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A b s t r a c t .  We introduce concurrent quantum non-local games, quan-
tum output mirror games and concurrent classical-to-quantum non-local
games, as quantum versions of synchronous non-local games, and pro-
vide tracial characterisations of their perfect strategies belonging to var-
ious correlation classes. We define *-algebras and C*-algebras of con-
current classical-to-quantum and concurrent quantum non-local games,
and algebraic versions of the orthogonal rank of a graph. We show that
quantum homomorphisms of quantum graphs can be viewed as entangle-
ment assisted classical homomorphisms of the graphs, and give descrip-
tions of the perfect quantum commuting and the perfect approximately
quantum strategies for the quantum graph homomorphism game. We
specialise the latter results to the case where the inputs of the game are
based on a classical graph.
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1. Introduction

Over the past decade, the theory of non-local games has undergone a
flurry of development and is now a fundamental branch of modern quan-
tum information theory, with deep applications to many areas of mathe-
matics, physics, and computer science, including operator algebras, non-
commutative geometry, quantum non-locality, entanglement, and quantum
complexity theory. Mathematically, a (two-player) non-local game con-
sists of a tuple G =  (X , Y , A, B ,  ), where X , Y , A, B are finite sets, and
  : X  ⇥ Y ⇥ A  ⇥ B  !  {0, 1} is a function. The game is played coop-
eratively by two spatially separated non-communicating players, Alice and
Bob, against a referee. During each round of the game, the referee samples a
pair of “questions” (x, y) 2  X  ⇥ Y , and sends question x  to Alice, and
quesiton y to Bob. Alice is then required to supply an “answer” a 2  A, and
Bob – an answer b 2  B ,  to the referee. Alice and Bob win the round of the
game if and only if the rule function   evaluates to 1 on this question-answer
combination, that is, if the condition  (x, y, a, b) =  1 is satisfied.

The fact that the players Alice and Bob are not allowed to communicate
during play makes it di cult to win each round of a non-local game with
high probability. On the other hand, it is precisely this nature of non-local
games that makes them interesting as both theoretical and practical tools in
quantum information. The idea here is that, in certain scenarios, Alice and
Bob can utilise the phenomenon of quantum entanglement to help correlate
their answers in a much stronger way than what the resources of classical
physics allow.

A  prototypical example of a non-local game is the graph homomorphism
game: Given a pair of finite simple graphs G  and H  with vertex sets V (G), V
( H )  and edge sets E (G) ,  E ( H ) ,  respectively, the (G, H)-homomorphism
game is the non-local game G with X  =  Y =  V (G), A  =  B  =  V ( H )  and
 (x, y, a, b) =  0 if either (i) x  =  y and a =  b or (ii) (x, y) 2  E ( G )  and (a, b) 2/
E ( H ) .  Clearly the graph homomorphism game captures, in the operational
language of non-local games, the notion of a graph homomorphism G  !  H :
Any winning strategy for this game would serve to convince an observer that
there exists such a graph homomorphism G  !  H .

Graph homomorphism games form an interesting class of non-local games
for several reasons. First, they give rise to quantum analogues of graph
parameters, including quantum chromatic numbers and quantum indepen-
dence numbers [18, 24]. These parameters can be genuinely di↵erent than
the corresponding classical versions, thus providing new manifestations of
the fundamental Bell Theorem. Second, they provide some of the simplest
examples of pseudo-telepathy games – ones which can be perfectly won only
with the help of quantum entanglement as a resource [18, 11, 24]. Third,
and perhaps most importantly, graph homomorphism games belong to the
particularly important class of synchronous non-local games introduced in
[24] (see also [12]). Recall that a non-local game G =  (X , Y , A, B ,  )  is
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called sychronous if X  =  Y , A  =  B ,  and  (x, x, a, b) =  0 for all x  2  X  and
a =  b 2  A. This means that in order for Alice and Bob to win a round of G,
they must “sychronise” their answers whenever they both receive the same
question from the referee. This seemingly innocuous constraint on a game G
turns out to have very interesting quantum information theoretic and op-
erator algebraic consequences. For example, the problem of finding perfect
quantum strategies for a synchronous game G amounts to finding tracial
states on a certain game ⇤-algebra A(G ) associated to G [12]. The algebras
A(G )  play the role of a non-commutative analogue of the algebras of coor-
dinate functions on spaces of perfect deterministic (classical) strategies for G,
and are therefore of significant interest from several perspectives in non-
commutative geometry, quantum groups [28, 4], and von Neumann algebra
theory [13]. It follows from the breakthrough work [13] that there exists a
synchronous non-local game G whose game ⇤-algebra A(G )  admits a tracial
state � for which the generated von Neumann algebra M =  ⇡� (A(G))00 fails to
embed into an ultraproduct of the hyperfinite II1-factor – yielding a(n al-beit
non-constructive) counter-example to the Connes Embedding Problem in
operator algebras and to the equivalent [14] strong Tsirelson Problem in
quantum physics.

The purpose of the present paper is to introduce and study generali-
sations of synchronous non-local games within the framework of quantum
non-local games – non-local games where the questions and answers are al-
lowed to be quantum states, or possibly mixtures of classical and quantum
states. In this paper, we use the language of quantum no-signalling (QNS)
correlations and quantum non-local games recently introduced by two of
the present authors [30]. Classically, in the course of a non-local game
G =  (X , Y , A, B ,  ), Alice and Bob’s behaviour is described by a family p =
(p(a, b|x, y))(a,b,x,y)2A⇥B⇥X⇥Y of conditional probability distributions,
which can, in a canonical way, be viewed as a noisy information channel N
: X  ⇥ Y !  A  ⇥ B  with well-defined marginal channels. In the quantum
setting, one replaces the classical state spaces X , Y , A, B by their quantum
analogues (i.e. the Hilbert spaces C|X |, C|Y |, etc.), and the classical channel N
: X  ⇥ Y !  A  ⇥ B  by a quantum channel   : M X  � MY !  MA � MB , where,
for any finite set Z ,  we have let MZ  =  B (C ) be the matrix al-
gebra of linear maps on C|Z|. In this framework, the rule function   can be
generalized by replacing it with a zero-preserving, join-preserving map-ping
'  from the projection lattice on P X Y  in M X  � MY to the projection lattice
P A B  in MA � MB . A  winning strategy for a quantum non-local game '
: P X Y  !  P A B  is then given by a QNS correlation   satisfying the trace-
orthogonality relation

h ( P ) , ' ( P ) ? i  =  0, P  2  P X Y  ;

the latter condition constrains the supports of the output states of   accord-
ing to the supports of its input states (see Section 3.1 for further motivation
and details).
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We note that non-local games with quantum inputs and/or outputs have
been previously studied in [7] and [27]. The strategies used in the latter
papers are the elements from the quantum QNS correlation class. Since
our main interest lies in the characterisation of the perfect strategies of a
game and their applications, we have adopted the present approach, where
we only specify the rules of the non-local game, without fixing a probability
distribution on the questions (or a quantum version thereof).

One of our main achievements in the present work is the introduction of
quantum analogues of synchronous non-local games (called herein concur-
rent quantum games), as well as classical input-quantum output versions of
the mirror games introduced in [17]. Classically, synchronous games form a
special class of mirror games, and both of these classes of games have the
remarkable property that “Alice’s quantum behaviour completely de-
termine Bob’s quantum behaviour” when considering perfect strategies for
the games; moreover, such perfect strategies can always be described in
terms of correlations coming from tracial states on a particular game al-
gebra. We show that such a paradigm persists in the quantum case by
associating *-algebras and C*-algebras to concurrent quantum and to con-
current classical-to-quantum games. Our main results in this direction (cf.
Theorem 3.2, Corollary 3.7, Theorem 4.1, Corollary 4.4) provide an oper-
ational interpretation of the tracial QNS correlations introduced in [30] in
terms of perfect strategies of concurrent and quantum mirror games, and
their associated game algebras.

One of our long-term motivations for the present work is to develop
tools that may eventually be useful for gaining a better understanding of
the work [13], which, as mentioned above, implicitly constructs a game G,
whose game algebra is a witness to the failure of the Connes Embedding
Problem. At present, the game constructed in [13] is not well understood,
and involves very large input/output sets. There is some hope that quan-
tum non-local games may provide additional flexibility in the construction of
game algebras with pathological operator algebraic properties. A  par-
ticularly interesting and tractable source of examples in this more general
framework are the quantum graph homomorphism games. Quantum graphs
have achieved a lot of attention in recent years, as objects that arise in a
variety of areas (e.g. zero-error quantum information theory, quantum error
correction, quantum groups, quantum teleportation schemes, and subfactor
theory) [3, 4, 21, 29, 33]. In Section 5, we study the quantum graph homo-
morphism game in detail, extending previous work of the authors [5, 30] in
the classical-quantum hybrid setting, and also making connections with the
work of Stahlke [29] and the algebraic work of Musto-Reutter-Verdon [21] on
quantum graph homomorphisms.

The paper is organised as follows. Section 2 introduces some necessary
notation and background that will be used throughout the paper. Section 3
recalls the notions related to QNS correlations and their various subclasses
(quantum commuting, approximately quantum, quantum, local), examines
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in detail the case of classical to quantum non-local games, introducing the
aforementioned semi-quantised mirror games and concurrent games, and
studies them as operational realisations of tracial QNS correlations. In Sec-
tion 4, we consider the fully quantum concurrent games, proving tracial
characterisations of perfect strategies of these games. Finally, in Section 5,
we focus on the quantum graph homomorphism game, and describe connec-
tions with the prior work of Stahlke [29] on entanglement assisted quantum
graph homomorphisms, as well as with our prior works [5, 30]. We show
that the perfect quantum strategies of the quantum graph homomorphism
game can, in a rigorous sense, be thought of as entanglement assisted per-
fect classical strategies for this game, and extract characterisations of the
corresponding quantum commuting and approximately quantum strategies
in terms of natural inclusion relations relating the two quantum graphs.
Our results are further specialised in the case where the inputs are based on
a classical graph, leading to separation results on the algebraic and C⇤-
algebraic versions of the orthogonal rank of a graph (cf. Propositions 5.16
and 5.17).

Acknowledgements. It is our pleasure to thank Marius Junge, Carlos
Palazuelos and David Pérez-Garcı́a for fruitful discussions on the topic of
this paper. M.B. was partially supported by NSF grant DMS-2000331. S.H.
was partially supported by an NSERC Postdoctoral Fellowship. I .T.  was
partially supported by the Simons Foundation (grant number 708084).

Note on related work. After the first draft of this paper was completed,
we learnt from Piotr Soltan that characterisations of concurrent correlations
from the quantum commuting class, closely related to the ones described in
Subsection 4.1, were independently obtained by Bochniak-Kasprzak-Soltan
in the recently posted preprint [2]; more specifically, [2, Theorem 6.6] gen-
eralises the first statement within Theorem 4.1 in the present paper.

2. P r e l i m i n a ry  notions and resu lts

For a finite set X ,  let M X  be the algebra of all complex matrices indexed
by X  ⇥ X ;  we identify M with the algebra of all linear transformations on
the Hilbert space C X  : =   x 2 X C .  If T 2  MA, we write T t for the transpose
matrix, and set T =  (T ) . We let D X  be the subalgebra of M X  of all
diagonal matrices, and  X  : M X  !  D X  be the conditional expectation. We
write M X Y  =  M X  � MY , P X Y  for the projection lattice of M X Y  , and P  for
the projection lattice of D X Y  . We let ⇠� be the rank one operator given by
⇠� (⇣ ) =  h⇣,�i⇠, and ( e x ) x 2 X  be the canonical orthonormal basis of C  .
For a Hilbert space H  and vectors ⇠,� 2  H ,  we write ⇠ ?  � if h⇠,�i =  0.
Let H d  be the dual (Banach) space of H  and d : H  !  H d  be the map, given
by d(⇠ )(�) =  h�,⇠i; we write ⇠d =  d(⇠). Note that ( ⇠)d =   ⇠d,   2  C,
and that, if T 2  L ( H ) ,  then the dual operator T d : H d  !  H d  satisfies the
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relation

(1) T d⇠d =  (T⇤⇠)d,T 2  L ( H ) .

Let !  2  MX . Writing f !  for the functional on M X  given by f ! (⇢ )  =
Tr (⇢ !  ), we have that the map !  !  f !  is a complete order isomorphism
from M X  onto the dual operator system M d (see e.g. [26, Theorem 6.2]).
On the other hand, the map ! d  !  ! t  is a *-isomorphism from L  ( C X ) d

onto MX . The composition of these maps, ! d  !  f ! t ,  is thus a complete
order isomorphism from L C X  d onto M d . In the sequel, we identify
these two spaces; note that, via this identification,

(2) h⇢, !d i =  h⇢, ! t i =  Tr(⇢ ! ) ,⇢ , !  2  MX .

If P  2  M X  is a projection, we write P ?  for the projection in M d on the
annihilator in C X  d of the range of P .

Write ✏x,x0 =  exe⇤0 for the matrix unit in MX , corresponding to the
pair (x, x )  of indices. Set

J X  =  
1 X  

✏x,x0 � ✏x,x0;
x , x 0 2 X

if m X  =  p
|X |  

P
x 2 X  ex �ex is the maximally entangled unit vector in C X  �

C X ,  then J X  =  mX m⇤      is its corresponding rank one projection. Set also

J c l  = ✏x,x �

✏x,x , x 2 X

and note that  X X ( J X )  =  |X | J cl . Heuristically, J c l  is the (normalised) part
of J X  that can be seen by a classical observer.

Recall [30] that a quantum non-local game is a join-preserving map '  :
P X Y      !  P A B  with ' ( 0 )  =  0, while a classical-to-quantum (cq) non-local
game is a join-preserving map '  : P !  P A B  with ' ( 0 )  =  0. Similarly,
a classical non-local game is a join-preserving and zero-preserving map '  :
P cl !  P cl  .

Recall also that a non-local game on the quadruple (X , Y , A, B )  is a func-
tion   : X  ⇥ Y ⇥ A  ⇥ B  !  {0, 1}. In [30], we associated to such   the
classical non-local game '   : P cl

Y  !  P cl given by

'   
X  

✏x,x � ✏y,y =  
X

{✏ a , a  � ✏b,b : 9 (x, y) 2  � s.t.  (x, y, a, b) =
1} , x,y2�

after recalling that projections in P cl correspond to subsets � ✓ X  ⇥ Y .
A  non-local game (X , Y , A, B ,  )  is called

• a mirror game [17] if there exist functions f  : X  !  Y and g : Y !  X
such that for every x  2  X  (resp. y 2  Y ) the set

{(a, b) 2  A  ⇥ B  :  (x, f (x), a, b) =  1}



˜
⇣̃

T̃

˜ ˜
P

cl

X A

   

A

X A

X A A

A

S Y N C H R O N I C I T Y  F O R  Q U A N T U M  N O N - L O C A L  G A M E S 7

(resp.
{(a, b) 2  A  ⇥ B  :  (g(y), y, a, b) =  1})

is the graph of a bijection, and
• a synchronous game [24] (see also [12]) if X  =  Y , A  =  B  and

a, b 2  A, a =  b = )   (x, x, a, b) =  0.

Mirror games include the subclass of unique games (that is, games for which
the set {(a, b) 2  A ⇥ B  :  (x, y, a, b) =  1}  is the graph of a bijection for every
(x, y) 2  X  ⇥ Y [31]); in particular, they form a class, strictly larger than
that of synchronous games.

Set B  =  A  and recall the standard (linear) identification of matrices in
MA with vectors in C A  � C B ,  which associates to the matrix unit ✏a,b the
vector ea � eb (see e.g. [32, Section 1.1.2]). Write ⇣T 2  C A  � C B  for the
vector corresponding to T 2  MA and set ⇣T =  

k⇣
T 

k
; we have that ⇣ I A  =  mA.

We note the relations [32, Section 1.1.1]

(3) ( R  � S )⇣T =  ⇣R T S t , R, S, T 2  MA.

If ↵ : A  !  B  is a bijection, let P↵  = a 2 A  ✏a,a � ✏↵(a),↵(a);
clearly, P↵  2  P A B .

Remark 2.1. A  non-local game   is
(i) synchronous if and only if '  ( J c l )  � J cl ;

(ii) mirror if and only if there exist functions f  : X  !  Y , g : Y !  X
and bijections ↵x,  y : A  !  B ,  x  2  X ,  y 2  Y , such that

'       ✏x,x � ✏ f ( x ) , f ( x )      =  P↵ x  and '       ✏g(y),g(y) � ✏y,y     =  P  y  1, x  2  X , y

2  Y. Proof. (i) If   is synchronous then, clearly,

'   (✏x,x � ✏x,x ) � J c l for all x  2  X ;
taking the span over all x, we get '  (J c l )  � J cl . Conversely, the condition '
(J c l )  � J c l  implies in particular '  (✏x,x � ✏x,x ) � J cl , which is equivalent to
(x, x, a, b) =  0 whenever a =  b. Claim (ii) is equally straightforward. ⇤

Remark 2.1 motivates the following versions of mirror and synchronous
games, where the inputs are still classical, while the outputs are allowed to be
quantum. We assume that |A| =  |B| but continue to use di↵erent symbols to
denote the sets A  and B  for clarity. If !  2  MA, let L !  : M A B  !  MB  be the
slice map, given by L ! ( S �T )  =  hS, ! iT and write Tr A  =  L I       for the partial
trace; the slice map L⇢  : M A B  !  MA, for ⇢ 2  MB , and the partial trace
Tr B ,  are defined similarly. Call a rank one projection P  2  M A B  bijective if

(4) e, f 2  CA , e ?  f  = )  Lee⇤ (P ) ?  L f f ⇤ ( P )
(note that the orthogonality is understood in terms of the trace in MB ).
Bijective projections can be thought of as quantum versions of bijections; in
fact, if ↵ : A  !  B  is a bijection then P  =  P↵  satisfies (4) when e and f  are
taken to be elements of the standard basis.
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Lemma 2.2. A  rank one projection P  2  M A B  is bijective if and only if
P  =  ⇣U⇣U for some unitary operator U 2  MA .

Proof. Let P  =  ⇣⇣⇤ for some ⇣ 2  C A ,  and U 2  MA be an operator with
⇣ =  ⇣

a 
.
e

Let e = a 2 A   aea 2  C A  and write e = a 2 A   aea. Set r  =  k⇣U k.

hLee⇤ (⇣⇣⇤), eae⇤ i     =      h⇣⇣⇤, ee⇤ � eae⇤ i =  Tr
 

(⇣⇣⇤)(ee⇤ � eae⇤)t

=      Tr  (⇣⇣⇤)(ee⇤)t � (eae⇤)t     =  Tr ((⇣⇣⇤ )(ee⇤ ) �
(ebe⇤ )) =      Tr ((⇣⇣⇤ )(e � eb)(e � ea)⇤) =  he � eb, ⇣ ih⇣, e �
eai

=      r  2  chUea, eci  dhUeb, edi
c 2 A                                d 2 A

=      r  2hUea, eihUeb, ei =  r  2hea, U⇤eihU⇤e, ebi
=      r  2 h(U⇤e)(U⇤e)⇤ea, ebi =  r  2

h(U⇤e)(U⇤e)⇤, ebe⇤ i =      r  2     (U⇤e)(U⇤e)⇤, eae⇤     =
r  2     (U te)(U te)⇤, eae⇤     ;

thus, Lee⇤ (⇣⇣⇤) =  r  2(U te)(U te)⇤. It follows that P  is bijective if and only if
U is a multiple of a unitary operator, that is, if and only if µU is unitary for
some µ 2  C.  Clearly, P  =  ⇣µU⇣µU . ⇤

A  projection P  2  M of rank r  will be called bijective if there exist
partial isometries Ui, i  =  1, . . . , r, such that r UiU⇤ = r U⇤Ui  =  I
and P  = ⇣Ui⇣ . Note that, if ↵ : A  !  B  is a bijection and P  =  P↵ ,
then P  is bijective of rank |A| with corresponding partial isometries ✏↵(a),a,
a 2  A.

Definition 2.3. Let '  : P cl !  P A B  be a classical-to-quantum non-local
game and : P X Y  !  P A B  be a quantum non-local game.

(i) '  is called a quantum output mirror game if there exists functions f  :
X  !  Y , g : Y !  X  such that the projections ' (✏ x , x  � ✏ f ( x ) , f ( x ) )  and
'(✏g (y ),g (y )  � ✏y,y) are bijective, x  2  X ,  y 2  Y ;

(ii) '  is called concurrent if ' ( J c l )  =  J A ;
(iii)       is called concurrent if     ( J X )  =  J A .

In view of Remark 2.1, we consider quantum output mirror games as
a quantum version of mirror games, and concurrent games – as quantum
versions of synchronous games.

3. C lass ica l - to-quantum games

This section contains characterisations of the prefect strategies of quan-
tum output mirror games and classical-to-quantum concurrent games, and
their applications to quantum orthogonal ranks of graphs. We start with
recalling the main classes of quantum no-signalling correlations introduced in
[30] that will be used subsequently.
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3.1. Quantum no-signalling correlations. If A  is a C*-algebra, we de-
note by Aop its opposite C*-algebra. As a set, Aop can be identified with A
and we write Aop =  {zop : z 2  A } ;  the C*-algebra Aop has the same
norm, additive and involutive structure as A ,  and its multiplication is given
by letting zopzop =  (z2z1)op, z1, z2 2  A.

Let V X , A  be the ternary ring, generated by elements va,x, x  2  X ,  a 2  A,
such that the matrix V =  (va,x )a2 A,x 2 X  satisfies the condition of an isometry,
that is,

va00,x00v⇤,xva,x0 =   x,x0va00,x00, x, x0, x00 2  X, a00 2
A. a 2 A

Let CX , A  be the unital *-algebra, generated by the set {va,xva0,x0 : x, x0 2
X, a, a 2  A} ,  and set ex,x0,a,a0 =  va,xva0,x0 for brevity. Further, let VX , A  be
the universal ternary ring of operators (TRO)  of the isometry V , and let
C X , A  be its right C*-algebra; thus, C X , A  is generated, as a C*-algebra, by
ex,x0,a,a0 , x, x  2  X ,  a, a 2  A  (see [30]). We write

E  =  (ex,x0,a,a0)x,x0,a,a0       and E op =  (ex0,x,a0,a)x,x0,a,a0;

thus, E  2  M X A  � CX , A  and E op 2  M X A  � Cop     .
A  stochastic operator matrix acting on a Hilbert space H  is a positive

block operator matrix E  =  (Ex,x0,a,a0 )x,x0,a,a0      2  MX A (B (H ))  such that
Tr A  E  =  I .  Stochastic operator matrices E  acting on H  correspond to uni-tal
*-representations ⇡ : C X , A  !  B (H ) by via the assignment ⇡(ex,x0,a,a0) =
Ex,x0 ,a,a0, x, x  2  X ,  a, a 2  A  [30].

Let X ,  Y , A  and B  be finite sets. A  quantum no-signalling (QNS) correla-
tion [10] is a quantum channel (that is, a completely positive trace preserving
map)   : M X Y  !  M A B  such that

(5) Tr A  (⇢ X  � ⇢Y )  =  0 whenever ⇢ X  2  M X  and Tr (⇢X )  =

0, and

(6) Tr B  (⇢X  � ⇢Y )  =  0 whenever ⇢Y 2  MY and Tr(⇢Y  )  =  0.

A  QNS correlation   : M X Y  !  M A B  is quantum commuting if there exist a
Hilbert space H ,  a unit vector ⇠ 2  H  and stochastic operator matrices E  =
(Ex,x0,a,a0 )x,x0,a,a0 and F  =  (Fy,y0,b,b0)y,y0,b,b0 on H  such that

Ex,x0,a,a0Fy,y0,b,b0 =  Fy,y0,b,b0 Ex,x0,a,a0

for all x, x0 2  X ,  y,y0 2  Y , a,a0
 2  A, b, b0 2  B ,  and the Choi matrix of

coincides with

(7) (Ex ,x0,a,a0 Fy,y0,b,b0 )x,x0,a,a0 2  M X Y  A B (B (H )) .

Quantum QNS correlations are defined as in (7), but using tensor products of
stochastic operator matrices acting on finite dimensional Hilbert spaces
(that is, ones having the form Ex,x0 ,a,a0 � Fy,y0,b,b0). Approximately quantum
QNS correlations are limits of quantum QNS correlations, while local QNS
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correlations are defined as in (7) by requiring that the entries of E  (resp.
F )  pairwise commute.

We write Qqc (resp. Qqa, Qq, Qlo c ) for the (convex) set of all quantum
commuting (resp. approximately quantum, quantum, local) QNS correla-
tions. It was shown in [30] that   2  Qqc precisely when there exists a state s :
C X , A  �max  CY ,B !  C  such that   =   s, where  s  is given by

 s(✏x,x0 � ✏y,y0) =  
X X  

s(ex,x0,a,a0 � ey,y0,b,b0)✏a,a0 �

✏b,b0, a,a0 2A b,b0 2B

where x, x0 2  X ,  y,y0 2  Y . Similarly,   2  Qqa precisely when   =   s  for
some state s of C X , A  �min CY ,B , and   2  Qq (resp.   2  Qloc ) if and only if
=   s  for some state s of C X , A  �min CY ,B that factors through a finite
dimensional (resp. abelian) representation of the latter C*-algebra. We
point out that the elements of Qlo c are precisely the quantum channels of
the form   =  i  i� i  as a convex combination (where  i  : M X  !  MA and

i  : MY !  MB  are quantum channels, i  =  1, . . . , k).
Let B X , A  (resp. BX , A )  be the algebraic (resp. the C*-algebraic) free

product MA ⇤1 · · · ⇤1 MA, and A X , A  (resp. A X , A )  be the algebraic (resp.
the C*-algebraic) free product D A  ⇤1 · · · ⇤1 D A ,  both having |X| terms and
amalgamated over the units. We denote by ex,a,a0, a, a 2  A, the matrix units of
the x-th copy of MA in B X , A ,  and by ex ,a, a 2  A, the canonical basis of the x-
th copy of D A  in A X , A .  Set Ecq =  (ex,a,a0)x,a,a0 2  D X  � MA � B X , A
and Ecq =  (e 0      )x,a,a0 2  D X  � MA � B ; similarly, let Ec l  =  (ex,a)x,a 2
D X A  � A X , A  and E op =  (eop )x,a 2  D X A  � Aop

A .
A  classical-to-quantum no-signalling (CQNS) correlation is a channel E :

D X Y      !  M A B  such that (5) and (6) hold true for (traceless) elements ⇢ X
2  D X  and ⇢Y 2  D Y  . A  semi-classical stochastic operator matrix acting on
a Hilbert space H  is a positive block operator matrix E  =  (Ex,a,a0)x,a,a0  2  D X
� MA (B(H )) with Tr A  E  =  I .  A  CQNS correlation E is quantum com-muting
if its Choi matrix is given as in (7) but employing semi-classical stochastic
operator matrices; this is equivalent to the requirement that its canonical
extension to a QNS correlation M X Y  !  M A B  is quantum com-muting, as
well as to the existence of a state s of BX , A  �max BX , A  such that E =   s, where
Es is the CQNS correlation given by

 s (✏x,x � ✏y,y) =  
X X  

s(ex,a,a0 � ey,b,b0)✏a,a0 �

✏b,b0. a,a0 2A b,b0 2B

Similarly, approximately quantum (resp. quantum, local ) CQNS correlations
have the form Es, where s is a state of BX , A  �min BX , A  (which in addition
gives rise to a finite dimensional and abelain GNS representation, respec-
tively). We denote by CQqc (resp. CQqa, CQq, CQlo c) the (convex) set of all
quantum commuting (resp. approximately quantum, quantum, local) QNS
correlations.
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Let '  : P X Y  !  P A B  be a quantum non-local game. A  QNS correlation
  : M X Y  !  M A B  is called a perfect strategy for '  if

h ( P ) , ' ( P ) ? i  =  0, P  2  P X Y  .

Perfect strategies for classical-to-quantum non-local games are defined anal-
ogously [30].

3.2. Quantum output mirror games. We first describe the perfect strate-
gies of quantum output mirror games that lie in the various correlation
classes. In the sequel, we fix finite sets X ,  Y , A  and B ,  and for clarity
denote the canonical generators of BY ,B by fy,b,b0, y 2  Y , b, b0

 2  B .  We fix
a quantum output mirror game '  : P cl !  P A B  and let f  : X  !  Y and
g : Y !  X  be as in Definition 2.3. We write

r ( x )

'  ✏x,x � ✏ f ( x ) , f ( x )      = ⇣Ui ⇣Ui 
, x  2

X ,  i = 1

where U x, i  =  1, . . . , r(x), x  2  X ,  are partial isometries satisfying the
relations

r ( x ) r ( x )

(8) (U x )⇤U x = U x (U x)⇤  =  I .
i = 1                                 i = 1

Let D x  : =  
P r ( x )  Ui ; the relations (8) imply that D x  is unitary.

Lemma 3.1. Let s be a state of BX,A �max BY ,B such that  s  : D X Y  !  M A B  is a
perfect quantum commuting CQNS strategy for ' .  Let ⇡1 : BX , A  !  B (H )
and ⇡2 : BY ,B !  B (H ) be *-representations with commuting ranges and ⇠
2  H  be a unit vector such that

s(u1 � u2) =  h⇡1(u1)⇡2(u2)⇠,⇠ i, u1 2  BX,A , u2 2  BY ,B ,

E x  =  (⇡1(ex,a,a0))a,a0 2A and Fy  =  (⇡2(fy,b,b0))b,b0 2B . Then

(U x � I )⇤Ex (ea  � ⇠) =  F t
( x ) (U x  � I )⇤ (ea � ⇠), i  =  1, . . . , r(x), a 2

A. Proof. Set Pi ,x  =  U x (U x )⇤  and Qi,x =  (U x)⇤U x; thus,

r ( x ) r ( x )

Pi ,x  = Qi,x =  I ,
i = 1                     i = 1

that is, (P i , x ) r ( x )  and (Qi,x )r (x )  are PVM’s (in MA ) for every x  2  X .  We
have that, if   : =    then

0
r ( x )

1 0
r ( x )

1

(9)   ✏x,x � ✏ f ( x ) , f ( x )  = @         ⇣U x⇣Ui 
A   ✏x,x � ✏ f ( x ) , f ( x )  @

⇣U x⇣Ui        
.

i = 1 i = 1
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⇤
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Taking traces in (9), we obtain

1     =      Tr
 

 (✏x,x � ✏ f ( x ) , f ( x ) )
r ( x ) ⇣ �

=                           s(ex,a,a0 � ff (x),b,b0 ) Tr (⇣Uj 
⇣Uj 

)(✏a,a0 � ✏b,b0 )(⇣Ui ⇣Ui 
)

i , j = 1  a,b,a0,b0

r ( x )

= s(ex,a,a0 � ff (x),b,b0)h⇣Ui , ea0 � eb0ihea � eb, ⇣Uj 
ih⇣Uj 

, ⇣Ui i
i , j = 1  a,b,a0,b0

r ( x )

= s(ex,a,a0 � ff (x),b,b0)h⇣Ui , ea0 � eb0ihea � eb, ⇣Ui i ,
i = 1  a,b,a0,b0

where we have used the fact that h⇣Uj 
, ⇣Ui i  =  0 whenever i  =  j .  Recall that

s(ex,a,a0 � ey,b,b0) =  Ex ,a,a0Fy,b,b0⇠,⇠ for all x  2  X , y 2  Y, a, a 2  A, b, b 2
B .  In the sequel, we denote by Ta,b the (a, b)-entry of a (possibly block

operator) matrix T . Noting that ⇣U x = a,b(U x)a,bea � eb     /kU xk2 and
kU xk2 =  Tr(U x (U x )⇤ ) is the rank r i (x)  of the projection Pi,x , we obtain

�
⇣Ui 

, ea0 � eb0
↵ 

=  
ri (x)1/2

and 
�

ea � eb, ⇣Ui 

↵ 
=  

ri (x)1/2 
.

Setting Ui =  Ui � I ,  i  =  1, . . . , r(x), x  2  X ,  we therefore have

1     =
r ( x )      X  �

Ex,a,a0Ff (x),b,b0⇠,⇠
↵�

⇣U x , ea0 � eb0
↵�

ea �

eb, ⇣U x
↵ 

i = 1  a,b,a0,b0

r ( x ) D E
=                                      Ex,a,a0(Ui )a0 ,b0 Ff (x),b,b0(Ui
)a,b⇠,⇠

i = 1 a,b,a0,b0

r ( x ) �
=

i = 1  
r i (x)  

a 2 A

Ex U x Ff ( x ) (U x )⇤  
a,a 
⇠,⇠

r ( x )

=
i = 1  

r i (x)  
a 2 A      

Ex U x Ff ( x ) (U x )⇤ (ea  � ⇠), ea � ⇠

r ( x )

=
i = 1  

r i (x)  
a 2 A      

F t
(x) (U x )⇤ (ea � ⇠ ), (U x )⇤Ex (ea � ⇠) .
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˜ ˜
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By the Cauchy-Schwartz inequality,

r ( x )  
(10) 1 � 

i = 1  
r i (x )  

a 2 A  

  F t
(x) (U x )⇤ (ea � ⇠ ), (U x )⇤Ex (ea � ⇠)

r ( x ) 2

� @
i =1  a 2 A  

ri (x)
kF t

(x) (U x )⇤ (ea � ⇠ )kk(U x )⇤Ex (ea �

⇠ )kA
r ( x )

� @
i =1  a 2 A  

r i (x
) k(U x )⇤Ex (ea � ⇠ )k2 A

r ( x )

⇥ @
i=1 a 2 A  

ri (x)
kF t

(x) (U x )⇤ (ea �

⇠ )k2 A  * r
(x) +

=  @
a2A i = 1  

r i (x)
E⇤U x (U x )⇤Ex (ea � ⇠), ea � ⇠ A

* r
(x) +

⇥ @
a2A i = 1  

r i (x)
U x (Ff (x ) )⇤Ff ( x ) (U x )⇤ (ea  � ⇠), ea � ⇠

A .

Since (Pi , x ) r ( x )  is a PVM, there exist a partition (S i )
r ( x )  of A  with |Si| =

r i (x)  and a unitary Vx in MA such that Vx Pi ,x Vx coincides with the pro-
jection P S i  onto span{ea : a 2  S i } ,  i  =  1, . . . , r(x). Let E x  =  Vx Ex Vx ,  and
write E x  = a,b ✏a,b�Ex,a,b. As Vx is unitary and Ex,a,bEx,a0 ,b0 =   b,a0Ex,a,b0,
we also have Ex,a,bEx,a0 ,b0 =   b,a0Ex,a,b0. Thus, we have

E x P S i E x =

=

0                               1 0                       1 0                                   1

@
X
✏ a , b  � E x , a , b A @

X  
✏c,c � 1A @

X
✏a 0 , b 0  �
Ex,a0 ,b0 A

a,b c 2 S i a0,b0

r i ( x )E x .

Let, similarly, (R i )
r ( x )  be a partition of B  with |Ri| =  r i (x)  and Wx be

a unitary such that Wx Qx,iWx =  P R i ,  i  =  1, . . . , r(x). Setting F f ( x )  =
W ⇤Ff (x) Wx , we have that (F f ( x ) )⇤P R i F f ( x )  =  r i (x )F f ( x ) .  This implies that
the last product in (10) is equal to

X
h E x ( e a  � ⇠), ea � ⇠ i

!
X

h F f ( x ) ( e a  � ⇠), ea �

⇠ i

!  
a 2 A + * a 2 A +

= Ex,a,a⇠ ,⇠ Ff (x),a,a⇠ ,⇠ =  1.
a 2 A                                     a 2 A
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Hence we have equalities in all chains of inequalities which implies that there
exist scalars  x  such that

F t
(x) (U x )⇤ (ea � ⇠) =   x (U x )⇤Ex (ea � ⇠), i  =  1, . . . , r(x), a 2  A.

Summing up over i, we obtain that (Dx�I )Ff ( x ) (D⇤�I )(ea�⇠ )  =   x Ex (ea�
⇠) for all a 2  A. After applying TrA ,  we conclude that  x  =  1, which yields
the desired result. ⇤

Theorem 3.2. Let '  : P cl !  P A B  be a quantum output mirror game
and   : D X Y  !  M A B  be a perfect quantum commuting CQNS strategy for ' .
Then there exists a tracial state � : BX , A  !  C  and a *-homomorphism ⇢ :
BY ,B !  BX , A  such that

(11)  (✏x,x � ✏y,y) =  �(ex ,a,a0⇢(fy,b0,b)) a,a0,b,b0  , x, y 2  X .

Proof. We choose f  : X  !  Y and g : Y !  X  as in Definition 2.3, and write
r ( x )

' (✏ x , x  � ✏ f ( x ) , f ( x ) )  = ⇣Ui ⇣Ui 
, x  2

X ,  i = 1

for partial isometries Ui , i  =  1, . . . , r(x), x  2  X ,  such that

r ( x ) r ( x )

(U x )⇤U x = U x (U x)⇤  =  I .
i = 1                                 i = 1

Keeping the notation from the proof of Lemma 3.1, we write  (✏x,x �✏y,y)
=  a,a0 2A        b,b02B hEx,a,a0Fy,b,b0⇠,⇠ i, where the assignments ex,a,a0 !  Ex,a,a0

2  B (H ) and fy,b,b0      !  Fy,b,b0      2  B (H ) define *-representations of BX , A
and BY ,B , respectively, with commuting ranges. Set E x  =  (Ex,a,a0)a,a02A

and
Fy  =  (Fy,b,b0)b,b0 2B . By Lemma 3.1,

F t
(x) (U x )⇤ (ea � ⇠) =  (U x )⇤Ex (ea � ⇠), i  =  1, . . . , r(x), a 2  A.

Let Q =  ( ( D x  � I )(ff (x) ,a,b )(a,b) )(D⇤  � I ))a,b and write Q =  (qx ,a,b)b,a. Set

hx,a,b =  ex ,a,b � 1 1 � qx,b,a, x  2  X, a, b 2  A.

We have

hx,a,bhx,a,b      =
=

(ex,b,a � 1 1 � qx,a,b) (ex,a,b � 1 1 � qx,b,a)
ex,b,b � 1 ex,b,a � qx,b,a ex,a,b � qx,a,b +  1 � qx,a,a.

Let s 2  BX , A  �max  BY ,B be such that   =   s. As

s(ex,b,a � qx,b,a) =  hEx,b,a ((Dx � I ) F f ( x ) (D⇤  � I ))a,b⇠ ,⇠ i

=      h((Dx � I ) F f ( x ) ( D⇤  � I ))a,b⇠ , Ex,a,b⇠ i =  hEx,a,b⇠ , Ex,a,b⇠ i =  hEx,b,b⇠,⇠ i,

we get

(12) s(hx,a,bhx,a,b) =  0, x  2  X, a, b 2  A.
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For u, v 2  BX , A  �max  BY ,B , write u ⇠ v if s(u   v) =  0. Equations (12),
combined with the Cauchy-Schwarz inequality, imply

uhx,a,b ⇠ 0 and hx,a,bu ⇠ 0, x  2  X, a, b 2  A, u 2  BX , A  �max  BY ,B .

Since hx,a,b =  hx,b,a, we have

(13) uhx,a,b ⇠ 0 and hx,a,bu ⇠ 0, x  2  X, a, b 2  A, u 2  BX , A  �max  BY ,B .

In particular,

(14) zex,a,b � 1 ⇠ z � qx,b,a ⇠ ex,a,bz � 1, x  2  X, a, b 2  A, z 2  BX ,A .

Similarly, let Vi
y , i  =  1, . . . d(y), be partial isometries such that

d(y) d(y)

Vi
y (Vi

y )⇤ = (Vi
y )⇤Vi

y =  I
i = 1                                  i = 1

and
d(y)

'(✏g (y ),g (y )  � ✏y,y) = ⇣V y  ⇣
⇤ 

y

.
i = 1

Similarly to the proof of Lemma 3.1, letting G  = d(y) V y, we obtain that
Fy,a,b⇠ =  ((Gy � I )(Eg(y),a,b )a,b (G⇤  � I ))a,b⇠ .

Set (py,a,b)b,a =  ((Gy�I )(eg(y),a,b ) (Gy�I ))a,b and note that {py,a,b : a, b}
is a matrix unit system, y 2  Y . Letting gy,b,b0 =  py,b,b0 �1 1�fy,b,b0, where
y 2  Y and b, b 2  B ,  we obtain, similarly,

(15) zpy,b,b0 � 1 ⇠ z � fy,b,b0 ⇠ py,b,b0z � 1, y 2  Y, b, b0 2  B ,  z 2  BX ,A .
Let z and w be (finite) words on the set E : =  {ex,a,b : x  2  X, a, b 2  A} .

We show by induction on the length |w| of w that

(16) zw � 1 ⇠ wz � 1.
In the case |w| =  1, the claim reduces to (14). Suppose (16) holds if |w| �
n 1. Let |w| =  n and write w =  w0e, where e 2  E. Using (14), we have

zw � 1 =  zw0e � 1 ⇠ ezw0 � 1 ⇠ w0ez � 1 =  wz � 1.
Let � : BX , A  !  C  be given by �(z) =  s(z � 1); it is clear that � is a state on

BX ,A . From (16) and the fact that the set of all linear combinations of words
on E is dense in A ,  we conclude that � is a trace on BX ,A . Identity (15)
implies that

s ex,a,a0 � fy,b,b0       =  � ex,a,a0py,b,b0      , x  2  X , y 2  Y, a, a0, b, b0 2  A.
Equality (11) is now immediate if we let ⇢ : BY ,B     !  BX , A  be the *-

homomorphism defined by letting ⇢(fy,b0,b) =  py,b,b0, y 2  Y , b, b 2  B .
⇤

We will write   =   ⇢,� if the CQNS correlation   : D X Y      !  M A B  is
given as in (11). Keeping the notation from the proof of Theorem 3.2, let ⇡ :
BX , A  !  BY ,B be the *-homomorphism given by ⇡(ex,a,a0) =  qx,a,a0. We will
need the following lemma, which can be thought of as a dilation result for
semi-classical stochastic operator matrices.
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Lemma 3.3. Let X  and A  be finite sets and (Ex,a,a0)x,a,a0, where x  2  X
and a, a 2  A ,  be a semi-classical stochastic operator matrix acting on a
finite dimensional Hilbert space H .  Then there exist matrix unit systems
(Ex,a,a0)a,a0, x  2  X ,  on a finite dimensional Hilbert space H ,  and an isometry
V : H  !  H ,  such that V ⇤Ex,a,a0V =  Ex,a,a0 for all x  2  X  and all a,a0

 2  A .

Proof. Write X  =  [k] and use induction on k. If k =  1, the result is a
direct consequence of the Stinespring Theorem. Resorting to the inductive
assumption, suppose that H k  1 is a finite dimensional Hilbert space, Vk 1 : H
!  H k  1 is an isometry, and (Fx ,a,a0)a,a0  is a matrix unit system on H k  1, such
that

Vk 1Fx,a,a0Vk 1 =  Ex,a,a0, x  2  [k 1], a,a0 2  A.

Let Fk,a,a0     =  Vk 1Ek,a,a0V ⇤ 
1, a, a0 2  A. Note that (Fk,a,a0 )a,a0      2  (MA�

B(Hk  1 )) and a 2 A  Fk,a,a =  Pk  1 : =  Vk 1Vk 1. Fix a0 2  A  and define

Fk,a0 ,a0 
+  Pk  1 if a =  a0 =  a0

Fk,a,a0 otherwise.

Note that (Fk,a,a0)a,a0      is a stochastic operator matrix acting on H k  1. In
addition,

Vk 1Fk,a0 ,a0 Vk 1 =  Vk 1(Fk,a0 ,a0 +  Pk  1)Vk 1 =  Ek,a0 ,a0 ,

and hence
Vk 1Fk,a,a0Vk 1 =  Ek ,a,a0, a,a0 2  A.

By [30, Theorem 3.1], there exists a Hilbert space K  and operators V : H k

1 !  K  such that the column operator Vk : =  (Va )a2A : H k  1 !  K  � C A  is an
isometry, and (Fk,a,a0)a,a0  

=  V ⇤Va0, a, a0 2  A. Let H  =  K  � C A  and Ek ,a,a0

=  I K  � ✏a,a0, a, a0 2  A. Then V ⇤Ek,a,a0Vk =  V ⇤Va0     =  Fk ,a,a0      and hence,
letting V =  VkVk  1, we have that V : H  !  H  is an isometry such that V
⇤Ek,a,a0V =  Ek,a,a0, a,a0 2  A.

Let Pk  =  VkV ⇤ and Fx,a,a0  =  Vk Fx,a,a0V ⇤, x  2  [k 1], a, a0 2  A. Then

(17) Fx,a,a0Fx,b,b0  =  VkFx,a,a0Vk VkFx,b,b0Vk =   a0,bFx,a,b0, a, a0, b, b0 2

A, and                                                   X  
Fx,a,a =  Pk .

a 2 A

Note that, if x0 2  [k   1], a0 2  A  and l =  rank(Fx ,a ,a ), then rank(Pk ) =
l|A|. It follows that l =  rank(Fx,a,a) for all x  2  [k 1] and all a 2  A. Thus,
P ? ( K  � C A )  =  K 0  � C A  for some Hilbert space with dim K0 =  dim K l.

Let
Fx,a,a0 =  I K 0  � ✏a,a0, x  2  [k 1], a, a0 2  A,

considered as an operator on P ? ( K  � C A ) ,  and

Ex,a,a0 : =  Fx,a,a0 +  Fx,a,a0 , x  2  [k 1], a, a0 2  A.



˜ ˜ ˜ ˜ ˜ ˜0 0
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⇤ ⇤
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˜ ˜
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For a, a0, b, b0 2  A  and x  2  [k 1], using (17) we have

Ex,a,a0Ex,b,b0         =

=

=

(Fx,a,a0 +  Fx,a,a0 )(Fx,b,b0 +  Fx,b,b0 )

Fx,a,a0Fx,b,b0  +  Fx,a,a0 Fx,b,b0

 a0,bFx,a,b0 +   a0,bFx,a,b0 =   a0,bEx,a,b0.

In addition, for x  2  [k 1] and a, a0 2  A  we have

V ⇤Ex,a,a0V =
=

V ⇤Fx ,a,a0V +  V ⇤Fx,a,a0 V =  V
⇤Fx ,a,a0V Vk 1Vk (Vk Fx,a,a0Vk )Vk Vk  1

=  Ex,a,a0.

⇤

Remark. In the notation of Lemma 3.3, if Ex,a,a0     =   a,a0Ex,a,a for all
x, a, a , the statement reduces to the simultaneous Naimark dilation of a
finite family of POVM’s exhibited in [23, Theorem 9.8]. We include the
following consequence, which will be used later.

Corol lary 3.4. Let X ,  Y , A  and B  be finite sets. A  CQNS correlation
  : D X Y  !  M A B  is quantum if and only if there exist finite dimensional
Hilbert space H X  and H Y  , *-representations ⇡ X  : BX , A  !  B ( H X )  and ⇡Y :
BY ,B !  B (HY  ), and a unit vector ⇠ 2  H A  � H B ,  such that

 (✏x,x � ✏y,y) =  h(⇡X (ex,a,a0) � ⇡Y (fy,b,b0))⇠,⇠ i a,a0,b,b0  , x  2  X , y 2  Y.

Proof. Let (Ex,a,a0)x,a,a0      (resp. (Fy,b,b0)y,b,b0) be a semi-classical stochastic
operator matrix acting on finite dimensional Hilbert space H A  (resp. H B )
and � 2  H A  � H B  be a unit vector such that

 (✏x,x � ✏y,y) = (Ex,a,a0 � Fy,b,b0)�,� a,a0,b,b0  , x  2  X , y  2  Y.

Let (Ex,a,a0)a,a0 and V (resp. (Fx,a,a0)a,a0  and W ) be the matrix unit systems
acting on a finite dimensional Hilbert space H X  (resp. H Y  )  and the corre-
sponding isometry, obtained via Lemma 3.3. By the universal property of
the C*-algebraic free product, there exists a *-representation ⇡ X  : BX , A  !
B ( H X )  (resp. ⇡Y : BY ,B !  B (HY  ))  such that ⇡X (ex,a,a0) =  Ex,a,a0     (resp. ⇡Y

(fy,b,b0) =  Fy,b,b0), x  2  X ,  a, a0 2  A  (resp. y 2  Y , b, b0 2  B ) .  Letting ⇠
=  (V � W )�, we obtain the required representation of  . ⇤

Theorem 3.5. Let '  : P cl !  P A B  be a quantum output mirror game, � be
a tracial state on BX , A  and ⇢ : BY ,B !  BX , A  be a unital *-homomorphism such
that   =   ⇢,� is a perfect quantum commuting CQNS strategy for ' .  The
following hold:

(i)   2  CQqa if and only if � can be chosen to be amenable;
(ii)   2  CQq if and only if � can be chosen to factor through a finite-

dimensional *-representation of BX , A .

Proof. (i) Assume that   2  CQqa. By the Remark after [30, Theorem 7.7], s
can be chosen to be a state of BX , A  �min BY ,B . Let @ : BX , A  !  BX , A  be the
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op
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1 k       k k
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k 1

1 k
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⇤
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⇤
¯
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*-isomorphism given by @(ex,a,a0) =  ex,a0,a, whose existence is guaranteed
by [30, Lemma 9.2]. Let   : BX , A  �min B !  C  be the state defined by
letting

  =  s  (id � ⇡)  (id � @ 1).
Let z 2  BX , A  and w =  ex1,a1,a0 · · · ex ,a ,a0 , for some x i  2  X ,  ai , ai 2  A,
i  =  1, . . . , k. Set w̄ : =  @ 1(wop) =  exk ,a0  ,ak · · · ex1,a0 ,a1 . Using (13), we have

 (z � wop)     =      s(z � ⇡(w̄)) =  s(z � qxk ,a0  ,ak · · · qx1,a0 ,a1 ) =

�(zex1,a1,a0  · · · exk ,ak ,a0  )  =  �(zw).

By linearity and continuity,

(18)  (z � wop) =  �(zw), z, w 2  BX ,A .

By [6, Theorem 6.2.7], � is amenable.
Conversely, if � is an amenable trace that implements   then the func-

tional   : BX , A  �max  BX , A  !  C  defined via the identity (18) factors through
BX , A  �min BX ,A ; by the Remark after [30, Theorem 7.7],   2  CQqa.

(ii) Let   : D X Y  !  M A B  be a perfect strategy in CQq. By Corollary 3.4,
there exist finite dimensional spaces H  and K ,  representations ⇡ : BX , A  !
B (H ) and ⇢ : BY ,B !  B (K ),  and a unit vector ⇠ 2  H  �K  such that   =   s,
where s : BX , A  �min BY ,B is a state such that

(19) s ex,a,a0 � fy,b,b0       =  (⇡0(ex,a,a0) � ⇢0(fy,b,b0))⇠,⇠ ,

for all x  2  X , y 2  Y, a, a0 2  A, b, b0 2  B .  The proof of Theorem 3.2 shows
that the left marginal of s is a trace on BX , A  that factors through the finite
dimensional space H  � K  and satisfies (11). The converse direction follows
from [30, Proposition 9.15]. ⇤

Remark.  In case the bijective projections ' (✏ x , x�✏ f ( x ) , f ( x ) )  and
'(✏g (y ),g (y )� ✏y,y) from Definition 2.3 have full rank, the corresponding
quantum output mirror games reduces to a classical one and has possesses
non-trivial local perfect strategies. However, if |A| >  1 and at least one of
those projections has rank smaller than |A|, a local perfect strategy does not
exist, since local CQNS correlations preserve separability of states.

The following is a partial converse of Theorem 3.2.

Proposition 3.6. Let � : BX , A  !  C  be a tracial state and let ⇢ : BY ,B !
BX , A  be a *-homomorphism for which there exist bijections f  : X  !  Y , g :
Y !  X  and unitary operators Ux , Vy : C B  !  C A ,  x  2  X ,  y 2  Y , such that
(⇢(fy,b,b0))b,b0      =  (Vy � I )(eg(y),a,a0)a,a0(Vy � I )  and (⇢(ff (x),b,b0))b,b0     =  (U
� I )(ex,a,a0)a,a0(Ux � I ) .  Then  ⇢,� is a perfect strategy for the game '  given
by

<⇣ ¯ x
⇣U x

if y =  f (x) ,

' (✏ x , x  � ✏y,y) = ⇣Vy
 ⇣Vy

if x  =  g(y),

I A A otherwise.



⇤

0 0

x x

x

Ū¯ ¯ ¯
x x

¯ x
⇤
Ux

X X

AJ if x  =  y

 

⇤
A
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Proof. We have that
� 

 
ex,a,a0⇢(ff (x),b0 ,b)

 
a,a0,b,b0  =  ( I  � Ux )

 
�(ex,a,a0ex,b0,b)

 
a,a0,b,b0  ( I  � Ux).

As � is a trace and {ex,a,a0}a,a0 2A is a family of matrix units, �(ex,a,a0ex,b0,b) =
 a0,b0 a,b x , where  x  =  �(ex,a,a) =  �(ex,b,b) for all a, a , b, b 2  A  and x  2  X .
Hence

h (✏x,x � ✏f (x),f (x) )(ea0 � eb0), ea � eb i
=  h(�(ex,a,a0ex,b0,b))a,a0,b,b0 (I � Ux)(ea0  � eb0 ), (I � Ux)(ea � eb )i =
ua0,b0ua,b x ,

where Ux =  (ua,b)a,b. On the other hand,

h⇣Ux⇣
⇤

x
ea0 � eb0, ea � eb i =  h⇣Ux, ea � ebihea0 � eb0 , ⇣Ux i =  ua0,b0ua,b

showing that  (✏x,x � ✏ f ( x ) , f ( x ) )  =   x⇣U ⇣ ¯and hence for P  =  ✏x,x

� ✏ f (x ) , f (x ) ,  we obtain

(20) h ( P ) , ' ( P ) ? i  =  0.

Similar arguments give (20) for P  =  ✏g(y),g(y) � ✏y,y. ⇤

The classical-to-quantum concurrency game is the game '  : P cl !  P A A
defined as follows:

(

' (✏ x , x  � ✏y,y) =
I A A if x  =  y.

A  CQNS correlation   will be called concurrent if   is a perfect strategy for
the concurrency game.

Corol lary 3.7. Let   : D X X  !  MA A  be a quantum commuting CQNS
correlation. The following are equivalent:

(i)   is concurrent;
(ii) there exists a tracial state � : BX , A  !  C  such that

(21)  (✏x,x � ✏y,y) =  �(ex,a,a0ey,b0,b) a,a0,b,b0  ,x, y 2  X .

Moreover,

(i’)   2  CQqa if and only if the trace � can be chosen to be amenable;
(ii’)   2  CQq if and only if � can be chosen to factor through a finite

dimensional *-representation of BX , A .

Proof. ( i ) ) ( i i )  The concurrency game is a quantum output mirror game
with B  =  A, f  and g the identity maps, and ' (✏ x , x  � ✏x,x ) =  J A  =  ⇣ I A ⇣ I
for every x  2  X .  In this case the *-homomorphism ⇢ : BX , A  !  BX , A  from
the proof of Theorem 3.2 is given by ⇢(fy,b,b0) =  ey,b,b0. The statement now
follows from Theorem 3.2.
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( i i ) ) ( i )  Fix x  2  X  and note that, by the uniqueness of the trace on MA,
the restriction of � to any of the free product terms in the definition of BX , A
coincides with the normalised trace tr; thus,

(22) �(ex,a,a0) =  
|A|

 a,a0, a,a0 2  A.

It follows that

 (✏x,x � ✏x,x )
=

X
�(ex,a,a0 ex,b0,b)✏a,a0 � ✏b,b0

a,a0,b,b02A

= �(ex,a,b0ex,b0,b)✏a,b0 � ✏b,b0

a,b,b0 2A

=  
X  

�(ex,a,b)✏a,b0 � ✏b,b0 =  
1X  

✏a,b � ✏a,b =
J A .  a,b,b0 2A                                                                   a,b2A

Statements (i’) and (ii’) are immediate from statements (i) and (ii) in
Theorem 3.5.                                                                                                                    ⇤

Remark 3.8. Factorisable quantum channels were introduced in [1] and
have been subsequently studied by a number of authors (see [19] and the
references therein). It was shown in [19, Proposition 3.1] that a quantum
channel   : MA !  MA is factorisable if and only if its Choi matrix has the
form �(pa,a0qb0,b) a,a

0
,b,b0, for some matrix unit systems (pa,a0)a,a0     and

(qb,b0)b,b0 in MA ⇤1 MA. It follows that the factorisable quantum channels on
MA can be identified with the perfect quantum commuting CQNS strategies
for concurrent games with two inputs. Note, in addition, that the perfect
quantum commuting strategies of quantum output mirror games with a
single input form a subclass of the factorisable quantum channels.

Remark 3.9. Let A  be a unital C*-algebra, equipped with a tracial state �.
Recall [30] that a semi-stochastic A-matrix over ( X , A )  is a positive matrix
(qx,a,a0)x,a,a0 2  D X  � MA � A  such that gx ,a,a =  1 for all x  2  X .  A
CQNS correlation   : D X X  !  MA A  is called tracial [30] if there exists a
semi-stochastic A-matrix (gx,a,a0)x,a,a0 such that

 (✏x,x � ✏y,y) = �(gx,a,a0gy,b0,b)✏a,a0 � ✏b,b0,
x, y 2  X .  a,a0,b,b0

It follows from Corollary 3.7 that every concurrent quantum commuting
CQNS correlation is tracial.

3.3. Algebras of classical-to-quantum games. Let P  2  P cl and Q 2
P A A .  We define a linear map

 P ,Q : D X X  � MA A  � B X , A  � B X , A !  B X , A  by

letting

 P ,Q ( !  � u � vop) =  Tr ( ! ( P  � Q))uv, !  2  D X X  � MAA, u, v 2  B X , A .



cl

op

X , A
op op

X , A
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When, in addition, Q 2  P A A ,  define a corresponding map

↵P ,Q : D X X  � D A A  � A X , A  � A X , A  !  A X , A .

Both  P ,Q and ↵P ,Q will be considered as maps on the ampliations of the
algebraic tensor products BX , A  � B and A X , A  � A , with values in
BX , A  and A X , A ,  respectively.

We use the notation hS i to refer to the *-ideal generated by a subset S
of a *-algebra. If '  : P X X  !  P A A  is a classical-to-quantum game, set

I ( ' )  =  P , ' ( P ) ? ( E c q  � Ecq  )  : P  2  P X X ✓ B X , A ,

and let I ( ' )  be the closure of I ( ' )  in BX ,A . Set B ( ' )  =  B X , A / I ( ' )  and
B ( ' )  =  B X , A / I ( ' ) .  Define A ( ' )  and A ( ' )  similarly, using the ideal

↵ P , ' ( P ) ? (E c l  � Ec l  )  : P  2  P X X

of A X , A .
Given a synchronous non-local game   : X  ⇥ X  ⇥ A  ⇥ A  !  {0, 1}, its

*-algebra A (  )  was defined in [12] as the unital *-algebra with generators
selfadjoint idempotents ex,a, where x  2  X ,  a 2  A, subject to the relations

ex,a =  1 for all x  2  X ,  and ey,bez,c =  0 if  (y, z, b, c) =  0.
a 2 A

Proposition 3.10. Let   : X  ⇥ X  ⇥ A ⇥ A !  {0, 1} be a synchronous non-
local game. Then A ( '  )  (resp. A ( '  ) )  coincides with the *-algebra (resp.
C*-algebra) of the game  .

Proof. Let A(  )  be the *-algebra of the game   as defined in [12], and note
that A(  )  =  A X , A / I (  ), where

I (  )  =  hex,aey,b :  (x, y, a, b) =  0i.

We show that

(23) I (  )  =  I ( '  ).

Note that '  (✏x,x � ✏y,y )? = (a,b): (x,y,a,b)=0 ✏a,a � ✏b,b; thus,

↵✏ x , x �✏ y , y , '  (✏ x , x �✏ y , y ) ? (Ec l  � Ec l  )  = ex,aey,b.
(a,b): (x,y,a,b)=0

Multipying from the left by ex,a and by ey,b from the right, we conclude that
ex,aey,b 2  I ( '  )  whenever  (x, y, a, b) =  0; thus, I (  )  ✓ I ( '  ).

Let P  = k ✏x k ,x k  � ✏yk ,yk as a finite sum. Then

'  ( P ) ?  = ✏a,a � ✏b,b (a,b):

(xk ,yk ,a,b)=0,8k

and hence

↵P , '  ( P ) ? (E c l  � Ec l  )  = exk ,aeyk ,b.
(a,b): (xk ,yk ,a,b)=0,8k     k
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This shows that I ( '  )  ✓ I (  ), establishing (23). ⇤

Remark 3.11. We have  J c l , J ? (E c q  � Ecq  )  =  0.

Proof. The claim follows from the fact that

 
J
c l , J A  

 
Ecq  � Ecq  

      
=

1 X  X  
ex,a,bex ,b,a =  

X  X  
ex,a,a

x 2 X  a,b2A x 2 X  a 2 A

= ex,a,aex,b,b =   J c l , I A A       
Ecq  � E op     .

x 2 X  a,b2A

⇤

Corol lary 3.12. Let '  : P cl !  P A A  be a classical-to-quantum concurrent
game. The following are equivalent for a CQNS correlation   : D X X  !
MAA :

(i)   is a perfect quantum commuting (resp. quantum) strategy for ' ;
(ii) there exists trace � (resp. a trace � that factors through a finite

dimensional *-representation) on BX , A  such that (21) holds and
�  P , ' ( P ) ?  

 
Ecq  � Ecq  

  
=  0,

for all P  2  P X X .

Proof. We only prove the statement in the case of quantum commuting
strategies. Let � be the trace of BX , A  that implements  , arising from
Theorem 3.2. For any P  2  P cl      , taking into account the duality relations
(2), we have

0     =      h ( P ) , ' ( P ) ? i  =  
X  

Tr ((✏x ,x  � ✏y,y)P ) h (✏x,x � ✏y , y ) , ' (P ) ? i
x , y 2 X

= Tr ((✏x,x  �
✏y,y )P )

X  
� 

 
ex,a,a0 ey,b0,b

 �
✏a,a0 � ✏b,b 0 , '(P )?

↵

x , y 2 X a,a0,b,b0

= Tr ((✏x,x  � ✏y,y )P ) � ex,a,a0ey,b0,b     Tr((✏a,a0 � ✏b , b 0 ) ' (P )? )
x , y 2 X a,a0,b,b0

=      �  P , ' ( P ) ?  
 

Ecq  � Ecq  
  

.

⇤

Remark 3.13. Clearly, any trace � on B ( ' )  gives rise to a perfect quantum
commuting strategy for ' .  If, in particular, � is amenable on B ( ' ) ,  by
[6, Proposition 6.3.5], the induced trace �̃ on BX , A  is amenable, and hence
the CQNS correlation defined via (21) is approximately quantum. We do
not know if any perfect quantum commuting strategy for a non-local game '
arises from a trace of B ( ' )  in general. Similarly we are not aware if any
the approximately quantum perfect strategies of a classical-to-quantum non-
local game '  all arise from amenable traces of B ( ' ) .



X

|X|

|A|

⇤

⇤
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4. Concurrent  quantum games

In this section, we define the *-algebra and the C*-algebra of a quantum
concurrent game and provide a characterisation of the prefect strategies for
this type of games.

4.1. Tracial  descriptions. Let � : C X , A  !  C  be a tracial state; then the
linear map  � : M X X  !  MAA , given by

 � (✏x,x0 � ✏y,y0) = �(ex,x0a,a0ey0,y,b0,b)✏a,a0 �

✏b,b0, a,a0,b,b0

is a QNS correlations; the QNS correlations arising in this way were called
tracial in [30]. The classes of quantum tracial (resp. locally tracial ) QNS
correlations are defined by requiring that � factors through a finite dimen-
sional (resp. abelian) *-representation.

Theorem 4.1. Let X  and A  be finite sets, '  : P X X  !  P A A  be a concurrent
game and   : M X X  !  MA A  be a perfect quantum commuting QNS strategy for
' .  Then there exists a tracial state �̃ : C X , A  !  C  such that   =   �̃.
Moreover,

(i) if   2  Qqa then �̃ can be chosen to be amenable;
(ii) if   2  Qq then �̃ can be chosen to factor through a finite dimensional

*-representation of CX ,A ;
(iii) if   2  Qlo c then �̃ can be chosen to factor through an abelian *-

representation of CX , A .

Proof. Let   2  Qqc be a perfect strategy for ' .  By [30, Theorem 6.3], there
exists a state s : C X , A  �max  C X , A  !  C  such that

(24)  (✏x,x0 � ✏y,y0) =  
X  

s(ex,x0,a,a0 � fy,y0,b,b0)✏a,a0 � ✏b,b0,
a,a0,b,b0

for all x, x0, y, y0 2  X  and all a, a0, b, b0 2  A  (for clarity, we use fy,y0,b,b0 to
denote the canonical generators of the second copy of CX ,A ).  It follows that

1 X  X  
s(ex,y,a,a0 � fx,y,b,b0)✏a,a0 � ✏b,b0 =

J A ,  x,y a,a0,b,b0

and hence

(25)
X

s(e x , y , a , b  � fx,y,a,b) =  
|X|

, a, b 2  A.
x,y

Let V =  (va,x)a,x be the isometry such that ex,x0,a,a0 =  va,xva0,x0. Then

V V ⇤ =
X  

va,x vb,x

!

x 2 X a,b



⇤

⇤

⇤
⇤

e

X  X

⇤

X

X

X

⇤
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is a projection, and hence
X  

va,xva,x � 1, a 2  A.
x 2 X

It follows that

(26)
X  

ey,x,b,aex,y,a,b
x 2 X

=  
X  

vb,yva,xva,xvb,y
x 2 X

�     vb,yvb,y =  ey,y,b,b

for all y 2  X  and all a, b 2  A. Thus,
X  X  

ey,x,b,aex,y,a,b �
X  X

y,y,b,b
x , y 2 X  a,b2A

(27)

y 2 X  a,b2A

=      |A| ey,y,b,b =  |X||A|1.
y 2 X  b 2 A

Similarly,

(28)
X  

fx,y,a,bfy,x,b,a � fx,x,a,a
y 2 X

and

(29) X  X  
fx,y,a,bfy,x,b,a � 

|

X||A|1.
x , y 2 X  a,b2A

Let
hx,y,a,b =  ex,y,a,b � 1 1 � fy,x,b,a, x, y 2  X, a, b 2  A.

Equation (25) and inequalities (27) and (29) imply
X  

s(hx,y,a,bhx,y,a,b)
x,y,a,b

= s ((ey,x ,b,a � 1 1 � fx,y,a,b) (ex,y,a,b � 1 1 � fy,x,b,a))
x,y,a,b

= s (ey,x,b,aex,y,a,b � 1 +  1 � fx,y,a,bfy,x,b,a)
x,y,a,b

 s (ey,x,b,a � fy,x,b,a +  ex,y,a,b � fx,y,a,b )
x,y,a,b

�     2|X||A|1 2|X||A|1 =  0.

It follows that

(30) s(hx,y,a,bhx ,y,a,b) =  0, x, y 2  X, a, b 2  A.

As in the proof of Theorem 3.2, write u ⇠ v if s(u   v) =  0 and note that,
by (30),

uhx,y,a,b ⇠ 0 and hx,y,a,bu ⇠ 0, x, y 2  X, a, b 2  A, u 2  C X , A  �max  CX ,A .



   

P
i = 1

( j ) ( j )
⇣ � ⇣ �   

x ,x  ,a,a y,y ,b,b

n n

P
i = 1

p

   � ↵

� ↵

0

a,x
⇤ 0 0

X

1      1 2      2
" " "
a ,x      a ,x a ,xk       k

⇤

V .
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In particular,

(31) zex,y,a,b �1 ⇠ z �fy,x,b,a ⇠ ex,y,a,bz �1, x, y 2  X, a, b 2  A, z 2  CX ,A .
Using (31) and induction, as in the proof of Theorem 3.2, we conclude that
the map �̃ : C X , A  !  C,  given by �̃(z) =  s(z �1), is a trace on CX ,A . Identity
(31) implies

s ex,x0,a,a0 � fy,y0,b,b0       =  �̃ ex,x0,a,a0 ey0,y,b0,b     , x, x0, y, y0 2  X, a, a0, b, b0 2  A.
Statements (i)-(ii) are proved similarly to Corollary 3.7. To  see (iii), let

be a perfect strategy of class Qlo c. We have   =       n         i  i  �     i  as a convex
linear combination of quantum channels  i ,     i  : M X  !  MA, i  =  1, . . . , n.

Let      x
,
x

0,a,a0      
a,a0 

=   j      ✏x,x0      , x, x0 2  X ,      µy,y0,b,b0      
b,b0 

=      j      ✏y,y0     ,

y, y0 2  X ,  ⇡ j , ⇢ j  : C X , A  !  C  be the *-representations given by
⇡j (ex,x0,a,a0) =

 ( j )  
0 0     and ⇢j (fy,y0,b,b0 ) =  µ(j )

0 0, and ⇡0,⇢0 : C X , A  !  B (Cn ) be the
*-representations given by

⇡0(u) =  
X
⇡ j ( u )✏ j , j , ⇢0(v) =

X
⇢ j ( v )✏ j , j .  j = 1

j = 1

The images of ⇡0
 and ⇢0

 are abelian. Set ⇠ = n  i ei  � ei 2  C n  � Cn ;
then

  ✏x,x0 � ✏y,y0       = (⇡0(ex,x0,a,a0 ) � ⇢0(fy,y0,b,b0))⇠,⇠a,a0,b,b0

and the corresponding state s is given by

s(ex,x0,a,a0 � fy,y0,b0,b) =  (⇡0(ex,x0,a,a0) � ⇢0(fy,y0,b,b0))⇠,⇠ .
It follows that the left marginal of s is a trace on C X , A  that factors through
the abelian representation ⇡ of CX ,A .                                                                       ⇤

We now assume that X  =  A; we will see that in this case, we can obtain
more precise conditions than the ones in Theorem 4.1 that are also su -
cient. Let B X  be the universal C*-algebra (usually referred to as the Brown
algebra), generated by the elements ua,x, x, a 2  X  such that the matrix
(ua,x )a,x2A is unitary. Consider the C*-subalgebra C X  of B X  generated by
px,x0,a,a0 =  u ua0,x0, x, x  , a, a 2  X .  Write J  for the closed ideal of CX ,A ,
generated by the elements

ey,x,b,aex,y,a,b ey,y,b,b, y, a, b 2  X .
x 2 X

Let V X , A  be the universal T RO  of an isometry (va,x)a,x , as defined in [30,
Section 5]. In the sequel, we will consider products v 1 v 2 · · · v k ,
where "i is either the empty symbol or ⇤, and "i =  " i+1  for all i, as elements of
either VX ,A , VX ,A , C X , A  or the left C*-algebra corresponding to the T RO

X , A

Lemma 4.2. The map ⇡ : ex,x0,a,a0 !  px,x0,a,a0 , x, x0, a, a0
 2  X  extends to a

surjective *-homomorphism ⇡ : C X , A  !  C X  with ker ⇡ =  J  .



⇤ ⇤
⇤

a,x
⇤ 0 0

⇤ ⇤
⇤

x 2 X a,x a

⇤

⇤

V

⇤

0 ⇤ .
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Proof. Since U =  (ua,x) is unitary and hence an isometry, we have that E
=  (px,x0,a,a0)x,x0,a,a0     is a stochastic operator matrix; thus, there exists a *-
homomorphism ⇡ : C X , A  !  C X  such that ⇡(ex,x0,a,a0 ) =  px,x0,a,a0. We have

⇡  
X  

ey,x,b,aex,y,a,b ey,y,b,b

! 

=  
X  

ub,yua,xua,xub,y ub,yub,y =  0,
x 2 X                                                                        x 2 X

showing that J  ✓ ker ⇡.
For the reverse inclusion, let ✓ : C X , A  !  B ( K )  be a unital *-representation.

By [30, Lemma 5.1], there exists a block operator matrix V =  (Va,x)a,x that is
an isometry, such that ✓(ex,x0,a,a0) =  V Va0,x0, x, x  , a, a 2  X ;  we write
✓ =  ✓V . Note that ✓ annihilates J  if and only if

Vb,yVb,y   
X  

Vb,yVa,xVa,xVb,y =  0, a, b, y 2  X .
x 2 X

Letting D a  =  1 
P

Va,xV ⇤ , we have that D a  is positive, D1/2Vb,y =  0
and hence

(32) DaVb,y = 1   
X  

Va,x Va,x

!

Vb,y =  0.
x 2 X

Since (Vb,y � I )⇤ ( I    V V ⇤)(Vb,y � I )  2  MX (✓ (C X , A ) ) +  and has zeros on its
main diagonal, it is the zero operator. In particular,

( I  V V ⇤)1/2(Vb,y � I )  =  ( I  V V ⇤)(Vb,y � I )  =  0, y, b 2  A,

implying that

(33)
X  

Va,xVa0,xVb,y =  0 whenever a =  a0.
x 2 X

The block operator matrix

✓
U : = 0

I   V V ⇤ 
�

V ⇤

is unitary; let

Ua,x =  
✓ 

Va,x  a,x I 
P

b 2 X  Va,bVx,b 
�

Vx,a



⇤ a,xV 0P
⇤

⇥

P
⇤✓ �

= ⇤

⇤

⇤
P

✓ �

0

⇤

⇤
✓ �

X
0 0

1 1

⇠

!

P
x,y,a,b x,y,a,b
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Since (Ua,x)a,x is unitary, it gives rise to a *-representation ⇢U of B X  on the
Hilbert space K 1  K 2 ,  where K 1  =  K 2  =  K .  Using (32) and (33), we have

✓
⇤

�
⇢U (px,x0,a,a0 )     =      Ua,xUa0,x0 =         a,x I        b 2 X  Vx,bVa,b      Vx,a

Va0,x0  a0,x 0I  b 2 X  Va0,bVx0,b
0                          Vx0,a0

Va,xVa0,x0

⇤ (  a,x I
b 2 X  Vx,bVa,b)Va0,x0

⇤

= Va,xVa0,x0 ⇤ .

It follows that K 1  is an invariant subspace for ⇢U|C     , and ✓V (ex,x0,a,a0 ) =
⇢U (px,x 0,a,a0 )|K       for all x, x  , a, a 2  X .  This yields ✓V (T ) =  ⇢U (⇡(T ))|K ,
T 2  CX ,A .  Thus, for a fixed T 2  CX ,A ,  we have

kT +  J  k     =      sup{k✓V (T )k : V =  (Va,x) isometry with ✓V ( J  )  =
{ 0 } }  �     sup{k⇢U (⇡(T ))k : U =  (Ua,x) unitary} =  k⇡(T )k.

Therefore T 2  ker ⇡ implies T 2  J  . ⇤

Note that, according to Lemma 4.2, we have C X , A / J  =  CX .

Theorem 4.3. Let X  be a finite set and '  : P X X  !  P X X  be a concurrent
game. A  quantum commuting QNS correlation   : M X X  !  M X X  is a
perfect strategy for '  if and only if there exists a tracial state � : C X  !  C
such that

 (✏x,x0 � ✏y,y0) =  
 
�(px,x0a,a0py0,y,b0,b)

 
a,a0,b,b0  ,x, x0, y, y0 2  X .

Moreover,
(i)   2  Qq if and only if � can be chosen to factor through a finite

dimensional *-representation of CX ;
(ii)   2  Qloc if and only if � can be chosen to factor through an abelian

*-representation of C X .

Proof. For clarity, we set A  =  X .  Let   2  Qqc be a perfect strategy for ' .
Keeping the notation from the proofs of Theorem 4.1 and Lemma 4.2, we see
that

s
X  

ey,x,b,aex,y,a,b � 1 =  s (ey,y,b,b � 1)
x 2 X

(for otherwise we would have s(h⇤ hx ,y,a,b) <  0). It follows that
the trace �̃ on C X , A  annihilates the elements

dy,a,b : =  ey,y,b,b   
X  

ey,x,b,aex,y,a,b, y 2  X, a, b 2  A.
x 2 X



1/2

   

X

⇤

|X|

|X|
⇤

⇤

|X|
⇤

|X|
⇤

|X|

|X|

0 ! ⇤

X X
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As dy,a,b   0, we have that �̃(dy,a,bu) =  0 for every u 2  C X , A  and so �̃( J  )  =
{0}.  By Lemma 4.2, �(⇡(u)) : =  �̃(u) is a well-defined trace on CX . Identity
(31) implies that

s ex,x0,a,a0 � fy,y0,b,b0       =  � px,x0,a,a0py0,y,b0,b     , x, x0, y, y0 2  X, a, a0, b, b0 2  A.

Conversely, let � be a trace on C X  and   : M X X  !  MA A  be the QNS
correlation, given by

 (✏x,x0 � ✏y,y0) = �(px,x0,a,a0py0,y,b0,b)✏a,a0 � ✏b,b0.

Write

We have that

 ( J X )      =

=

=

=

=

=

a,a0,b,b02X

wa,b =  
X  

ua,xub,x, a, b 2  X .
x 2 X

1 X X
�(px,y,a,a0py,x,b0,b)✏a,a0 � ✏b,b0

x , y 2 X  a,a0,b,b02X

1 X X
�(ua,xua0,yub0,yub,x)✏a,a0 � ✏b,b0

x , y 2 X  a,a0,b,b02X

1 X X
 a0,b0�(ua,xub,x)✏a,a0 � ✏b,b0

x 2 X  a,a0,b,b02X

1 X  X  
�(ua,xub,x)✏a,c � ✏b,c

x 2 X  a,b,c2X

1 X  
�(wa,b)✏a,c � ✏b,c

a,b,c2X
1

1 @ 
X  

�(wa,b)ea � e b A
X  

ec � ec

a,b 2X c 2 X

Since   is a quantum channel,  ( J X )  is a positive operator and hence

�(wa,b)ea � eb = ec � ec,

implying

and  ( J X )  =  J A .

a,b 2X c 2 X

�(wa,b) =   a,b, a, b 2  X ,

(i)-(ii) If A  is a unital C*-algebra, equipped with a trace �A , and ⇢ :
C X , A  !  A  is a *-homomorphism such that �̃ =  �A    ⇢, then �A (⇢ ( J  )) =  0.
Let ⇢̃  : C X , A / J  !  A /⇢ ( J  )  be given by ⇢̃(u +  J  ) =  ⇢(u) +  ⇢ ( J  ). Then
⇢̃  is a *-homomorphism and the map �A /⇢ ( J )  : A /⇢ ( J  )  !  C,  given by
�A/⇢ ( J ) (a +  ⇢ ( J  )) : =  �A (a), is a well-defined trace on A /⇢ ( J  ). We have
�A /⇢ ( J  ) (⇢̃ (⇡(u))) =  �A (⇢(u)), u 2  CX ,A .  Clearly, if A  is finite-dimensional



op

S Y N C H R O N I C I T Y  F O R  Q U A N T U M  N O N - L O C A L  G A M E S 29

(resp. abelian), so is A /⇢ ( J  ). The statements now follow after an inspection
of the proof of Theorem 4.1.                                                                                       ⇤

We do not know if the approximately quantum perfect strategies for con-
current games admit a characterisation via amenable traces of C X  under the
conditions of Theorem 4.3.

4.2. Algebras of quantum games. Similarly to concurrent classical-to-
quantum games, concurrent quantum games give rise to *- and C*-algebras
which we now describe. For P  2  P X X  and Q 2  P A A ,  define a linear map

 P ,Q : M X X  � MA A  � CX , A  � CX , A  !  CX , A

by letting

 P ,Q ( !  � u � vop) =  Tr ( ! ( P  � Q))uv, !  2  M X X  � MAA, u, v 2  CX ,A .

For a quantum game '  : P X X  !  P A A ,  let

I ( ' )  =  
D

 P , ' ( P ) ?  ( E  � E op ) : P  2  P X X

E

be the *-ideal in CX , A  generated by  P , ' ( Q ) ? ( E  � E op ), P  2  P X X ,  and
I ( ' )  be the closed ideal in C X , A  generated by the same set. Write C ( ' )  =
C X , A / I ( ' )  (resp. C ( ' )  =  C X , A / I ( ' ) )  for the quotient *-algebra (resp. quo-
tient C*-algebra). Similarly, we define an ideal I ( ' )  in C X  and its quotient,
where we write E  for (px,x0,a,a0)x,x0,a,a0 2  M X X ( C X ) .

Similarly to Corollary 3.12, we obtain the following:

Corol lary 4.4. Let X  be a finite set and '  : P X X  !  P X X  be a concurrent
quantum game. The following are equivalent for a QNS correlation   :
M X X  !  M X X :

(i)   is a perfect quantum commuting (resp. quantum/local) strategy for
' ;

(ii) there exists a trace � (resp. a trace � that factors through a finite
dimensional/abelian *-representation) of C X  such that

 (✏x,x0 � ✏y,y0) =  
 
�(ex,x0,a,a0ey,y0,b0,b)

 
a,a0,b,b0  ,x, x0, y, y0 2  X ,

and

�( P , ' ( P ) ? ( E  � E op )) =  0.

5. The quantum graph homomorphism game

In this section, we revisit the quantum graph homomorphism game as
introduced in [30], and provide characterisations of its perfect QNS strategies
of various classes.



* +

P

G

G
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5.1. Characterisations of the existence of perfect strategies. Let Z
be a finite set, H  =  C Z ,  and recall that H d  stands for the dual (Banach)
space of H .  Let ✓ : H  � H  !  L ( H d , H )  be the linear map given by

✓(⇠ � �)(⇣d) =  h⇠, ⇣ i�, ⇣ 2  H .

We have

(34) ✓ ((S � T )⇣ ) =  T✓(⇣ )Sd, ⇣ 2  H  � H ,  S, T 2  L ( H ) .

We denote by m : H  � H  !  C  the map, given by

m(⇣ ) = ⇣, 
X  

ez � ez , ⇣ 2  H  � H .
z 2 Z

Let also f : H  � H  !  H  � H  be the flip operator, given by f(⇠ � �) =  � � ⇠.

Definition 5.1. A  linear subspace U ✓ H  �H is called skew if m(U ) =  { 0 }
and symmetric if f(U ) =  U .

If U is a symmetric skew subspace of H  � H  and SU =  ✓(U ) then the
subspace SU of L ( H d , H )  has the following properties:

• T 2  SU = )  d 1  T⇤  d 1 2  SU , and
• T 2  SU = ) z2Z h(T  d)(ez ), ez i =  0.

We call a subspace of L ( H d , H )  satisfying these properties a twisted operator
anti-system, because of its resemblance to operator anti-systems (that is,
selfadjoint subspaces of M X  each of whose elements has trace zero [3]). Given a
twisted operator anti-system S  ✓ L (H d , H ) ,  one has that the subspace US

=  ✓ 1 (S ) of H  � H  is symmetric and skew.
Given a graph G, let

UG =  span{ex � ey : x  ⇠ y};

then U is a symmetric skew subspace of C X  � C X .  We thus consider
symmetric skew subspaces of C X  � C X  as a non-commutative version of
graphs. We note that a couple of other non-commutative incarnations of
graphs were considered in the literature, namely, operator subsystems in
M X  in [9] – after noting that the subspace

S G  : =  span{✏x,x0  : x  '  x0}

of M X  is an operator system, and operator anti-systems in [29] – after noting
that the subspace

S 0 : =  span{✏x,x0 : x  ⇠ x0}
of M X  is an operator anti-system. Our use of symmetric skew subspaces,
instead of some of these concepts, is dictated by the nature of the definition of
QNS correlations, adopted in [10].

We write P for the orthogonal projection from C X  � C X  onto U. Let
U ?  ✓ C X  � C X  d be the annihilator of U and write P U ?  2  L  ( C X  � C X ) d
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?
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qc q loc
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for the orthogonal projection onto U . Observe that ⇣d 2  U     if and only if
⇣ belongs to the orthogonal complement U ?  of U in C X  � C X .  In addition,

P U ?  =  (PU )d.

Let U ✓ C X  and V ✓ C A  be symmetric skew spaces. The quantum
graph homomorphism game U !  V is the quantum non-local game ' U ! V  :
P X X  !  P A A  determined by

> 0 if P  =  0
' U ! V ( P )  = PV if P  � PU

I A A otherwise

Definition 5.2. Let X  and A  be finite sets and U ✓ C X  � C X ,  V ✓ C A  � C A

be symmetric skew subspaces. We say that U is quantum commuting
homomorphic (resp. quantum homomorphic, locally homomorphic) to V ,
and write U !  V (resp. U !  V , U !  V ), if ' U ! V  has a perfect quantum
commuting (resp. quantum, local) tracial strategy.

Given operator anti-systems S  ✓ M X  and T ✓ MA, Stahlke [29] defines
a non-commutative graph homomorphism from S  to T to be a quantum
channel   : M X  !  MA whose family {Mi }m of Kraus operators satisfies
the conditions

Mi S Mj ✓ T , i , j  =  1, . . . , m;

if such   exists, one writes S  !  T . We recall the suitable version of this
notion for twisted operator anti-systems, described in [30].
Definition 5.3. Let X  and A  be finite sets, and S  ✓ L

 
( C X ) d , C X

  
and

T ✓ L  (C A ) d , C A      be twisted operator anti-systems. A  homomorphism from S
into T is a quantum channel

  : M X  !  MA,  (T ) =  
X

M i T M i  ,
i = 1

such that

M j S Mi ✓ T , i , j  =  1, . . . , m.

If S  and T are twisted operator anti-systems, we write S  !  T as in [29] to
denote the existence of a homomorphism from S  to T . Further, if G  and H
are graphs, we write G  !  H  if there exists a homomorphism from G  to H .
The following was shown in [30].

Proposition 5.4. Let X  and A  be finite sets, U ✓ C X  �C X ,  V ✓ C A  �C A

be symmetric skew spaces, and G,  H  be graphs. The following hold:

(i) U !  V if and only if SU !  SV ;
(ii) G  !  H  if and only if UG !  UH .
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Let U : ( C X ) d  !  C X  be the unitary operator given on the standard
basis by UX ed =  ex, x  2  X ,  and define UA : (C A ) d  !  C A  similarly. Then S
✓ L  ( C  )d , C is a twisted operator anti-system if and only if the space
S UX

1  of M X  has the following properties:
• T 2  S UX

1  )  T t 2  S UX
1 ;

• T 2  S U X      )  Tr(T ) =  0.
Indeed, the first property is a direct consequence of the fact that

d 1  (T UX )⇤   d 1 UX
1 ex =      d 1  U⇤ (T ⇤ex) =

hT⇤ex, eyie
y y 2 X

= tx,yey =  T tex,
y 2 X

while the second one follows directly from the definition of a twisted operator
anti-system.

Recall from Section 2 that m denotes the (normalised) maximally en-
tangled vector in C Z  � C Z .  For a symmetric skew space U ✓ C X ,  set

U � mZ  =  {⇠  � mZ  : ⇠ 2  U } ;

after applying the shu✏e map, we view U�m as a symmetric skew subspace
of C X  � C Z      � C X  � C Z  .

Theorem 5.5. Let X  and A  be finite sets and U ✓ C X  �C X ,  V ✓ C A  �C A

be symmetric skew spaces. The following are equivalent:

(i) U !  V;
(ii) U � mZ  !  V for some finite set Z .

Proof. ( i ) ) ( i i )  Let   : M X X  !  MA A  be a tracial quantum QNS correlation
such that

h (PU ), PV ? i  =  0,
that is, such that

h (⇠⇠⇤)�, �i =  h (⇠⇠⇤), (��⇤)di =  0, ⇠ 2  U,� 2  V ? .

By definition of tracial quantum QNS correlation, there exists a finite di-
mensional C⇤-algebra A,  a tracial state �A  on A  and a *-homomorphism ⇡
: C X , A  !  A  such that

 (✏x,x0 � ✏y,y0) =  (�A(⇡(ex,x0,a,a0 ey0,y,b0,b)))a,a0,b,b0 .

Writing ⇠ = x , y 2 X  ↵x,y ex � ey and � = a,b2A �a,bea � eb, we have

 (⇠⇠⇤) = �A(⇡(ex,x0,a,a0 ey0,y,b0,b))↵x,y↵x0,y0✏a,a0 �

✏b,b0. a,a0,b,b0 x,x0,y,y0

Let
Y⇠ : =  

X

↵x0,y0✏x0,y0 , Y� =  
X  

�a0,b0✏a0,b0

x0 ,y0 2X a0,b02A
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and E  =  (⇡(ex ,x 0,a,a0))x,x0,a,a0; then E  is a stochastic A-matrix. Observe that

(35) ✓(⇠ )UX
1 =  

X  
↵x,y✓(ex � ey )UX

1 =  
X  

↵x,y✏y,x =
Y⇠ . x , y 2 X x , y 2 X

We have

0     =      h (⇠⇠⇤)�, �i

= �A(⇡(ex,x0,a,a)⇡(ey0,y,b,b))↵x,y↵x0,y0�a0,b0�a,b
a,a0,b,b0 x,x0,y,y0

=      (Tr ��A ) @@ 
X

1

⇡(ex,x0,a,a0 )↵x0,y0�a0,b0⇡(ey0,y,b0,b)A
x0,y0,a0,b0

0                                                       1  1

⇥@ 
X  

↵x,y�a,b✏x ,y � ✏a,b � 1 A A
A

x,y,a,b

=      (Tr ��A ) E (Y⇠  � Y� � 1 A )E (Y  ⇤ � Y ⇤ � 1A )  .

x,y,a,b

After passing to a quotient, we may assume that A  is faithfully represented
on a Hilbert space H  and �A  is faithful. As E  is positive, we have

E 1/2 (Y⇠  � Y� � 1A )E (Y ⇤ � Y ⇤ � 1A )E 1 / 2  =  0.

It follows that E 1/2 (Y⇠  �Y� �1A )E 1/2  =  0 and hence E (Y  ⇤�Y ⇤�1A )E =  0.
Define a linear map : MA !  M X  � A  by letting

(✏a,b) =  Ea,b : =  (⇡(ex,x0 ,a,b))x,x0;

by Choi’s Theorem, is a unital completely positive map. Let ( ! )  =
m    

 
Mi !M ⇤  be a Kraus representation (here Mi : C A  !  C X  � H ,  i  =

1, . . . , m), and set

Xa,b, i, j  =  
X  

�b0 ,a0✏a,a0M⇤(Y ⇤ � 1A)Mi✏b0,b, a, b 2  A, i , j
2  [m]. a0,b02A

Let  1,2 : C A  � C X  � H  !  C X  � C A  � H  be the flip operator defined on
the elementary tensors by  1

,
2(⇠1 � ⇠2 � ⇠3) =  ⇠2 � ⇠1 � ⇠3, and write

M : C A  � C A  !  C X  � C A  � H  for the operator  1,2(1 � Mi).
We have

Tr(Xa,b, i , j Xa,b, i , j )

= �b0,a0�b00,a00 Tr(✏a,a0M⇤(Y ⇤ � 1A)Mi✏b0,b✏b,b00 M⇤(Y⇠ �
1A)Mj✏a00,a). a0,b0,a00,b00
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Letting ✏a =  (✏a,a0)a02A, considered as a row operator over MA, we have

X  
Tr(Xa,b, i , j Xa,b, i , j )

i , j = 1
⇣ �

=                     �b0,a0�b00,a00 Tr  ✏a,a0Mj (Y ¯ � 1A)Eb0 ,b00 (Y ¯ � 1A)Mj✏a0 0,a
j,a0,b0,a00,b00

=
m 

Tr
⇣
✏a(M 1,3)⇤(Y ⇤ � Y ⇤ � 1A )E (Y ¯  � Y� � 1A)M 1,3✏⇤

�
.

j = 1

Write Ra, j  =  E 1/2 (Y⇠  � Y� � 1A)M 1,3✏⇤ . Then

X
( Tr ��A ) ( R a , j R a , j )

j = 1

=  
m 

Tr
⇣

E 1/2 (Y⇠  � Y� � 1A)M 1,3✏⇤✏a(M 1,3)⇤(Y ⇤ � Y ⇤ �

1A )E 1/2
� 

j = 1

=  (Tr ��A ) E 1/2 (Y ¯ � Y� � 1 A )E (Y ⇤ � Y ⇤ � 1A )E 1 / 2 =  0,

giving Ra, j      =  0, as we assume that the trace is faithful and therefore
i , j = 1  Tr(Xa,b, i , j Xa,b, i , j )  =  0 implying

(36) Xa,b, i, j  =  0, a, b 2  A, i , j  =  1, . . . , m.

We may assume that A  is faithfully represented on C Z  and so that M is an
operator from C A  into C X  �CZ .  Let R j  =  M⇤, j  =  1, . . . , m. For a 2  A  we
have

(U X  � U Z )R i  UA 
1(ea)     =

=

(U X  � U Z )R i  (ed) =  ( U X  � UZ )(R⇤ea )d

(U X  � UZ )(M iea)d =  Miea.

Taking into account (35), we obtain

Rj✓ (⇠  �
m Z )R i

(37)

=      Rj (✓ (⇠ )U  1 � ✓(mZ )U  1 )((UX  � U Z )R i  U
1UA =      M⇤(Y ⇤ � 1)((UX � UZ )Rd U  1UA

=      M⇤(Y ⇤ � 1)MiUA.

Since is unital,
m m

R j R j  = Mj Mj =  I
j = 1                         j = 1

and hence the map !  ! m      R j ! R ⇤  from M X Z  into MA is a quantum
channel. We claim that

(38) Rj✓ (⇠  � m Z )R i  ✓ SV .
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Indeed, fix � 2  V ? .  Since ✓(�)U  1 =  Y ⇤, taking (36) and (37) into account,
we have

�
R

 
✓(⇠ � mZ )Rd, ✓(�)

↵     
=      Tr

⇣
M⇤(Y ⇤ � 1) MiUA✓(�)⇤ )

=      Tr  Mj (Y⇠ � 1)MiY�̄
E

= �b0,a0       Mj (Y⇠ � 1)Mieb0, ea0

a0,b02A

=      hXa,b,i,j eb, eai =  0;

(38) now follows.
( i i ) ) ( i )  By Proposition 5.4,

(39) SU �mZ  !  SV .

Let (R i )m      
 ✓ L ( C X  � C Z , C A )  be a family of Kraus operators of the quan-

tum channel implementing (39). Keeping the notation from the previous
paragraphs and reversing the arguments therein, we see that, if Mi =  R⇤ ,
⇠ 2  U and � 2  V ? ,  then

(40)
X  

�b0,a0       M⇤(Y ⇤ � 1Z )Mieb0, ea0 =  0.
a0,b02A

Thus, Xa,b, i , j  =  0 for all a, b 2  A  and all i , j  =  1, . . . , m.
Letting : MA !  M X  �MZ be the unital completely positive map given by

!  !         Mi ! M and setting Ea,b = (✏a,b), we see that E  =  (Ea,b)a,b is a
stochastic operator matrix acting on C Z .  By [30, Theorem 5.2], there exists a
*-representation ⇡ : C X , A  !  B (C Z )  such that (⇡(ex ,x 0,a,a0 ))x ,x0,a,a0      =  E .  Let
: M X X  !  MA A  be the linear map given by

  ✏x,x0 � ✏y,y0       =  Tr(⇡(ex,x0,a,a0ey0,y,b0,b)) a,a0,b,b0  ;

thus,   is a tracial quantum QNS correlation and, by (40) and the previous
paragraphs,

h (⇠⇠⇤), (��⇤)di =  Tr(E (Y⇠  � Y� � 1 A )E (Y  ⇤ � Y ⇤ � 1Z ))  =  0.

It follows that h (⇠⇠⇤), PV i  =  0 for every ⇠ 2  U, giving h (PU ), PV
i  =  0.

⇤

Remark 5.6. It was shown as part of the proof of Theorem 5.5 that, for
symmetric skew spaces U ✓ C X  � C X  and V ✓ C A  � C A ,  we have that

U !  V if and only if there exist a finite-dimensional algebra A,  a unital
completely positive map        : MA !  M X  � A  with Kraus representation
(T ) = i = 1  MiT Mi , such that

(41) Mj (✓ (U )UX
1 � 1A )Mi ✓ ✓(V )UA 

1, i , j  =  1, . . . , m.

The same arguments allow us to conclude the equivalence ( i ) , ( i i )  in the
following statement.
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Theorem 5.7. Let X  and A  be finite sets and U ✓ C X  �C X ,  V ✓ C A  �C A

be symmetric skew spaces. The following are equivalent:

(i) U !  V;
(ii) there exists a unital completely positive map : MA !  M X  � C X , A

with Kraus representation (T ) = MiT M , for which inclu-
sions (41) hold;

(iii) there exists a von Neumann algebra N  with a faithful normal tracial
state � and a unital completely positive map : MA !  M X  �N with
Kraus representation (T ) = MiT M , for which inclusions
(41) hold.

Proof. The equivalence ( i ) , ( i i )  was pointed out in Remark 5.6. The impli-
cation ( i i i ) ) ( i )  is similar to that of ( i i ) ) ( i )  of Theorem 5.5. For ( i i ) ) ( i i i ) ,
we take N  =  ⇡� (CX,A)00, where ⇡� is the GNS representation of �; if ⇠ is the
cyclic vector of ⇡� then h(·)⇠,⇠i is a faithful normal trace on N . ⇤

Let S  ✓ M X  and T ✓ MA be operator anti-systems. Stalhke writes [29]
S  !  T if there exists a finite set B  and a state ⇤ 2  M +  such that S  � ⇤ !
T ; in this case he says that there exists an entanglement assisted
homomorphism from S  to T .

Corol lary 5.8. Let G,  H  be graphs. Then

UG !  UH      = )  S G  !  S H .

Proof. First observe that S 0 =  ✓(UG)U  1. The statement now follows from
Remark 5.6.                                                                                                                      ⇤

In the next corollary, we partially improve [30, Proposition 10.5] by pro-
viding a lower bound on the relaxed orthogonal rank ⇠q(G).

q
Corol lary 5.9. If G  is a graph then ⇠q (G)  ✓ (G).

Proof. We observe first that

⇠q (G) =  min{|A| : UG !  hmA i? }.

Moreover, ✓ (hmA i? )UA 
1 =  ( C I A ) ? ,  and hence UG !  hmA i?  implies S 0 !

( C I A ) ? .  It follows from [29, Corollary 20] that ⇠q (G)        ✓(G).
⇤

5.2. Quantum colourings of graphs. Let G  be a (finite) simple graph
with vertex set X .  For x, y 2  X ,  we write x  ⇠ y when {x, y }  is an edge
of G, and x  '  y when x  ⇠ y or x  =  y. The classical-to-quantum colouring
game ' A  : P c l

X  !  P A A  is determined by the requirements

> J A if x  =  y
' A (✏ x , x  � ✏y,y) = J ? if x  ⇠ y,

I A A otherwise.
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In this subsection, we apply the previous results to give a description of per-
fect quantum commuting and perfect quantum strategies for the classical-
to-quantum colouring game in terms of quantum channels whose Kraus
operators respect certain containment relations. These relations define a
“pushforward” of the graph G  into MA or, in the terminology of Weaver
[33], into the quantum graph ( S , M )  with S  =  M  =  MA. Namely, for a von
Neumann algebra N , equipped with faithful tracial state �, and a uni-tal
completely positive map : MA !  D X  � N  with Kraus representation

(T ) = i = 1  MiT Mi , we consider the inclusion relations

(42) Mi ( D X  � 1N )Mj ✓ C I A , ,

and

(43) Mi ( S G  � 1N )Mj ?  C I A ,

i , j  2  [m],

i , j  2  [m].

Definition 5.10. Let X  and A  be finite sets and G  be graph with vertex set
X .  A  pair (N ,     ), where N  is a von Neumann algebra and      : MA !  D X  �

N  is a unital completely positive map with Kraus representation (T ) =
m    

 
MiT M⇤, is called a quantum colouring of G  if conditions (42) and

(43) are satisfied.

Let R u  denote an ultrapower of the hyperfinite II1-factor R  by a free
ultrafilter u on N and trRu be its trace.

Theorem 5.11. Let G  be a graph with vertex set X .
(1) The following are equivalent:

(i) the classical-to-quantum colouring game ' A  has a perfect quan-
tum commuting strategy;

(ii) there exists a quantum colouring (N , ) of G,  with N  possessing
a faithful tracial state.

(2) The following are equivalent:
(i) ' A  has a perfect approximately quantum strategy;

(ii) there exist a quantum colouring of the form (Ru , ).
(3) The following are equivalent:

(i) ' A  has a perfect quantum strategy;
(ii) there exists a quantum colouring (N , ) of G,  where N  is finite

dimensional.

Proof. (1) ( i ) ) ( i i )  Let E : D X X  !  MA A  be a CQNS correlation, which is
a perfect quantum commuting strategy for '  . Let �̃ be a trace on BX , A
associated with E via Corollary 3.12, and N  : =  ⇡�̃(BX,A ) , where ⇡�̃ is the
GNS representation corresponding to �̃. If ⇠ is the cyclic vector of ⇡�̃, then
�(T ) : =  hT⇠,⇠i is a faithful trace on N . Let   : M X X  !  MA A  be the
canonical lift of E to a QNS correlation:

 (✏x,x0 � ✏y,y0)
=  =

( x,x0 y,y0�̃(ex,a,bey,b0,a0))a,a0,b,b0

(  x,x0 y,y0�(⇡�̃(ex,a,bey,b0,a0))a,a0,b,b0.
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As (  x,x0⇡�̃(ex,a,a0)x,x0,a,a0 ) is a stochastic operator matrix, there exists a *-
representation ⇡ : C X , A  !  N  such that ⇡(ex,x0,a,a0) =   x,x 0⇡�̃(ex ,a,a0), x, x
2  X ,  a, a 2  A. Therefore   is a tracial QNS correlation with

�
 (PU G ) ), PV ?

↵  
=  0, where V =  hmA i? .

As ✓ (V ? )U  1 =  C I A  and ✓(UG)U  1 =  S 0 , Theorem 5.7 shows that the
unital completely positive map : MA !  D X  � N , given by (✏a,a0)
=  (⇡(ex,x0 ,a,a0 ))x,x0, has a Kraus representation (T ) = i = 1  MiT Mi satisfy-
ing (43). As h (✏x,x � ✏x,x ), (�� )  i  =  0 whenever � 2  V, similar arguments
show that (42) is satisfied.

( i i ) ) ( i )  Let Ea,b = (✏a,b), a, b 2  A. Then E  : =  (Ea,b)a,b is a semi-
classical stochastic operator matrix; thus, there exists a *-representation ⇡ :
C X , A  !  N  such that (⇡(ex ,x 0,a,a0 ))x ,x0,a,a0  =  E .  Let   : M X X  !  MA A  be the
QNS correlation given by

 (✏x,x0 � ✏y,y0) =  (�(⇡(ex,x0,a,a0ey0,y,b0,b)))a,a0,b,b0, x, x0, y, y0 2  X .

As ⇡(ex,x0,a,a0) =  0 whenever x  =  x0, we have that   =       X X .  By
Theorem 5.7, h (PU ), PV i  =  0. It hence su ces to show that the CQNS
correlation  |D is concurrent.

Let � = a,b2A �a,bea �eb be orthogonal to mA ; thus, a 2 A  �a,a =  0. Let
Y� = a0,b02A �a0 ,b0✏a0 ,b0. We have to show that h (✏x,x � ✏x,x ), (��⇤ )d i
=  0. As Mj (✏x,x � 1N )Mi 2  C I ,  there exists  x  2  C  such that

(44) ✏a,a0Mj (✏x,x � 1N )Mi✏b0,b =   a0,b0 x✏a,b,

for all a, a0, b, b0 2  A. As in the proof of Theorem 5.5, let ✏a =  (✏a,a0)a0,
considered as a row operator over MA, and M1,3 : C A �C A  !  C X �C A �H  be the
operator  1

,
2(1�M ), where  1,2 : C A �C X �H  !  C X �C A �H  is the flip operator

defined on the elementary tensors by  1
,
2(⇠1�⇠2�⇠3) =  ⇠2�⇠1�⇠3. Fix a, b

2  A. We have

X X  
�b0 ,a0�b00,a00✏a,a0Mj (✏x,x�1N )Mi✏b0,b✏b,b00Mi (✏x,x�1N

)Mj✏a00,a i , j = 1  a0,b0,a00,b002A

=  
X X  

�b0 ,a0�b00,a00✏a,a0Mj (✏x,x�1N )Eb0 ,b00 (✏x,x�1N

)Mj✏a00,a j = 1  a0,b0,a00,b002A

=  
X
✏a (M 1,3 )⇤ (✏x ,x�Y ⇤�1N )E (✏x,x�Y��1N

)M 1,3✏⇤. j = 1



X
⇤

⇤X

j i

X
j

X
j

! !

m

j j
⇤ ⇤

j a

X
aj j

�

⇣ �

op
op op

X X

G ?
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On the other hand, by (44),

�b0 ,a0�b00,a00✏a,a0Mj (✏x,x � 1N )Mi✏b0,b✏b,b00Mi (✏x,x � 1N

)Mj✏a00,a a0,b0,a00,b002A

= �a0,a0�a00,a00✏a,a0M⇤(✏x,x � 1N )Mi✏a0,a00 M⇤(✏x,x � 1N

)Mj✏a00,a 
a0,a002A

!

= �a0,a0✏a,a0M⇤(✏x,x � 1N )Mi✏a0,a

a0 2A

!

⇤  ⇥             �a0,a0✏a,a0M⇤(✏x,x � 1N

)Mi✏a0,a
a0 2A

=  
X  

�a0,a0 x✏a,a
X  

�a0,a0 x✏a,a      

⇤ 

=
0. a0 2A                                        a0 2A

Hence
X
✏ a  

⇣
M1,3

�⇤  
✏x,x � Y� � 1N 

 
E  (✏x,x � Y� � 1N ) M 1,3✏a =  0;

j = 1

this implies E 1/2 (✏x,x  � Y� � 1N )M 1,3✏⇤ =  0 and therefore

0 = 0 1
m

(Tr ��) @ E 1/2 (✏x,x  � Y� � 1N )M 1,3✏⇤✏a(M 1,3)⇤(✏x,x  � Y� � 1N ) E 1 / 2 A
j = 1

=  (Tr ��) E 1 / 2  (✏x,x � Y� � 1N ) E  
 
✏x,x � Y ⇤ � 1N 

 
E 1 / 2

=  h (✏x,x � ✏x,x ) �, �i

showing that   is concurrent.
(2) ( i i ) ) ( i )  The arguments are similar to those in part (1): we first obtain

a *-representation ⇡ : C X , A  !  R u  by letting (⇡(ex,x0 ,a,a0))x,x0  = (✏a,a0),
and define

 (✏x,x0 � ✏y,y0) =  (trRu (⇡(ex,x0,a,a0ey0,y,b0,b)))a,a0,b,b0 .
We have that � : =  trRu  ⇡ is an amenable trace on C X , A  ([6, Proposition
6.3.5 (1),(2)]). Hence the assignment s� ( x  � y )  : =  �(xy) determines a
state on C X , A  �min C X , A  and if @ : C X , A  !  C X , A  is the *-isomorphism given by
@(ex,x0 ,a,a0) =  ex0,x,a0,a ([30, Theorem 7.7]) then s : =  s�   (id�@) is a state
on C X , A  �min C X , A  such that s(ex,x0,a,a0 �ey,y0,b,b0 ) =  �(ex,x0,a,a0ey0,y,b0,b).
Applying [30, Theorem 6.5], we obtain that   is an approximately quantum
QNS correlation. As   =       X X ,  by [30, Theorem 7.3],  |D is an
approximately quantum CQNS correlation. The above arguments also give
that   is concurrent and satisfies h (PU ), PV i  =  0.

( i ) ) ( i i )  By Corollary 3.7(i’), a perfect approximately quantum CQNS
strategy   is determined by an amenable trace � on BX ,A . Hence there
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⇤

⇤

⇤
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exists a *-homomorphism ⇢ : BX , A  !  R u  such that � =  trRu  ⇢ (see
[15, Proposition 3.2]). The proof is completed similarly to (1)( i))(1)( i i ) .

(3) This part of the statement is similar to (1) and (2), and uses the
representation of quantum strategies established in Theorem 3.5.                 ⇤

In the next two propositions, we clarify some useful properties of quantum
colourings. The first one is an automatic homomorphism result.

Proposition 5.12. Let X  and A  be finite sets, N  be a von Neumann algebra
and : MA !  D X  � N  be a unital completely positive map with Kraus
representation (T ) = i = 1  MiT Mi . The following are equivalent:

(i) is a *-homomorphism;
(ii) condition (42) holds.

Proof. ( i ) ) ( i i )  
F

or each a, b 2  A, we write (✏a,b) =  
P

✏x,x �rx,a,b.

For 
a =  b in A  and 1 � i , j  � m, set

(45) Xa,b, i, j  =  ✏a,aMi (✏x,x � 1N )Mj✏b,b 2  MA.

We have
m m

Xa,b,i , j Xa,b,i , j  = ✏a,aM⇤(✏x,x � 1N )Mj✏b,bM⇤(✏x,x � 1N )Mi✏a,a
j = 1 j = 1

1

=  ✏a,aMi (✏x,x � 1N ) @
X

 
✏y,y � ry,b,b A (✏x,x � 1N )Mi✏a,a

y 2 X

=  ✏a,aMi (✏x,x � rx,b,b)Mi✏a,a

(46)
⇣ ⇣ ��⇣ ⇣ ��

=  ✏a,aMi       ✏x,x � rx
,b,b            

 ✏a,aMi       ex,x � rx
,b,b

,

where we have used the fact that ex,b,b is positive. Let

(47) Ya,b,i =  ✏a,aM⇤     ✏x,x � rx
,b,b     ,x  2  X, a, b 2  A, i  =  1, . . . , m.

By (46), j = 1  Xa,b,i , j Xa,b,i , j  =  Ya,b,iYa,b,i. Furthermore,
m m ⇣ � ⇣ �

Ya,b,iYa,b,i =            ✏x,x � rx
,b,b     Mi✏a,aMi      

 ✏x,x �
rx,b,b

i = 1 i = 1

⇣ � ⇣ �
=  ✏x,x � rx,b,b                    

 ✏y,y � ry,a,a           ✏x,x �
rx,b,b

(48) =  ✏x,x � 
⇣

r1/2
brx,a,a

�⇣
r1/2

brx,a,a

�⇤ 
.

Since is a homomorphism, r1/2
br1/2

a =  rx,b,brx,a,a =  0 if a =  b. By (48), it
follows that Ya,b,i =  0 for all i  and all a =  b. Using (46), we have Xa,b, i , j  =  0
for all i , j  and a =  b. By (45), this forces Mi (✏x,x � 1N )Mj 2  D A .
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Next, we show that Mi (✏x,x � 1N )Mj lies in C I A .  We set

 a,x,i,j =  Tr (✏a,aMi (✏x,x � 1N )Mj✏a,a) ;

then M⇤(✏x,x � 1N )Mj =  a,x,i,j✏a,a. To  establish (iii), it su ces
to show that  a,x,i,j =   b,x,i,j for all a, b 2  A.

Set

(49) Ca,b,x,i,j =  ✏a,aMi (✏x,x � 1N )Mj✏a,a ✏a,bMi (✏x,x � 1N )Mj✏b,a

and observe that
Ca,b,x,i,j =  (  a,x,i,j  b,x,i,j )✏a,a.

We note that ✏a,aM⇤(✏x,x �1N )Mj✏b,a =  ✏a,bM⇤(✏x,x �1N )Mj✏a,a =
0, since Mi (✏x,x � 1N )Mj 2  D A .  Therefore,

(50) Ca,b,x,i,j =  (✏a,a ✏a,b)Mi (✏x,x � 1N )Mj (✏a,a +  ✏b,a).

Since
(✏a,a +  ✏b,a)(✏a,a +  ✏a,b) =  ✏a,a +  ✏a,b +  ✏b,a +  ✏b,b,

by summing over j  and setting dx ,a,b =  rx,a,a +  rx,a,b +  rx,b,a +  rx,b,b   0, we
obtain

(51)
X

Ca, b , x , i , j Ca , b , x , i , j  =  (✏a,a ✏a,b)Mi (✏x,x � dx,a,b))Mi(✏a,a

✏b,a). j = 1

Let gx ,a,b 2  N  satisfy gx ,a,bgx,a,b =  dx,a,b and define

(52)

By (51),

Da,b,x,i =  (✏a,a ✏a,b)Mi (✏x,x � gx,a,b).

X
Ca, b , x , i , j Ca , b , x , i , j  =  Da,b,x,iDa,b,x,i .

j = 1

Set fx,a,b =  rx,a,a rx,a,b rx,b,a +  rx,b,b and note that fx,a,b   0 and

(53)
X

Da , b , x , i Da , b , x , i
i = 1

=  (✏x,x � gx,a,b)Mi(✏a,a ✏b,a)(✏a,a ✏a,b)M⇤(✏x,x � gx,a,b)

=  ✏x,x � gx,a,b(rx,a,a rx,a,b rx,b,a +  rx,b,b)gx,a,b

=  ✏x,x � (gx,a,bfx,a,bgx,a,b).

Since is a *-homomorphism, the element gx ,a,b =  rx,a,a + rx,a,b  satisfies the
relation gx,a,bgx ,a,b =  dx,a,b. A  calculation then shows that gx,a,bfx,a,bgx,a,b =
0. By (53), Da,b,x,i =  0, and by (51), Ca,b,x,i,j =  0. This forces  x,a,i,j =
 x,b,i,j for all a =  b. Hence, M (✏x,x � 1N )Mj 2  C I A .

( i i ) ) ( i )  The assumption implies that M (✏x,x�1N )Mj 2  D A ,  so equations
(45)–(48) show that r1/2

ar1/2
b =  0, and hence rx,a,arx,b,b =  0, whenever a

=  b. Since each er,a,a   0 and rx,a,a =  1, we have that rx,a,a =  rx,a,a

for each x  2  X  and a 2  A. As      (✏a,a) = x 2 X  ✏x,x � rx,a,a, the diagonal



x,a,b x,a,b

⇤ ⇤
x,a,b x,a,b

x,a,b
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P m
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⇤
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⇤
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matrix unit ✏a,a belongs to the multiplicative domain of for each a. In
particular,

(✏a,a) (✏b,c) =   a,b     (✏a,c) =   a,b 
X  

✏x,x �
rx,a,c x 2 X

for all b, c 2  A.
Now, choose gx ,a,b with g⇤ ga,x,b =  dx,a,b, and hx,a,b with h⇤ hx,a,b =

fx,a,b. Our assumption on implies that Ca,b,x,i,j =  0 for all a =  b, x  2  X  and
all i  and j .  By (49)–(53), g fx,a,bgx,a,b =  0, yielding gx,a,bh         =  0.
Multiplying on the left by g⇤        

 and on the right by hx,a,b, we get dx,a,bfx,a,b =  0.
Using the fact that ✏a,a and ✏b,b are in the multiplicative domain of , a
calculation shows that

(54) 0 =  dx,a,bfx,a,b =  rx,a,a +  rx,b,b rx,a,brx,b,a rx,b,arx,b,a.

Multiplying equation (54) on both sides by rx,a,a, we get 0 =  rx,a,a
rx,a,brx,b,a. Therefore, rx,a,brx,b,a =  rx,a,a. Similarly, rx,b,arx,a,b =  rx,b,b,
so that ✏a,b belongs to the multiplicative domain of . Since a, b 2  A  were
arbitrary with a =  b, must be a homomorphism, completing the proof. ⇤

Remark. We note that an alternative proof of the implications ( i i i ) ) ( i i )  in
Theorem 5.11 can be given, using Proposition 5.12. We have decided to
present the given argument instead as it shows that, it order to conclude that
the game ' A  has a perfect strategy (of the corresponding class) one does
not need to necessarily resort to the fact that has to be a homomorphism.

The next proposition shows the combinatorial meaning of (43).

Proposition 5.13. Let X  and A  be finite sets, G  be a graph with vertex
set X ,  and N  be a von Neumann algebra. Let ⇡ : MA !  D X  � N  be a
unital *-homomorphism with Kraus representation ⇡(T ) = MiT M
and write ⇡(✏a,b) = ✏x,x � rx,a,b , where rx,a,b 2  N ,  x  2  X ,  a, b 2
A.  The following are equivalent:

(i) condition (43) holds;
(ii) if v ⇠ w in G,  then a,b2A rv,a,brw,b,a =  0.

Proof. Let v ⇠ w in G, and define

Rc,i , j  =  
X
✏ c , b M i  (✏v,w � 1N )Mj✏b,c, c 2  A, i , j  2

[m]. b 2 A

Set

Tc,i =  
X  

✏c,aFi(✏v,v �

ew,a,c). 

a 2 A
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⇤
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We have

X  X  
Rc, i , j Rc, i , j

c 2 A  i , j = 1

=  
X X  

✏c,aMi (✏v,w � 1N )Mj✏a,c✏c,bMj (✏w,v � 1N

)Mi✏b,c a,b,c2A i , j = 1

=  
X X  

✏c,aMi (✏v,w � 1N )Mj✏a,bMj (✏w,v � 1N

)Mi✏b,c a,b,c2A i , j = 1

=  
X  X

✏ c , a M i  (✏v,w � 1N )⇡(✏a,b)(✏w,v � 1N

)Mi✏b,c a,b,c2A i = 1

=  
X  X

✏ c , a M i  (✏v,v �

rw,a,b)Mi✏b,c a,b,c2A i = 1

=  
X  X

✏ c , a M i  (✏v,v � rw,a,c)(✏v,v �

rw,c,b)Mi✏b,c a,b,c2A i = 1

(55) =  
X X

T c , i T c , i ,
c 2 A  i = 1

On the other hand,

X X
T c , i T c , i  =  

X  X
(✏ v , v  � rw,c,a)Mi✏a,c✏c,bMi (✏v,v �

rw,b,c) c 2 A  i = 1 a,b,c2A i = 1

=  
X  X

(✏ v , v  � rw,c,a)Mi✏a,bMi (✏v,v �
rw,b,c) a,b,c2A i = 1

= (✏v,v � rw,c,a)(✏v,v � rv,a,b)(✏v,v � rw,b,c)
a,b,c2A

(56) =  ✏v,v

�

X  
rw,c,arv,a,brw,b,c.

a,b,c2A

Since ⇡ is a *-homomorphism,
0 1 0 1

(57)
X  

rw,c,arv,a,brw,b,c =  @ 
X  

rw,c,arv,a,cA @ 
X  

rw,c,arv,a,cA  .
a,b,c2A a,c2A a,c2A

Considering equations (55)-(57), it follows that condition (i) is equivalent to
having Rc, i , j  =  0 for all c 2  A  and all i , j  2  [m]. The latter condition is in
turn equivalent to the condition Tr(M (✏v,w �1N )Mj ) =  0 for all i , j  2  [m].
The proof is complete. ⇤
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5.3. Algebraic  versions of the orthogonal rank.  Recall that the or-
thogonal rank ⇠ (G) of G  is the smallest k 2  N for which there exists an
orthogonal representation of G  in Ck , that is, a collection (⇠ x ) x 2 X  of unit
vectors in C  such that

x  ⇠ y = )  h⇠x,⇠yi =  0.
In this subsection, we discuss algebraic and C*-algebraic versions of the
parameter ⇠ (G). To  place this into context, we define the relaxed classical-
to-quantum colouring game as the game A  : P cl !  P A A  determined by

the requirements
( J if x  ⇠ y,

G       x ,x y,y I A A otherwise.

Let x  2  {loc, q, qa, qc}. We consider the following two parameters:

⇠x (G) =  min{|A| : there exists a perfect tracial x-strategy for G } ,

which we call the relaxed orthogonal x-rank of G, and

⇠x (G) =  min{|A| : there exists a perfect x-strategy for ' G } ,
which we call the orthogonal x-rank of G  (we set ⇠ (G)  =  1  if there is no
perfect strategy for ' A  for any A). These parameters were introduced in
[30, Subsection 10.1] as quantum versions of the orthogonal rank. We note
the following:

(i) Since ' A  is more restrictive than A , we have that ⇠x (G) � ⇠0
(G); (ii) By [30, Proposition 10.3], we have ⇠ lo c (G) =  ⇠ (G). On the
other

hand, if |A| >  1 then ⇠ (G)  =  1 ;
(iii) By [30, Proposition 10.5], ⇠q (Kd2 ) =  ⇠qc (Kd2 ) =  d, and

hence ⇠0
 (G)  � [ |X|] +  1. By Corollary 5.9, ⇠q (Kd 2 ) =  d.

Taking into account Remark 3.11, we see that the ideal I ( ' A )  of B X , A  is
given by * 8 9 +

I ( ' A )  = ex,a,bey,b,a : x  ⇠ y ,
a,b2A

that is, B ( ' A )  is the universal *-algebra generated by matrix unit systems
(ex,a,a0)a,a0 2A, x  2  X ,  subject to the relations a,b2A ex,a,bey,b,a =  0 when-
ever x  ⇠ y. Similarly, B ( ' A )  is the universal C*-algebra generated by such
matrix unit systems, subject to these relations.

Corollary 3.12 implies the following characterisations:

Corol lary 5.14. Let G  be a graph with vertex set X .  Then
(i) The quantum commuting colourings of G  correspond to traces of

B ( ' G ) .  In particular,

⇠qc(G) =  min{|A| : B ( ' G )  possesses a tracial

state}, and
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(ii) The quantum colourings of G  correspond to finite dimensional traces
of B ( ' G ) .  In particular,

⇠q (G) =  min{|A| : B ( ' G )  possesses a finite dim. *-representation}.

Proof. Suppose that � is a tracial state on C X , A  that annihilates the gener-
ators Ax,y = a,b2A ex,a,bey,b,a, x  ⇠ y, of I ( '

G
) .  Note that

Ax,y Ax,y =  
X

ey,a,bex,b,aex,c,dey,d,c =  
X  

ey,c,bex,b,dey,d,c;
a,b,c,d2A                                                            b,c,d2A

it follows that
0 1

�(Ax,y Ax,y ) =  |A|� @ 
X  

ex,b,dey,d,bA  =
0.

b,d2A

Combining this with the Cauchy-Schwartz inequality we obtain the state-
ments.                                                                                                                                 ⇤

Definition 5.15. (i) The algebraic orthogonal rank ⇠alg (G) is the
small-est cardinality of a set A  for which B ( ' A )  =  {0};  if such A
does not exist, set ⇠alg (G) =  1 ;

(ii) The C*-algebraic orthogonal rank ⇠ ⇤ (G) is the smallest cardinality
of a set A  for which B ( ' A )  =  {0};  if such A  does not exist, set
⇠C ⇤ (G) =  1 .

Proposition 5.16. Let G  be a graph with vertex set X .  Then ⇠C ⇤ (G)

✓ (G) . Moreover, ⇠C ⇤ (Kd 2 )  =  d.

Proof. If ⇠ ⇤ (G) =  1  then the inequality is trivial; assume hence that
B ( ' A )  =  {0}.  Since B ( ' A )  is separable, it possesses a faithful state s. Let ⇡
be the corresponding GNS representation and ⇠ the corresponding cyclic
vector. Set Ex,a,b =  ⇡(ex,a,b) and ⇠x ,a,b =  Ex,a,b⇠ , x  2  X ,  a, b 2  A. The
proof of the inequality is now concluded in the same way as the proof of [30,
Proposition 10.5].

For the equality, realise A  =  Z  =  {0, 1, . . . , d  1}  and let X  =  A⇥A. Let
⇣ be a primitive |A|-th root of unity and, for x  =  (a0, b0) and y =  (a00,b00) 2  X ,
set

Ex,z ,z 0  =  ⇣ (z0 z)b0
ez  a0e⇤0 a0 2  MA, x  =  (a0, b0) 2  X, z, z0 2  A.

For x  =  (a0, b0) and y =  (a00,b00) with x  =  y, we have
X  

Ex,z ,z 0Ey,z 0 ,z =
X  

⇣ (z0 z)b0
⇣ (z  z0)b00

(ez a0e⇤0 a0 )(ez0 a00e⇤

a00) z ,z 0 2A                                                 z ,z 0 2A

=  z0 a0,z0 a00 z  a0,z a00⇣(z0 z)(b0  b00)I =  0.
z ,z 0 2A



z z

z

K 2

2
P

w =1

K 4

⇤
P 2

2

4

4 4

4

⇤ ⇤ ⇤
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In addition,

Ex,z ,z0Ex,z0,z 00 =      ⇣ (z0 z)b0
⇣ (z00 z0)

b
0
(ez a0e⇤0 a0 )(ez0 a0e⇤00

a0 ) =      ⇣ (z00 z)b0
ez a0e⇤00 a0;

thus, B ( ' A       )  is non-trivial. ⇤
d

As the next proposition shows, the algebraic orthogonal rank can be
strictly smaller than the C*-algebraic one.

Proposition 5.17. ⇠alg (Kd2 ) =  2 for all d   2.

Proof. We first show that ⇠alg (Kd2 ) � 2. The case of d =  2 follows from
Proposition 5.16, so we assume that d   3. By Proposition 5.16, the algebra
of the (classical) 4-colouring game for K d 2  is non-zero. Hence, there are self-
adjoint idempotents pv,w in a non-zero, unital *-algebra A,  for 1 � v � d
and 1 � w � 4, such that 4 pv,w =  1 for all v, pv,wpv,z =  0 if w =  z,
and

(58) pu,wpv,w =  0, u =  v.

By Proposition 5.16, the algebra B ( ' A  )  is non-zero when |A| =  2. Hence,
there are elements ex,a,b in a unital ⇤-algebra B, for 1 � x  � 4 and 1 � a, b � 2,
such that ex,a,bex ,c,d =   b,cex,a,d, ex,a,b =  ex,b,a, a=1  ex,a,a =  1 and

(59)  
X  

ex,a,bey,b,a =  0, x  =  y.
a,b=1

For 1 � v � d2 and 1 � a, b � 2, define

fv,a,b =  
X  

pv,w � ew,a,b 2  A  � B.
w =1

We will show that the elements fv,a,b satisfy the requirements of the gen-
erators for the classical-to-quantum colouring game for K d 2  with |A| =  2.
Observe that

fv,a,bfv,c,d =  
X  

pv,wpv,z � ew,a,bez,c,d =  
X  

pv,w � ew,a,bew,c,d
w,z =1 w =1

=   b,c 
X  

pv,w � ew,a,d =   b,cfv,a,d.
w =1

Since pv,w =  pv,w and ew,a,b =  ew,b,a, we have fv,a,b =  fv,b,a. In addition,

X
f v , a , a  =  

X  X  
pv,w � ew,a,a =  

X  
pv,w � 1 =  1 � 1.

a=1 a=1  w =1 w =1



2 2 4

4

K 2

A A
d dP

a 2 A
⇤
v,a,a

K

´ ´

S Y N C H R O N I C I T Y  F O R  Q U A N T U M  N O N - L O C A L  G A M E S 47

Lastly, using (58) and (59), assuming that u =  v, we have

X  
f

u,a,b

f

v,b,a =  
X  X  

pu,wpv,z � ew,a,bez,b,a
a,b=1 a,b=1 w,z =1

=  
X  

pu,wpv,w � 1 =  0.
w =1

Thus, there is a unital *-homomorphism from B ( ' A       )  to A�B with |A| =  2,
so ⇠alg (Kd2 ) � 2.

d

It remains to show that ⇠alg (Kd2 )   2. To  this end, we show that
B ( ' K  2 

)  =  { 0 }  if |A| =  1. When |A| =  1, the relations defining B ( ' K  2 
)  re-

duce to having generators qv,a,a, a 2  A, 1 � v � d2, such that qv,a,a =
1, q =  qv,a,a and qv,a,aqw,a,a =  0 for v =  w. Since |A| =  1, the first
relation implies that qv,a,a =  1 for all v, a. Then since n   2, we may choose

1 � v, w � d2 with v =  w. Since we must have qv,a,aqw,a,a =  0, it follows
that 1 =  12 =  0 in B ( ' A

d 2  
). Hence, ⇠alg (Kd2 )   2.

⇤
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