and A consists of just A, while s = 2. Their results can be viewed 
as the special case of our results. Note that their proofs are specially designed for K = 2 and the direct generalization would 
be difficult. It would require intricate work with U -statistics in the same spirit as what is done in Chen (2018).

3.2. MANOVA for functional data by Lin et al. (2021)

Consider the setup in Lin et al. (2021). There are K independent groups of random vectors drawn from K populations 
with means μ1, . . . , μK ∈ Rp . The k-th group after centering consists of Zk,1, . . . , Zk,n independent observations in Rp . 
Then stack vectors Z1,1, . . . , ZK ,1 into X1, and so on, finally stack Z1,n, . . . , ZK ,n into Xn . Then Xi ∈ RKp .

The test statistics in Lin et al. (2021) are the maximums of components of AS X
n , where the rows of matrix A are 

(0, . . . , 0, 1√
2στ

k,l, j

, 0, . . . , 0, − 1√
2στ

k,l, j

, 0, . . . , 0), where τ ∈ [0, 1) and the non-zero entries are in the positions (k − 1)p +
j, (l − 1)p + j for 1 ≤ j ≤ p. Here

σ 2
k,l, j = 0.5Var(X1,(k−1)p+ j) + 0.5Var(X1,(l−1)p+ j), τ ∈ [0,1).

Thus, A satisfies (A2). From the setup in Lin et al. (2021), the indices (k, l) belong to the set

(k, l) ∈ P ⊂ {(i1, i2) : 1 ≤ i1 < i2 ≤ K }.
Their test statistic is of the form of our statistic with A that consists of A and −A. Then L = 2 while s =

√
2

mink,l, j σ
τ
k,l, j

.

Note that our theorems provide at best the rates for Kolmogorov distance between the test statistic and its bootstrapped 
version of the order n−1/2+δ logn with respect to n with log(LKp) = o(nδ(logn)−2/3) for δ ∈ (0, 1/6), while Lin et al. (2021)
get rates of the order n−1/2+δ for an arbitrary δ > 0 with Kp ≤ pe

√
logn . Lin et al. (2021) attain this rate under a stringent 

requirement of a special structure of the matrices �(i) with many restrictions that are difficult to check in practice. Their 
conditions essentially reduce the high dimensional problem to a problem, where p ≈ n1/(logn)a ∨ (logn)3 with a ∈ (0, 0.5), 
whereas our tests remain valid even when p is much larger.

4. Simulation studies

The purpose of this section is to compare with existing methods and to investigate the effect of the tuning specifiers 
A(l), l = 1, . . . , L. We compare against 2 methods: Cai and Xia (2014) and Chen et al. (2019). However, both of these methods 
have limitations that our method does not have. Cai and Xia (2014) require complicated sparsity and boundedness condi-
tions on the covariance and precision matrices, which are difficult to verify in practice. In particular, they assume that the 
sparsity of precision matrix is o(n(1−q)/2(log p)−(3−q)/2) for some q ∈ [0, 1) in their Theorem 4, which addresses the case of 
unknown covariance. Their algorithm requires estimation of the precision matrix in the high-dimensional setup. They also 
assume that group covariances are the same. Chen et al. (2019) require sparsity, α-mixing of components of the observa-
tions, and log p = o(n1/3) when the precision matrix is unknown. Their algorithm also requires the estimation of precision 
matrices in the high-dimensional setup. Both methods by Cai and Xia (2014) and by Chen et al. (2019) are less efficient 
computationally than our tests largely due to precision/correlation matrices estimation.

We also stress that all compared tests have rather varied empirical levels that are quite far from the nominal level of 
0.05. Therefore we employed the two methods described in Lloyd (2005) to adjust the powers for sizes for a fair comparison.
7



N. Chakraborty and L. Sakhanenko Computational Statistics and Data Analysis 178 (2023) 107619
4.1. Four group MANOVA: tuning A

The goal of the simulations in this subsection is to tune the class of matrices A(l) and to demonstrate stability of the test 
for different classes of matrices. To this end, we are using a combination of setups in Zhang et al. (2017) and Cai and Xia 
(2014). We consider MANOVA for 4 groups for Vt,i = μt + �Zt,i, t = 1, 2, 3, 4; i = 1, . . . , nt , where Zt,i are generated from 
one of 3 models such that the p components are i.i.d. standard normal N(0, 1), standardized t-distributed with 4 degrees 
of freedom t4, or normalized chi-squared of degree 1 χ2

1 , so they have mean 0 and variance 1. Three sets of samples 
sizes and 3 sets of means (for power comparisons) are considered. They are n1 = (25, 30, 40, 50), n2 = (50, 60, 80, 100), 
and n3 = (100, 120, 160, 200). Meanwhile, μ1 = 0, μ2 = 1.5δh, μ3 = δh, and μ4 = 2δh, where a p-dimensional vector is 
h = (1, . . . , p)T /‖(1, . . . , p)‖ and a number δ varies between 0.4 and 2.6 depending on the set of the sample sizes n and 
the dimension p. Then as in Zhang et al. (2017) δ(n, p) = [0.8, 1.9, 2.6; 0.5, 1.4, 1.8; 0.4, 0.9, 1.3]. The larger δ represents the 
larger separation between the null hypothesis and the alternative. Following Zhang et al. (2017) we consider three choices 
for dimension p as 50, 500, and 1000.

Finally, the covariance matrix is ��T = (1 − ρ)Ip + ρJp , where Ip stands for the identity p × p matrix and Jp denotes 
p × p matrix of ones. The parameter ρ takes values 0.1, 0.5, 0.9. We also consider the covariance of the form 0.6|i− j|, i, j, =
1, . . . , p as in Model 4 in Cai and Xia (2014); this case we denote by ρ = NA. We use 10K bootstrap samples to obtain Qα

with α = 0.05.
The choice of matrices A(l), l = 1, . . . , L, affects the performance of our test statistic. In the first simulation study we 

consider 5-diagonal matrices. Since the problem is invariant with respect to order of the datasets and with respect to 
the coordinate system, we choose matrices that preserve these invariance properties. Define the matrix A1 that has the 
following block structure

(2Ip,−Ip,0p,−Ip;−Ip,2Ip,−Ip,0p;0p,−Ip,2Ip,−Ip;−Ip,0p,−Ip,2Ip),

where Ip stands for the identity p × p matrix. The first test statistic T (1)
n is based on {A1}. Note that L = 1, s = 4 for it.

Next, we consider 5-diagonal matrix A2 with the following block structure

(2Dp,−D,0p,−Dp;−Dp,2Dp,−Dp,0p ; 0p,−Dp,2Dp,−Dp;
−Dp,0p,−Dp,2Dp),

where Dp is a diagonal matrix with diagonal entries dk = log(2k), k = 1, . . . , p. The second test statistic T (2)
n is based on 

{A2}. Note that L = 2, s = 2 log(2p) for it.
The level and power results are summarized in Table 1. The numbers for T (2)

n are in brackets. Across the table T (2)
n

performs better than T (1)
n . The powers increase when sample sizes increase. The power decreases with the increase in 

dimension. The power decreases as the covariance structure changes from nearly diagonal (ρ = 0.1) to nearly singular 
ρ = 0.9. Both tests have mediocre performance for t4 distribution with covariance structures ρ = 0.5, NA. The performance 
is excellent for normal and χ2

1 distributions.
For the second simulation, we consider 15-diagonal matrices. Define matrix A3 with the following block structure

(3Bp,−Bp,−Bp,−Bp; −Bp,3Bp,−Bp,−Bp ; −Bp,−Bp,3Bp,−Bp;
−Bp,−Bp,−Bp,3Bp),

where Bp has ones on the main and above-main diagonals, it has zeros everywhere else. The third test statistic T (3)
n is 

based on {A3}. Note that L = 1, s = 6 for it.
Next, consider A4 with the block structure

(9Dp,−Dp,−2Dp,−6Dp; −6Dp,9Dp,−Dp,−2Dp ; −2Dp,−6Dp,9Dp,−Dp;
−Dp,−2Dp,−6Dp,9Dp),

where Dp is defined in T (2)
n . The fourth test statistic T (4)

n is based on matrices obtained from A4 by permuting the blocks 
in a circular fashion among indices (1234), (2341), (3412), (4123). Note that L = 4, s = 18 log(2p) for it.

The level and power results are summarized in Table 2. The numbers for T (4)
n are in brackets. The two tests have 

comparable level performance. As expected, the powers increase when sample sizes increase. The power decreases with 
the dimension increase. The power decreases as the covariance structure changes from nearly diagonal (ρ = 0.1) to nearly 
singular ρ = 0.9. The performance is excellent for normal and χ2

1 distributions. As before t4 distribution presents the most 
difficult challenge for the tests. The level is poor for p = 1000, n1, ρ = NA, but it dramatically improves with sample size 
increase. For other cases under t4 model, the tests perform good.

Upon examination of both Tables 1 and 2, across all scenarios T (4)
n has the best power performance than other 3 tests 

T (m)
n , m = 1, 2, 3. This can be explained through the structure of the underlying class of convex sets. This class is richer for 
8
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Table 1
Level and adjusted power performance of T (1)

n (T (2)
n ). We used 5-diagonal matrices, 10K bootstrap repetitions, and 1K empirical repetitions for each entry.

ρ p n Size 
N

Size 
t4

Size 
χ2
1

Power 
N

Power 
t4

Power 
χ2
1

0.1 50 n1 3.9(4.1) 2.2(2.1) 3.7(3.6) 29.7(48.9) 24.0(41.8) 19.9(34.8)
n2 5.2(3.5) 2.6(2.2) 4.9(3.7) 30.4(46.7) 23.5(39.1) 19.4(36.4)
n3 4.4(5.4) 3.4(3.7) 5.0(5.1) 39.4(48.6) 35.9(44.8) 30.0(43.5)

0.1 500 n1 2.5(2.5) 0.2(0.1) 1.4(1.8) 25.9(41.0) 43.2(27.2) 13.7(19.9)
n2 3.3(3.3) 0.8(0.4) 3.0(3.3) 31.0(45.1) 11.3(34.5) 17.7(29.5)
n3 4.0(3.7) 0.8(1.0) 5.5(6.1) 24.0(48.8) 21.1(34.0) 19.7(25.3)

0.1 1000 n1 2.3(2.0) 0.3(0.1) 1.0(0.9) 23.7(40.3) 7.8(14.3) 9.8(21.2)
n2 3.1(2.7) 0.3(0.1) 2.7(2.9) 27.3(42.0) 11.1(30.9) 14.3(23.4)
n3 4.3(4.5) 0.3(0.6) 5.4(3.4) 26.6(38.2) 21.0(30.5) 16.5(35.6)

0.5 50 n1 4.2(5.3) 2.4(2.7) 4.6(4.8) 25.8(36.0) 24.7(36.2) 23.0(30.9)
n2 3.6(4.1) 3.7(3.2) 5.0(4.3) 29.3(33.3) 20.0(31.0) 22.0(26.9)
n3 5.8(5.5) 5.0(3.6) 5.4(4.9) 24.3(35.4) 25.3(36.0) 22.9(38.6)

0.5 500 n1 3.2(3.0) 1.8(1.3) 1.7(2.9) 22.5(28.3) 9.3(16.3) 20.5(19.6)
n2 5.1(4.6) 3.1(1.7) 3.9(5.4) 19.2(23.6) 11.1(26.8) 15.7(19.6)
n3 4.6(4.4) 3.7(3.9) 5.4(5.1) 26.2(24.8) 12.4(18.5) 13.8(21.4)

0.5 1000 n1 3.5(4.2) 0.6(0.2) 2.2(2.7) 17.1(24.1) 12.2(26.8) 11.8(19.3)
n2 5.3(4.8) 0.7(1.2) 4.5(3.8) 13.8(20.9) 17.1(18.8) 12.7(21.5)
n3 4.7(4.6) 1.7(2.7) 4.8(5.3) 18.6(25.2) 14.9(18.3) 15.5(21.1)

0.9 50 n1 5.5(6.3) 5.0(3.6) 5.1(4.8) 20.1(27.1) 23.0(35.2) 18.4(31.0)
n2 5.0(5.7) 4.6(4.5) 4.5(5.1) 22.3(23.2) 24.4(26.0) 21.4(25.3)
n3 5.3(5.2) 5.1(4.8) 5.3(4.7) 28.5(32.3) 24.3(29.3) 23.9(32.4)

0.9 500 n1 5.1(3.5) 3.4(5.1) 3.6(4.6) 15.0(23.9) 15.6(15.3) 19.4(19.0)
n2 5.2(5.0) 4.2(4.3) 5.0(5.7) 19.8(22.1) 17.4(18.4) 16.3(18.1)
n3 5.1(4.6) 4.7(4.8) 5.2(5.4) 21.1(23.7) 17.0(17.4) 16.7(19.3)

0.9 1000 n1 5.7(4.8) 2.7(3.4) 4.7(4.3) 13.6(18.9) 13.1(18.8) 13.4(16.3)
n2 5.3(4.8) 3.9(3.7) 3.9(4.4) 15.7(19.1) 14.2(15.8) 15.9(20.7)
n3 5.5(4.5) 4.0(4.4) 4.7(5.3) 15.9(21.3) 15.7(17.5) 15.0(18.7)

NA 50 n1 2.4(4.4) 2.9(2.3) 5.5(4.7) 36.4(45.3) 26.5(38.6) 20.5(33.3)
n2 4.0(4.5) 3.4(3.1) 5.3(4.9) 31.6(46.1) 26.4(44.7) 23.0(40.2)
n3 5.0(3.5) 4.0(4.5) 5.5(6.3) 34.5(53.0) 30.5(40.0) 33.1(42.4)

NA 500 n1 2.5(2.4) 0.4(0.2) 1.5(2.0) 24.7(40.9) 9.4(33.3) 15.8(23.2)
n2 3.2(3.8) 0.4(0.7) 2.9(2.9) 32.8(44.2) 27.4(33.6) 20.9(32.6)
n3 4.3(4.9) 2.8(1.7) 5.9(4.4) 31.3(36.8) 16.8(29.5) 20.8(35.6)

NA 1000 n1 2.3(2.1) 0.1(0.2) 1.0(1.2) 29.1(41.7) 7.6(12.9) 15.3(22.9)
n2 2.3(2.9) 0.1(0.4) 2.6(2.8) 32.3(47.3) 18.9(21.8) 17.1(28.7)
n3 2.7(4.2) 0.7(1.1) 5.5(4.1) 37.6(42.5) 19.7(28.4) 19.8(36.0)

T (4)
n than the rest of the tests. On a rare occasion, test T (2)

n has comparable or slightly better power than T (4)
n , for instance 

when p = 50, n3, ρ = 0.5, NA for χ2
1 model. In general, one needs to select a finite number L of sparse matrices A(l) such 

that A(l)μ is maximized in some sense under the fixed alternative.
Finally, we remark that the case of t distribution with 4 degrees of freedom seems to be the most challenging dis-

tribution for our tests. The reason is that we perform a relatively small sample size comparison under i.i.d. setup, when 
Bn is a constant. However, this constant is 4.312 times higher for t with 4 degrees of freedom than that constant for the 
standard normal distribution. This impacts the performance when n is relatively small compared to p. The power picks up 
significantly if we increase the minimum sample size from 100 in n3 to 200.

In comparison to the various tests in Zhang et al. (2017) our tests have good level performance but tend to be a bit 
conservative, while Zhang et al. (2017) tests tend to overshoot the nominal level, see their Table 1. Looking at power 
performance in their Table 2, their tests do good for normal distribution with ρ = 0.1 but our tests do better for all other 
cases. We also remark that case ρ = NA was not studied in Zhang et al. (2017). In particular, we refer to Table 3 that 
contains the level and power information for TL2D test in Zhang et al. (2017) in comparison to our T (4)

n .

4.2. Comparison with Cai and Xia (2014) approach

In the third simulation we compare our approach with that of Cai and Xia (2014). We consider 5-diagonal matrix A5

with the following block structure
9
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Table 2
Level and adjusted power performance of T (3)

n (T (4)
n ). We used 15-diagonal matrices, 10K bootstrap repetitions, and 1K empirical repetitions for each entry.

ρ p n Size 
N

Size 
t4

Size 
χ2
1

Power 
N

Power 
t4

Power 
χ2
1

0.1 50 n1 3.1(2.7) 3.2(2.3) 4.5(3.9) 40.7(71.7) 33.1(60.9) 29.9(54.9)
n2 4.5(4.2) 3.5(3.5) 4.5(5.8) 42.9(67.6) 36.2(57.4) 34.4(49.8)
n3 5.1(4.4) 4.4(4.5) 5.4(5.2) 46.0(68.3) 39.5(62.4) 40.6(59.2)

0.1 500 n1 3.0(2.3) 0.6(0.7) 3.1(2.8) 31.9(53.8) 24.1(36.2) 21.9(33.0)
n2 2.7(3.1) 1.1(1.6) 4.8(3.9) 44.1(55.5) 31.0(45.6) 27.8(43.7)
n3 5.2(4.9) 1.4(2.5) 6.4(4.9) 36.6(43.4) 34.7(36.4) 24.6(37.4)

0.1 1000 n1 1.5(2.1) 0.1(0.4) 3.1(1.5) 39.2(56.9) 31.5(35.0) 17.9(39.6)
n2 3.3(2.9) 0.6(0.6) 4.9(4.0) 32.5(49.6) 27.6(45.8) 20.9(36.4)
n3 4.1(4.3) 1.4(2.5) 5.4(4.2) 33.8(50.3) 32.8(40.6) 26.5(47.7)

0.5 50 n1 5.1(4.0) 3.2(3.4) 5.3(5.3) 18.3(38.6) 20.7(35.2) 18.9(29.1)
n2 3.9(4.0) 5.5(4.0) 6.9(5.3) 25.3(39.0) 20.0(33.2) 16.7(31.2)
n3 5.5(4.2) 4.7(4.3) 5.4(5.1) 22.9(38.7) 24.7(32.5) 22.4(32.8)

0.5 500 n1 5.4(3.9) 2.3(2.7) 3.6(4.5) 13.9(22.1) 13.0(18.9) 15.0(19.8)
n2 4.7(4.7) 3.3(2.9) 4.7(6.8) 18.3(26.5) 16.3(26.7) 18.4(17.3)
n3 4.0(5.2) 3.7(2.9) 5.7(5.5) 21.0(19.9) 16.1(23.4) 16.4(21.5)

0.5 1000 n1 4.0(3.5) 1.5(2.0) 4.3(3.6) 14.8(24.1) 12.9(18.7) 11.9(18.5)
n2 5.0(4.4) 2.8(2.4) 4.4(5.3) 15.4(23.3) 15.2(19.0) 18.9(17.2)
n3 3.8(5.1) 3.2(3.4) 3.3(4.2) 20.9(20.4) 15.0(20.2) 23.6(22.9)

0.9 50 n1 6.0(5.1) 4.8(6.2) 5.9(5.6) 18.4(28.7) 21.2(26.5) 18.7(27.9)
n2 4.8(4.2) 4.9(4.4) 5.2(4.8) 31.5(32.6) 27.1(33.5) 37.7(30.9)
n3 3.8(5.5) 3.3(5.1) 5.1(6.3) 49.3(30.9) 46.4(33.6) 43.1(27.8)

0.9 500 n1 5.3(5.1) 4.8(3.7) 3.6(6.1) 13.4(18.0) 10.9(20.0) 19.1(14.4)
n2 5.2(3.9) 4.6(5.4) 5.2(6.9) 15.3(25.4) 13.7(18.5) 15.5(15.7)
n3 4.8(5.0) 4.1(4.3) 7.1(5.2) 16.5(22.0) 15.8(22.0) 12.7(20.4)

0.9 1000 n1 5.4(6.3) 5.7(4.1) 5.8(4.5) 14.4(14.9) 8.9(17.9) 11.3(18.3)
n2 4.1(4.8) 6.2(4.2) 6.1(5.5) 17.4(17.7) 10.5(16.6) 11.2(15.0)
n3 4.0(4.6) 4.2(4.2) 5.4(6.0) 17.9(20.9) 14.7(17.5) 13.4(15.3)

NA 50 n1 4.0(4.0) 2.0(2.3) 4.2(4.2) 31.0(42.9) 30.0(42.5) 24.4(32.0)
n2 2.8(3.0) 3.6(3.0) 6.9(5.9) 38.6(48.3) 23.1(43.2) 18.3(33.0)
n3 5.3(4.7) 3.7(4.2) 5.0(5.6) 30.2(45.0) 30.6(40.4) 26.9(40.6)

NA 500 n1 1.9(1.7) 0.7(0.6) 3.0(3.2) 28.5(45.4) 23.9(29.3) 15.1(18.2)
n2 2.9(3.9) 1.0(1.2) 3.9(4.1) 34.4(40.7) 22.8(38.2) 22.1(32.0)
n3 3.1(3.2) 1.2(2.4) 4.9(5.2) 33.9(45.7) 21.8(29.3) 20.8(28.8)

NA 1000 n1 1.3(1.5) 0.3(0.4) 3.2(1.7) 29.5(44.7) 14.3(19.5) 12.5(22.3)
n2 3.2(3.8) 0.9(0.8) 2.9(4.6) 43.2(59.4) 17.5(27.8) 22.4(25.9)
n3 3.4(4.1) 1.7(1.1) 5.7(4.9) 33.3(43.1) 21.2(37.1) 19.9(33.7)

(Dp,−Dp/3,0p,−2Dp/3;−2Dp/3,2Dp,−Dp/3,0p ; 0p,−2Dp/3,2Dp,−Dp/3;
−Dp/3,0p,−2Dp/3,2Dp),

where Dp is a diagonal matrix with diagonal entries dk = log(2k), k = 1, . . . , p. The fifth test statistic T (5)
n is based on 

{A5, A′
5}, where A′

5 is similar to A5 with weights 1/3 and 2/3 switched. Note that L = 2, s = 2 log(2p) for it.
For Cai and Xia (2014) approach we use their tests �α(�̂), �α(�̂) with the CLIME estimator �̂ of Cai et al. (2011) for the 

unknown precision matrix � = �−1. As recommended in Cai and Xia (2014) we used intermediate correction �α(�̂), which 
helps with level performance, but it lowers power. We notice that when ρ = 0.5 or NA the correction does not change the 
test �α(�̂) into �α(�̂). Also for these two cases the power gets worse with changes in sample size, the power performance 
of �α(�̂) is unstable and poor. This can be explained by the accumulated errors from CLIME estimation of the precision 
matrix.

The results are summarized in Table 4. Our test T (5)
n outperforms �α(�̂) when ρ = 0.1 (almost a diagonal covariance 

matrix) for all dimensions and all distributions except t4, for which the results are mixed. It outperforms �α(�̂) when 
ρ = 0.5 everywhere except for t4 and χ2

1 distributions with p = 500, n1 and p = 1000, n2 .

However, for ρ = 0.9 (almost singular covariance matrix) �α(�̂) has exceptionally high power but poor level while our 
test has good level and solid power performance. After singular value decomposition such covariance is quite sparse, and 
that is when test �α(�̂) really shines.

For the case of ρ = NA, our test outperforms �α(�̂) for all dimensions and all distributions. We conjecture that the 
power loss happens due to numerical errors accumulated in the precision matrix estimation process where we used CLIME. 
10
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Table 3
Level and adjusted power performance of T (4)

n and TL2D in Zhang et al. (2017) in brackets.
ρ p n Size 

N
Size 
t4

Size 
χ2
1

Power 
N

Power 
t4

Power 
χ2
1

0.1 50 n1 2.7(6.1) 2.3(5.1) 3.9(4.9) 71.7(52.0) 60.9(54.0) 54.9(54.8)
n2 4.2(5.5) 3.5(5.1) 5.8(5.4) 67.6(42.5) 57.4(42.3) 49.8(42.3)
n3 4.4(6.0) 4.5(5.4) 5.2(4.9) 68.3(52.8) 62.4(54.7) 59.2(55.8)

0.1 500 n1 2.3(6.8) 0.7(6.1) 2.8(6.6) 53.8(42.5) 36.2(43.4) 33.0(41.7)
n2 3.1(6.4) 1.6(6.4) 3.9(6.2) 55.5(46.2) 45.6(46.0) 43.7(47.7)
n3 4.9(6.3) 2.5(6.0) 4.9(6.3) 43.4(38.8) 36.4(39.2) 37.4(38.6)

0.1 1000 n1 2.1(6.5) 0.4(6.9) 1.5(6.8) 56.9(42.2) 35.0(40.0) 39.6(40.8)
n2 2.9(6.3) 0.6(6.6) 4.0(6.9) 49.6(40.4) 45.8(38.9) 36.4(38.4)
n3 4.3(6.5) 2.5(6.8) 4.2(6.2) 50.3(41.5) 40.6(40.6) 47.7(43.1)

0.5 50 n1 4.0(6.3) 3.4(6.1) 5.3(5.8) 38.6(15.3) 35.2(16.6) 29.1(16.4)
n2 4.0(5.8) 4.0(5.7) 5.3(5.6) 39.0(13.8) 33.2(13.4) 31.2(14.3)
n3 4.2(5.4) 4.3(5.3) 5.1(6.0) 38.7(17.5) 32.5(17.2) 32.8(16.3)

0.5 500 n1 3.9(6.2) 2.7(6.3) 4.5(6.0) 22.1(10.6) 18.9(10.6) 19.8(10.9)
n2 4.7(5.6) 2.9(6.0) 6.8(5.9) 26.5(11.9) 26.7(11.9) 17.3(11.5)
n3 5.2(5.7) 2.9(5.8) 5.5(5.7) 19.9(10.4) 23.4(10.1) 21.5(10.4)

0.5 1000 n1 3.5(6.3) 2.0(6.2) 3.6(6.1) 24.1(10.0) 18.7(10.7) 18.5(10.9)
n2 4.4(5.9) 2.4(5.8) 5.3(6.0) 23.3(10.9) 19.0(10.6) 17.2(10.7)
n3 5.1(5.5) 3.4(6.0) 4.2(6.2) 20.4(10.8) 20.2(9.8) 22.9(10.1)

0.9 50 n1 5.1(6.1) 6.2(5.9) 5.6(6.0) 28.7(10.3) 26.5(10.3) 27.9(10.3)
n2 4.2(5.5) 4.4(5.3) 4.8(5.0) 32.6(9.6) 33.5(9.2) 30.9(9.7)
n3 5.5(5.6) 5.1(5.2) 6.3(5.5) 30.9(10.8) 33.6(10.9) 27.8(10.4)

0.9 500 n1 5.1(5.5) 3.7(5.5) 6.1(5.7) 18.0(8.5) 20.0(8.0) 14.4(8.4)
n2 3.9(5.7) 5.4(5.5) 6.9(5.4) 25.4(7.9) 18.5(8.6) 15.7(8.5)
n3 5.0(5.3) 4.3(5.0) 5.2(5.2) 22.0(7.7) 22.0(8.3) 20.4(7.6)

0.9 1000 n1 6.3(6.1) 4.1(5.5) 4.5(5.7) 14.9(7.3) 17.9(8.1) 18.3(7.8)
n2 4.8(5.8) 4.2(5.4) 5.5(5.0) 17.7(7.1) 16.6(7.7) 15.0(8.2)
n3 4.6(5.3) 4.2(5.7) 6.0(5.7) 20.9(7.6) 17.5(7.6) 15.3(7.3)

It is possible that with better and faster precision matrix estimators �α(�̂) could have better performance. We also remark 
that for several scenarios test �α(�̂) struggles to differentiate between null and alternative hypotheses, since the level and 
power values are close.

We performed all the simulations in Matlab. This computational work was partially supported by Michigan State Uni-
versity High Performance Computing Center through computational resources provided by the Institute for Cyber–Enabled 
Research. We would like to mention the computational cost in this simulation study. The need for precision matrix estima-
tion and lack of sparsity in means and covariances lead to severe increase in computational time for the test from Cai and 
Xia (2014) in comparison to our test. For example, for p = 500, K = 4, ρ = NA our test did 1000 empirical iterations in 45 
minutes while 1 iteration of Cai and Xia’s test took 72 minutes. For p = 1000, K = 4, ρ = NA our test did 1000 empirical 
iterations in 6 hours while 1 iteration of test from Cai and Xia (2014) took 15 hours. This comparison is based on running 
both codes on 1 node Intel(R) Xeon(R) CPU E5-2680 v4 2.40 GHz with 492 GB memory and 190 GB disk size. Usage of the 
fastclime approach from Pang et al. (2014) had the modest effect for the datasets that had non-sparse precision matrices.

4.3. Comparison with Chen et al. (2019) approach

For the fourth simulation study we consider the setup in Chen et al. (2019). Under normal distribution model they 
consider K = 3 groups with different covariance matrices of the form λ|i− j|, i, j, = 1, . . . , p, with λ = 0.4, 0.5, 0.6 for group 
1, 2, 3, respectively. Under the null hypothesis H0 all means μ1, μ2, μ3 are zero. Under their sparse alternative HA the first 
group has μ1 = 0, the other two means combined form a sparse vector of length 2p with only [(2p)0.4] non-zero entries of 
magnitude (2r log(2p)/n)1/2 uniformly distributed among 2p components. Parameter r controls the strength of the signal 
and varies between 0.1, 0.2, and 0.4. Chen et al. (2019) proposed multi-thresholding method for MANOVA problem. Mult-A1 
and Mult-A2 correspond to their tests without and with data transformation, the latter requires precision matrix estimation 
for unknown �i, i = 1, 2, 3.

We consider 5-diagonal matrix A6 with the block structure

(Dp,−Dp/3,−2Dp/3;−Dp/3,Dp,−2Dp/3;−2Dp/3,Dp,−Dp/3),
11
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Table 4
Comparison of our method vs Cai and Xia (2014) method whose numbers are given in brackets. Powers are adjusted for sizes.

ρ p n Size 
N

Size 
t4

Size 
χ2
1

Power 
N

Power 
t4

Power 
χ2
1

0.1 50 n1 5.7(13.1) 2.4(14.8) 4.3(14.8) 55.6(15.1) 50.7(15.6) 38.3(12.2)
n2 6.1(9.0) 3.5(8.7) 5.5(9.3) 55.5(10.0) 49.9(11.6) 37.5(10.9)
n3 7.0(5.9) 4.9(5.9) 8.7(6.9) 55.0(13.9) 50.4(13.6) 44.2(10.3)

0.1 500 n1 3.9(9.0) 0.4(3.8) 1.8(9.1) 44.7(11.0) 22.9(27.6) 26.6(10.2)
n2 5.4(7.6) 1.6(3.1) 4.5(7.2) 46.0(9.4) 23.5(26.6) 29.3(8.9)
n3 7.9(6.5) 1.6(3.9) 6.3(3.9) 32.5(9.1) 30.7(18.8) 33.5(12.3)

0.1 1000 n1 3.3(15.9) 0.1(22.1) 1.1(32.4) 44.3(24.2) 15.6(19.8) 24.4(7.6)
n2 4.5(15.8) 0.3(18.9) 4.0(12.6) 42.0(9.7) 23.1(9.0) 22.9(9.8)
n3 6.5(7.1) 1.0(9.0) 6.0(12.1) 45.9(14.3) 32.0(12.6) 31.2(9.0)

0.5 50 n1 5.3(7.5) 3.2(8.5) 5.9(6.5) 42.7(16.8) 44.1(17.3) 30.5(20.0)
n2 6.7(6.6) 4.2(6.5) 6.0(5.1) 39.1(15.4) 41.0(13.0) 31.0(22.0)
n3 8.9(5.1) 4.5(5.9) 8.3(4.7) 33.7(17.6) 43.1(13.5) 31.5(21.9)

0.5 500 n1 5.0(9.4) 1.8(3.9) 4.1(7.8) 27.5(16.5) 20.5(31.7) 18.6(20.1)
n2 8.0(8.8) 2.2(4.9) 7.0(7.6) 23.3(9.0) 28.3(13.9) 19.6(10.8)
n3 7.1(5.6) 3.4(6.1) 7.1(7.0) 24.3(9.7) 23.7(8.6) 20.3(9.6)

0.5 1000 n1 6.0(11.8) 1.0(12.9) 3.3(9.6) 20.5(10.9) 17.5(15.2) 22.1(14.4)
n2 6.7(2.8) 2.0(1.9) 6.4(7.1) 21.5(21.8) 19.6(33.5) 18.3(10.5)
n3 6.5(2.7) 3.6(2.9) 6.3(6.2) 25.5(17.8) 20.5(7.1) 24.0(11.2)

0.9 50 n1 6.9(5.6) 8.2(4.3) 7.9(5.0) 29.1(42.3) 29.5(50.2) 26.2(49.4)
n2 6.7(5.1) 6.2(5.5) 7.0(4.7) 30.5(48.1) 35.8(47.2) 31.1(59.2)
n3 6.2(5.0) 5.3(4.9) 6.8(5.4) 34.1(59.6) 39.2(59.7) 33.6(60.6)

0.9 500 n1 7.6(7.0) 4.7(15.6) 7.2(11.3) 20.7(61.6) 19.4(46.8) 16.4(51.8)
n2 8.8(7.3) 5.9(14.7) 6.7(14.6) 20.9(63.9) 20.3(56.0) 21.8(51.5)
n3 7.8(7.4) 6.8(13.6) 6.7(15.7) 24.7(73.1) 19.9(60.3) 22.7(64.9)

0.9 1000 n1 6.9(10.1) 3.8(12.9) 6.0(14.9) 18.0(44.8) 18.7(42.6) 17.5(35.4)
n2 7.6(5.0) 5.0(9.6) 6.2(5.9) 18.1(60.1) 18.1(56.1) 18.9(57.6)
n3 8.4 (6.8) 5.5(3.9) 7.8(4.1) 17.8(58.0) 17.6(75.4) 16.5(69.4)

NA 50 n1 5.5(12.0) 4.3(12.3) 5.9(11.3) 51.8(6.3) 41.4(5.6) 35.6(5.5)
n2 6.0(7.1) 5.5(7.6) 6.5(6.0) 50.9(8.3) 40.6(5.1) 41.1(6.5)
n3 7.3(5.8) 6.4(6.0) 6.8(5.6) 48.3(3.9) 43.4(6.2) 49.5(5.1)

NA 500 n1 4.5(18.1) 0.4(17.1) 2.2(21.4) 43.6(10.4) 30.3(13.0) 27.9(13.8)
n2 5.5(17.2) 1.6(13.7) 4.4(19.2) 46.0(5.5) 31.3(12.7) 36.0(7.3)
n3 5.8(7.5) 2.4(7.1) 6.7(13.1) 54.3(8.6) 34.3(9.5) 35.6(6.6)

NA 1000 n1 2.6(15.8) 0.3(20.9) 2.0(24.1) 52.7(21.1) 21.0(15.0) 22.6(9.4)
n2 5.2(14.5) 0.8(18.0) 4.8(17.1) 49.2(9.2) 25.2(7.8) 30.6(9.1)
n3 7.9(12.1) 1.8(8.8) 6.6(16.4) 46.8(7.6) 32.3(11.5) 39.0(5.6)

where Dp is a diagonal matrix with diagonal entries dk = log(2k), k = 1, . . . , p, as in A5. The sixth test statistic T (6)
n is based 

on {A6, A′
6}, where A′

6 is similar to A6 with weights 1/3 and 2/3 switched. Note that L = 2, s = 2 log(2p) for it. We use 10K 
bootstrap samples to obtain Qα with α = 0.05.

The comparison results are summarized in Table 5. The level performance of our test is better than both tests from 
Chen et al. (2019) especially for higher dimensional case p = 400. With respect to power, our test is comparable to Mult-
A1, which is applied to the untransformed data. Of course Mult-A2 is better than our test because it is adjusted to the 
covariance structure but it requires precision matrix estimation, which makes it rather slow. Both Mult-A1 and Mult-A2 are 
designed for sparse means (controlled by r in simulation) and sub-Gaussian distributions. They are not applicable under 
scenarios considered in subsections 4.1 and 4.2. Overall, the applicability of both Mult-A1 and Mult-A2 tests is more narrow 
than the applicability of our test.

5. Real data example

We consider the second example in Zhang and Sakhanenko (2019). It is based on the dataset from Lee et al. (2008)
work on fish species’ recognition and migration monitoring. For each fish, the shape pattern as a vector of dimension 463 
is obtained. They consider 7 fish species that have similar shape characteristics. For each species 50 fish are sampled. The 
dataset can be obtained from the UCR Time Series Classification and Clustering archive

http://www.cs.ucr.edu/~eamonn/time_series_data
12
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Table 5
Comparison of our method T (6)

n with Chen et al. (2019) multi-thresholding methods for sparse mean alternative. Powers are adjusted for sizes, r controls 
the strength of the signal in the alternatives.

(p,n1,n2,n3) Method Size r = 0.1 r = 0.2 r = 0.4

(100, 40, 40, 40) T (6)
n 4.7 8.8 12.8 26.2

Mult-A1 2.5 9.8 16.6 33.7
Mult-A2 4.3 16.8 30.3 89.6

(100, 80, 80, 80) T (6)
n 4.2 14.7 16.9 30.0

Mult-A1 3.4 8.3 16.2 39.4
Mult-A2 4.0 26.6 59.3 98.4

(100, 100, 100, 100) T (6)
n 4.8 11.5 18.4 29.0

Mult-A1 5.0 8.3 12.4 35.7
Mult-A2 4.9 20.1 48.7 99.1

(200, 40, 40, 40) T (6)
n 5.8 8.2 10.7 23.3

Mult-A1 2.2 8.7 14.7 37.9
Mult-A2 2.0 24.1 69.9 98.7

(200, 80, 80, 80) T (6)
n 6.0 10.3 13.3 27.5

Mult-A1 4.1 6.9 14.6 44.6
Mult-A2 5.0 27.8 66.9 99.0

(200, 100, 100, 100) T (6)
n 5.8 12.3 14.8 26.8

Mult-A1 3.7 9.1 17.1 48.5
Mult-A2 5.0 21.2 75.2 99.5

(400, 40, 40, 40) T (6)
n 6.2 8.3 11.1 23.0

Mult-A1 2.0 9.4 12.2 39.7
Mult-A2 2.7 19.5 51.4 97.9

(400, 80, 80, 80) T (6)
n 6.0 9.2 13.4 29.7

Mult-A1 4.7 6.3 13.0 46.3
Mult-A2 4.1 28.6 73.2 99.4

(400, 100, 100, 100) T (6)
n 5.3 14.4 15.8 33.8

Mult-A1 3.3 10.8 17.9 78.7
Mult-A2 4.1 30.9 52.9 100

Fig. 1. Shape characteristics for 7 different fish species are summarized.

Initial visual assessment is presented in Fig. 1. There are K = 7, p = 463, n = 50. In particular, we computed 1p ‖V̄ i − V̄ j‖22
for all pairs 1 ≤ i < j ≤ K , and summarized them in the boxplot in Fig. 1. We also graphed V̄ i, i = 1, . . . , K for reference. 
We can speculate that differences between species 2 and species 3, and species 3 and species 5 are more pronounced than 
the rest of the species. Note that the data is not sparse and the pairwise differences are quite close.

We apply our method to this problem. We consider the class of matrices that are obtained by permutations of group 
indices with base matrix A that consists of 7-by-7 blocks as follows

(21B,−B,−2B,−3B,−4B,−5B,−6B;−6B,21B,−B,−2B,−3B,−4B,

−5B;−5B,−6B,21B,−B,−2B,−3B,−4B;−4B,−5B,−6B,21B,−B,
13
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−2B,−3B;−3B,−4B,−5B,−6B,21B,−B,−2B;−2B,−3B,−4B,

−5B,−6B,21B,−B;−B,−2B,−3B,−4B,−5B,−6B,21B),

where B = B50 is introduced in subsection 4.1. Note that the resulting matrix has 30 diagonals. The test statistic is 
T50 = 9225.5, while the bootstrapped quantile is Q = 3237.7 for α = 0.05 with 10K bootstrap repetitions. Thus, there 
are statistically significant differences between means for the shapes of fish species.

6. Discussion and conclusion

In this paper we have introduced a framework of bootstrap tests that can address several different testing problems in 
high-dimensional setup (n << p) in a unified fashion. This is done by considering tests statistics that are maximums of 
sums over sparse classes of convex sets of a novel type. These classes serve the role of a tuning mechanism, which can 
be chosen based on the particular problem. Basically for a hypothesis about means, one needs to select a finite number 
of sparse matrices A(l), l = 1, . . . , L, such that A(l)μ = 0 under the null hypothesis. To get a test with high power under a 
specific alternative, one needs to select these matrices so that components of A(l)μ are maximized. For instance, in case of 
very sparse alternative, one needs several more dense matrices, however, that is controlled by condition (A1) and one can 
only ask for s = O ((log(LKp))a) for power a = 3/2 or 5/2 depending on moment conditions. On the other hand, for dense 
means μk one can use a single matrix (so L = 1) with just a few non-zero diagonals, so in this case s is a finite number. 
In practice, one can estimate μ by stacking groupwise sample means, say μ̂n and then choose a relatively small number of 
relatively sparse matrices A(l) that maximize some norm of A(l)μ̂n . This would lead to good empirical power.

Intuitively speaking, we control the sparsity of the tuning mechanism instead of sparsity assumptions on the underlying 
data.

The resulting bootstrap tests have many advantages. In particular, they are consistent against any fixed alternative; they 
attain good level and power for large p and small n. They are distribution and correlation free. They are computationally 
fast. In particular, they are faster by as much as p times in comparison to methods that require precision matrix estimation. 
Even for sparse alternatives, our tests have comparable performance to that of the existing specialized tests. We only require 
mild moment and tail assumptions on the distributions. We do not require that the ratios of sample sizes converge to a 
specific limit. Unlike current tests in literature, we do not require the samples to come from the same distribution, the tail 
and moment conditions have Bn that can grow with n in the non-identical case.

The only drawback is that our methods have the rate of convergence of the distance between the test statistic 
and its bootstrapped version of at best (log(LKp))3/2n−1/2 logn for bounded distributions, and at worst this rate is 
(log(LKp))5/6n−1/6 for variables with finite 4-th moments and control of the maximum of the variables, which is quite far 
from a parametric rate. Our framework can accommodate tests of the type as in Lin et al. (2021), where they are exploiting 
the covariance structure. In particular, the decay of covariance components with the dimension p leads to specialized tests 
with nice near-parametric rates as in Lin et al. (2021). However, this covariance structure has to be verified in practice, 
which could be difficult in general apart from functional and sparse count data. Intuitively, such covariance structures give 
a dimension reduction mechanism and the effective dimension becomes of the same order as n.

Our work is different from Zhang et al. (2018) who proposed MANOVA test that adapts to the sparsity of the alternative 
based on the data. Our work comes with exact rates for the tests, see Corollary 2 unlike their tests. Moreover, our methods 
allow for growing K = Kn as long as log(LKp) = o(nδ) for δ ∈ (0, 1/3) for bounded random variables and for δ ∈ (0, 1/5)
for random variables with finite 4-th moments. The computation is also much easier as we do not require estimation of 
individual elements of the covariances. We can allow all the quantities s = sn, Bn, L = Ln, K = Kn , and p = pn to grow with 
n. We can consider extreme particular cases. For example, if only s is allowed to grow then it can be as large as s = o(n1/2). 
If only p is allowed to grow, it can be as large as log p = o(n1/3(logn)−2/3). The same argument holds for K and L. One can 
re-balance different growth assumptions put on s, K , L, and p. These growth assumptions are better than those in Zhang et 
al. (2018).

From a probabilistic point of view, this work also introduces a novel class of convex classes, for which the Berry-Esseen 
type results are obtained. This new class of convex sets generalizes the classes of half-spaces and hyper-rectangles to 
classes of “hyper-polygons”, which are linear transformations of intersections of a finite number of hyper-spaces. Such sets 
are sparse in the sense of Chernozhukov et al. (2017). We manage to explicitly track the effect of the sparsity parameter 
s on the rates. Under certain tail and moment assumptions on the distribution, this effect is linear. Chernozhukov et al. 
(2017) did not establish this dependency explicitly, since it was buried in the complicated and intricate implicit geometric 
structures.

Finally, we remark that the multipliers e1, . . . , en can be chosen mean-zero unit-variance random variables from a sub-
Gaussian distribution. One needs to refine the theoretical derivations as done in the recent work of Chernozhukov et al. 
(2019). For instance, Rademacher multipliers are quite popular in literature. Our test will work with such multipliers and it 
will have all the properties listed in this paper.
14



N. Chakraborty and L. Sakhanenko Computational Statistics and Data Analysis 178 (2023) 107619
Acknowledgements

The authors acknowledge the support by Michigan State University High Performance Computing Center through compu-
tational resources provided by the Institute for Cyber-Enabled Research. The research was supported in part by NSF Grants 
DMS-1612867 and DMS-2111251.

The authors would like to thank the anonymous referees, an Associate Editor, and the Editor for their constructive 
comments that improved the quality of this paper.

Appendix A. Technical conditions and the main theoretical result

The k-th group after centering consists of Vk,1 − μk, . . . , Vk,n − μk independent observations in Rp . Now stack 
those vectors V1,1 − μ1, . . . , V K ,1 − μK into X1, stack vectors V1,2 − μ1, . . . , V K ,2 − μK into X2, and so on, stack 
V1,n − μ1, . . . , V K ,n − μK into Xn . We obtain centered long vectors Xi ∈ Rd with d = Kp. Note that the test statistics 
Tn are functionals of normalized sums S X = 1√

n

∑n
i=1 Xi . Note that using long stacked vectors the test statistics can be 

rewritten as

Tn = max
l=1,...,L

max
j=1,...,d

(
[A(l)S X

n ] j + n1/2[A(l)μ] j
)

,

where μ ∈Rd consists of vectors μk ∈ Rp, k = 1, . . . , K , stacked into one long vector. Under H0 test statistics become

Tn = max
l=1,...,L

max
j=1,...,d

[A(l)S X
n ] j,

due to condition (A2). Also note that the bootstrapped statistics can be rewritten as T e
n = maxl=1,...,L max j=1,...,d[A(l)SeXn ] j .

Introduce the following moment and tail conditions collectively denoted by (C). Let {Bn, Dn, n = 1, 2, . . . } be sequences 
of positive constants, possibly growing to infinity. Let σ 2

j = E(S X
j )

2.
(S) min1≤ j≤d σ j ≥ b > 0 for some fixed constant b.
(E1) |Xij| ≤ Bnσ j ∀i = 1, . . . , n ∀ j = 1, . . . , d a.s.
(Eψ ) For Orlicz norms based on function ψ , we have ‖Xij‖ψ ≤ Bn ∀i = 1, . . . , n ∀ j = 1, . . . , d.
(Eψσ ) For Orlicz norms based on function ψ , we have ‖Xij/σ j‖ψ ≤ Bn ∀i = 1, . . . , n ∀ j = 1, . . . , d.
Recall ‖Y‖qLq := E 

∑
j=1,...,d |Y j |q for a random vector Y ∈Rd .

(E3) ‖ max1≤ j≤d |Xij|‖Lq ≤ Dn ∀i = 1, . . . , n.
(E3σ ) ‖ max1≤ j≤d |Xij/σ j |‖Lq ≤ Bn ∀i = 1, . . . , n.
(M) n−1 ∑n

i=1EX4
i j ≤ B2

n ∀ j = 1, . . . , d.
(Mσ ) n−1 ∑n

i=1EX4
i j ≤ B2

nσ
4
j ∀ j = 1, . . . , d.

For completeness recall the conditions on the class of matrices:
(A1) 

∑d
m=1 |A(l)

jm| ≤ s ∀ j = 1, . . . , d, ∀l = 1, . . . , L;

(A2) 
∑K

k=1 A(l)
j(q+(k−1)p)

= 0 ∀ j = 1, . . . , d ∀q = 1, . . . , p ∀l = 1, . . . , L;
(A3) min1≤l≤L min1≤ j≤d[A(l)�̄(A(l))T ] j j ≥ b > 0 for some fixed constant b.
We utilize multiplier bootstrap, thus, introduce

SeXn = 1√
n

n∑
i=1

ei(Xi − X̄), X̄ = 1

n

n∑
i=1

Xi,

where a vector e = (e1, . . . , en) of i.i.d. N(0, 1) random variables is independent of Xi, i = 1, . . . , n. Consider the Kolmogorov 
distance defined as

K D = sup
u∈R

∣∣∣∣P ( max
l=1,...,L

max
j=1,...,d

[A(l)S X
n ] j ≤ u) − Pe( max

l=1,...,L
max

j=1,...,d
[A(l)SeXn ] j ≤ u)

∣∣∣∣,
where Pe stands for the probability with respect to the Gaussian vector e only. Recall that ψp(u) = eu

p − 1 for p ≥ 1.

Theorem 2. Suppose conditions (A1)–(A3) hold. Under condition (E1)

K D ≤ CsBn(log(Ld))3/2 logn√
n

;
under conditions (Mσ ) and (Eψ2σ )

K D ≤ C

(
sBn(log(Ld))3/2 logn√ + s2Bn(log(Ld))2√

)
;

n n

15



N. Chakraborty and L. Sakhanenko Computational Statistics and Data Analysis 178 (2023) 107619
under conditions (Mσ ) and (E3σ ) for some q ≥ 4

K D ≤ C

(
sBn(log(Ld))3/2 logn√

n
+ s4B2

n(log(Ld))
2 logn

n1−2/q

+
(
sqBq

n(log(Ld))
3q/2−4(logn)(log(Ldn))

nq/2−1

)1/(q−2))
;

under conditions (M) and (Eψ1)

K D ≤ C

(
s2/3B1/3

n (log(Ld))5/6

n1/6
+ s4/3B2/3

n (log(Ld))2/3(logn)2/3

n1/3

)
;

under conditions (M) and (E3) for some q > 2

K D ≤ C

(
s2/3B1/3

n (log(Ld))5/6

n1/6
+ s2/3D2/3

n (log(Ld))1−2/(3q)

n1/3−2/(3q)

)
;

where the constant C > 0 depends on b from (A3) in all cases and it also depends on q when q is used.

We remark that Kolmogorov distance KD goes to 0 as n grows as long as Bn, Dn, L, d, and s grow not too fast. In 
particular, under condition (E1) we need sBn(log(Ld))3/2 = o(

√
n/ logn), which would be the same under (Mσ ) and (Eψ2) if 

s(log(Ld))1/2 = O (logn) and otherwise under (Mσ ) and (Eψ2) we need s2Bn(log(Ld))2 = o(
√
n). Meanwhile, under (Mσ ) and 

(E3σ ) with q = 4 we need s4B2
n(log(Ld))

2 = o(
√
n/ logn). However, for q > 4 three conditions should be satisfied without a 

clear winner: sBn(log(Ld))3/2 = o(
√
n/ logn), s4B2

n(log(Ld))
2 = o(n1−2/q/ logn), and the most intricate condition of the three 

s1−2/(q−2)B1−2/(q−2)
n (log(Ld))3/2 = o(

√
n/ logn). Under (M) and (Eψ1) we have a special case when log(Ld) grows faster or 

the same as (logn)2/3 and s2B2
n(log(Ld))

5/2 = o(
√
n), otherwise we need both s2B2

n(log(Ld))
5/2 = o(

√
n) and s2Bn log(Ld) =

o(
√
n/ logn). Finally, under (M) and (E3) we need both s2Bn(log(Ld))5/2 = o(

√
n) and s2D2

n(log(Ld))
3−2/q = o(n1−2/q).

Note that the proof of Theorem 1 follows from the proof of Theorem 2 immediately.
We also remark that one can choose a sequence of αn ↓ 0 such that 

∑∞
n=1 αn < ∞ and consider events in Theorem 1 and 

Corollary 1 in the spirit of Proposition 4.1 and remark 4.2 in Chernozhukov et al. (2017). Then apply Borel-Cantelli lemma 
to obtain the results with probability tending to 1.

Appendix B. Proofs

Here we provide the outline of the proofs. Theorem 2 follows from Corollary 2.1 and Corollary 3.1 in Chernozhukov et 
al. (2021) and Corollary 3.1 in Koike (2020), which are improvements of the Key Lemma 5.1 in Chernozhukov et al. (2017).

The main trick is to stack (A(1)Xi, . . . , A(L)Xi) into Ld-dimensional vectors X̃i for i = 1, . . . , n. Then for any u =
(u1, . . . , uL) ∈RLd

P (S X
n ∈ C) = P

(
n−1/2

n∑
i=1

A(l)Xi ≤ ul, l = 1, . . . , L

)
= P (S X̃

n ≤ u).

Next, one just needs to check that conditions of Corollary 2.1 in Chernozhukov et al. (2021) and Corollary 3.1 in Koike 
(2020) for X̃i follow from conditions in Theorem 2 on Xi .

Proof of Theorem 2. We start by observing that for j = 1, . . . , LKp

σ̃ 2
j = E

(
1

n
(

n∑
i=1

X̃i j)
2
)

= [A(l)�̄(A(l))T ] j0 j0

for some l = 1, . . . , L, j0 = 1, . . . , Kp, where �̄ from condition (A3) can be written as �̄km = 1
n

∑n
i=1E(Xik Xim). We remark 

that conditions (A3) and (A1) imply condition (S) for σ̃ j with a different b that is related to b and the eigenvalues of A(l) .
Now, condition (E1) |Xij | ≤ Bnσ j implies after (A1)

| X̃i j| = |
Kp∑
k=1

A(l)
j0k

Xik| ≤ max
1≤k≤Kp

|Xik|
Kp∑
k=1

|A(l)
j0k

| ≤ s max
1≤k≤Kp

σkBn ≤ κsBnσ̃ j,

where κ is such a number that

max
1≤k≤Kp

σ 2
k

σ̃ 2
≤ κ2 ∀ j = 1, . . . , LKp.
j
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Existence of κ follows from conditions (A1) and (A3), it is related to the ratio of smallest and largest eigenvalues of �̄ and 
A(l)�̄(A(l))T . Thus, X̃i, i = 1, . . . , n, satisfy condition (E1) with κsBn in place of Bn .

Next, consider condition (Eψσ ) for X̃ . Since ψ is a convex increasing positive function, we have

Eψ

(∣∣∣∣ X̃i j

c̃σ̃ j

∣∣∣∣
)

= Eψ

(
1

c̃σ̃ j

∣∣∣∣
Kp∑
k=1

A(l)
j0k∑Kp

m=1 |A(l)
j0m

|
Xik

∣∣∣∣
Kp∑

m=1

|A(l)
j0m

|
)

≤Eψ

(
s

c̃σ̃ j

Kp∑
k=1

|A(l)
j0k|∑Kp

m=1 |A(l)
j0m

|
|Xik|

)
≤

Kp∑
k=1

|A(l)
j0k|∑Kp

m=1 |A(l)
j0m

|
Eψ

(
s

c̃σ̃ j
|Xik|

)

≤
Kp∑
k=1

|A(l)
j0k|∑Kp

m=1 |A(l)
j0m

|
Eψ

(
sκ

c̃

|Xik|
σk

)
,

where we used definition of κ . Now, using the definition of Orlicz norm we have∥∥∥∥ X̃i j

σ̃ j

∥∥∥∥
ψ

:= inf
c̃>0

{
Eψ

( | X̃i j|
c̃σ̃ j

≤ 1

)}

≤ inf
c̃>0

{ Kp∑
k=1

|A(l)
j0k|∑Kp

m=1 |A(l)
j0m

|
Eψ

(
sκ

c̃

|Xik|
σk

)
≤ 1

}

≤ sκ max
1≤k≤Kp

inf
c>0

{Eψ

(
1

c

|Xik|
σk

)
≤ 1} ≤ sκBn,

where c̃ = csκ . Thus, X̃i, i = 1, . . . , n, satisfy condition (Eψσ ) with κsBn in place of Bn . A similar argument works for 
condition (Eψ ) with sBn in place of Bn . Also note that (E3σ ) and (E3) are proved by the similar argument with φ(u) = ‖u‖qLq
with sDn in place of Dn .

Finally, consider condition (Mσ ) for X̃i . Indeed, we have

1

n

n∑
i=1

E

(
X̃i j

σ̃ j

)4

= 1

n

n∑
i=1

E

(
1

σ̃ j

Kp∑
k=1

A(l)
j0k∑Kp

m=1 |A(l)
j0m

|
Xik

)4( Kp∑
m=1

|A(l)
j0m

|
)4

≤ s4

nσ̃ j
4

n∑
i=1

∥∥∥∥
Kp∑
k=1

A(l)
j0k∑Kp

m=1 |A(l)
j0m

|
Xik

∥∥∥∥4

L4

≤ s4

nσ̃ j
4

n∑
i=1

( Kp∑
k=1

A(l)
j0k∑Kp

m=1 |A(l)
j0m

|
‖Xik‖L4

)4

≤ s4

nσ̃ j
4

n∑
i=1

Kp∑
k=1

|A(l)
j0k|∑Kp

m=1 |A(l)
j0m

|
‖Xik‖4L4 ≤ κ4s4B2

n,

where we used convexity property of ‖u‖L4 and u4. Thus, X̃i, i = 1, . . . , n, satisfy condition (Mσ ) with κ2s2Bn in place of 
Bn . A similar argument works for condition (M).

Now the statement of Theorem 2 follows from Corollary 2.1 and Corollary 3.1 in Chernozhukov et al. (2021) and Corollary 
3.1 in Koike (2020) applied to X̃i, i = 1, . . . , n. �

Corollary 1 is proved similarly to establishing consistency of the test.

Proof of Corollary 1. Note that

P (Tn ≥ Qα |H (n)
A ) = P

(
max

l=1,...,L
max

j=1,...,d

[
n−1/2

n∑
i=1

K∑
k=1

p∑
q=1

A(l)
j(q+(k−1)p)

[Vk,i]q

−√
n[A(l)μ

(n)
A ] j +

√
n[A(l)μ

(n)
A ] j

]
≥ Qα

)

≥ P

(
max

l=1,...,L
max

j=1,...,d

[
n−1/2

n∑ K∑ p∑
A(l)

j(q+(k−1)p)
[Vk,i]q − √

n[A(l)μ
(n)
A ] j
i=1 k=1 q=1
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≥ Qα − cn, min
l=1,...,L

min
j=1,...,d

[A(l)μ
(n)
A ] j ≥ cnn

−1/2
)

− Pe(T
e
n ≥ Qα − cn|H (n)

A )

+Pe(T
e
n ≥ Qα − cn|H (n)

A ) ≥ Pe(T
e
n ≥ Qα − cn|H (n)

A ) − K D → 1

as n → ∞. �
In order to establish Corollary 2 we need to check that conditions of Theorem 2 are satisfied for X̃i obtained by stacking 

the variables Ṽ t,i, t = 1, . . . , K .

Proof of Corollary 2. Indeed, condition (A1) becomes

d∑
m=1

| Ã(l)
jm| ≤ max

k=1,...K
λ
1/2
k

d∑
m=1

|A(l)
jm| ≤ s max

k=1,...K
λ
1/2
k,n = s̃.

Due to independence we have

E( ˜Xi(q1+(t1−1)p)
˜Xi(q2+(t2−1)p)) = λ−1

(q1+(t1−1)p)λ
−1
(q2+(t2−1)p),n�

(i)
(q1+(t1−1)p)(q2+(t2−1)p)

+I(t1 = t2)λ
−1
(q1+(t1−1)p),nλ

−1
(q2+(t1−1)p)

λt1−1∑
r1=1

�
(n+(i−1)(λt1−1)+r1)
(q1+(t1−1)p)(q2+(t2−1)p) I(r1 = r2).

Condition (A3) becomes

d∑
k=1

d∑
m=1

Ã(l)
ik

1

n

n∑
i=1

E( X̃ik X̃im) Ã(l)
jm ≥ b̃.

Note that new b̃ is proportional to old b. All the moment and tail conditions will work for Bn(mint=2,...K λt,n)
−2 in place of 

Bn . Then we apply Theorem 2 to new variables and get the desired result. �
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