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1. Introduction

Deep neural networks have become one of the most popularly used methods in artificial intelligence. Despite its
attractive performance in various applications, as a statistical model, it is important to investigate its statistical inference.
Due to the unidentifiability of the parameters in the neural network model, which were mentioned in Fukumizu (1996,
2003), classical tests such as Wald test and likelihood ratio test may not work since unidentifiability leads to inconsistency
for the parameter estimators (Wu, 1981).

Most existing literature on asymptotic properties of neural networks are based on the nonparametric regression. For
example, Chen and Shen (1998) and Shen et al. (2019) developed the rate of convergence of neural network estimators
under the random design and the fixed design, respectively. Compared with other commonly used nonparametric
estimation methods, such as the Nadaraya-Watson estimator and spline regression, neural networks have advantages
in terms of rate of convergence. For instance, it has been shown in Gyorfi et al. (2006) that the mean integrated

N 2 2
squared error (MISE) for Nadaraya-Watson estimator is E | |f, — fo H } =0 (n‘m) when the true function fy is L-

Lipschitz and the bandwidth h < n~ V@9 Gyorfi et al. (2006) also showed that when the underlying function f;
has continuous pth order derivative and the degree of B-splines is chosen to be p — 1, the MISE for spline estimator

. 2 2
isE |: fn—fo H =0 ((log n/n)ztﬁ). From the order of rate of convergence, both methods suffer from the curse of
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dimensionality. On the other hand, it has been shown in Chen and Shen (1998) that for sufficiently smooth true function

fo, neural network estimators have

A 141 ) )
i —fOH =0 ((n/log n) 41+1/@d) |, Therefore, neural network estimators can, in

some sense, avoid the curse of dimensionality. In the supplementary material, we provide a simple comparison of three
types of estimators in estimating a trigonometric function.

While the rate of convergence of neural networks has been studied in previous literature, limited research has been
done on the hypothesis testing of neural networks. In Shen et al. (2019), asymptotic normality has been derived for
neural network sieve estimators, which can be used to test whether the underlying function has a certain specific form.
However, in real data applications, we generally do not know the underlying function, which makes the results hard to
apply. Moreover, researchers are often more interested in testing the significant association of multiple covariates with
the response of interest. Recently, Horel and Giesecke (2020) proposed a significance test based on neural networks.
However, the asymptotic distribution is complicated, which may hinder its use in real data analysis. These issues motive
us to develop a new nonparametric significance testing procedure based on neural network sieve estimators. As we
demonstrated in the real data application, the new goodness-of-fit test can be used in practical research, such as genetic
research. Therefore, one of the importance of our work is to bridge the gap between the theoretical work on neural
networks and practical research.

We consider a similar setup to the one used in Shen et al. (2019) with the exception of using the random design.
Suppose that (X1, Y1), ..., (Xy, Yy) are n pairs of i.i.d. samples generated from the following true nonparametric regression
model:

Yi=foXi)+e, i=1,...,n,

where X; € x C R%, i =1,...,n and X is a compact subset in RY; €1, ..., €, are ii.d. random errors independent of
X1, ..., X, with E[¢] = 0 and E[€?] = 62 < oo. It is clear that under the quadratic error loss,

fo®) = E[Y|X = x] = argmin E[(Y — f(X)*|X = x].,
feF

and fy is a minimizer of the population criterion function
Q) =E[(Y —f(X)}] = o + E[(F(X) — fo(X))*].

Suppose that F is some function space containing fy. Throughout the paper, we assume that ¥ C C(X) N Ly(X, u) and
the pseudo-metric considered on F is the classical L,-metric, that is, for any f € 7, |f|*> = foz(x)du(x). Under the
framework of empirical risk minimization (ERM) (Vapnik, 1998; Devroye et al., 2013), an estimator for fy is the one that

minimizes the empirical loss function Qu(f) = 1 Y1 (Vi — fo(X))?, that is,

fn = argmin Q,(f) = argmin ! Z(Yi — f(X)).
i=1

feF fer M=

As for the sieve extremum estimator based on a neural network, we define

n
./Trn = {0+ ZO{]O‘ (YJTX —+ )/(),j) : )/j € ]Rd, o, Yo,j € R,
j=1

™ d

Z lej| <V, for some V, > 4 and max Z lvijl <M, for some M, > 0+¢, @)

y 1<j<m “

Jj=0 i=0
where 7, V,, M, 1 oo as n — oo and o(-) is the standard sigmoid function (o(x) = (1 4+ e™*)~!). The requirement of
Vi > 4 is necessary for computing the covering number for 7, and 4 is the reciprocal of the Lipschitz constant of . Due
to the Universal Approximation Theorem (Hornik et al., 1989), 7, is nondecreasing and Uf::1 Fr, is dense in F under

the sup-norm. With some abuse of notation, the sieve extremum estimator fn is defined as
Qn(fn) < inf Qu(f)+ Op(n_l)’ (2)
feFm

where n, — 0 as n — oo.
The goal of this paper is to derive a goodness-of-fit statistic to test hypothesis on whether a subset of the covariates
is significant, that is, for a given p > 0, we test

Ho : fo € C(X") N Ly (X', ) vs Hy : fo € C(X) N Ly(X, ), (3)

where A is a compact subset in RY~? and C(A) is the space of continuous function on A. In other words, the statistic is
proposed to test is whether the p covariates absent in X’ are significantly associated with the response of interest.

The rest of the paper is organized as follows. Section 2 reviews the necessary concepts and results from the empirical
process theory. The main theoretical results and the process of constructing the test statistic are discussed in Section 3. A

2
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simulation study is conducted in Section 4 to verify the conditions proposed in the main results followed by a real data
application to Alzheimer disease. Additional simulation results and the proofs of the results in the main text are given in
the supplementary materials.

Notations: Throughout the paper, bold font alphabetic letters and Greek letters are vectors. We use || - ||s,p to denote the
sup-norm, that is ||f ||sup = supy [f(x)|. For a pseudo-metric space (T, d), N(¢, T, d), D(¢, T, d) and Nyy(e, T, d) represent the
covering number, packing number, and bracketing number, respectively. The natural logarithm of the covering number
is denoted by H(e, T, d), which is also known as the entropy number.

2. Preliminaries

The main tool used in proofs is the Donsker class from the empirical process theory. In this section, we review the
definition of Donsker class as well as a way to check whether a function class is Donsker. More details on Donsker class
can be found in Dudley (1984) and van der Vaart and Wellner (1996).

Definition 1 (Donsker Class).

(i) Let (X, A, P) be a probability space and Gp be a Gaussian process indexed by L,(X, A, P) with zero mean and
covariance

E[Gp(f)Gp(g)] = P(fg) — Pf - Pg for all f, g € Lr(x, A, P).
Define
pr(f.8) = (E[(G () — Go@)P]) .

A class F C Ly(Xx, A, P) is called a GpBUC class (or pre-Gaussian) if and only if the process Gp(f, w) can be chosen
so that for all w, the sample functions f — Gp(f, w), restricted to f € F, are bounded and uniformly continuous for

Pp-
(ii) A class F C Ly(x, A, P) is called a Donsker class (for P) if and only if it is a GpBUC class and there are processes

Yi(f,w), f € F, v € £2, where Y; are independent copies of Gp with f — Yj(f, w) bounded and pp-uniformly
continuous on F for each j, such that for every € > 0,

P* | n~"/2 max sup fof —Pf—Yi(f)]>€] > 0asn— oo.
m<"f€.7- i

A common approach to check whether a class F is a Donsker class is to use the Dudley integral based on the bracketing
number.

Theorem 1 (Theorem 3.1 in Ossiander (1987)). If F is a class of measurable functions with

00
/0 (logNy(e, 7, || - ||L2(,,)))1/2 de < o0, (4)
then F is a Donsker class.
Dudley (1984) provides a relationship between the bracketing number and packing number:
Niy2e, 7, 1 - lloo) < 2D(e, F, || - llsup)-
It then follows from the duality of packing number and covering number (see Lemma 5.5 in Wainwright (2019)) that
Ni(2e. 7.1+ lloo) < 2De. . 1 - llsup) < 2N (5. 7.1 - sup) - (5)

Based on these facts, we verify in the following proposition that 7, , G, = {y — f(x) : f € F,} and H,, = {(y — f(x)? :
f € F,)} are all Donsker classes for each fixed n.

Proposition 2. For each fixed n, the following classes of functions are Donsker classes:

(i) Fra
(ii) Gr, =y —f(x) : f € 7}, and
(iii) Hr, = {(y _f(x)z feF)h
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3. Main results

The theory that derives the asymptotic distribution of a goodness-of-fit test statistic depends heavily on Lemma 2
in Yatchew (1992). The lemma, however, requires strong uniform consistency for nonparametric least squares estimators.
Therefore, we modify the lemma under a weaker consistency assumption.

Lemma 3. Let H be a Donsker class. Let hy and fln, n=1,2,...bein H, where ||fln — hollypy LN 0, then

1 s . 1 P
172 2 ) — _nl/2| ) —
n [n Zh,,(z,) Phn(Z)i| n [n Zho(zl) PhO(Z)i| 0.
i=1 i=1
As H,, is a Donsker class from Proposition 2. Based on Lemma 3, we can construct a goodness-of-fit statistic.

Theorem 4. Let E[¢*] < oo, then if |7.,fo — fo| = o(n="/*) and
[ra(d + 2) 4+ 11V log (Vu[ra(d + 2) + 11) = o(n),

we have
n

1/2 R
% [,]1 > (v —fn()a-))2 - 02} 5 M0, 1),
i=1

where k = Var[€?].

Remark 1. If the underlying function fy is real analytic, it follows from a combination of the results in Goulaouic
(1971) and Lemma 3.2 in Mhaskar (1996) that the approximation rate can decay exponentially so that the condition
|7rfo — fo|| = o(n="/4) satisfies easily.

Theorem 4 provides a theoretical justification for constructing the following goodness-of-fit test statistic for hypothesis
testing. The test statistic is formed based on the following steps.

Step 1. Partition the sample (X4, Y1), ..., (X,, Yy) into two equal parts. For simplicity, we assume that n = 2m for some

m > 0.

Step 2. From Theorem 4, under the null hypothesis Hy : fo € C(x") N Ly(X’, u), we have

mlﬂ 1 m R 2 ) d
To= i {m > (Y= fnoX) —o } % N0, 1),

i=
m21 S v L]
T=ry [m > (Yi—fam X)) —o? | S a0, 1),
i=m+1

where fAn, Ho is the neural network sieve extremum estimator obtained by using the first m samples and the covariates
excluding the p covariates, and f, y, is the neural network sieve extremum estimator calculated based on the
remaining samples and all of the covariates.

Step 3. Since (X1, Y1), ..., (Xy, Y,) are independent, Ty and T; are also independent. Then

O L [; > () = 23 (y —fn.;ﬁ(xf))z}

i=1 i=m+1

£ A0, 2).

Step 4. For any consistent estimator &, of «, it then follows from the Slutsky’s Theorem that

m2[1 ™ R 2 1 <& . 2
=T | S (o) = S (= Fa, 60)
Kn i—1 i=m+41

£ A0,2).

As mentioned in Yatchew (1992), a possible choice for «, is

R . .

o = le(v,- — Fug (X)) — 64,
=

2

where 62 =n"1Y1 | (Yi —fn,HO(Xi)>
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Table 1

Summary of results from the normality tests.
Sample size 50 100 200 500 1500 3000
Shapiro-Wilks 0.412 0.808 0.065 0.521 0.704 0.498

Anderson-Darling 0.980 0.820 0.098 0.492 0.837 0.950

Table 2
Empirical type I error rates under different sample sizes.
Sample size 50 100 200 500 1500 3000

Empirical type I error 0.044 0.056 0.052 0.054 0.046 0.046

4. Simulation

We have conducted a simulation study to verify the main result established in the previous section. Suppose that the

response variables Yq, ..., Y, are generated from the following model,
Yi=foXi)+e€, i=1,...,n,
where €1, ..., €, ~ iid. A0, 1). The covariates X1, ..., X, € R? are i.i.d. samples from N>3(0, I,), where I is the 2-

dimensional identity matrix. The hypothesis of interest is whether X?, the second element in the vector X, is significant.
Under the null hypothesis Hy, the true function is chosen to be a trigonometric function:

LT 1 T
fo(x) = sin (;x“)) + 3 cos (me + l) )

Based on the testing procedure we established the previous section, the test statistic can be written as

£Y1/2
(2¢) i=n/24+1

where

_ 1 < R 4 1 R 2]?
& = Varle?] = ; (¥~ noX0)) — [n Zj (¥ = Frno(X0) } .

Due to the constraints in the neural network sieve %, we used a subgradient method discussed in Section 7 in Boyd
and Mutapcic (2008) to estimate the parameters and obtain the fitted function. As mentioned in Boyd and Mutapcic
(2008), the algorithm converges when the step size §; is diminishing nonsummable (8, | 0 and Z,f; 8 = 00). We thus
chose the step size for the kth iteration in the subgradient to be &, = 0.1/log(e + k) and the number of iterations was set
as 3e4. We specified r,, = [m'/®] and V,,, = 20m'/®, where m = n/2 so that the assumption in Theorem 4 is fulfilled. For
each sample size, 500 Monte Carlo iterations were performed to obtained the normal QQ-plot, which is shown in Fig. 1.

The QQ-plots indicate that T,, does not deviate from the standard normal distribution, which is consistent with the
results from the Shapiro-Wilks test and the Anderson-Darling test as summarized in Table 1.

Empirical type I error rates were also calculated based on the test statistics obtained from the 500 Monte Carlo
iterations. The results are shown in Table 2.

In the supplementary materials, we evaluated the method’s performance for different choices of V;, and r,. The results
are consistent with the findings provided above. Moreover, additional simulations were conducted on multiple covariates.
Based on these empirical studies, we found that as long as the choice of r, and V), satisfied the required condition
[ro(d+2)+ l]V,j1 log(Vy[ra(d+2)+ 1]) = o(n), the asymptotic distribution and the type I error were guaranteed. Moreover,
we conducted a simulation study when the null model contains multiple covariates. The empirical type I error can also
be controlled when the sample size is large. Details of the simulations can be found in the supplementary materials.

5. A real data application

We applied our method to the sequencing data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and
performed a genetic association analysis. The best known gene related to the Alzheimer’s disease (AD) is the APOE on
chromosome 19 (Strittmatter et al., 1993). The covariates in our analysis are therefore the single-nucleotide polymor-
phisms (SNPs) in APOE. After quality control, a total sample of 780 individuals with 169 SNPs remained for the analysis.
Studies have shown that for patients with AD, the whole brain volume decreases significantly (Thambisetty et al., 2011).
We therefore chose the logarithm of the whole brain volume as the response.

For each SNP in APOE gene, we conducted the goodness-of-fit test as we discussed in Section 3. Table 3 summarizes
the top 10 associated SNPs in the APOE gene detected by our method. SNPs with P-value less than 0.05 are shown in bold
font.
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Fig. 1. Normal QQ-plot for the test statistic T, under various sample sizes n = 50, 100, 200, 500, 1500, 3000.

Table 3
Top 10 SNPs in the APOE gene associated with the whole brain volume by using the
goodness of fit test. Significant SNPs (P < 0.05) are highlighted in bold font.

SNP name P-value

rs_x94 5.046E—-3
rs_x21 5.918E—3
rs_x42 8.754E—-3
rs72654471 1.595E—-2
rs112757453 2.781E—2
rs_x127 2.822E—2
rs59325138 5.029E—2
rs_x131 5.057E—-2
rs_x132 5.188E—2
rs_x52 5.398E—2

6. Conclusion

Deep neural networks have been increasingly used in areas such as computer vision and speech recognition. While
numerous studies have shown that neural networks attained high performance in terms of prediction accuracy, few
studies have investigated the statistical inference of neural networks. Many biomedical studies are hypothesis-driven
studies. For instance, in a typical genetic study, investigators are interested in testing the association of genetic variants
with a disease of interest. While neural networks hold great promise to reveal the complex relationship between genetic
variants and the disease, the lack of established statistical inference limits the use of neural networks in genetic research
and other biomedical research.
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To fill this gap, we proposed a goodness-of-fit test statistic based on neural network sieve estimators. The proposed
test statistic has a simple limiting distribution, which facilitates its use in practice. The idea is to split the sample into
two portions, one of which is used to fit the reduced model while the remaining is used to fit the full model. The test
statistic is then built on the difference between the mean squared error of the reduced model and that of the full model.
As pointed out in Yatchew (1992), sample splitting is necessary. Otherwise, the asymptotic distribution of the test statistic
may be degenerate when the mean squared error of the reduced model and that of the full model are computed from
the same sample. In fact, the idea of sample splitting has also been applied to construct important quantities in other
theoretical studies. For example, Bartlett et al. (2002) defined the maximum discrepancy of a function class F as

n/2

. 2 2 «
Da(F)=sup |~ fX)— = > fX) |
i=1

fer i=n/241

which quantifies how much the behavior on half of the sample can be unrepresentative of the behavior on the other half.
Due to the independence between the two sample portions, the asymptotic normality of the test statistic can be easily
established. Nevertheless, the tradeoff is that we have to split the samples to calculate the test statistic, which may result
in power loss due to the reduced sample size.

We have conducted a simulation study to confirm the theoretical results. By using the QQ-plots and normality tests,
we showed that the type I error of the proposed test was well controlled. This paper can be viewed as our initial effort
on building test statistics based on neural networks. Additional topics, such as developing a neural-network-based test
using the entire sample, could also be further investigated in future studies.

For future studies, we think it is important to develop similar asymptotic theories for modern convolutional neural
networks (CNN) and long-short term memory (LSTM) networks. Most theories nowadays on statistical learning are derived
under the framework of Vapnik (1998), which depends on the entropy argument and the Dudley integer. Due to the
complex network structures of CNN and LSTM, it may be difficult to obtain upper bounds for the covering numbers of
the CNN or LSTM classes. Meanwhile, the rate of convergence of the sieve estimator also depends on the approximation
rate of the network to the underlying function, which is difficult to derive. Nevertheless, this is an interesting topic worth
further studying in the future.
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