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1. Introduction

There are K independent groups of random vectors-columns Vi ; e RP,i=1,...,n,k=1,..., K, drawn from K popula-
tions with means w1, ..., ux € RP. We are interested in generalized linear hypothesis testing (GLHT) for the group means,
which includes MANOVA and contrast tests as particular cases.

These vectors do not have to come from the same distribution. Also we can let the dimension p grow with n or the
number of groups K grow with n or both. This is quite rare in the literature but it is a very useful setup in practice. Santo
and Zhong (2021) argued that functional data can be viewed this way. We adopt this viewpoint in the real data example
later in this paper. This setup was recently used in Lin et al. (2021).

Let [V ilq denote the g-th entry of the i-th observation from the k-th group, where ¢ =1,...,p;i=1,...,mk =
(O]

). j.j'=1,...,Kp, we pro-

1,..., K. Given a class of non-singular matrices AD € RKP*KP | =1, ... L with components A

pose the test statistics of the form

n K

p
_ -1/2 0] .
To= max max n~'%3 > > AjiignpViie
e e i=1 k=1q=1

Intuitively, in T, short p-column-vectors V1 ;, ..., Vi ; are stacked into long Kp-vectors that are then multiplied by matrices
A® | averaged over i, normalized and finally maximized over the components of the resulting long vector and over the class
of matrices (over I).
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Next, introduce the multiplier bootstrapped form of the test statistics

n K p
e _ —-1/2 0] ) v
T = max . max n D222 Altgra—p€ilVii = Vide
i=1 k=1¢q=1
where a vector e = (eq,...,e,) of i.i.d. N(0,1) random variables is independent of all Vi ;'s and Vi = %Z?:l Vii k=
1,..., K, are the groupwise averages. Intuitively, the symmetrized sums would have distribution that approximates the

distribution of the original test statistics under the null hypothesis that all the group means are equal (MANOVA) or are
related linearly (GLHT).
The proposed bootstrap test at the significance level « € (0, 1) rejects if

Th> Qg :=influ e R: P(Ts <u) >1-—a},

where P, stands for the probability with respect to the Gaussian vector e only.

We show that these bootstrap tests have excellent level and power performance for MANOVA and GLHT in high dimen-
sional setup including contrasts tests. Our approach produces a whole class of tests that are flexible and can be tuned to
many different scenarios. Indeed, the class of matrices A®, 1 =1,...,L, serves as a tuning mechanism, where this class
can be chosen to maximize components of AQ [, ..., k] under alternative in order to gain good empirical power. Our
tests do not need sparsity assumptions on the means and/or covariances. We require the moment and tail assumptions on
the distributions that are commonly used and at times less stringent than those in the existing literature. Our approach
allows data from multivariate sub-exponential distributions, some heavy-tailed distributions, skewed distributions, and thus,
it broadens the regime of its practical use.

The high dimensional MANOVA problem for testing Ho: 1 =--- = ug for K > 2 has been a focus of many recent
works due to its growing importance in genomics, econometrics, and neuroimaging among many other fields of science.
For example, Fujikoshi et al. (2004) considered the ratio of the traces of between-sample covariance and within-sample co-
variance. Meanwhile, Schott (2007) proposed a test based on the difference of those two traces. Srivastava (2007) used the
Moore-Penrose inverse of the within-sample covariance matrix to construct a test. Cai and Xia (2014) proposed a test based
on the maximum-norm of the squared differences between K groups. All mentioned tests either have been formulated
under the assumption that the data is generated from a multivariate normal population or under some stringent distribu-
tional or sparsity assumptions. Moreover, all these tests assume equal covariance structure among all the groups. Recently
Chen et al. (2019) proposed a thresholded L,-norm-type statistics assuming sparsity in means, mixing, and multivariate
sub-Gaussianity. They consider different sparse covariance matrices across different groups. The sparsity assumptions on
the means and covariances were very important and crucial in their work. In this work, we eliminate the need for these
assumptions.

From a different point of view, this work also extends the recent work by Xue and Yao (2020) for K =2 to the case
K > 2. This extension is elegant and less technical than the direct reproving of the results in Xue and Yao (2020), where
one would have to tackle intricate block-type dependency structures and work with U-statistics similar to what was done
in Chen (2018). The class of our tests enjoys all the good properties of the tests in Xue and Yao (2020). In particular, our
tests are computationally fast and simple, since they do not require the estimation of covariance and/or precision matrices.
Our tests do not need for the sample size ratios between groups to converge, they can merely stay bounded in an interval.
Our tests have one extra advantage of being versatile, so they can be just as easily adopted to solve MANOVA or to test for
a linear structure on the means such as contrasts. Even for a scenario with sparse means, our tests have comparable power
performance than more complicated and computationally slower tests by Chen et al. (2019) and Cai and Xia (2014), which
are specifically designed for this scenario.

The technical basis for our tests lies in the introduction of the class of sparse convex sets which are intersections of
a finite number of half-spaces in the context of investigation of quality of Gaussian approximations for sums. This class
generalizes hyper-rectangles and half-spaces that were proposed by Chernozhukov et al. (2017). Unlike previous works our
tests have tractable dependence on sparsity specifier. The details are given in the Appendix.

The rest of the paper is organized as follows. Section 2 contains main theoretical results devoted to the statistical appli-
cations: one- and two-way MANOVA and GLHT in high-dimensional setup. Section 3 establishes the connection with other
recent tests that are related to our approach. In section 4 we perform detailed high-dimensional simulation study where
we compare our method with two existing competitors by Chen et al. (2019) and Cai and Xia (2014). We consider various
distributions and sparsity scenarios. We illustrate the practicality of our test on a real data example about fish shape com-
parisons in section 5, which is followed by a discussion with a conclusion in section 6. Technical conditions, details, and
proofs are gathered in the Appendix.

2. Main results
We obtain different rates of approximation of test statistic T, by its bootstrapped counterpart T; under various moment

and tail conditions on Vs and conditions on K and L. Those approximations allow us to study theoretically the properties
of our tests. These conditions are quite technical and given in the Appendix.
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Roughly speaking for a particular case of iid. Vi;,i=1,...,n, for each group k=1,..., K, these conditions allow
log(LKp) to grow with the sample size n as
o(n'/3(logn)~2/3) for bounded random variables;
o(n'/%) for some sub-Gaussian random variables with finite 4-th moments;
o(n'/4(logn)~1/2) when both Vj ; and max; j[Vy ]; have finite 4-th moments;
o(n'3(logn)=2/3 vn!/2=14(logn)~1/2) when Vy ; have finite 4-th moments and maxy j[Vy ;1; have finite g-th moments
for some q > 4;
e o(n'/?) for some random variables with exponential tails and finite 4-th moments;
e 0(n!/> vn4=2/Ga4=2)) when Vy; have finite 4-th moments and maxy_;[Vy ;1; have finite g-th moments for some g > 2.

The case of non-identical Vy ; is also allowed. In this case the average 4-th moments are allowed to grow as n* for some
o <1/3 or 1/4 or 1/5, but then the rate of growth for log(LKp) would need to grow slower than the rates listed above for
i.i.d. cases. The details are explained in the Appendix.

Meanwhile, we also impose conditions on the class of matrices:

A1) Y4, |A§.’,)n|5sv1=1,...,d, Vi=1,...,L:
K () . .
(A2) ZkzlAj(qu_l)p):OV]:l,...,qu:I,...,p vi=1,...,L;

(A3) ming <j<; minj<j<a[APZ(AD)T]j; > b > 0 for some fixed constant b, where £ is defined as a Kp x Kp block matrix
of the covariances

_l n
EZCOV(V](L;', Vi),
i=1

stacked by varying k1,k; =1, ..., K.

Condition (A1) can be viewed as a sparsity control on matrices, where parameter s characterizes the amount of sparsity.
We allow sparse regimes of just a few non-zero components and dense regimes of many near-zero components for matrices,
while the underlying distribution does not need any sparsity assumptions. Note that if all covariance matrices are the same
and A® is an identity matrix we recover condition (M.1) in Chernozhukov et al. (2017).

Condition (A2) comes from the null hypothesis discussed in the next subsection. Meanwhile, condition (A3) ensures that
the smallest eigenvalues of ADS(AD)T are bounded away from 0. Note that these matrices are the covariance matrices of
the averaged long Kp-vectors that serve as building blocks in the test statistics Tp.

We consider several linear hypotheses: MANOVA (balanced case), MANOVA (unbalanced case), two-way MANOVA, and
contrasts.

2.1. Balanced MANOVA
We are interested in the hypotheses

Ho:u1=---= g vs Hy : otherwise.

For the i-th vector in the k-th group Vi ; we denote its components by [V ilq,q=1,..., p. Recall that we propose the test
statistic

n K

p
_ 172 ) ‘
Tn= max .max mn 2222 Algrie-npVeila,
i=1 k=1qg=1

where each matrix A" with components A;’j),, j,j’ =1,...,Kp, satisfies conditions (A1)-(A3). Recall that the bootstrapped
version of the test statistics is

n K p
e _ —1/2222 0} . _y
Tn = l=n;1aXL j:rlnaXKp n Aj(q-ﬁ-(k—l)p)e' [Vk,l Vk]q~
""" T i=1k=1q=1

Also recall that

Qu=influ e R: Pe(Tf <u)>1-—a}, ¢ €(0,1).

Under certain moment and tail conditions on V;s, say (C), given in the Appendix we obtain consistency of the tests. To
formulate it, we stack group mean vectors u, € RP,k=1,..., K, into a long vector p € RKP.

3
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Theorem 1. Under (A1)-(A3) and (C) we have as n — oo

P(Th = Qq|Ho) —> &

and

P(Th > QuqlHa) — 1,
provided that there exist j=1,...,Kp andl=1, ..., L such that the j-th component of AV yu is non-zero: [A(l)pb]j #0.

We also remark that p-vectors Vi ;,i=1,...,n, can come from different distributions with the same mean vector pi.
Our test can accommodate the non-identically-distributed scenario which is rare in the existing literature.

Next, in order to assess the local power of the test, we consider a class of contiguous alternatives which converge to the
null hypothesis as n — oo. Let

qu"):m,...,,u,( eR? : mij gnm [ADu]; > ™12,

..........

where the sequence ¢, — oo diverges slowly as n — oo. Recall that Kp is allowed to grow with the sample size n.
Corollary 1. Suppose conditions of Theorem 1 are satisfied. With probability tending to 1
P(Tp > Qu|HY) — 1asn — oc.

This corollary indicates that the proposed test would successfully reject alternatives that are quite close to the null
hypothesis by as little as almost a factor of n—1/2, which is almost a parametric rate (up to c,).

2.2. Unbalanced MANOVA

Suppose that now samples have different sample sizes ni, k=1, ..., K. Introduce a modified test statistic
ne
1/2 4 )
Th= T ZZZ”t Ajiqra-npVeile-
""""" t 1i=1g=1

Then introduce its bootstrapped version and quantile as

ne
- —1/2 4 7
Th= max  _max ZZZ P ASrameilVei = Vilg
o S G R

and

Qu=influeR: Pe(TE <u)>1—a}, a €(0,1).
With a slight abuse of notation denote n = min; <x<k ng, which is heuristically the effective sample size. Renumber groups
so that the first group has the smallest sample size. Assume

n
(D) Fk:)\k,ne[l,oo), k=2,....K,

where ratios A, do not have to converge as n — oo but should remain bounded.
We decompose T, into a version of T, by grouping terms into blocks of the same size n as follows

= —1/2 1/2
o= max max ZZ[Zn e A Vel

""""" thl

At,nll

—1/24-1/2 (O]
0200 Y Al 1>p>[V“]Q]
i=n+1

~ -1/2 —1/2 0] .
<o, max 33| AVl

,,,,,,,,,,

t 1qg=1"%-i=1
n [Anl-1
—-1/2 —-1/2 I
+n / [)\t,n] / Z Z AE‘()q_Ht_])p)[Vt,n+(m—1)(kt,,.—l)+r]q:|
m=1 r=1
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~ ~1/2 0 1/2
~ max . max ZZ” ZAJ(!H(I vt

..........

t 1g=1
[Ae,n]—1
x [l ™! |:Vt,i + Z Vr,n+<m—1><[xt_n1—1>+r] ,
r=1 q
where ¥, & 8, means lim,_, o, ¥ 5 =1 with probability 1. The approximation appeared due to use of integer parts of A;p,t =
1,..., K. Define a new matrix A(’) with components
AD — a0 )\l/2

Jj@+(=1p) — Tj@@+=1)p)
Finally, define new variables as

[Aen]—1

\7;,/1 =[Aenl™! [Vt,i + Z Vt,n+(m71)([xm]71)+r}, t=1,...,K,i=1,...,n.
r=1

Note that IE\?;,-; e and the samples of these new variables are independent. Also note that ﬂ is an analogue of T, with
V replaced by V. We remark that V;,i =1,...,n, are independent but they will not be identically distributed even if the
original observations V;’s are.

Corollary 2. Suppose the conditions of Theorem 1 are satisfied for Vt,,-, i=1,...,n,t=1,...,K, and ,@/) I=1,..., L. Moreover,
assume condition (D) holds for ng, k=2, ..., K. We have as n — oo

P(Ty > QulHo) — «

and
P(Ty > Qu|Ha) — 1 provided 33l : [AD ;1] # 0.
This corollary establishes the consistency of the proposed test in the unbalanced MANOVA setup.
2.3. Two-way MANOVA
Consider the setup in Watanabe et al. (2020)

Yik=po+ai+Bj+vij+eijk.ke{l,....Nj},i=1,....1,j=1,..., ],

where o, &, Bj, yij are unknown p x 1 vectors of parameters, while ¢;j, are mean zero p x 1 random vectors with un-
known covariances X;;. For identifiability we are given a sequence of positive weights w;j,i=1,...,1,j=1,..., ], so that

2{21 wi.a; =0, 21121 w.jBj =0, Z{:I wijij =0, Z]]-:1 wijyij =0, and Zf:l Z]j-:l wijyij =0, where w;. = Z]]»:1 wij and

I
w.j =2 i1 Wij-
Consider the null hypothesis

Ho:a1=---=o;=0.
Then look at the setup in the previous subsection with K = I groups and the comparison of means u, = (o +
o, when there are ny = Z]].:] Nj non-identically distributed observations (Vi 1,..., Vkpn) = (Ye11, .., Yeing» Ye2ts -+,
YkZNkz,...,ijl,...,Yk]Nkj). Then the test statistic ﬁ would be well-defined and the test rejects Hyp if ﬂ > @; Analo-
gously, for the null hypothesis

Ho:pr="-=p =
consider K = J groups and the comparison of means py = o+ Bx when there are ny = Zf:1 Nj, non-identically distributed
observations (Vi 1,..., Vin) = Yikts - YNy Yokts -0 YokNgs - -+ Yikts -+ -5 Yiewy, ). Then the test statistic T, would be

well-defined and the test rejects Hy if T,, > Q4. Finally, consider the null hypothesis

Ho:yi1=---=y1y=---=y7.

This time one needs to look at K = 1] groups and the comparison of means (o + ¢ + Bj + vij when there are n;; obser-
vations Vg m = Yijm k=i+ (G — 1Dl i=1,....1,j=1,..., J. Then the test statistic T, would be well-defined and the test
rejects Ho if Ty > Qg.
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Unlike Ly-based tests proposed by Watanabe et al. (2020), our tests do not need to estimate the unknown unequal
covariances X;; and do not need to compute computationally expensive estimator of the standard deviation of the test
statistic. Thus, our tests are more computationally efficient than theirs.

Finally, we remark that it is straightforward to extend our framework to the 3-way, 4-way and so on, multi-level
MANOVA setup especially given that we can let the number of groups K grow exponentially in n.

2.4. GLHT
Similar to Zhang et al. (2017), we are now interested in the hypotheses

Ho:Gu=0vsHy: Gu #0,

where G is a known g x Kp matrix of the rank q < Kp. This setup includes contrast tests and MANOVA. Note that (GGT)~!
exists.

Consider Kp x Kp matrices A? such that AO = MO[GT(GGT)~1G]T for some non-singular Kp x Kp matrices M® for
all I=1,..., L. The expression in squared brackets is related to Moore-Penrose matrix inverse of G. This condition on AD
replaces condition (A2). Under Ho we have A® ;i =0, while under any alternative A® = 0. Then the test described above
works for this setup, and Theorem 1 holds with (A2) replaced by this new structure of matrices A®.

Let (c1,...,ck) be a non-zero vector of constants in RX. As an illustrative example consider the following hypotheses

Ho:c1pu1+---cxpug =0vs Ha: ¢y +---cx ek #0.

In this case G = (c1I,,...,ckl,) with I, being a p x p identity matrix and let
o C%I[p C]Cz]lp s C]C[(]Ip
A(I) — M C1C2Hp C%Hp s CzCK]Ip .
||C||% oo e

2
cicgly cocklly --- cilp

where ||c||§ = Z,’le c,f and M® is an arbitrary non-degenerate Kp x Kp matrix. As in balanced MANOVA define test statistics
as

ng
& ~1/2 4 () ,
T"—lzmax _mhax, ZZZ” Ajiq+te-npViile
""""" k 1i=1q=1

~ n= 1240 WVei—V
= o, % ZZZ Ajarte-np€ilVii = Vida:

.....

Define quantiles of the bootstrapped distribution as

Qu=influeR: Pe(TE<u)>1—a}, a €(0,1).
We reject Hy if
Tn > Qa.
Since A® 1 =0 holds if and only if Hy holds, then P(T~n > d:leo) — « and P(T~n > @;|HA) — 1 provided that conditions

of Theorem 1 are satisfied. This test allows to treat high-dimensional MANOVA and contrast tests in the unified framework
unlike L,-norm-based tests by Cai and Xia (2014) and Chen et al. (2019).

3. Connection with other tests

In this section we show that the tests introduced in Xue and Yao (2020) and those in Lin et al. (2021) fit into our
framework, which increases its versatility.
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3.1. 2-sample test by Xue and Yao (2020)

Consider the setup in Xue and Yao (2020). There are K =2 independent groups of random vectors Vii, Viz,i=1,...,n,
drawn from 2 populations in R?P with means w1, up € RP. Their test statistics are the maximums of ASX, where the
matrix A € R?P*2?P is tri-diagonal. It has 1 on the main diagonal and -1 on the diagonals that start from ayp+1y and

ap+1)1- Indeed, X = (Vi1, Vin)T € R?P and

AXi= (Vi1 — Vial1, ..., [Vi1 = Vialp, [Via — Vial1s - ., [Viz = VirIp) T

Then

ASK = (Sy1—sy2 syr —synT.

Therefore, their test statistic is

1% 1% v 1%
ISn" = Sn’llc = max |[Sp' —Sp’lgl= max [AS}];.
q=1,...,p j=1,...2p
Note that condition (A2) holds for this A. Then L =1 and A consists of just A, while s = 2. Their results can be viewed
as the special case of our results. Note that their proofs are specially designed for K =2 and the direct generalization would
be difficult. It would require intricate work with U-statistics in the same spirit as what is done in Chen (2018).

3.2. MANOVA for functional data by Lin et al. (2021)

Consider the setup in Lin et al. (2021). There are K independent groups of random vectors drawn from K populations
with means f1,..., ux € RP. The k-th group after centering consists of Zy 1,..., Zx, independent observations in RP.
Then stack vectors Z11,..., Zk,1 into X1, and so on, finally stack Z ,, ..., Zg 5 into X,. Then X; € RXP,

The test statistics in Lin et al. (2021) are the maximums of components of ASX, where the rows of matrix A are
,...,0 0,...,0, —ﬁﬁj,o,“.,ox where 7 € [0,1) and the non-zero entries are in the positions (k — 1)p +

_1
) T
200

Jj,=1Dp+jfor1<j<p.Here

O‘kz’[’j = O.SVGT(X],(k,])erj) + O.SVGF(XL([,])IH,]‘), T €0, l)

Thus, A satisfies (A2). From the setup in Lin et al. (2021), the indices (k,[) belong to the set

(k,l)EPC{(i],iz)Z]Si] <i2§K}.

Their test statistic is of the form of our statistic with A that consists of A and —A. Then L =2 while s = ﬁ
LTk,

Note that our theorems provide at best the rates for Kolmogorov distance between the test statistic and its bootstrapped
version of the order n~1/2+3logn with respect to n with log(LKp) = o(n® (logn)~%/3) for & € (0, 1/6), while Lin et al. (2021)
get rates of the order n=1/2%3 for an arbitrary § > 0 with Kp < pe\/@. Lin et al. (2021) attain this rate under a stringent
requirement of a special structure of the matrices ¥ with many restrictions that are difficult to check in practice. Their
conditions essentially reduce the high dimensional problem to a problem, where p ~ n!/108"* v/ (logn)? with a € (0, 0.5),
whereas our tests remain valid even when p is much larger.

4. Simulation studies

The purpose of this section is to compare with existing methods and to investigate the effect of the tuning specifiers
AD 1=1,..., L. We compare against 2 methods: Cai and Xia (2014) and Chen et al. (2019). However, both of these methods
have limitations that our method does not have. Cai and Xia (2014) require complicated sparsity and boundedness condi-
tions on the covariance and precision matrices, which are difficult to verify in practice. In particular, they assume that the
sparsity of precision matrix is o(n1=9/2(log p)=3~9/2) for some q € [0, 1) in their Theorem 4, which addresses the case of
unknown covariance. Their algorithm requires estimation of the precision matrix in the high-dimensional setup. They also
assume that group covariances are the same. Chen et al. (2019) require sparsity, «-mixing of components of the observa-
tions, and log p = o(n'/3) when the precision matrix is unknown. Their algorithm also requires the estimation of precision
matrices in the high-dimensional setup. Both methods by Cai and Xia (2014) and by Chen et al. (2019) are less efficient
computationally than our tests largely due to precision/correlation matrices estimation.

We also stress that all compared tests have rather varied empirical levels that are quite far from the nominal level of
0.05. Therefore we employed the two methods described in Lloyd (2005) to adjust the powers for sizes for a fair comparison.

7
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4.1. Four group MANOVA: tuning A

The goal of the simulations in this subsection is to tune the class of matrices A®) and to demonstrate stability of the test
for different classes of matrices. To this end, we are using a combination of setups in Zhang et al. (2017) and Cai and Xia
(2014). We consider MANOVA for 4 groups for V;;=pu+I'Z;;,t=1,2,3,4;i=1,...,n;, where Z;; are generated from
one of 3 models such that the p components are i.i.d. standard normal N(0, 1), standardized t-distributed with 4 degrees
of freedom t4, or normalized chi-squared of degree 1 X12, so they have mean 0 and variance 1. Three sets of samples
sizes and 3 sets of means (for power comparisons) are considered. They are n; = (25, 30, 40, 50), np = (50, 60, 80, 100),
and n3 = (100, 120, 160, 200). Meanwhile, w1 = 0, u = 1.56h, w3 = §h, and w4 = 26h, where a p-dimensional vector is
h=,....,p)T/I,...,p)|| and a number § varies between 0.4 and 2.6 depending on the set of the sample sizes n and
the dimension p. Then as in Zhang et al. (2017) §(n, p) =[0.8,1.9,2.6; 0.5, 1.4,1.8; 0.4, 0.9, 1.3]. The larger § represents the
larger separation between the null hypothesis and the alternative. Following Zhang et al. (2017) we consider three choices
for dimension p as 50, 500, and 1000.

Finally, the covariance matrix is I'TT = (1 — p)I, + pJ,, where I, stands for the identity p x p matrix and J, denotes
p x p matrix of ones. The parameter p takes values 0.1, 0.5, 0.9. We also consider the covariance of the form 0.6~/ i, j =
1,...,p as in Model 4 in Cai and Xia (2014); this case we denote by p = NA. We use 10K bootstrap samples to obtain Q
with o =0.05.

The choice of matrices AV, 1=1,...,L, affects the performance of our test statistic. In the first simulation study we
consider 5-diagonal matrices. Since the problem is invariant with respect to order of the datasets and with respect to
the coordinate system, we choose matrices that preserve these invariance properties. Define the matrix A; that has the
following block structure

@Iy, =1p,0p, =1p; =1y, 2I,, —1p, 0p; 0p, —Ip, 2L, —1p; =1p, 0p, —1p, 21}),

where I, stands for the identity p x p matrix. The first test statistic T,SU is based on {A1}. Note that L =1,s=4 for it.
Next, we consider 5-diagonal matrix A, with the following block structure

@Dy, —D, 0,, —Dp; =Dy, 2D,, —Dp, 0, ; 0, —Dp, 2D, —Dj;
—Dp,0p, —Dp, 2D,),

where D, is a diagonal matrix with diagonal entries dy = log(2k),k =1, ..., p. The second test statistic Téz) is based on
{A>}. Note that L =2,s=2log(2p) for it.

The level and power results are summarized in Table 1. The numbers for Tr(lz) are in brackets. Across the table T,ﬁz)
performs better than T,gl). The powers increase when sample sizes increase. The power decreases with the increase in
dimension. The power decreases as the covariance structure changes from nearly diagonal (o = 0.1) to nearly singular
p = 0.9. Both tests have mediocre performance for t4 distribution with covariance structures p = 0.5, NA. The performance
is excellent for normal and X12 distributions.

For the second simulation, we consider 15-diagonal matrices. Define matrix A3 with the following block structure

(3Bp, —By, —Bp, —Bp; —Bj, 3By, —Bp, —B, ; —B,, —By, 3B, —Bp;
~Byp, —By, —Bp, 3Bp),

where B, has ones on the main and above-main diagonals, it has zeros everywhere else. The third test statistic T,§3) is
based on {A3}. Note that L =1,s =6 for it.
Next, consider A4 with the block structure

(OD,, —Dp, —2Dp, —6D,; —6Dp, 9Dy, —Dy, —2D, ; —2D,, —6D,, 9D, —Djp;
—D,, —2D,, —6D,, 9D,),

where D), is defined in Tr(lz). The fourth test statistic T,g4) is based on matrices obtained from A4 by permuting the blocks
in a circular fashion among indices (1234), (2341), (3412), (4123). Note that L =4, s =18log(2p) for it.

The level and power results are summarized in Table 2. The numbers for T,§4) are in brackets. The two tests have
comparable level performance. As expected, the powers increase when sample sizes increase. The power decreases with
the dimension increase. The power decreases as the covariance structure changes from nearly diagonal (p =0.1) to nearly
singular p = 0.9. The performance is excellent for normal and X12 distributions. As before t4 distribution presents the most
difficult challenge for the tests. The level is poor for p = 1000, n1, p = NA, but it dramatically improves with sample size
increase. For other cases under t4 model, the tests perform good.

Upon examination of both Tables 1 and 2, across all scenarios Tr(!4) has the best power performance than other 3 tests
T,&"’), m =1, 2, 3. This can be explained through the structure of the underlying class of convex sets. This class is richer for
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Table 1
Level and adjusted power performance of T,§1>(T,§2)). We used 5-diagonal matrices, 10K bootstrap repetitions, and 1K empirical repetitions for each entry.
P p n Size Size Size Power Power Power
N ta x2 N ty X
0.1 50 n 3.9(4.1) 2.2(2.1) 3.7(3.6) 29.7(48.9) 24.0(41.8) 19.9(34.8)
ny 5.2(3.5) 2.6(2.2) 4.9(3.7) 30.4(46.7) 23.5(39.1) 19.4(36.4)
n3 4.4(5.4) 3.4(3.7) 5.0(5.1) 39.4(48.6) 35.9(44.8) 30.0(43.5)
0.1 500 n 2.5(2.5) 0.2(0.1) 1.4(1.8) 25.9(41.0) 43.2(27.2) 13.7(19.9)
n; 3.3(3.3) 0.8(0.4) 3.03.3) 31.0(45.1) 11.3(34.5) 17.7(29.5)
n3 4.0(3.7) 0.8(1.0) 5.5(6.1) 24.0(48.8) 21.1(34.0) 19.7(25.3)
0.1 1000 n 2.3(2.0) 0.3(0.1) 1.0(0.9) 23.7(40.3) 7.8(14.3) 9.8(21.2)
ny 3.1(2.7) 0.3(0.1) 2.7(2.9) 27.3(42.0) 11.1(30.9) 14.3(23.4)
n3 4.3(4.5) 0.3(0.6) 5.4(3.4) 26.6(38.2) 21.0(30.5) 16.5(35.6)
0.5 50 n 4.2(5.3) 2.4(2.7) 4.6(4.8) 25.8(36.0) 24.7(36.2) 23.0(30.9)
ny 3.6(4.1) 3.7(3.2) 5.0(4.3) 29.3(33.3) 20.0(31.0) 22.0(26.9)
n3 5.8(5.5) 5.0(3.6) 5.4(4.9) 24.3(35.4) 25.3(36.0) 22.9(38.6)
0.5 500 n 3.2(3.0) 1.8(1.3) 1.7(2.9) 22.5(28.3) 9.3(16.3) 20.5(19.6)
ny 5.1(4.6) 3.1(1.7) 3.9(54) 19.2(23.6) 11.1(26.8) 15.7(19.6)
n3 4.6(4.4) 3.7(3.9) 5.4(5.1) 26.2(24.8) 12.4(18.5) 13.8(21.4)
0.5 1000 n 3.5(4.2) 0.6(0.2) 2.2(2.7) 17.1(24.1) 12.2(26.8) 11.8(19.3)
n; 5.3(4.8) 0.7(1.2) 4.5(3.8) 13.8(20.9) 17.1(18.8) 12.7(21.5)
n3 4.7(4.6) 1.7(2.7) 4.8(5.3) 18.6(25.2) 14.9(18.3) 15.5(21.1)
0.9 50 n 5.5(6.3) 5.0(3.6) 5.1(4.8) 20.1(27.1) 23.0(35.2) 18.4(31.0)
ny 5.0(5.7) 4.6(4.5) 4.5(5.1) 22.3(23.2) 24.4(26.0) 21.4(25.3)
n3 5.3(5.2) 5.1(4.8) 5.3(4.7) 28.5(32.3) 24.3(29.3) 23.9(32.4)
0.9 500 n 5.1(3.5) 34(5.1) 3.6(4.6) 15.0(23.9) 15.6(15.3) 19.4(19.0)
ny 5.2(5.0) 4.2(4.3) 5.0(5.7) 19.8(22.1) 17.4(18.4) 16.3(18.1)
n3 5.1(4.6) 4.7(4.8) 5.2(5.4) 21.1(23.7) 17.0(17.4) 16.7(19.3)
0.9 1000 n 5.7(4.8) 2.7(3.4) 4.7(4.3) 13.6(18.9) 13.1(18.8) 13.4(16.3)
n; 5.3(4.8) 3.9(3.7) 3.9(44) 15.7(19.1) 14.2(15.8) 15.9(20.7)
n3 5.5(4.5) 4.0(4.4) 4.7(5.3) 15.9(21.3) 15.7(17.5) 15.0(18.7)
NA 50 n 2.4(4.4) 2.9(2.3) 5.5(4.7) 36.4(45.3) 26.5(38.6) 20.5(33.3)
n; 4,0(4.5) 3.4(3.1) 5.3(4.9) 31.6(46.1) 26.4(44.7) 23.0(40.2)
n3 5.0(3.5) 4.0(4.5) 5.5(6.3) 34.5(53.0) 30.5(40.0) 33.1(42.4)
NA 500 n 2.5(2.4) 0.4(0.2) 1.5(2.0) 24.7(40.9) 9.4(33.3) 15.8(23.2)
n; 3.2(3.8) 0.4(0.7) 2.9(2.9) 32.8(44.2) 27.4(33.6) 20.9(32.6)
n3 4.3(4.9) 2.8(1.7) 5.9(4.4) 31.3(36.8) 16.8(29.5) 20.8(35.6)
NA 1000 m 2.3(2.1) 0.1(0.2) 1.0(1.2) 29.1(41.7) 7.6(12.9) 15.3(22.9)
n; 2.3(2.9) 0.1(0.4) 2.6(2.8) 32.3(47.3) 18.9(21.8) 17.1(28.7)
n3 2.7(4.2) 0.7(1.1) 5.5(4.1) 37.6(42.5) 19.7(28.4) 19.8(36.0)

T,(14) than the rest of the tests. On a rare occasion, test Tr(,z) has comparable or slightly better power than T,g4), for instance
when p =50,n3, p =0.5, NA for X12 model. In general, one needs to select a finite number L of sparse matrices AD such
that A® 4 is maximized in some sense under the fixed alternative.

Finally, we remark that the case of t distribution with 4 degrees of freedom seems to be the most challenging dis-
tribution for our tests. The reason is that we perform a relatively small sample size comparison under i.i.d. setup, when
B, is a constant. However, this constant is 4.312 times higher for t with 4 degrees of freedom than that constant for the
standard normal distribution. This impacts the performance when n is relatively small compared to p. The power picks up
significantly if we increase the minimum sample size from 100 in n3 to 200.

In comparison to the various tests in Zhang et al. (2017) our tests have good level performance but tend to be a bit
conservative, while Zhang et al. (2017) tests tend to overshoot the nominal level, see their Table 1. Looking at power
performance in their Table 2, their tests do good for normal distribution with p = 0.1 but our tests do better for all other
cases. We also remark that case p = NA was not studied in Zhang et al. (2017). In particular, we refer to Table 3 that

contains the level and power information for T;yp test in Zhang et al. (2017) in comparison to our Tr(,4).
4.2. Comparison with Cai and Xia (2014) approach

In the third simulation we compare our approach with that of Cai and Xia (2014). We consider 5-diagonal matrix As
with the following block structure
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Table 2
Level and adjusted power performance of T,(f) ( T,(f”). We used 15-diagonal matrices, 10K bootstrap repetitions, and 1K empirical repetitions for each entry.
P p n Size Size Size Power Power Power
N ty X3 N ty x?

0.1 50 m 3.1(2.7) 3.2(2.3) 45(3.9) 40.7(71.7) 33.1(60.9) 29.9(54.9)
ny 4.5(4.2) 3.5(3.5) 4.5(5.8) 42.9(67.6) 36.2(574) 34.4(49.8)
ns 5.1(4.4) 4.4(4.5) 5.4(5.2) 46.0(68.3) 39.5(62.4) 40.6(59.2)

0.1 500 m 3.0(2.3) 0.6(0.7) 3.1(2.8) 31.9(53.8) 241(36.2) 21.9(33.0)
ny 2.7(3.1) 11(1.6) 4.8(3.9) 441(55.5) 31.0(45.6) 27.8(43.7)
ns 5.2(4.9) 1.4(2.5) 6.4(4.9) 36.6(43.4) 34.7(36.4) 24.6(37.4)

0.1 1000 m 1.5(2.1) 0.1(0.4) 3.1(1.5) 39.2(56.9) 31.5(35.0) 17.9(39.6)
ny 3.3(2.9) 0.6(0.6) 4.9(4.0) 32.5(49.6) 27.6(45.8) 20.9(36.4)
ns 41(4.3) 1.4(2.5) 5.4(4.2) 33.8(50.3) 32.8(40.6) 26.5(47.7)

0.5 50 m 5.1(4.0) 3.2(3.4) 5.3(5.3) 18.3(38.6) 20.7(35.2) 18.9(29.1)
ny 3.9(4.0) 5.5(4.0) 6.9(5.3) 25.3(39.0) 20.0(33.2) 16.7(312)
ns 5.5(4.2) 4.7(4.3) 54(5.1) 22.9(38.7) 24.7(32.5) 22.4(32.8)

0.5 500 m 5.4(3.9) 2.3(2.7) 3.6(4.5) 13.9(22.1) 13.0(18.9) 15.0(19.8)
ny 4.7(4.7) 3.3(2.9) 4.7(6.8) 18.3(26.5) 16.3(26.7) 18.4(17.3)
ns 4.0(5.2) 3.7(2.9) 5.7(5.5) 21.0(19.9) 16.1(23.4) 16.4(21.5)

0.5 1000 m 4.0(3.5) 1.5(2.0) 43(3.6) 14.8(24.1) 12.9(18.7) 11.9(18.5)
n, 5.0(4.4) 2.8(2.4) 44(53) 15.4(23.3) 15.2(19.0) 18.9(17.2)
ns 3.8(5.1) 3.2(3.4) 3.3(4.2) 20.9(20.4) 15.0(20.2) 23.6(22.9)

0.9 50 m 6.0(5.1) 4.8(6.2) 5.9(5.6) 18.4(28.7) 21.2(26.5) 18.7(27.9)
ny 4.8(4.2) 4.9(44) 5.2(4.8) 31.5(32.6) 27.1(33.5) 37.7(30.9)
ns 3.8(5.5) 3.3(5.1) 51(6.3) 493(30.9) 46.4(33.6) 431(27.8)

0.9 500 m 5.3(5.1) 4.8(3.7) 3.6(6.1) 13.4(18.0) 10.9(20.0) 19.1(14.4)
n, 52(3.9) 4.6(5.4) 5.2(6.9) 153(25.4) 13.7(18.5) 15.5(15.7)
ns 4.8(5.0) 41(4.3) 71(5.2) 16.5(22.0) 15.8(22.0) 12.7(20.4)

0.9 1000 m 5.4(6.3) 5.7(4.1) 5.8(4.5) 14.4(14.9) 8.9(17.9) 11.3(18.3)
ny 41(4.8) 6.2(4.2) 6.1(5.5) 17.4(17.7) 10.5(16.6) 11.2(15.0)
ns 4.0(4.6) 42(42) 5.4(6.0) 17.9(20.9) 14.7(17.5) 13.4(15.3)

NA 50 m 4.0(4.0) 2.0(2.3) 42(4.2) 31.0(42.9) 30.0(42.5) 24.4(32.0)
ny 2.8(3.0) 3.6(3.0) 6.9(5.9) 38.6(48.3) 23.1(43.2) 18.3(33.0)
ns 5.3(4.7) 3.7(4.2) 5.0(5.6) 30.2(45.0) 30.6(40.4) 26.9(40.6)

NA 500 m 1.9(1.7) 0.7(0.6) 3.0(3.2) 28.5(45.4) 23.9(29.3) 15.1(18.2)
n 2.9(3.9) 1.0(1.2) 3.9(4.1) 34.4(40.7) 22.8(38.2) 22.1(32.0)
ns 31(3.2) 1.2(2.4) 49(5.2) 33.9(45.7) 21.8(29.3) 20.8(28.8)

NA 1000 m 1.3(1.5) 0.3(0.4) 3.2(1.7) 29.5(44.7) 14.3(19.5) 12.5(22.3)
n 3.2(3.8) 0.9(0.8) 2.9(4.6) 43.2(59.4) 17.5(27.8) 22.4(25.9)
ns 3.4(4.1) 1.7(11) 5.7(4.9) 33.3(43.1) 212(37.1) 19.9(33.7)

(Dp, —Dp/3,0p, —2Dp/3; —2Dp/3,2D,, —Dy/3,0p ; 0p, —2Dp /3, 2Dy, —Dp/3;
—Dp/3,0p, —2D,/3,2Dp),

where D), is a diagonal matrix with diagonal entries dy = log(2k),k =1, ..., p. The fifth test statistic T,(f) is based on
{As, AL}, where A7 is similar to As with weights 1/3 and 2/3 switched. Note that L =2, s = 2log(2p) for it.

For Cai and Xia (2014) approach we use their tests d>a(§2), llla(f)) with the CLIME estimator €2 of Cai et al. (2011) for the
unknown precision matrix 2 = £~!. As recommended in Cai and Xia (2014) we used intermediate correction W, (), which
helps with level performance, but it lowers power. We notice that when p = 0.5 or NA the correction does not change the
test @ ($2) into Wy (€2). Also for these two cases the power gets worse with changes in sample size, the power performance
of W, (£2) is unstable and poor. This can be explained by the accumulated errors from CLIME estimation of the precision
matrix.

The results are summarized in Table 4. Our test T,(IS) outperforms W, ($2) when p = 0.1 (almost a diagonal covariance
matrix) for all dimensions and all distributions except t4, for which the results are mixed. It outperforms \Da(fZ) when
p = 0.5 everywhere except for t4 and X12 distributions with p =500, nq7 and p = 1000, n2.

However, for p = 0.9 (almost singular covariance matrix) Wy (Q) has exceptionally high power but poor level while our
test has good level and solid power performance. After singular value decomposition such covariance is quite sparse, and
that is when test W, (2) really shines. .

For the case of p = NA, our test outperforms W, (£2) for all dimensions and all distributions. We conjecture that the
power loss happens due to numerical errors accumulated in the precision matrix estimation process where we used CLIME.
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Table 3
Level and adjusted power performance of T,§4> and Tpyp in Zhang et al. (2017) in brackets.
P p n Size Size Size Power Power Power
N ty X12 N ta X12

0.1 50 n 2.7(6.1) 2.3(5.1) 3.9(4.9) 71.7(52.0) 60.9(54.0) 54.9(54.8)
n; 4.2(5.5) 3.5(5.1) 5.8(5.4) 67.6(42.5) 57.4(42.3) 49.8(42.3)
n3 4.4(6.0) 4.5(5.4) 5.2(4.9) 68.3(52.8) 62.4(54.7) 59.2(55.8)

0.1 500 n 2.3(6.8) 0.7(6.1) 2.8(6.6) 53.8(42.5) 36.2(43.4) 33.0(41.7)
n; 3.1(6.4) 1.6(6.4) 3.9(6.2) 55.5(46.2) 45.6(46.0) 43.7(47.7)
n3 4.9(6.3) 2.5(6.0) 4.9(6.3) 43.4(38.8) 36.4(39.2) 37.4(38.6)

0.1 1000 n 2.1(6.5) 0.4(6.9) 1.5(6.8) 56.9(42.2) 35.0(40.0) 39.6(40.8)
n; 2.9(6.3) 0.6(6.6) 4.0(6.9) 49.6(40.4) 45.8(38.9) 36.4(38.4)
n3 4.3(6.5) 2.5(6.8) 4.2(6.2) 50.3(41.5) 40.6(40.6) 47.7(43.1)

0.5 50 n 4.0(6.3) 3.4(6.1) 5.3(5.8) 38.6(15.3) 35.2(16.6) 29.1(16.4)
n; 4.0(5.8) 4.0(5.7) 5.3(5.6) 39.0(13.8) 33.2(13.4) 31.2(14.3)
n3 4.2(5.4) 4.3(5.3) 5.1(6.0) 38.7(17.5) 32.5(17.2) 32.8(16.3)

0.5 500 n 3.9(6.2) 2.7(6.3) 4.5(6.0) 22.1(10.6) 18.9(10.6) 19.8(10.9)
n; 4.7(5.6) 2.9(6.0) 6.8(5.9) 26.5(11.9) 26.7(11.9) 17.3(11.5)
n3 5.2(5.7) 2.9(5.8) 5.5(5.7) 19.9(10.4) 23.4(10.1) 21.5(10.4)

0.5 1000 n 3.5(6.3) 2.0(6.2) 3.6(6.1) 24.1(10.0) 18.7(10.7) 18.5(10.9)
n; 4.4(5.9) 2.4(5.8) 5.3(6.0) 23.3(10.9) 19.0(10.6) 17.2(10.7)
n3 5.1(5.5) 3.4(6.0) 4.2(6.2) 20.4(10.8) 20.2(9.8) 22.9(10.1)

0.9 50 n 5.1(6.1) 6.2(5.9) 5.6(6.0) 28.7(10.3) 26.5(10.3) 27.9(10.3)
n; 4.2(5.5) 4.4(5.3) 4.8(5.0) 32.6(9.6) 33.5(9.2) 30.9(9.7)
n3 5.5(5.6) 5.1(5.2) 6.3(5.5) 30.9(10.8) 33.6(10.9) 27.8(10.4)

0.9 500 n 5.1(5.5) 3.7(5.5) 6.1(5.7) 18.0(8.5) 20.0(8.0) 14.4(8.4)
n; 3.9(5.7) 5.4(5.5) 6.9(5.4) 25.4(7.9) 18.5(8.6) 15.7(8.5)
n3 5.0(5.3) 4.3(5.0) 5.2(5.2) 22.0(7.7) 22.0(8.3) 20.4(7.6)

0.9 1000 n 6.3(6.1) 4.1(5.5) 4.5(5.7) 14.9(7.3) 17.9(8.1) 18.3(7.8)
n; 4.8(5.8) 4.2(5.4) 5.5(5.0) 17.7(7.1) 16.6(7.7) 15.0(8.2)
n3 4.6(5.3) 4.2(5.7) 6.0(5.7) 20.9(7.6) 17.5(7.6) 15.3(7.3)

It is possible that with better and faster precision matrix estimators W, () could have better performance. We also remark
that for several scenarios test W, () struggles to differentiate between null and alternative hypotheses, since the level and
power values are close.

We performed all the simulations in Matlab. This computational work was partially supported by Michigan State Uni-
versity High Performance Computing Center through computational resources provided by the Institute for Cyber-Enabled
Research. We would like to mention the computational cost in this simulation study. The need for precision matrix estima-
tion and lack of sparsity in means and covariances lead to severe increase in computational time for the test from Cai and
Xia (2014) in comparison to our test. For example, for p =500, K =4, p = NA our test did 1000 empirical iterations in 45
minutes while 1 iteration of Cai and Xia’'s test took 72 minutes. For p = 1000, K =4, p = NA our test did 1000 empirical
iterations in 6 hours while 1 iteration of test from Cai and Xia (2014) took 15 hours. This comparison is based on running
both codes on 1 node Intel(R) Xeon(R) CPU E5-2680 v4 2.40 GHz with 492 GB memory and 190 GB disk size. Usage of the
fastclime approach from Pang et al. (2014) had the modest effect for the datasets that had non-sparse precision matrices.

4.3. Comparison with Chen et al. (2019) approach

For the fourth simulation study we consider the setup in Chen et al. (2019). Under normal distribution model they
consider K =3 groups with different covariance matrices of the form A=Jl i, j, =1,..., p, with A =0.4,0.5, 0.6 for group
1, 2, 3, respectively. Under the null hypothesis Ho all means w1, 2, 43 are zero. Under their sparse alternative H, the first
group has 1 =0, the other two means combined form a sparse vector of length 2p with only [(2p)%4] non-zero entries of
magnitude (2rlog(2p)/n)!/? uniformly distributed among 2p components. Parameter r controls the strength of the signal
and varies between 0.1, 0.2, and 0.4. Chen et al. (2019) proposed multi-thresholding method for MANOVA problem. Mult-A1l
and Mult-A2 correspond to their tests without and with data transformation, the latter requires precision matrix estimation
for unknown ;,i=1, 2, 3.

We consider 5-diagonal matrix Ag with the block structure

Dy, —Dp/3, —2D,/3; =Dp/3,Dp, —2D,/3; —2D,/3, Dy, —Dp/3),
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Table 4
Comparison of our method vs Cai and Xia (2014) method whose numbers are given in brackets. Powers are adjusted for sizes.
P p n Size Size Size Power Power Power
N ta X3 N ty x?
0.1 50 m 5.7(13.1) 2.4(14.8) 43(14.8) 55.6(15.1) 50.7(15.6) 38.3(12.2)
ny 6.1(9.0) 3.5(8.7) 5.5(9.3) 55.5(10.0) 49.9(11.6) 37.5(10.9)
ns 7.0(5.9) 4.9(5.9) 8.7(6.9) 55.0(13.9) 50.4(13.6) 442(10.3)
0.1 500 m 3.9(9.0) 0.4(3.8) 1.8(9.1) 44.7(11.0) 22.9(27.6) 26.6(10.2)
n 5.4(7.6) 1.6(3.1) 45(72) 46.0(9.4) 23.5(26.6) 29.3(8.9)
ns 7.9(6.5) 1.6(3.9) 6.3(3.9) 32.5(9.1) 30.7(18.8) 33.5(12.3)
0.1 1000 m 3.3(15.9) 0.1(22.1) 11(32.4) 443(24.2) 15.6(19.8) 24.4(7.6)
nz 4.5(15.8) 0.3(18.9) 4.0(12.6) 42.0(9.7) 23.1(9.0) 22.9(9.8)
ns 6.5(7.1) 1.0(9.0) 6.0(12.1) 45.9(14.3) 32.0(12.6) 31.2(9.0)
0.5 50 m 5.3(7.5) 3.2(8.5) 5.9(6.5) 42.7(16.8) 441(17.3) 30.5(20.0)
n 6.7(6.6) 4.2(6.5) 6.0(5.1) 39.1(15.4) 41.0(13.0) 31.0(22.0)
ns 8.9(5.1) 4.5(5.9) 8.3(4.7) 33.7(17.6) 431(13.5) 31.5(21.9)
0.5 500 m 5.0(9.4) 1.8(3.9) 41(7.8) 27.5(16.5) 20.5(31.7) 18.6(20.1)
nz 8.0(8.8) 2.2(4.9) 7.0(7.6) 23.3(9.0) 28.3(13.9) 19.6(10.8)
ns 71(5.6) 3.4(6.1) 71(7.0) 243(9.7) 23.7(8.6) 20.3(9.6)
0.5 1000 m 6.0(11.8) 1.0(12.9) 3.3(9.6) 20.5(10.9) 17.5(15.2) 221(14.4)
nz 6.7(2.8) 2.0(1.9) 6.4(7.1) 21.5(21.8) 19.6(33.5) 18.3(10.5)
ns 6.5(2.7) 3.6(2.9) 6.3(6.2) 25.5(17.8) 20.5(7.1) 24.0(112)
0.9 50 m 6.9(5.6) 8.2(4.3) 7.9(5.0) 29.1(42.3) 29.5(50.2) 26.2(49.4)
nz 6.7(5.1) 6.2(5.5) 7.0(4.7) 30.5(48.1) 35.8(47.2) 31.1(59.2)
ns 6.2(5.0) 5.3(4.9) 6.8(5.4) 34.1(59.6) 39.2(59.7) 33.6(60.6)
0.9 500 m 7.6(7.0) 4.7(15.6) 72(11.3) 20.7(61.6) 19.4(46.8) 16.4(51.8)
n; 8.8(7.3) 5.9(14.7) 6.7(14.6) 20.9(63.9) 20.3(56.0) 21.8(51.5)
ns 7.8(7.4) 6.8(13.6) 6.7(15.7) 24.7(73.1) 19.9(60.3) 22.7(64.9)
0.9 1000 m 6.9(10.1) 3.8(12.9) 6.0(14.9) 18.0(44.8) 18.7(42.6) 17.5(35.4)
nz 7.6(5.0) 5.0(9.6) 6.2(5.9) 18.1(60.1) 18.1(56.1) 18.9(57.6)
ns 8.4 (6.8) 5.5(3.9) 7.8(4.1) 17.8(58.0) 17.6(75.4) 16.5(69.4)
NA 50 m 5.5(12.0) 43(12.3) 59(11.3) 51.8(6.3) 414(5.6) 35.6(5.5)
n 6.0(7.1) 5.5(7.6) 6.5(6.0) 50.9(8.3) 40.6(5.1) 41.1(6.5)
ns 73(5.8) 6.4(6.0) 6.8(5.6) 483(3.9) 43.4(6.2) 495(5.1)
NA 500 m 45(18.1) 0.4(17.1) 2.2(21.4) 43.6(10.4) 30.3(13.0) 27.9(13.8)
n 5.5(17.2) 1.6(13.7) 4.4(19.2) 46.0(5.5) 31.3(12.7) 36.0(7.3)
ns 5.8(7.5) 2.4(71) 6.7(13.1) 54.3(8.6) 34.3(9.5) 35.6(6.6)
NA 1000 m 2.6(15.8) 0.3(20.9) 2.0(24.1) 52.7(21.1) 21.0(15.0) 22.6(9.4)
n 5.2(14.5) 0.8(18.0) 4.8(17.1) 49.2(9.2) 25.2(7.8) 30.6(9.1)
ns 79(12.1) 1.8(8.8) 6.6(16.4) 46.8(7.6) 32.3(11.5) 39.0(5.6)
where ID,, is a diagonal matrix with diagonal entries diy =log(2k),k=1, ..., p, as in As. The sixth test statistic T,SG) is based

on {Ag, Ag}, where Ay is similar to Ag with weights 1/3 and 2/3 switched. Note that L =2, s = 2log(2p) for it. We use 10K
bootstrap samples to obtain Q, with o =0.05.

The comparison results are summarized in Table 5. The level performance of our test is better than both tests from
Chen et al. (2019) especially for higher dimensional case p = 400. With respect to power, our test is comparable to Mult-
A1, which is applied to the untransformed data. Of course Mult-A2 is better than our test because it is adjusted to the
covariance structure but it requires precision matrix estimation, which makes it rather slow. Both Mult-A1 and Mult-A2 are
designed for sparse means (controlled by r in simulation) and sub-Gaussian distributions. They are not applicable under
scenarios considered in subsections 4.1 and 4.2. Overall, the applicability of both Mult-A1 and Mult-A2 tests is more narrow
than the applicability of our test.

5. Real data example

We consider the second example in Zhang and Sakhanenko (2019). It is based on the dataset from Lee et al. (2008)
work on fish species’ recognition and migration monitoring. For each fish, the shape pattern as a vector of dimension 463
is obtained. They consider 7 fish species that have similar shape characteristics. For each species 50 fish are sampled. The
dataset can be obtained from the UCR Time Series Classification and Clustering archive

http://www.cs.ucr.edu/~eamonn/time series_data
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Table 5
Comparison of our method T,(le) with Chen et al. (2019) multi-thresholding methods for sparse mean alternative. Powers are adjusted for sizes, r controls
the strength of the signal in the alternatives.

(p,nq1,nz,n3) Method Size r=0.1 r=02 r=04
(100, 40, 40, 40) T® 47 8.8 128 262
Mult-Al 25 958 16.6 33.7
Mult-A2 43 16.8 30.3 89.6
(100, 80, 80, 80) T® 42 14.7 16.9 30.0
Mult-A1 34 83 16.2 394
Mult-A2 40 26.6 59.3 98.4
(100, 100, 100, 100) T® 48 115 18.4 29.0
Mult-A1 5.0 83 124 357
Mult-A2 49 201 48.7 991
(200, 40, 40, 40) T® 58 8.2 10.7 233
Mult-A1 22 8.7 147 379
Mult-A2 20 241 69.9 98.7
(200, 80, 80, 80) T® 6.0 103 133 275
Mult-Al 41 6.9 146 446
Mult-A2 50 278 66.9 99,0
(200, 100, 100, 100) T® 58 123 148 26.8
Mult-Al 37 9.1 171 485
Mult-A2 50 212 752 995
(400, 40, 40, 40) T® 6.2 8.3 111 23.0
Mult-Al 2.0 94 122 39.7
Mult-A2 2.7 195 514 979
(400, 80, 80, 80) T 6.0 9.2 134 29.7
Mult-Al 47 63 13.0 463
Mult-A2 41 28.6 732 99.4
(400, 100, 100, 100) T 5.3 14.4 15.8 3338
Mult-Al 33 10.8 179 78.7
Mult-A2 41 309 529 100

0.1 1

J

0 50 100 150 200 250 300 350 400 450 500 1

(a) group means (b) group differences

Fig. 1. Shape characteristics for 7 different fish species are summarized.

Initial visual assessment is presented in Fig. 1. There are K =7, p =463, n = 50. In particular, we computed %HV,- - \_/j||%

for all pairs 1 <i < j <K, and summarized them in the boxplot in Fig. 1. We also graphed V;,i=1,..., K for reference.
We can speculate that differences between species 2 and species 3, and species 3 and species 5 are more pronounced than
the rest of the species. Note that the data is not sparse and the pairwise differences are quite close.

We apply our method to this problem. We consider the class of matrices that are obtained by permutations of group
indices with base matrix A that consists of 7-by-7 blocks as follows

(21B,—-B,—-2B, —-3B, —4B, —5B, —6B; —6B, 21B, —B, —2B, —3B, —4B,
—-5B; -5B, —6B, 21B, —B, —2B, —3B, —4B; —4B, —5B, —6B, 21B, —B,

13
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—2B,—-3B; —3B, —4B, -5B, —6B,21B, —B, —2B; —2B, —3B, —4B,
—-5B,—-6B,21B, —B; —B, —2B, —3B, —4B, —5B, —6B, 21B),

where B = Bs5¢ is introduced in subsection 4.1. Note that the resulting matrix has 30 diagonals. The test statistic is
Tso = 9225.5, while the bootstrapped quantile is Q = 3237.7 for o = 0.05 with 10K bootstrap repetitions. Thus, there
are statistically significant differences between means for the shapes of fish species.

6. Discussion and conclusion

In this paper we have introduced a framework of bootstrap tests that can address several different testing problems in
high-dimensional setup (n << p) in a unified fashion. This is done by considering tests statistics that are maximums of
sums over sparse classes of convex sets of a novel type. These classes serve the role of a tuning mechanism, which can
be chosen based on the particular problem. Basically for a hypothesis about means, one needs to select a finite number
of sparse matrices AD,1=1,...,L, such that A, =0 under the null hypothesis. To get a test with high power under a
specific alternative, one needs to select these matrices so that components of A/t are maximized. For instance, in case of
very sparse alternative, one needs several more dense matrices, however, that is controlled by condition (A1) and one can
only ask for s = O ((log(LKp))?) for power a =3/2 or 5/2 depending on moment conditions. On the other hand, for dense
means /L, one can use a single matrix (so L = 1) with just a few non-zero diagonals, so in this case s is a finite number.
In practice, one can estimate u by stacking groupwise sample means, say [i, and then choose a relatively small number of
relatively sparse matrices A?) that maximize some norm of A® . This would lead to good empirical power.

Intuitively speaking, we control the sparsity of the tuning mechanism instead of sparsity assumptions on the underlying
data.

The resulting bootstrap tests have many advantages. In particular, they are consistent against any fixed alternative; they
attain good level and power for large p and small n. They are distribution and correlation free. They are computationally
fast. In particular, they are faster by as much as p times in comparison to methods that require precision matrix estimation.
Even for sparse alternatives, our tests have comparable performance to that of the existing specialized tests. We only require
mild moment and tail assumptions on the distributions. We do not require that the ratios of sample sizes converge to a
specific limit. Unlike current tests in literature, we do not require the samples to come from the same distribution, the tail
and moment conditions have B, that can grow with n in the non-identical case.

The only drawback is that our methods have the rate of convergence of the distance between the test statistic
and its bootstrapped version of at best (log(LKp))3/2n—1/2logn for bounded distributions, and at worst this rate is
(log(LKp))*/5n=1/6 for variables with finite 4-th moments and control of the maximum of the variables, which is quite far
from a parametric rate. Our framework can accommodate tests of the type as in Lin et al. (2021), where they are exploiting
the covariance structure. In particular, the decay of covariance components with the dimension p leads to specialized tests
with nice near-parametric rates as in Lin et al. (2021). However, this covariance structure has to be verified in practice,
which could be difficult in general apart from functional and sparse count data. Intuitively, such covariance structures give
a dimension reduction mechanism and the effective dimension becomes of the same order as n.

Our work is different from Zhang et al. (2018) who proposed MANOVA test that adapts to the sparsity of the alternative
based on the data. Our work comes with exact rates for the tests, see Corollary 2 unlike their tests. Moreover, our methods
allow for growing K = K, as long as log(LKp) = o(n®) for § € (0,1/3) for bounded random variables and for § € (0, 1/5)
for random variables with finite 4-th moments. The computation is also much easier as we do not require estimation of
individual elements of the covariances. We can allow all the quantities s = s, By, L = L, K = Ky, and p = p,, to grow with
n. We can consider extreme particular cases. For example, if only s is allowed to grow then it can be as large as s = o(n'/?).
If only p is allowed to grow, it can be as large as log p = o(n'/3(logn)~2/3). The same argument holds for K and L. One can
re-balance different growth assumptions put on s, K, L, and p. These growth assumptions are better than those in Zhang et
al. (2018).

From a probabilistic point of view, this work also introduces a novel class of convex classes, for which the Berry-Esseen
type results are obtained. This new class of convex sets generalizes the classes of half-spaces and hyper-rectangles to
classes of “hyper-polygons”, which are linear transformations of intersections of a finite number of hyper-spaces. Such sets
are sparse in the sense of Chernozhukov et al. (2017). We manage to explicitly track the effect of the sparsity parameter
s on the rates. Under certain tail and moment assumptions on the distribution, this effect is linear. Chernozhukov et al.
(2017) did not establish this dependency explicitly, since it was buried in the complicated and intricate implicit geometric
structures.

Finally, we remark that the multipliers eq, ..., e, can be chosen mean-zero unit-variance random variables from a sub-
Gaussian distribution. One needs to refine the theoretical derivations as done in the recent work of Chernozhukov et al.
(2019). For instance, Rademacher multipliers are quite popular in literature. Our test will work with such multipliers and it
will have all the properties listed in this paper.
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Appendix A. Technical conditions and the main theoretical result

The k-th group after centering consists of Vi1 — ik, ..., Vkn — Uk independent observations in RP. Now stack
those vectors Vi1 — p1,..., Vg1 — wg into Xj, stack vectors Vi — p1,..., Vg2 — g into Xz, and so on, stack
Vin — M1,..., Vkn — i into X,. We obtain centered long vectors X; € R? with d = Kp. Note that the test statistics
T, are functionals of normalized sums SX = ﬁ 3% 1 Xi. Note that using long stacked vectors the test statistics can be
rewritten as

T, = max max ([A“)s,’f],- +n1/2[A<’)M]J-),
Lj=1,...d
where ;1 € R? consists of vectors ;€ RP, k=1, ..., K, stacked into one long vector. Under Hy test statistics become

T,= max max [ADSX];,
oL j=1rd

I=1,...,L j=1,...,

due to condition (A2). Also note that the bootstrapped statistics can be rewritten as T = max—, ; MaxXj_ d[A(l)Sﬁx]j.
Introduce the following moment and tail conditions collectively denoted by (C). Let {B,, D,,n=1,2,...} be sequences
of positive constants, possibly growing to infinity. Let ojz = ]E(S;()z.
(S) miny<j<¢0j > b > 0 for some fixed constant b.
(E1) |Xjjl <ByojVi=1,...,nVj=1,...,d as.
(Ev) For Orlicz norms based on function v, we have || Xjj|ly <B, Vi=1,...,nVj=1,...,d.
(Eyro) For Orlicz norms based on function ¢, we have || X;j/ojlly <Bp Vi=1,...,nVj=1,...,d.

(E3) lmaxq<j<q | XijlllL, <Dn Vi=1,...,n.
(E30) [Imaxy<j<q|Xij/0jlllL, <Bn Vi=1,...,n.
(M) n~! ?:1]Ex;*j <BlvVj=1,....d.
(Mo)n= '3, ]Ex;} < Bga;‘ Vi=1,...,d.
For completeness recall the conditions on the class of matrices:
1 .

(A1) Yoy A <sVi=1,....d VI=1,... L

K (O] _ f_ _ _ .
(A2) Ykt Afigeypy =0 Vi=1.....dVg=1....pVI=1.. L
(A3) minq<j<; minq<j<q[AQE(AP)T]j; > b > 0 for some fixed constant b.
We utilize multiplier bootstrap, thus, introduce

1 < A
SX= N eXi—X), X==Y X,
. ﬁ;,(, ) n;

where a vector e = (eq, ..., e,) of i.i.d. N(0, 1) random variables is independent of X;,i =1, ...,n. Consider the Kolmogorov
distance defined as

KD = sup
ueR

P( max max [A(')S,?f]j <u) — Pe( max max [A(')Sﬁx]j <u)|,
I=1,...,.L j=1,....d I=1,...,.L j=1,....d

where P, stands for the probability with respect to the Gaussian vector e only. Recall that ¥, (u) = e’ —1 forp>1.

Theorem 2. Suppose conditions (A1)-(A3) hold. Under condition (E1)
3/2
KD < CsBp(log(Ld)) logn;
NG
under conditions (Mo ) and (Evr,0)
sBy(log(Ld))3/? logn N san(log(Ld))z)
Vn vn

)

KD§C<
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under conditions (Mo ) and (E30 ) for some q > 4
sBn(log(Ld))3/? logn N s*B2(log(Ld))? logn
ﬁ n1—2/q

(qug(1og(Ld))3q/2—4(1ogn)aog(mn»)1/ (‘"2))
+ — ;
n4/2-1

KDSC(

under conditions (M) and (Evr )

)

s2/3B, (log(Ld))>/5  s*3B."> (log(Ld))?/3 (logn)*/3
n1/6 + ni/3

KD <(C <
under conditions (M) and (E3) for some q > 2

)

s23B13(log(Ld))5/6  s2/3D2(log(Ld))!—2/GD
n1/6 n1/3-2/G9)

KD <C <
where the constant C > 0 depends on b from (A3) in all cases and it also depends on q when q is used.

We remark that Kolmogorov distance KD goes to 0 as n grows as long as By, Dy, L,d, and s grow not too fast. In
particular, under condition (E1) we need sB,(log(Ld))3/2 = o(+/n/logn), which would be the same under (Mo ) and (Evyr) if
s(log(Ld))'/? = 0 (logn) and otherwise under (Mo ) and (Ev») we need s%B,(log(Ld))? = o(+/n). Meanwhile, under (Mo ) and
(E30) with ¢ =4 we need s“Bﬁ(log(Ld))2 = o0(4/n/logn). However, for q > 4 three conditions should be satisfied without a
clear winner: sBy(log(Ld))3/? = o(v/n/logn), s*B2(log(Ld))?> = o(n'~2//logn), and the most intricate condition of the three
s172/@=2 g1 =2/@=2) (165(14))3/2 = 0(,/n/logn). Under (M) and (Ey;) we have a special case when log(Ld) grows faster or
the same as (logn)?/? and s?B2(log(Ld))*/? = o(+/n), otherwise we need both s?B2(log(Ld))*/? = 0(+/n) and s?B, log(Ld) =
o(4/n/logn). Finally, under (M) and (E3) we need both s?Bp(log(Ld))>/? = 0(/n) and s?D?2(log(Ld))3~2/9 = o(n1—2/9),

Note that the proof of Theorem 1 follows from the proof of Theorem 2 immediately.

We also remark that one can choose a sequence of oy, | 0 such that > 52 ; oy < 0o and consider events in Theorem 1 and
Corollary 1 in the spirit of Proposition 4.1 and remark 4.2 in Chernozhukov et al. (2017). Then apply Borel-Cantelli lemma
to obtain the results with probability tending to 1.

Appendix B. Proofs

Here we provide the outline of the proofs. Theorem 2 follows from Corollary 2.1 and Corollary 3.1 in Chernozhukov et
al. (2021) and Corollary 3.1 in Koike (2020), which are improvements of the Key Lemma 5.1 in Chernozhukov et al. (2017).

The main trick is to stack (AVX;,...,ADX;) into Ld-dimensional vectors X; for i = 1,...,n. Then for any u =
(uy,...,u;) e R

n
P(S¥e0)= P<n‘1/ZZA(’)Xi <u, l= 1,...,L> =P(s¥ <u).
i=1

Next, one just needs to check that conditions of Corollary 2.1 in Chernozhukov et al. (2021) and Corollary 3.1 in Koike
(2020) for X; follow from conditions in Theorem 2 on X;.

Proof of Theorem 2. We start by observing that for j=1,...,LKp
1 - _
o} = E(g(Z Xff)2> =1AZAD o,
i=1
for some I=1,...,L, jo=1,...,Kp, where ¥ from condition (A3) can be written as y, = %2?21 E (Xix Xim). We remark

that conditions (A3) and (A1) imply condition (S) for ¢; with a different b that is related to b and the eigenvalues of AD.
Now, condition (E1) |X;j| < Bpo; implies after (A1)

Kp Kp
7 ) (0] =
Xii| = A(. Xik] < max |X; A | <s max oyBp <ksB,oj,
Xl =1 Ajoy il < max | il Y JAG Rl <  max_oBn < KsBxGj
k=1 k=1
where « is such a number that
2
Gk 2\
max —5 <K vVj=1,...,LKp.
1<k<Kp ofj
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Existence of « follows from conditions (A1) and (A3), it is related to the ratio of smallest and largest eigenvalues of ¥ and
AOS (AT Thus, X;,i=1,...,n, satisfy condition (E1) with xsB, in place of Bj,.

Next, consider condition (Eyo ) for X. Since ¢ is a convex increasing positive function, we have

Ew( ”) M( ik 4 |)
K ) jom
gj €oj = 2 p1|A() = ’
s Koo aD koA (’(;k| s
<Ew< Zfimm) ZfiEVf(Tmu)
0] Kp 0] :
CU I k=1 A]om k= ]Z A]gm €oj
K (l)
Xp: |A ]Ok| o gy %|Xz‘k|
K 140 | ¢ o )
k=1 ]Om

where we used definition of x. Now, using the definition of Orlicz norm we have

] el =)
Gj v >0 CO']

LAV sk 1X;
<mf{27,1w<7| ”")51}
¢>0 e AD C Ok
Jom

11X
< sk max inf{E1ﬁ(—ﬂ)§1}§stn,
1<k<Kpc>0 C Oy

where ¢ = csk. Thus, X;,i=1,...,n, satisfy condition (Eyo) with «sB, in place of B,. A similar argument works for

condition (Ey) with sB,, in place of B,. Also note that (E30°) and (E3) are proved by the similar argument with ¢ (u) = ||u||?
with sD; in place of Dj.

Finally, consider condition (Mo) for X;. Indeed, we have

1 . X1 & A('l())k 4% 1 4
5o (2) =i e ) ()
J

10 jom
i=1 k=1 |A]0m| m=1
4 n o, Kp AD 4
S Ok
jOk

< S L '
= G Z Kp 20 Xik

Joi=1 " k=1 m=l| j0m|

A0

n 4
jOk
= ~le(ZJ—(,),nxfum)

Kp
noj i k12 114

Jom
n (l)
JOk 4 4.4p2
< n64 ZZ SR IXikll7, < x*s*By,
Ji=1k= 1 ]Om
where we used convexity property of |[u|;, and u?. Thus, X;,i=1

., n, satisfy condition (Mo') with x2s2B,, in place of
Bp. A similar argument works for condition (M).

Now the statement of Theorem 2 follows from Corollary 2.1 and Corollary 3.1 in Chernozhukov et al. (2021) and Corollary
3.1 in Koike (2020) applied to X;,i=1,...,n. O

Corollary 1 is proved similarly to establishing consistency of the test.
Proof of Corollary 1. Note that

n
_ )
P(Tn = QulHy) =P <1 N [ > Z Z Afgsa-nplVeily

""""" i=1 k=1 q=1

—nA® 115+ «/E[A(l)ﬂff)]j} = Qa)

n K p
-1/2 (O] n,,
- P(::Té.’.(uf}axd [n Y02 At npViilg = VALAC i)

""" i=1 k=1q=1
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= Qu — Gy, min min (AD L) > can ”2> Pe(TE > Qo — calHY)

+Pe(TE > Qu — cnlHY) = Pe(TE > Qg — calH") — KD — 1

asn—oo. O

In order to establish Corollary 2 we need to check that conditions of Theorem 2 are satisfied for X obtained by stacking
the variables V;;,t=1,..., K.

Proof of Corollary 2. Indeed, condition (A1) becomes

Z|A(’>|< max A]/ZZ|A(1)|<S max A]/z 5.

k.,n

Due to independence we have

o 0
EXitqr+01-10p Xita+G-19) = A1 611y as bt 1pyn Egr 461 -1p) @22 Dp)
hey—1
. -1 -1 (+3{=1) Ay =1)+r1) _
H(t = 2)Ag - npatata-m D Z@a-Dp@ata—npl (1 =12)-

r=1

Condition (A3) becomes

d d
Z Z (l) ZE(szxlm)A l) = b
k=1m=1

1_1

Note that new b is proportional to old b. All the moment and tail conditions will work for B, (min;=3, .k At,n)‘z in place of
B,. Then we apply Theorem 2 to new variables and get the desired result. O
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