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Abstract. We introduce concurrent quantum non-local games, quan-
tum output mirror games and concurrent classical-to-quantum non-local
games, as quantum versions of synchronous non-local games, and pro-
vide tracial characterisations of their perfect strategies belonging to var-
ious correlation classes. We define *-algebras and C*-algebras of con-
current classical-to-quantum and concurrent quantum non-local games,
and algebraic versions of the orthogonal rank of a graph. We show that
guantum homomorphisms of quantum graphs can be viewed as entangle-
ment assisted classical homomorphisms of the graphs, and give descrip-
tions of the perfect quantum commuting and the perfect approximately
quantum strategies for the quantum graph homomorphism game. We
specialise the latter results to the case where the inputs of the game are
based on a classical graph.
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1. Introduction

Over the past decade, the theory of non-local games has undergone a
flurry of development and is now a fundamental branch of modern quan-
tum information theory, with deep applications to many areas of mathe-
matics, physics, and computer science, including operator algebras, non-
commutative geometry, quantum non-locality, entanglement, and quantum
complexity theory. Mathematically, a (two-player) non-local game con-
sists of a tuple G = (X,Y,A,B, ), where X, Y, A, B are finite sets, and

: X =Y A B | {0,1} is a function. The game is played coop-
eratively by two spatially separated non-communicating players, Alice and
Bob, against a referee. During each round of the game, the referee samples a
pair of “questions” (x,y) 2 X - Y, and sends question x to Alice, and
quesiton y to Bob. Alice is then required to supply an “answer” a 2 A, and
Bob — an answer b 2 B, to the referee. Alice and Bob win the round of the
game if and only if the rule function evaluates to 1 on this question-answer
combination, that is, if the condition (x,y, a,b) = 1 is satisfied.

The fact that the players Alice and Bob are not allowed to communicate
during play makes it di cult to win each round of a non-local game with
high probability. On the other hand, it is precisely this nature of non-local
games that makes them interesting as both theoretical and practical tools in
qguantum information. The idea here is that, in certain scenarios, Alice and
Bob can utilise the phenomenon of quantum entanglement to help correlate
their answers in a much stronger way than what the resources of classical
physics allow.

A prototypical example of a non-local game is the graph homomorphism
game: Given a pair of finite simple graphs G and H with vertex sets V (G), V
(H) and edge sets E(G), E(H), respectively, the (G, H)-homomorphism
game is the non-local game G with X = Y = V(G), A= B = V(H) and

(x,y,a,b) = 0if either (i) x = yanda= bor(ii) (x,y) 2 E(G) and (a,b) Z
E(H). Clearly the graph homomorphism game captures, in the operational
language of non-local games, the notion of a graph homomorphism G ! H:
Any winning strategy for this game would serve to convince an observer that
there exists such a graph homomorphism G ! H.

Graph homomorphism games form an interesting class of non-local games
for several reasons. First, they give rise to quantum analogues of graph
parameters, including quantum chromatic numbers and quantum indepen-
dence numbers [18, 24]. These parameters can be genuinely diderent than
the corresponding classical versions, thus providing new manifestations of
the fundamental Bell Theorem. Second, they provide some of the simplest
examples of pseudo-telepathy games — ones which can be perfectly won only
with the help of quantum entanglement as a resource [18, 11, 24]. Third,
and perhaps most importantly, graph homomorphism games belong to the
particularly important class of synchronous non-local games introduced in
[24] (see also [12]). Recall that a non-local game G = (X,Y,A,B, ) is
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called sychronous if X = Y, A = B, and (x,x,a,b)= 0forallx 2 X and
a= b2 A. This means that in order for Alice and Bob to win a round of G,
they must “sychronise” their answers whenever they both receive the same
question from the referee. This seemingly innocuous constraint on a game G
turns out to have very interesting quantum information theoretic and op-
erator algebraic consequences. For example, the problem of finding perfect
guantum strategies for a synchronous game G amounts to finding tracial
states on a certain game «—-algebra A(G) associated to G [12]. The algebras
A(G) play the role of a non-commutative analogue of the algebras of coor-
dinate functions on spaces of perfect deterministic (classical) strategies for G,
and are therefore of significant interest from several perspectives in non-
commutative geometry, quantum groups [28, 4], and von Neumann algebra
theory [13]. It follows from the breakthrough work [13] that there exists a
synchronous non-local game G whose game «—-algebra A(G) admits a tracial
state @ for which the generated von Neumann algebra M = 15(A(G))%° fails to
embed into an ultraproduct of the hyperfinite Il;-factor — yielding a(n al-beit
non-constructive) counter-example to the Connes Embedding Problem in
operator algebras and to the equivalent [14] strong Tsirelson Problem in
guantum physics.

The purpose of the present paper is to introduce and study generali-
sations of synchronous non-local games within the framework of quantum
non-local games — non-local games where the questions and answers are al-
lowed to be quantum states, or possibly mixtures of classical and quantum
states. In this paper, we use the language of quantum no-signalling (QNS)
correlations and quantum non-local games recently introduced by two of
the present authors [30]. Classically, in the course of a non-local game
G = (X,Y,A,B, ), Alice and Bob’s behaviour is described by a familyp =
(p(a, blx, ¥))(a,b,x,y)2a-B-x—y Of conditional probability distributions,
which can, in a canonical way, be viewed as a noisy information channel N
:X =Y ! A - B with well-defined marginal channels. In the quantum
setting, one replaces the classical state spaces X, Y, A, B by their quantum
analogues (i.e. the Hilbert spaces C!XI, CIY |, etc.), and the classical channel N
:X =Y ! A -1B byaquantum channel : My BMy ! Ma R Mg, where,
for any finite set Z, we have let Mz = B(C 1z|) be the matrix al-
gebra of linear maps on Cl!Zl. In this framework, the rule function can be
generalized by replacing it with a zero-preserving, join-preserving map-ping
" from the projection lattice on Pxy in My B My to the projection lattice
Pag in Mpa B Mg. A winning strategy for a quantum non-local game '
:Pxy ! Pag is then given by a QNS correlation  satisfying the trace-
orthogonality relation

h (P),"(P)2i =0, P2 Pxy;

the latter condition constrains the supports of the output states of accord-
ing to the supports of its input states (see Section 3.1 for further motivation
and details).
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We note that non-local games with quantum inputs and/or outputs have
been previously studied in [7] and [27]. The strategies used in the latter
papers are the elements from the quantum QNS correlation class. Since
our main interest lies in the characterisation of the perfect strategies of a
game and their applications, we have adopted the present approach, where
we only specify the rules of the non-local game, without fixing a probability
distribution on the questions (or a quantum version thereof).

One of our main achievements in the present work is the introduction of
guantum analogues of synchronous non-local games (called herein concur-
rent quantum games), as well as classical input-quantum output versions of
the mirror games introduced in [17]. Classically, synchronous games form a
special class of mirror games, and both of these classes of games have the
remarkable property that “Alice’s quantum behaviour completely de-
termine Bob’s quantum behaviour” when considering perfect strategies for
the games; moreover, such perfect strategies can always be described in
terms of correlations coming from tracial states on a particular game al-
gebra. We show that such a paradigm persists in the quantum case by
associating *-algebras and C*-algebras to concurrent quantum and to con-
current classical-to-quantum games. Our main results in this direction (cf.
Theorem 3.2, Corollary 3.7, Theorem 4.1, Corollary 4.4) provide an oper-
ational interpretation of the tracial QNS correlations introduced in [30] in
terms of perfect strategies of concurrent and quantum mirror games, and
their associated game algebras.

One of our long-term motivations for the present work is to develop
tools that may eventually be useful for gaining a better understanding of
the work [13], which, as mentioned above, implicitly constructs a game G,
whose game algebra is a witness to the failure of the Connes Embedding
Problem. At present, the game constructed in [13] is not well understood,
and involves very large input/output sets. There is some hope that quan-
tum non-local games may provide additional flexibility in the construction of
game algebras with pathological operator algebraic properties. A par-
ticularly interesting and tractable source of examples in this more general
framework are the quantum graph homomorphism games. Quantum graphs
have achieved a lot of attention in recent years, as objects that arise in a
variety of areas (e.g. zero-error quantum information theory, quantum error
correction, quantum groups, quantum teleportation schemes, and subfactor
theory) [3, 4, 21, 29, 33]. In Section 5, we study the quantum graph homo-
morphism game in detail, extending previous work of the authors [5, 30] in
the classical-quantum hybrid setting, and also making connections with the
work of Stahlke [29] and the algebraic work of Musto-Reutter-Verdon [21] on
quantum graph homomorphisms.

The paper is organised as follows. Section 2 introduces some necessary
notation and background that will be used throughout the paper. Section 3
recalls the notions related to QNS correlations and their various subclasses
(quantum commuting, approximately quantum, quantum, local), examines
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in detail the case of classical to quantum non-local games, introducing the
aforementioned semi-quantised mirror games and concurrent games, and
studies them as operational realisations of tracial QNS correlations. In Sec-
tion 4, we consider the fully quantum concurrent games, proving tracial
characterisations of perfect strategies of these games. Finally, in Section 5,
we focus on the quantum graph homomorphism game, and describe connec-
tions with the prior work of Stahlke [29] on entanglement assisted quantum
graph homomorphisms, as well as with our prior works [5, 30]. We show
that the perfect quantum strategies of the quantum graph homomorphism
game can, in a rigorous sense, be thought of as entanglement assisted per-
fect classical strategies for this game, and extract characterisations of the
corresponding quantum commuting and approximately quantum strategies
in terms of natural inclusion relations relating the two quantum graphs.
Our results are further specialised in the case where the inputs are based on
a classical graph, leading to separation results on the algebraic and C*-
algebraic versions of the orthogonal rank of a graph (cf. Propositions 5.16
and 5.17).

Acknowledgements. It is our pleasure to thank Marius Junge, Carlos
Palazuelos and David Pérez-Garcia for fruitful discussions on the topic of
this paper. M.B. was partially supported by NSF grant DMS-2000331. S.H.
was partially supported by an NSERC Postdoctoral Fellowship. |.T. was
partially supported by the Simons Foundation (grant number 708084).

Note on related work. After the first draft of this paper was completed,
we learnt from Piotr Soltan that characterisations of concurrent correlations
from the quantum commuting class, closely related to the ones described in
Subsection 4.1, were independently obtained by Bochniak-Kasprzak-Soltan
in the recently posted preprint [2]; more specifically, [2, Theorem 6.6] gen-
eralises the first statement within Theorem 4.1 in the present paper.

2. Preliminary notions and results

For a finite set X, let Mx be the algebra of all complex matrices indexed
by X - X; we identify M, with the algebra of all linear transformations on
the Hilbert space CX := ,,xC. If T 2 Ma, we write Tt for the transpose
matrix, and set T = (T* . We let Dx be the subalgebra of My of all
diagonal matrices, and x : My ! Dyx be the conditional expectation. We
write Myxy = My BEMy, Pxy for the projection lattice of Myy, and P dor
the projection lattice of Dxy . We let «-B be the rank one operator givenxgy
«B (&) = hi,Bie-, and (ex)x2x be the canonical orthonormal basis of C x
For a Hilbert space H and vectors «-,@ 2 H, we write <- ? [ if he,Bi = 0.
Let HY be the dual (Banach) spaceof H andd:H ! HY be the map, given
by d(«)(B) = hB, «-i; we write «-d4 = d(¢-). Note that ( ¢« )9 = «-d,
and that, if T 2 L(H), then the dual operator Td : H4 | Hd satisfies the
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relation
(1) Tded = (T)4, T 2 L(H).

Let ! 2 My. Writing f| for the functional on My given by fi(-») =
Tr(->F ), we have that the map ! | f, is a complete order isomorphism
from My onto the dual operator system Mg (see e.g. [26, Theorem 6.2]).
On the other hand, the map !4 | It js a *-ijsomorphism from L (CX)d
onto Myx. The composition of the@e maps, !9 | f¢, is thus a complete

order isomorphism from L CX 4" onto M)‘(j. In the sequel, we identify
these two spaces; note that, via this identification,

(2) h->,19i = h-s, 1% = Tr(=>1),->, 12 M.

If P 2 My is a projection, we write P, for the projection in Mg on the

annihilator in C* 9 of the range of P.
Write =, 0 = exg'&o for the matrix unit in My, corresponding to the

pair {x, x ) of indices. Set

1 X

Jx = — =, X0 '-'x,xoi

l | x,x02X
P : : : o
ifmy = 19|—T| «2x ex@ey is the maximally entangled unit vector in C
CX, thenJx = my m'; is its corresponding rank one projection. Set also

X
19 = - x

.-'X,XI x2X

and note that xx (Jx) = |—;|J§'. Heuristically, J§ is the (normalised) part

of J x that can be seen by a classical observer.

Recall [30] that a quantum non-local game is a join-preserving map '
Pxy ! Pag with '(0) = 0, while a classical-to-quantum (cq) non-local
game is a join-preserving map ' : P;lY I Pap with '(0) = 0. Similarly,
a classical non-local game is a join-preserving and zero-preserving map '
pel 1t pPel.

Recall aA]so that a non-local game on the quadruple (X, Y, A, B) is a func-
tion :X Y A 2B ! {0,1}. In [30], we associated to such the

classical non-local galme ' iPYy I P given by
X ' X

I =X, X '-'y,y = {=a Ja D=y 9(x,y)2Bs.t. (x,y,a,b)=
1}, X,y28

after recalling that projections in Pg('Y correspond to subsets BV X 1Y,

A non-local game (X, Y, A, B, ) is called

e amirror game [17] if there exist functionsf : X ! Y andg:Y ! X
such that for every x 2 X (resp. y 2 Y) the set

{(a,b) 2 A =B : (x,f(x),a,b)= 1}
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(resp.
{(a,b) 2 A =B : (gly)y,ab)=1})
is the graph of a bijection, and
¢ a synchronous game [24] (see also [12]) if X = Y, A= B and

a,b2 A,a=b =) (x,x,a,b)=0.

Mirror games include the subclass of unique games (that is, games for which
theset {(a,b) 2 A=B : (x,y,a,b)= 1} is the graph of a bijection for every
(x,y) 2 X =Y [31]); in particular, they form a class, strictly larger than
that of synchronous games.

Set B = A and recall the standard (linear) identification of matrices in
Ma with vectors in CA B CB, which associates to the matrix unit ==, the
vector e; B ey, (see e.g. [32, Section 1.1.2]). Write {T 2 CA B CB for the

vector corresponding to T 2 My and set i1 = v:T ; we have that §;, = ma.

Sl
We note the relations [32, Section 1.1.1]
(3) (RES)iT = igrst, R,S, T 2 Ma.
P
If ¢« : Al B is a bijection, let Po = a2A ™a,a B *™a(a) a(a);

clearly,Pa 2 P,p.

Remark 2.1. A non-local game s
(i) synchronous if and only if ' (J‘):(') JCL;
(ii) mirror if and only if there exist functionsf : X | Y, g:Y | X
and bijections ¢y, y:A! B, x2 X, y2Y, such that

=xx B*™t(x),f(x) = Po,and’ =g o) By, =P y 1 X 2 X,y
2 Y. Proof. (i) If is synchronous then, clearly,

b (e B ) BAC forall x 2 X;
taking the span over all x, we get ' (J C)'() J°'A Conversely, the condition'
(Je')y @I implies in particular ' (= , Be=, ,) @), which is equivalent to
(x, x,7a, b) = 0 whenever a = b. Claim (ii) is equally straightforward. =

Remark 2.1 motivates the following versions of mirror and synchronous
games, where the inputs are still classical, while the outputs are allowed to be
guantum. We assume that |A| = |B| but continue to use di<erent symbols to
denote the sets A and B for clarity. If | 2 Mp, letL, : Mag ! Mg be the
slice map, given by Li(SBT) = hS, liT and write Tra = L, for the partial
trace; the slice map L., : Mag ! My, for —» 2 Mg, and the partial trace
Trg, are defined similarly. Call a rank one projection P 2 Mg bijective if

(4) e,f2Ch e?f =) Lee(P)? Lt (P)

(note that the orthogonality is understood in terms of the trace in M3g).
Bijective projections can be thought of as quantum versions of bijections; in
fact, if ¢ : A1 B is a bijection then P = P. satisfies (4) when e and f are
taken to be elements of the standard basis.
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Lemma 2.2. A rank one projection P 2 Mg is bijective if and only if
P = Juif for some unitary operator U 2 Maj.

Proof Let P = ii*“ for some { 2 CA, and U M, be an operator with
i=§,. Llete=" _,o aea2 CA andwritee= " _,, aea. Setr= kiyk.
We have

hleew (¢4), €2 i = hii“, ee“ Beei= Tr ({i“)(ee“ Beyse)t

" T (ii"—)(ee"—g B (ese)t = Tr((ii"_)kj(ee’é) a

(epe)) = TrT(ii”‘)(egb)(eeaj"_) = heBep, iihi, el
eai X X —
= r 2 chUe,, eci dhUey, eqi
c2A d2A

= r 2hUe,,eihUep, i = r Zhes, UeihU“e, epi

2 =\l 2 _ _
r “h(U"e)(Ue) es,epi=r

e (|<— <—)( ) : (JP 2 — (—a
h(U'e)(U"eT, epe”i = (U e)(U e), i
r 2 (Ue)(U'e), eae ;

I~

thus, Lee< (+4) = r 2(Ute)(Ute). It follows that P is bijective if and only if
U i$§ a multiple of a unitary operator, that is, if and only if pU is unitary for
some n2 C. Clearly, P = iuuiuu-* e

A projection P 2 M, of rank r will be ﬁalled blject|v$> if there exist
partial |soF;netr|es l.Jl, = 1,...,r, such that i1 U; U'(‘ = U“‘U. = |
and P = . UiG-' Note that ifd: Al Bisa buectlon and P = Pg,
then P is bijective of rank |A| with corresponding partial isometries =) ,
a2 A.

Definition 2.3. Let' :P;'Y I Pag be a classical-to-quantum non-local
game and :Pxy ! Pap be a quantum non-local game.

(i) ' is called a quantum output mirror game if there exists functionsf :
X 1 Y,g:Y ! X such that the projections '(=y, x B*=¢ ) f(x)) and
l('-'g(y),g(y) ‘-'y,y) are bijective, x 2 X, y2 Y;

(ii) ' is called concurrent if '(J CX') = Ja;

(iii)  is called concurrent if (Jx) =

In view of Remark 2.1, we consider quantum output mirror games as
a quantum version of mirror games, and concurrent games — as quantum
versions of synchronous games.

3. Classical-to-quantum games

This section contains characterisations of the prefect strategies of quan-
tum output mirror games and classical-to-quantum concurrent games, and
their applications to quantum orthogonal ranks of graphs. We start with
recalling the main classes of quantum no-signalling correlations introduced in
[30] that will be used subsequently.
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3.1. Quantum no-signalling correlations. If A is a C*-algebra, we de-
note by A°P its opposite C*-algebra. As a set, A°P can be identified with A
and we write A°P = {z°P :z 2 A}; the C*-algebra A°P has the same
norm, additive and involutive structure as A, and its multiplication is given
by letting zingp = (z2z1)°P, 21,25 2 A.

Let Vx, a be the ternary ring, generated by elements vy x, x 2 X, a2 A,
such that the matrix V = (va,x)a2a,x2x satisfies the condition of an isometry,

that is,
X = 0 .00 00
Va00 00V, Vax0 = x,x0Vaoo,x00, X,X",X 2 X, a p

A. az2a

Let Cx,a be the unital *-algebra, generated by the set {v},Vvaoxo : X, x0 2
X,a,a%2 A}, and set eyx0,a,a0 = Vg 4Vaoxo for brevity. Further, let Vx a be
the unjversal ternary ring of operators (TRO) of the isometry V, and let
Cx, a be its right C*-algebra; thus, Cx a is generated, as a C*-algebra, by
ex,x0,a,a0, X, X02 X, a,ac2 A (see [30]). We write

E = ("3‘x,x0,a,a0)x,x0,a,a0 and E°P = (egoﬁx'aola)x,xo,a,ao}

thus, E 2 Mya BCx,a and E°P 2 My, COF;('A

A stochastic operator matrix acting on a Hilbert space H is a positive
block operator matrix E = (Exx0aa0)xx0,aa0 2 Mxa(B(H)) such that
Tra E = |. Stochastic operator matrices E "acting on H correspond to uni-tal
*-representations 7 : Cx,o ! B(H) by via the assignment %(exx0,a,a0) =
Ex,x0,a,a0, X, X02 X, a,at 2 A [30].

Let X, Y, A and B be finite sets. A quantum no-signalling (QNS) correla-
tion [10] is a quantum channel (that is, a completely positive trace preserving
map) :Myxy ! Maug such that

(5) Tra (->x B-»y) = 0 whenever -»x 2 My and Tr(->x)

0, and

(6) Trg (-—»x @B->y)= 0 whenever —»y 2 My and Tr(-»y) = 0.

A QNS correlation : Myxy | Mg is quantum commuting if there exist a
Hilbert space H, a unit vector «- 2 H and stochastic operator matricesE =
(EX,XO,a,aO)X,XO,a,aO and F = (?y,yﬁ,b,bo)y,yﬁ,b,bﬂ on H such that

Exx0,a,a0Fy,y0,b,00 = Fy,y0,b,b0Ex,x0,a,a0

for all x,x° 2 X, y,y°2 Y, a,a; 2 A, b,b° 2 B, and the Choi matrix of
coincides with

0p C
(7) (E><,x0,a,a0Fy,yU,b,b0 )\(/I’)X)I'::ZO 2 Myy AB(B(H ))

Quantum QNS correlations are defined as in (7), but using tensor products of
stochastic operator matrices acting on finite dimensional Hilbert spaces
(that is, ones having the form Ey xo,a,a0 @ Fy,yobb0). Approximately quantum
QNS correlations are limits of quantum QNS correlations, while local QNS
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correlations are defined as in (7) by requiring that the entries of E (resp.
F) pairwise commute.

We write Qqc (resp. Qqa, Qq, Qioc) for the (convex) set of all quantum
commuting (resp. approximately gquantum, quantum, local) QNS correla-
tions. It was shown in [30] that 2 Qqc precisely when there exists a states:
Cx,ABmax Cy,g ! C suchthat = §, where § is given by

X X
s('-'x,x0 '-'y,yO) = 5(ex,x0,a,a0 ey,y0,b,b0)'-'a,a0

=h,b0, a,a%2A b,h02B

where x,x° 2 X, y,y° 2 Y. Similarly, 2 Qqa precisely when = ¢ for

some state s of Cx, A Bmin Cv,8, and 2 Qq (resp. 2 Quoc) if and only if

=  for some state s of Cx,a Bmin Cy,g that factors through a finite

dimensional (resp. abelian) representation of the latter C*-algebra. We

point out that the elements of Q.. are precisely the quantum channels of

the form = P k i i@ iasaconvexcombination(where j:Myx ! Mpand
it My | 'K/}B are quantum channels, i = 1,..., k).

Let Bx,a (resp. Bx,a) be the algebraic (resp. the C*-algebraic) free
product Mpa 1 --- k1 Mpa, and Ax, a (resp. Ax,a) be the algebraic (resp.
the C*-algebraic) free product D &1 --- 1 Da, both having |X| terms and
amalgamated over the units. We denote by ey 5,20, 3,2 2 A, the matrix units of
the x-th copy of Ma in Bx,a, and by ex 5, @2 A, the canonical basis of the x-
th copy of Da in Ax,a. Set Ecq = (ey,a,a0)x,a,a0 2 Dx BEMaA BBy, A
and EX = (espaoa)xla,ao 2 Dx BMp B ;p ; similarly, let Ec; = (ex,a)x,a 2
Dyxa AX,A ahd’EOE| = (eo)agx,a 2 Dxa & A F;(A.

A classical-to-quantum no-signalling (CQNé) correlation is a channel E :
Dxy ! Mag such that (5) and (6) hold true for (traceless) elements -y
2 Dy and -y 2 Dy . A semi-classical stochastic operator matrix acting on
a Hilbert space H is a positive block operator matrix E = N(Ex,a,ao)x,a,ao 2 Dy
Ma(B(H)) with Tra E = I7” A CQNS correlation E is quantum com-muting
if its Choi matrix is given as in (7) but employing semi-classical stochastic
operator matrices; this is equivalent to the requirement that its canonical
extension to a QNS correlation Myy | Mg is quantum com-muting, as
well as to the existence of a state s of Bx, A Blmax Bx,a such thatE = ¢, where
Es is the CQNS correlation given by

X X
s('-'x,x '-'y,y) = S(ex,a,aO ey,b,bO)'-'a,a0

=} bo.a,a®2A b,b02B

Similarly, approximately quantum (resp. quantum, local) CQNS correlations
have the form E;, where s is a state of Bx,ao Bmin Bx,a (which in addition
gives rise to a finite dimensional and abelain GNS representation, respec-
tively). We denote by CQqc (resp. CQqa, CQq, CQoc) the (convex) set of all
guantum commuting (resp. approximately quantum, quantum, local) QNS
correlations.
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Let' :Pxy ! Pag be a quantum non-local game. A QNS correlation
:Myxy ! Mg is called a perfect strategy for ' if

h(P),(P)?i=0, P 2Pxy.

Perfect strategies for classical-to-quantum non-local games are defined anal-
ogously [30].

3.2. Quantum output mirror games. We first describe the perfect strate-
gies of quantum output mirror games that lie in the various correlation
classes. In the sequel, we fix finite sets X, Y, A and B, and for clarity
denote the canonical generators of By,g by fyppo, y 2 Y, bby 2 B. We fix

a quantum output mirror game ' : P;'Y I Pag andletf : X ! Y and
g:Y ! X be asin Definition 2.3. We write
)
b B = Sy g, X 2
X, i=1
where ux, i = 1,...,r(x), x 2 X, are partial isometries satisfying the
relations
5 %)
(8) (U97Y* =" UXUNT= I
i=1 i=1
P
Let Dy := 'i(=X1) U/; the relations (8) imply that Dy is unitary.

Lemma 3.1. Let s be a state of Bx,A@maxBy,s suchthat s:Dxy ! Magis a
perfect quantum commuting CQNS strategy for '. Let 71 : Bx,a ! B(H)
and T, : By,g ! B(H) be *-representations with commuting ranges and «-
2 H be a unit vector such that

s(ug Buy) = hT1(ua)a(uz)e-, «=i, u1 2 Bx,a, uz 2 By,
Ex = (T1(ex,a,a0))a,a02a and Fy = (T2(fy,b,60))b,028. Then
(UXEI) Ex(ea Be) = Fft(x)(Ui" ) (eaBe), i=1,...,r(x),a2
A. Proof. Set P; y = UX(U*) and Qj,x =, (U*)*“U*; thus,

) )
Pi,x = Qi,x =1,
i=1 i=1

that is, (Pi,x)irixl) and (Qi,x)irixl) are PVM’s (in Mp) for every x 2 X. We
have that, if := _ then
0 1 0
r)kx) r)(x)
(9) “x,x '-'f(x),f(x) =@ i Ié*:r'><U>“E’Ui A x,x '-'f(x),f(x) |@ “ A

J«UXJ«Ui
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Taking traces in (9), we obtain

1 = Tr (=xB™=tx),f(x)
) x :
= s(ex,a,a0 @ f¢(x),0,60) TF (iujxid?)("'a,ao =b,60) ($u, by, )
i,j=1 a,b,a0,bo e
) x

= S(ex,a,ao ff(x),b,bO)h‘E’Uix; €30 eboihea €y, iuj ihiuj ,X\ErUi ix
i,j=1 a,b,a0,ho

K x
= s(ex a,a0 ff(x),blbo)hiuix, eq0 @ eyoihe; B ey, iUi i x
i=1 a,b,a0,bo

where we have used the fact that hiy, iU’i i = 0 wheneveri = j. Recall that

s(ex,a,a0 @ ey ppo) = !xla,aoFy,b,boe--, « forallx 2 X,y 2Y,a,®2A,b,If2
B. In the sequel, we denote by T, thei(a, b)-entry of a (pssibly block

operator) matrix T. Noting that iuix - P a,b(UiX)a,bea @e, /kU%ky and
kUing = Tr(UiX(UiX)“‘) is the rank ri(x) of the projection P; x, we obtain

N (V) R 4 (UP),,
du,epoBep = =22 and e Bey, dyx = — -
uUs s Ca b ri(X)1/2 a br ¥U, ri(X)l/z

Setting Ui" = ural,i=1,...,r(x), x 2 X, we therefore have

%) x am ap
1 = Ex.a,a0Ff(x),b,00¢, ¢ Sux,€a0 Hepo el
ol
€p, vux i=1 a,b,a0,ho
)
%X 1 X D ) E
= Ex,a,aO(Ui )aO,bOFf(x),b,bO(Uf(
Jape, 1)
i=1 a,b,a0,b0
x) 1 X e
= ELUXF L (UX)C )
i=1 ri(x)azA <UiFria i a8
¥ 4 x D ) E
= ExUTFi()(U) (ea @), eq @ e
ri(x)
i=1 a2A
¥ 4 x D 5 3 E
= g FlwlUDT(eame), (0 Exeaier)
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By the Cauchy-Schwartz inequality,

%X) 1 X D - E
(10) 1 e Fl(UX)(ea Be), (%) Ex(eq B )
=1 ! a2A
0 1,
X(X)X 1|:t Xy = X =
@ r(X) F fX)(U I) (ea ‘“‘)kk(q ) Ex(Ea
i=1 a2A '
<---ﬂ(A 1
X X 1
r(x) -
@ ™ k(UX)“Ex(ea B¢ )k2A
i=1 a2A Filx
0 g \ 1
X
X 1 N
> @ kFE (UX)(e
( ) f(x) i a
i=1 a2a 1WX
0 <---)k2A * + 1
X X 1"
= @ ECOX(0%) Ex(ea Be-),eaBe A
ri(x) x 1 °
a2A i=1
0 * + 1
£
X X 1 T X t -t T X\ K
- @ U, (Ff(x)) Ff(x)(Ui )" (ea Be), 5 @«
ri(x)
a2A =1
A,

Since (Pi,x)irixl) is a PVM, there exist a partition (Si)iri’;) of A with |S] =
ri(x) and a unitary Vx in Ma such that VP; xVy coincides with the pro-
jection Ps, Ignto spanf{ea :a2 Si}, i=1,...,r(x). Let Ex = V¥E«Vy, and

write ENX = a'b--~a,bNEx,a,b. As Vy is unitary and Ex a bEx a0,00 = 1b,a0Ex,a,b0,
we also have Ey a bEx 20,60 = b,a0Ex,a,0. Thus, we have
0 T 10 10 |
X X X
E.Ps Ex = @ ==y bBEx,a,bACQ = (BIAQ w=yo 40 [
Ex,a0,p0A
_ a,b c2S; ao,ho
ri(x)ENX.

Let, similarly, (Ri):ixl) be a partition of B with |Rj| = rij(x) and Wy be
a unitary such that WgQ, Wy = Pg,, i = 1,...,r(x). Setting F¢(y) =
WX"‘Ff(X)WX, we have that (Fft(x))'“PRith(x) = ri(x)F;(X). This implies that
the last product in (10) is equal to

!

X X

hEX(ea <'"),eaé'"i th(tx)(ea 6'"),ea
x|

X a2A « X a2A
€ + +

Ex,a,a¢, ¢ I:f(x),a,aé"'; = 1.

a2A a2A
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Hence we have equalities in all chains of inequalities which implies that there
exist scalars 4 such that

Fiog(UD “(eaBe) = (UX)Ex(ealBe), i=1,...,r(x), a2 A,

Summing up over i, we obtain that (D42l )Fft(x)(D"‘XI J(egBle-) = yEx(eal
«-) for all a2 A. After applying Tra, we conclude that , = 1, which yields
the desired result. —

Theorem 3.2. Let ' : P;'Y I Pap be a quantum output mirror game
and :Dyxy ! Mg be a perfect quantum commuting CQNS strategy for'.
Then there exists a tracial state @ : Bx,o ! C and a *-homomorphism - :

By,s ! Bx,a such that

(11) (=x,x B =y y) = B(ex,a,a0->(fy,bo,b)) aa0p’ 2 %Y 2 X.
Proof. We choosef : X ! Y andg:Y | X asin Definition 2.3, and write
%)
o x B, f0) = U by, X 2
X, i=1
for partial isometries UX, i = 1,...,r(x), x 2 X, such that
%) %)
(U)Y* = UXUH“ = 1.
i=1 i=1
IJ(eepingpthe notation from the proof of Lemma 3.1, we write (=, , (= )
= a2,a02A b'bOZBhEx,a,aoFy,blboe---, <-i, where the assignments ey 5,20 ! Ex a,a0
2B(H) and fypp ! Fypw 2 B(H) define *-representations of By, a
and By,g, respectively, with commuting ranges. Set Ex = (Ex,a,a0)a,a02a

and
Fy = (Fy,b,bO)b,bOZB- By Lemma 3.1,

FF(X)(UNT)K_(ea () = (NLIJX)K_EX(ea (-")I i= 11 ey r(x)/ a2A.
Let Q= ((Dy I)(ff(x),alb)(;’b))(DK; @1))a,p and write Q = (gx,a,b)b,a- Set

hy,a,b = €x,ap @1 1@ ax,b,a, x2X,a,b2A.

We have
h:,a,bhx,a,b = (exp,all 1@ ax,a,b) (€x,a,0 @1 1@ ax,b,a)
= eyppl1l €x,b,a & Qx,b,a ex,ab @ 0x,abt 1B0xa,a-
Let s2 Bx,a @max By,g be such that = . As

s(ex,b,a CIx,b,a) = hEx,b,a((Dx I )Ff(;)(DK_x I ))a,b"“, i

= h((Dx I )Ff(tx)(DK_x I ))a,b""; Ex,a,b""i = hEx,a,b"": Ex,a,b""i = hEx,b,b"";

we get

(12) s(hyaphxab) =0, x2X,a,b2A.

I,



SYNCHRONICITY FOR QUANTUM NON-LOCAL GAMES 15

For u,v 2 Bx,a @max By,, write u «- v if s(u v) = 0. Equations (12),
combined with the Cauchy-Schwarz inequality, imply

uhyab ¢~ 0and hi,,u«-0, x2X,a,b2 A, u2 Bx,a Bmax By,s.

Since h;a'b = hyp,a, We have
(13) uhyap ¢-0and hyapu<«-0, x2 X,a,b2 A, u2 Bx,a@max By,s.
In particular,
(14) zexabB1 ¢ zB0axha ¢ €xabz@1, x2 X,a,b2 A, 22 Byx,a.
Similarly, let Viy, i=1,...d(y), be partial isometries such that

55((\/) %v)
Viy(Viy)K_ = (Viy)K_Viy = |
i=1 i=1
and
fly)
(=g(y)ely) B=yy) = Sy v\I/TY

i=1
Similarly to the proof of Lemma 3.1, letting G v = P i(‘;) Viy, we obtain that
Fy,a,b"" = ((Gy | )(Eg(y),a,b)g,b(G;_ I))a,b("'-

Set (py,a,b)b,a = ((GyBI)(eg(y),a,b) ;’b(Gyl ))a,b and note that {py a5 : a, b}
is a matrix unit system, y 2 Y. Letting gy = Pyppo@1l  1Bfyppo, where
y 2 Y and b,bt2 B, we obtain, similarly,

(15)  zpyppo @1 ¢ z@fyppo ¢ Pyppoz@1, y2 Y,bt°2 B, z2 By,a.

Let z and w be (finite) words on the set E := {ex,ap : X 2 X,a,b 2 A}.
We show by induction on the length |w| of w that

(16) zw B 1 «-wz @1,

In the case |w| = 1, the claim reduces to (14). Suppose (16) holds if |w|

n 1. Let |w| = n and write w = W%, where e 2 E. Using (14), we have
zwl1l= zwle @1 ¢ ezw®B 1 ¢~ wlez@1= wz 1.

Let @ :Bx,a ! C begivenby[(z)= s(z@1); itis clear that & is a state on
Bx,a. From (16) and the fact that the set of all linear combinations of words
on E is dense in A, we conclude that @ is a trace on By, a. Identity (15)
implies that

S eX’a’aO fy’b'bO = exla’aOpylb,bO , X 2 X, y 2 Y, a, ao, b, bo 2 A.

Equality (11) is now immediate if we let -» : Byg ! Bx,a be the *-
homomorphism defined by letting ~>(fy po,b) = Pybbo, ¥ 2¢Y, b,b 2 B.

I—

We will write = .,z if the CQNS correlation : Dxy ! Mag is

given as in (11). Keeping the notation from the proof of Theorem 3.2, let t :
Bx,ao ! By,g be the *-homomorphism given by %(ex a,a0) = Uxa,a0- We will
need the following lemma, which can be thought of as a dilation result for
semi-classical stochastic operator matrices.
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Lemma 3.3. Let X and A be finite sets and (Ex,a,a0)x,a,a0, Where x 2 X
and a,a’ 2 A, be a semi-classical stochastic operator matrix acting on a
finite dimensional Hilbert space H. Then there exist matrix unit systems
(EX,a,a0)a,a0, X 2 X, on a finite dimensional Hilbert space H, and an isometry
V :H ! H, such that V*Ey a,a0V = Exa,a0 forall x 2 X and all a,a; 2 A.

Proof. Write X = [k] and use induction on k. If k = 1, the result is a
direct consequence of the Stinespring Theorem. Resorting to the inductive
assumption, suppose that H« 1 is a finite dimensional Hilbert space, Vi 1 : H
I' H« qisanisometry, and (Fx,a,a0)a,a0 is @ matrix unit system on Hy 1, such
that

Vi 1Fx,a,a0Vk 1= Exa,a0, x2 [k 1], 3, a’2 A.
Let Fk?a,ao =V lEk,a,a()VkK_ 17 a,ao 2 A. Note that (Fﬁa,ao)a,ao 2 (MA
B(Hk 1))* and * ,,A F O, 5= Pk 1:= Vi 1V ;. Fix ag 2 A and define

(

k,a0,a0
¢ .
Fila a0 otherwise.

? H - 20 =
E. +P?, ifa=a’= ag
k,a,at =

Note that (Fk,a,a0)a,a0 is @ stochastic operator matrix acting on Hy 1. In
addition,

Vi 1Fkaa0Vk 1= Vi 1(FCag a0 + PK 1)Vk 1= Ek,ag,a0,
and hence
Vi 1FkaaoVk 1= Ecaao, a,a°2 A.

By [30, Theorem 3.1], there exists a Hilbert space K and operators V :H
1! K such that the column operator Vi := (Va)a2a : He 1! K BCAis an
isometry, and (Fk a,a0)a,a0 = V"‘V;,o,aa,a0 2 A. LetH = K BC” and Ex a,a0
= |y B, a0, a,a%2 A. Then V"‘Ekla,aq(vk” = V'Vao =_Fi,a,a0 and hence,
letting V. = ViV« 1, we have that V : H | H is an“isometry such that V
“"Ex,a,a0V" = Ek,a,a0, a, a%2 A.

Let Py = Vka"‘ and By 5,20 = VkFx,a,aO\( “,x2 [k 1], a,a%2 A. Then

(17)  Pxa,a0Fxbb0 = VkFxa,aoVeViFxbboVk =  a06Fxab0, @ a°, b 02

A, and X
" Fx,a,a = Py.
a2A
Note that, if xo 2 [k 1], a2 A and | = rank(FxO,ao,ao ), then rank(Py) =
[|A]. It follows that | = rank(Fy 5 a) forallx 2 [k 1] and all a2 A. Thus,
Pk? (K BCA) = Ko BCA for some Hilbert space with dim Ko = dim K l.
Let

F:(Sa,ao = Iy, B*=aa0, X 2 k 1], a,ao 2 A,
considered as an operator on Pk? (K BCA), and

Ex,a,a0 1= Fyaa0 + Flaa0, x2 [k 1,32’ 2 A,
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For a,a%b,b%2 A and x 2 [k 1], using (17) we have
E':(,a,aOENX,b,bO = (F'\);,a,a0 + F;?a,ao)(ﬁ;(,b,bo + F";((,:b,bO)

I:x,a,aO Fx,b,bO + F)?,a,a0 F)E,b,bo

= aO,bﬁx,a,bO"' aO,bFNX(,a,bo = a0,bEx,a,b0-

In addition, for x 2 [k 1] and a,a%2 A we have
V“EyxaaoV = T OV Fxaa0V + VR L0V =V
= K_rx,a,qEV Vi 1V (VkFy,a,a0Vi )ViVe 1

= Ex,a,aO-

I

Remark. In the notation of Lemma 3.3, if Ex 3,30 = a,a0Ex,a,a for all
X, a, a’, the statement reduces to the simultaneous Naimark dilation of a
finite family of POVM’s exhibited in [23, Theorem 9.8]. We include the
following consequence, which will be used later.

Corollary 3.4. Let X, Y, A and B be finite sets. A CQNS correlation

:Dxy ! Mag is quantum if and only if there exist finite dimensional
Hilbert space Hx and Hy , *-representations ¥x : Bx,a ! B(Hx) and %y :
By g ! B(Hy), and a unit vector «- 2 Ha B Hg, such that

('-'x,x '-'y,y) = h(?X(ex,a,aO) @ty (fy,b,bo))('": i a,a%b,6° ’ x2X,y2Y.

Proof. Let (Ex,a,ao)x,a,a0 (resp. (Fybboly,bbo) be a semi-classical stochastic
operator matrix acting on finite dimensional Hilbert space Ha (resp. Hg)

and @2 Ha B Hg be a unit vector such that

> d
('-'x,x '-'y,y) = (Ex,a,a0 Fy,b,bO),

0
a,a%bb’ 7

Xx2X,y2Y.

Let (Ex,a,a0)a,a0 and V (resp. (Fx,a,a0)a,a0 and W) be the matrix unit systems
acting on a finite dimensional Hilbert space Hyx (resp. Hy ) and the corre-
sponding isometry, obtained via Lemma 3.3. By the universal property of
the C*-algebraic free product, there exists a *-representation x : Bx, a !

B(Hx) (resp. ¥y : By,g ! B(Hy)) such that Tx(ex,a,a0) = Ex,aa0 (resp.%y
(fy.b,00) = Fypbo), X 2 X, a,a°2 A (resp. y 2 Y, bb% 2 B). Letting «-
= (V BW )&, we obtain the required representation of . -

Theorem 3.5. Let ' : P;'Y I Pag be aquantum output mirror game, Blbe
a tracial stateon Bx o and > : By g ! Bx,a be a unital *-homomorphism such
that = ., g is a perfect quantum commuting CQNS strategy for '. The
following hold:
(i) 2 CQqa if and only if B can be chosen to be amenable;
(ii) 2 CQq if and only if @ can be chosen to factor through a finite-
dimensional *-representation of By, a.

Proof. (i) Assume that 2 CQgqa. By the Remark after [30, Theorem 7.7], s
can be chosen to be a state of Bx,a Bmin By,s. Let @: By, a ! B‘f(’fA be the
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*-isomorphism given by @(exa,a0) = €P

xa0 o» Whose existence is guaranteed
by [30, Lemma 9.2]. Let : Bx,a @min B ;’I’A I C be the state defined by
letting
=s (id@?) (dB@?Y).
Let z 2 Bx,o and w = €x1,a1,a0 ---exklak,a(k), for some x; 2 X, aj,af 2 A,

i=1,...,k Setw:= @ 1(W°P) = ey 10 2, """ €xs,a0,a;- Using (13), we have
k 1
(zBwP) = s(zBT(W)) = s(z Ox,,a0 A QXl,aO,ql) =
(Zexl,al,aO ** 1 €x,ay,a0 ) * (ZW)-

By linearity and continuity,
(18) (zBwW°P) = Bl(zw), zZ,w 2 By a.

By [6, Theorem 6.2.7], & is amenable.

Conversely, if B is an amenable trace that implements then the func-
tional : Bx, A Bmax Bx,a ! C defined via the identity (18) factors through
Bx,A Bmin Bx,a; by the Remark after [30, Theorem 7.7], 2 CQga.

(ii) Let :Dxy ! Mag be a perfect strategy in CQq. By Corollary 3.4,
there exist finite dimensional spaces H and K, representations 7(: By, a !

B(H) and -% : By,g ! B(K), and a unit vector «- 2 H @K such that = o,
where s : Bx a Bmin By,g is a state such that

d
(19) S €y,a,a0 fy,b,bD = ,Eo(ex,a,ao)""O(fy,b,bo))"";"" ,

forall x 2 X,y 2 Y,a,a%2 A,b,b% 2 B. The proof of Theorem 3.2 shows
that the left marginal of s is a trace on Byx,a that factors through the finite
dimensional space H B K and satisfies (11). The converse direction follows
from [30, Proposition 9.15]. -

Remark. In case the bijective projections (=, y@=¢ ) f(x)) and
(*=g(y),e(y)B ™=y,y) from Definition 2.3 have full rank, the corresponding
quantum output mirror games reduces to a classical one and has possesses
non-trivial local perfect strategies. However, if |[A| > 1 and at least one of
those projections has rank smaller than |A|, a local perfect strategy does not
exist, since local CQNS correlations preserve separability of states.

The following is a partial converse of Theorem 3.2.

Proposition 3.6. Let @ : Bx,o ! C be a tracial state and let -» : By,g !
Bx,a be a *-homomorphism for which there exist bijections f : X | Y, g:
Y ! X and unitary operators Uy, Vy, : CB 1 CA, x 2 X, y 2 Y, such that
(->(fy,b,00))b,00 = (Vy BH)(eg(y),a,a0)a,a0(Vy B 1) and (->(ff(x) p,bo))o,0 = (U
IMex,a,a0)a,a0(Ux B1). Then .,z is a perfect strategy for the game ' given
byx

8., .
5 Y0, if y= f(x),
I('-'x,x '-'y,y) => ‘E”\_/y‘i’\'f/y if x = gly),

" laa otherwise.
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Proof. We have that
€x,a,a0"(ff(x),00,0) a,a0b0’ (1 U,(.x) @ (ex,a,a0€x,b0,b) a,ad,b,k° (I @Uy).

As [ is a trace and {ex,a,a0}a,a024 is @ family of matrix units, B(ex a,a0€x,b0,6) =
2000 ab x, Where 4 = [(exa,a) = B(exp,) for all a,a% b, 2 A and x 2 X.
Hence

h (=, x B =t (x),f(x))(€a0 B eno), €a @ epi
= h((ex,a,aOex,bO,b))a,ao,b,bo(l Ux)(eao @epo), (I B Uy)(ea Bep)i=

ut‘:lo,tif]l'la,bxx'
where Uy = (u;‘,b)a,b. On the other hand,
hiUxiS_xeao €y, €5 B epi = h‘E'er e, B epihego B epo, *E'Ux'i = Uaol)f,oualg

showing that («=y x B ™= ¢ (y) f(x)) = x‘ixuiji-and hence for P = =,
Bl = (x),f(x), We obtain

(20) h (P),"(P):i=0.
Similar arguments give (20) for P = =g o) Bl =y y. =

The classical-to-quantum concurrency game is the game ' : chl « | Pan
defined as follows: (

Ja ifx=1y
" ame |-> =
( XX y,y) |AA if x Y.

A CQNS correlation will be called concurrent if is a perfect strategy for
the concurrency game.

Corollary 3.7. Let :Dxx ! Maa be a quantum commuting CQNS
correlation. The following are equivalent:

(i) is concurrent;
(ii) there exists a tracial state @ : Bx,o ! C such that

(21) (=,x o=y y) = B(exa,a08y,b0,b) a,a0 b0 * XY 2 X.

Moreover,

(i) 2 CQgqa if and only if the trace @ can be chosen to be amenable;
(ii’) 2 CQq if and only if @ can be chosen to factor through a finite
dimensional *-representation of By, a.

Proof. (i))(ii) The concurrency game is a quantum output mirror game
with B = A, f and g the identity maps, and '(==, B, ) = J5 = ithi,
for every x 2 X. In this case the *-homomorphism -» : Bx,a ! Bx,a from
the proof of Theorem 3.2 is given by -»(fy b bo) = ey,b0. The statement now
follows from Theorem 3.2.
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(ii))(i) Fix x 2 X and note that, by the uniqueness of the trace on My,
the restriction of @ to any of the free product terms in the definition of Bx,a
coincides with the normalised trace tr; thus,

1 0
(22) (ex,a,aO) = W a,a0, 4,4 2 A.
It follows that X
('-'x,x '-'x,x) (ex,a,a‘)ex,b‘),b)'-'a,a0 =, b0
a,al,b,b02A
X
= [ (ex,a,b0€x,b0,b)*™="a,bo B =4 ro
a,b,b02A
X 1X
= [ (ex,a,b)™"a,b0 B =5 o _TA ab U *™ab =
Ja. a,b,b02A a,b2A

Statements (i’) and (ii’) are immediate from statements (i) and (ii) in
Theorem 3.5. =

Remark 3.8. Factorisable quantum channels were introduced in [1] and
have been subsequently studied by a number of authors (see [19] and the
references therein). It was shown in [19, Proposition 3.1] that a quantum
channel : Ma ! My, is factorisable if and only if its Choi matrix has the
form [@(pa,aodpo,b) 2’ 007 for some matrix unit systems (paao)a,a0 and

(ab,b0)b,b0 iN Ma =1 Ma. It follows that the factorisable quantum channels on
M can be identified with the perfect quantum commuting CQNS strategies
for concurrent games with two inputs. Note, in addition, that the perfect
guantum commuting strategies of quantum output mirror games with a
single input form a subclass of the factorisable quantum channels.

Remark 3.9. Let A be a unital C*-algebra, equipped with a tracial state [.
Recall [30] that a semi-stochastic A-matrl'sx over (X, A) is a positive matrix
(ax,a,a0)x,a,a0 2 Dx @ Ma B A such that o\ B8 = l1forallx 2 X. A
CQNS correlation : Dyxx ! Maa is calfed tracial [30] if there exists a
semi-stochastic A-matrix (gx,a,a0)x,a,ac such that
X
('-'x,x '-'y,y) = (gx,a,aogy,bo,b)'-'a,a0 =h,b0,
X, Y 2 X. a,a0b,b0

It follows from Corollary 3.7 that every concurrent quantum commuting
CQNS correlation is tracial.

3.3. Algebras of classical-to-quantum games. Let P 2 P§('X and Q2
Paa. We define a linear map

P,QZDXX MAABX,ABx’zp! Bx,Aby
letting
P’Q(! UVOp): Tr(!(P Q))UV, 2 Dxx MAA,U,V2 BX,A-
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When, in addition, Q 2 PACL, define a corresponding map
<JPIQ . Dxx DAA AX,A Ax’zp! AX,A'

Both ¢ ,q and <» g will be considered as maps on the ampliations of the
algebraic tensor products Bx A @B ;?A and Ax o BA ;F,’A, with values in
Bx a and Ay a, respectively.

We use the notation hSi to refer to the *-ideal generated by a subset S

of a *-algebra. If ' : P,%'X I Pana is a classical-to-quantum game, set
Dn oE

(') = o (p)2(Ecg BEY 1P 2P V Bx,a,

and let | (') be the closure of I (") in Bx,a. Set B(') = Bx,a/I(') and
B(') = Bx,a/l("). Define A(") and A("') similarly, using the ideal
Dn oE
4o ipy2(Ect BE N 1P 2 P&

of AX,A-
Given a synchronous non-local game : X =X = A A | {0,1}, its
*-algebra A( ) was defined in [12] as the unital *-algebra with generators

selfadjoint idempotents ef('a, where x 2 X, a2 A, subject to the relations

X
e, = 1forallx 2 X, and e el = 0if (y,zb,c)= 0.

a
a2A
Proposition 3.10. Let :X = X -#A->A ! {0, 1} be a synchronous non-
local game. Then A(' ) (resp. A(' )) coincides with the *-algebra (resp.
C*-algebra) of the game

Proof. Let A( ) be the *-algebra of the game as defined in [12], and note
that A( ) = Ax,a/I( ), where

[( )= hegaeyp: (x,y,a,b)= 0i.
We show that
(23) C)=1(" ).

Note that ' (= x B*=y,y)" = (o 4): (xy,a,b)-0 a2 B *=p; thus,

(J"x,x--'y,y,' (--'X,X--'y,y)?(Ecl (Ead ) = €x,ay,b-
(a,b): (x,y,a,b)=0
Multipying from the left by ey 5 and by ey, from the right, we conclude that
ex,a€y,b 2 | (P' ) whenever (x,y,a,b)= 0;thus, I( )V I("' ).
Let P = | o=y, x, @™y, v asa 1;i(nite sum. Then

?
"(P)7 = ey g By p(a,b):
(xk,yk,a,b)=0,8k

and hence
X X

oR _
(JP,' (F’)‘?(EClEcIFj - €xy,aCyy,b-
(a,b): (xk,yk,a,b)=0,8k k
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This shows that I (' ) v I( ), establishing (23). =
Remark 3.11. We have e ;2(Ecq BEcq) = O.

Proof. The claim follows from the fact that

1 X X X X
1A Ecq BELP = 1A| €x,a,b€x,b,a = €x,a,a
x2X a,b2A x2X a2A
X X

— o
= €x,a,aCx,b,b = J;','AA Ecq E cpq .
x2X a,b2A

I

Corollary 3.12. Let' :P;'X I Paa be a classical-to-quantum concurrent
game. The following are equivalent for a CQNS correlation : Dyxyx !
MAAI
(i) is a perfect quantum commuting (resp. quantum) strategy for ';
(ii) there exists trace @ (resp. a trace @ that factors through a finite
dimensional *-representation) on Byx,a such that (21) holds and
e P,'(P)? ECchgp b= 0,

forall P 2 Pg .

Proof. We only prove the statement in the case of quantum commuting
strategies. Let be the trace of Bx,ao that implements , arising from
Theorem 3.2. For any P 2 P;'X , taking into account the duality relations
(2), we have

X
0 = h(P),"(P)ri= Tr(('-'x,x '-'y,y)P)h ('-'x,x '-'y,y)r'(p)?i

X,y 2X
X X

Tr ((=x,x €xa,a%€y, 006 ™a,a0 By o, '(P)>

'-'y,y)P)
X,)elzx a'?(O’b'bO
Tr (('-'x,x '-’y,y)P ) €x,a,a0€y,bo,b Tr(('-'a,a0 '-'b,bO)l(P )?)

X,y2X a,ad,b,b0
B¥ p(p)? Ecq@BEq I
’ 8p

l—

Remark 3.13. Clearly, any trace @ on B (') gives rise to a perfect quantum
commuting strategy for '. If, in particular, is amenable on B('), by
[6, Proposition 6.3.5], the induced trace & on Byx,a is amenable, and hence
the CQNS correlation defined via (21) is approximately quantum. We do
not know if any perfect quantum commuting strategy for a non-local game'

arises from a trace of B(') in general. Similarly we are not aware if any
the approximately quantum perfect strategies of a classical-to-quantum non-
local game ' all arise from amenable traces of B(').
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4. Concurrent quantum games

In this section, we define the *-algebra and the C*-algebra of a quantum
concurrent game and provide a characterisation of the prefect strategies for
this type of games.

4.1. Tracial descriptions. Let @ : Cx,a ! C be a tracial state; then the
linear map :Myx | Maa, given by
X
('-'x,x0 '-’y,yO) = (ex,xoa,aoeyo,y,bo,b)'-'a,a0

="h,0, a,a%,b,b0

is @ QNS correlations; the QNS correlations arising in this way were called
tracial in [30]. The classes of quantum tracial (resp. locally tracial) QNS
correlations are defined by requiring that @ factors through a finite dimen-
sional (resp. abelian) *-representation.

Theorem 4.1. Let X and A be finite sets, ' :Pxx ! Paa be a concurrent
gameand :Myyx ! Maa be a perfect quantum commuting QNS strategy for
'. Then there exists a tracial state @ : Cx,o ! C such that = g
Moreover,

(i) if 2 Qqga then @ can be chosen to be amenable;
(ii) if 2 Qq then & can be chosen to factor through a finite dimensional
*-representation of Cx a;
(iii) if 2 Qoc then @ can be chosen to factor through an abelian *-
representation of Cx,a.

Proof. Let 2 Qqc be a perfect strategy for '. By [30, Theorem 6.3], there
exists a state s : Cx,a @max Cx,a ! C such that

X
(24) ('-'x,x0 '-'y,yO) = S*(ex,xo,a,ao fy,yo,b,bo )'-'a,a0 “"='b,bo,

a,a0,b,b0

for all x,x%y,y? 2 X and all a,a%b,b% 2 A (for clarity, we use fy yoppo to
denote the canonical generators of the second copy of Cx,a). It follows that

1 X X
|7| s(ex,y,a,a0 fx,y,b,bo)'-'a,aﬂ =b,b0 =
Ja, Xy a,a%b,b0
and hence
X IX|
(25) S(ex,y,a,b fX,\/,a,b) = W a,bz A.
X,y

Let V = (va,x)a,x be the isometry such that exx0,a,a0 = ViVao,x0. Then
|
X
VVK_ = VaIXV(-b,X

x2X ab
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is a projection, and hence

X
VaxVax @1, a2A.
x2X
It follows that
X
(26) €y,x,b,ax,y,a,b = VbKTyVa,xVa,xVb,y
x2X xX2X

VoiyVby = €y,y,bb
forally2 X and all a,b2 A. Thus,

X X X X
€y,x,b,a€x,y,a,b €y,y,b,b
X,y2X a,b2A y2X a,b2A
X X
(27) = |A] ey,y.bb = [X||A[L
y2X b2A
Similarly,
X
(28) fiy,abfy,xb,a Bfxxa,a
y2X
and |
(29) X X
fx,y,a,bfy,x,b,a Xl |A|1-
X,y2X a,b2A
Let

hX’y'a’b = eX’y'a’b 1 1 fy’x,b’a, X, y 2 X, a, b 2 A.
Equation (25) and inequalities (27) and (29) imply
X
s(h;,y,a,bhx,y,a,b)

x,)\(/,a,b
= 5((ey,x,b,a 1 lfx,y,a,b) (ex,y,a,b 1 1fy,x,b,a))

x,y,a,b
X

= s (ey,xbaxy,ab @1+ 1By abfyxb,a)

x,y,a,b
X

s (ey,xb,a Bfy,xb,a + €xy,ab@fxy,ab)
x,y,a,b

2|IX[|A]1  2|X]|A]1= 0.
It follows that
(30) s(hyy abhxy,ab) =0, x,y2X,a,b2A.

As in the proof of Theorem 3.2, write u «- v if s(u v) = 0 and note that,
by (30),

uhyy,ab ¢~ 0and hyyapu «-0, x,y2 X,a,b2 A, u2 Cx,a Bmax Cx,a.
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In particular,

(31) zeyy,a,b@1 ¢ zBfy xba <~ €xy,abzZ@1, X,y 2 X,a,b2 A, 22 Cx,a.

Using (31) and induction, as in the proof of Theorem 3.2, we conclude that

themap @ : Cx,a ! C, given by @(z) = s(z@1), is a trace on Cx,a. ldentity

(31) implies

S exxoaaﬂfyyobbo =|ﬂ exxoaaoeYO’ylbOb ,XXO y,yozxaaobeZA.
Statements (i)-(ii) are proved similarly to Corolglary 3.7. To see (iii), let

be a perfect strategy of class Q... We have = g i @ ; as a convex

Ilnear comblr‘@tlon of quantum channels i I\/llﬂx I Mp,i=1,...,n.
j) xx — . 0 = . R

Let( 03,20 420 = i "™xx0 ;XX 2 )( ”‘y,yo,b,bo b b = i "™vy,yo ,

v,y°2 X, Ti,-2; + Cx,a | C be the *-representations given by
?j(ex,xo,a,ao) =
ij,)x",a,ao and -»j(fy,yo,b,p0) = V,(»j),%,bo’ and 1,9 : Cx,a ! B(C") be the
*-representations given by

Xn n
Pu) = (u)my;, -0v) =
X
p(v)epjj=r PP

j=1 i=1
The images of ?0 and -», are abelian. Set «- = n iei@e; 2 C"EAC";
then

d
=y, x0 =y o = (?O(ex,xo,a,ao) ""O(fy,yo,b,bo))é"'r (ma,ao,b,bo

and the corresponding state s is ilven by

5(ex,x0,a,aO B fy,yO,bO,b) (7 (ex x0,a, a0) @ - (fy yO,b, b)) €,

It follows that the left marginal of s is a trace on Cx, a that factors through
the abelian representation % of Cx a. —

We now assume that X = A; we will see that in this case, we can obtain
more precise conditions than the ones in Theorem 4.1 that are also su -
cient. Let By be the universal C*-algebra (usually referred to as the Brown
algebra), generated by the elements u,x, x,a 2 X such that the matrix
(ua,x)a,x2a is unitary. Consider the C*-subalgebra Cx of By generated by
Px,x0,a,a0 = U Ugox0, X, X0, @, a0 2 X . Write J for the closed ideal of Cx a,
generated bf’{he elements

X €y,x,b,ax,y,a,b  €y,y,bb, Y,a, b2 X.
x2X
Let Vx,a be the universal TRO of an isometry (va,x)a,x, as defined in [30,
Section 5]. In the sequel, we will consider products v " v 2 ;k "
where "; is either the empty symbol or v, and " = ", for allll as elements of
either Vyx a, Vy a5 Cx,a Or the left C*-algebra correspondlng to the TRO

VX, A.

Lemma 4.2. The map T : exxo,a,a0 !  Pxx0,a,a0, X, X0, a, a, 2 X extends to a
surjective *-homomorphism 7 : Cx a ! Cx with ker? = J



26 M. BRANNAN, S.J. HARRIS, I. G. TODOROV, AND L. TUROWSKA

Proof. Since U = (ua,x) is unitary and hence an isometry, we have thatE
= (px,x0,a,a0)x,x0,a,a® IS @ stochastic operator matrix; thus, there exists a *-
homomorphism % : Cx,a ! Cx such that %(exx0,a,a0) = Px,x0,a,a0- We have

!
X X

~ =

— = —
€yx,b,a€xy,ab  Cyy,bb = Up,yUa,xUa xUby  UpyUby = 0,
x2X x2X

showing that J v ker?.

For the reverse inclusion, let v : Cx,a ! B(K) be a unital *-representation.
By [30, Lemma 5.1], there exists a block operator matrix V = (V3 x)a x thatis
an isometry, such that v/ (eyx0,a,a0) = V 4 xVaoxo, X, x% a,a’ 2 X; we write
v = Vv. Note that v annihilates J if and only if

X

Vblj_yvb’y Vb:(&Va'xva,XVb'y = O, a, b, y 2 X .
x2X

P
Letting Dy = 1 o Va,xV;,_x , we have that D, is positive, Dal/ZVb,y =0
and hence
!
X 3
(32) Davb’y = 1 Va’xva’x Vbly = 0.

x2X

Since (Vp,y B1)“ (I VV<)(Vp,y B1) 2 Mx (v (Cx,a))* and has zeros on its
main diagonal, it is the zero operator. In particular,

(1 VV)Y2(vp B1) = (I VV<)(VpoyB1)=0, y,b2A,

implying that

X
(33) Va,xVa0 (Vby = 0 whenever a = a’.

x2X

The block operator matrix
v v | VV*©
U:= 0 Ve
is unitary; let
\/ P €
Va X a XI b2X Va!bVX,b

Ua,x
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Since (Uga,x)a,x is unitary, it gives rise to a *-representation -»y of Bx on the
Hilbert space K; K, where K; = K, = K. Using (32) and (33), we have

v e .
a,Xx
=y (Pxx0,a,a0) = U Uaoso = pra
ax a,xl b2X Vx,bVZ,b Vy,a
3
. VaO'x() aOIXOI b2 X VaO'bVXO,b
0 Vx'g'ao
\/ Va";xVaO,xo @
- K_( a,xI «
4 A 2x Vx,bVa,b)VaO,xO
l—

Va,xVaO,XO =

0

It follows that K1 is an invaria}nt subspace for -»y|c, , and Vv (exx0,a,a0) =
“>y (pPx,x0,a,20) [ for all x, )?,a,g 2 X. This yields Vv (T) = =y (NT)) |,
T 2 Cx,a. Thus, for a fixed T 2 Cx,a, we have

kT +J k = sup{kVv(T)k:V = (Va) isometry with vy (J ) =
{0}} sup{k-»>y (*(T))k : U = (Ua x) unitary} = k¥(T)k.

Therefore T 2 ker?t implies T 2 J . =

Note that, according to Lemma 4.2, we have Cx,a/J) £ Cx.

Theorem 4.3. Let X be a finite setand' :Pxx ! Pyxx be a concurrent
game. A quantum commuting QNS correlation :Myxx ! Myx is a
perfect strategy for ' if and only if there exists a tracial state @ : Cx ! C
such that

— 0 0
('-’X,XU '-’y,yo) = (px,xoa,aopyo,y,bo,b) 2,30 b t° XX, Y, Y 2 X,

Moreover,

(i) 2 Qq if and only if @ can be chosen to factor through a finite
dimensional *-representation of Cy;

(ii) 2 Qyoc if and only if @ can be chosen to factor through an abelian
*_representation of Cy.

Proof. For clarity, we set A = X. Let 2 Qqc be a perfect strategy for '.
Keeping the notation from the proofs of Theorem 4.1 and Lemma 4.2, we see
that |

X !

S ey,x,baxy,abl@l =5 (ey,y,b,b 1)

x2X
(for otherwise we would have ., s(h';"y’a’bhx,y,a,b) < 0). It follows that
the trace @ on Cx,a annihilates the elements

X
dyla,b ‘= €y,y,bb €y,x,b,a€x,y,a,bs Y 2 X,a,b2 A.

x2X
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As dyap O, we have that Ef(di,{;bu) = 0 foreveryu2 Cx aandso@(J) =
{0}. By Lemma 4.2, B(%(u)) := @(u) is a well-defined trace on Cx. Identity
(31) implies that

— 0 0 0 0
S €x,x0,a,a0 fy,yo,b,bo = Px,x0,a,a0Py0,y,b0,6 ,» XX ,Y,y 2 X,a,a ,b,b” 2 AL

Conversely, let @ be a trace on Cx and : Myx ! Maa be the QNS
correlation, given by

X
('-'x,x0 '-'y,yO) = (px,xo,a,aopyﬂ,y,bU,b)'-'a,aO “*=b,b0-
a,a%b,b02X
Write X
Wap = usxUsx, a,b2 X.
x2X
We have that
1 X X

(Jx) (px,y,a,aOF’y,x,bf),b)'-'a,a0 =, b0

IXl X,y2X a,af,b,b02X
1 X X
= — (u;Xuao,y Ubo’yub,x)'-'a'ao =4, b0
|X| X,y2X a,a%,b,b02X |<—
1 X X
= o7 a0,b0(u;,xub,x)'-'a,a0 ™', b0
lX l x2X a,afb,b02X
1 X X
= (uKa_,xub,x)'-'a,c “"=b,c
lX l x2X a,b,c2X
1 X
= T (Wa,b)'-'a,c “b,c
le a,b,c2X
0 1 |
1 X X t
JE—C B(Wap)ea BepA ec e
le a,b2X c2X

Since is a quantum channel, (Jx) is a positive operator and hence
X X

B(wa,p)ea Bep = ec@ec,
a,b2X c2X
implying
(Wa,b) = a,b, ar b 2 XI
and (Jx) = Ja.

(i)-(ii) If A is a unital C*-algebra, equipped with a trace B, and - :
Cx,a ! A isa *-homomorphism such that @ = Bp -, then Ba(~>(J)) = O.
Let -5 :Cx,a/) ! A/->()) be given by ~¥(u+ J ) = -»>(u)+ > (J). Then
=% is a *-homomorphism and the map @p;..;) : A/->(J) ! C, given by
@a/->s)(@+ =»(J)) := Ba(a), is a well-defined trace on A/->(J). We have
Ba/)(-%(T(u))) = Ba(->(u)), u2 Cx,a. Clearly, if A is finite-dimensional
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(resp. abelian), sois A/-»>(J ). The statements now follow after an inspection
of the proof of Theorem 4.1. —

We do not know if the approximately quantum perfect strategies for con-
current games admit a characterisation via amenable traces of Cx under the
conditions of Theorem 4.3.

4.2. Algebras of quantum games. Similarly to concurrent classical-to-
guantum games, concurrent quantum games give rise to *- and C*-algebras
which we now describe. For P 2 Pxx and Q2 Paa, define a linear map

P, i Mxx BMaa BICx, A Cx,ip! Cx,a
by letting
p (! BuUuBVOP)= Tr(1(P BQ))uv, ! 2 Mxx BMapa,u,v2 Cxa.

For a quantum game ' :Pxx ! Paa, let
D E
(') = P,|(P)?(EEOP):P2PXX

be the *-ideal in Cx,ao generated by P,'(Q)?(E E°P), P 2 Pxx, and
I (') be the closed ideal in Cx, A generated by the same set. Write C(') =
Cx,a/l1(") (resp. C(') = Cx,a/1(")) for the quotient *-algebra (resp. quo-
tient C*-algebra). Similarly, we define an ideal 1 (') in Cx and its quotient,
where we write E for (px,x0,a,a0)x,x0,a,a0 2 Mxx (Cx).

Similarly to Corollary 3.12, we obtain the following:

Corollary 4.4. Let X be a finite setand' :Pxx ! Pyxx be a concurrent

quantum game. The following are equivalent for a QNS correlation
Mxx ! Mxx:

(i) is a perfect quantum commuting (resp. quantum/local) strategy for
(ii) there exists a trace B (resp. a trace B that factors through a finite
dimensional/abelian *-representation) of Cx such that

— 0 0
('-'X’XO '-'y,yO) = (ex,xo,a,aoey,yo,bo,b) a,a0 b,t° X X,Y, Y 2 X,
and

( P,'(P)?(E EOp)) = 0.

5. The quantum graph homomorphism game

In this section, we revisit the quantum graph homomorphism game as
introduced in [30], and provide characterisations of its perfect QNS strategies
of various classes.
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5.1. Characterisations of the existence of perfect strategies. Let Z
be a finite set, H = CZ, and recall that HY stands for the dual (Banach)
space of H. Let v :H BH ! L(HY, H) be the linear map given by

V(- BE)({9) = he, i, § 2 H.

We have
(34) JSET)) = TV()SY, {2HBEH, S, T 2L(H).
We denote by m: H BIH !* C the map, given by
+
0 . X .
m(i)= &, e;Be, , +2HBAH.
227

Letalsof:H @BH ! H BH be the flip operator, given by f(«- BE) = B ¢-.

Definition 5.1. A linear subspace U v' H B H is called skew if m(U) = {0}
and symmetric if f(U) = U.

If U is a symmetric skew subspace of H @ H and Sy = Vv (U) then the
subspace Sy of L(Hd, H) has the following properties:

e T2Sy =) d 1 1< 4 125Sy, and
o T 2 SU =) ZZZh(T d)(eZ)r eZi = O

We call a subspace of L(Hd, H) satisfying these properties a twisted operator
anti-system, because of its resemblance to operator anti-systems (that is,
selfadjoint subspaces of M x each of whose elements has trace zero [3]). Given a
twisted operator anti-system S v L(H9, H), one has that the subspace Us
= v 1(S) of H BH is symmetric and skew.

Given a graph G, let

Ug = span{ey@ey : x ¢y}

then Ug is a symmetric skew subspace of CX B CX. We thus consider
symmetric skew subspaces of CX B CX as a non-commutative version of
graphs. We note that a couple of other non-commutative incarnations of
graphs were considered in the literature, namely, operator subsystems in
My in [9] — after noting that the subspace

S := span{=,,o :x ' x°}
of My is an operator system, and operator anti-systems in [29] — after noting
that the subspace

Sg 1= span{w==, o 1 X ¢ x%}
of My is an operator anti-system. Our use of symmetric skew subspaces,
instead of some of these concepts, is dictated by the nature of the definition of
QNS correlations, adopted in [10].

We write P, for the orthogonal projection from CX BC* onto U. Let

U, v CX @CX 9 be the annihilator of U and write Pu,2 L (CXp@cX)d
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for the orthogonal projection onto U, . Observe that {4 2 U, if and only if
{ belongs to the orthogonal complement U? of U in CX BCX. In addition,

Pu, = (PJ )d-

Let U v CX and V v CA be symmetric skew spaces. The quantum
graph homomorphism game U ! V is the quantum non-local game 'y v :
Pxx ! Paa determined by

8

20 ifP=0
'U!V(P):>PV ifPPU

" laa otherwise

Definition 5.2. Let X and A be finite sets and U vV CX BCX, VvV CAECA
be symmetric skew subspaces. We say that U is quantum commuting
homomorphic (resp. quantum homomorphic, locally homomorphic) to V,
and write U A€V (resp. U 19 v, U I°°V), if 'y v has a perfect quantum
commuting (resp. quantum, local) tracial strategy.

Given operator anti-systems S v My and T v M,, Stahlke [29] defines
a non-commutative graph homomorphism from S to T to be a quantum
channel : My ! Ma whose family {Mi}ri“=1 of Kraus operators satisfies
the conditions

MiSM"V T, i,j=1,...,m;

if such  exists, one writes S | T. We recall the suitable version of this
notion for twisted operator anti-systems, described in [30].

Definition 5.3. Let X and A be finite sets, and S v L (CX)d,CcX and
TV L (CA)d,CA betwisted operator anti-systems. A homomorphism from S
into T is a quantum channel

xXm
:Mx! M/_\, (T)= MiTMiK-,
i=1
such that
M;SMAVT, i,j=1,...,m.
If S and T are twisted operator anti-systems, we write S | T as in [29] to
denote the existence of a homomorphism from S to T. Further, if G and H

are graphs, we write G | H if there exists a homomorphism from G toH.
The following was shown in [30].

Proposition 5.4. Let X and A be finite sets, UV CX BCX, VV CABCA
be symmetric skew spaces, and G, H be graphs. The following hold:

(i) U PV if and only if Sy | Sy;
(ii) G ! H if and only if Ug Joc Un.
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Let Uy, : (CX)d 1 CX be the unitary operator given on the standard
basis by Uxec)'( = ey, X 2 X, and define Up : (CA)d I CA similarly. Then S
VL (C M, C X isa twisted operator anti-system if and only if the space
S le of My has the following properties:

eT25su,t) Tt25su,t;
e T25SU,) Tr(T)= 0.
Indeed, the first property is a direct consequence of the fact that

X
d ' (TUx) d 'Uylex = d ' UG (T e =
X hT ey, eyie
= tiyey = Tley,
y2X

while the second one follows directly from the definition of a twisted operator
anti-system.

Recall from Section 2 that m, denotes the (normalised) maximally en-
tangled vector in CZ B CZ. For a symmetric skew space U v CX, set

UBmz = {¢<Bmgz :¢ 2 U};
after applying the shu=e map, we view UBm 7 as a symmetric skew subspace
of CX @EC? cxmc?
Theorem 5.5. Let X and A be finite setsand U v CX BCX, Vv CARCA
be symmetric skew spaces. The following are equivalent:
(i) U1t v;

(i) UBmz °°V for some finite set Z.
Proof. (i))(ii) Let :Mxx ! Maa be a tracial quantum QNS correlation
such that

h (Py),Pv,i=0,
that is, such that
h (¢ )8, @i = h (¢-e'), (@ )= 0, «~2U,B2 V.

By definition of tracial quantum QNS correlation, there exists a finite di-
mensional C*-algebra A, a tracial state Bx on A and a *-homomorphism %
:Cx,a ! A such that

('-’x,xD '-'y,yO) = (A(?(ex,xPO,a,aoeyO,y,bO,b)))a,aO,b,bO-

P
Writing ¢~ = 5y ¢x,yex@ey, and B = a2 b2A Pa,0€a B ep, we have
XX
e ~
(¢meT) = Ba(? (ex,xo,a,aoey‘),y,b‘),b))(']x,yg x0,y0"™ a,a0
=h,1o. a,a%b,b0 x,x0,y,y0
Let X
Y. :=
X
<)o yom=yo0 0, Yg = (150 po =50 1,0

x0,y02X al0,b02A
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and E = (¥(ex,x0,a,a0))x,x0,a,a0; then E is a stochastic A-matrix. Observe that

X X
(35) V(e )Uyl= deyV(exBey)Uyt = Ay y ™=y x =
Y . X,y2X X,y2X

3

We have

0 = h (e )B, 0
X X

= A(?(ex,xo,a,a)?(eyo,y,b,b))dx,yéxo,yomao,bOla,b
a,a%,b,b0 x,x0,y,y0
4’ 1

X ~ ~
(Tr@a R) @@ H (ex,xo,a,ao)ao,bo i (eyO,y,bU,b)A

x0,y0,a0,b0

x,Y,a,b
0 1.1
X
- @ —yBa b=,y A=y B 14 A
A
X,¥,a,b,

(TrE@ @) E(Y.:BYsB1a)E(Y'SEY'GE1A)

After passing to a quotient, we may assume that A is faithfully represented
on a Hilbert space H and B, is faithful. As E is positive, we have

EV2(Y. BYaB1A)E(Y SBY 5 B1a)EY2 = 0.

It follows that EY/2(Y - BYz@1a)EL/2 = 0 and hence E(Y BY 5 B1a)E = 0.
Define a linear map :Ma ! My BA by letting

('-'a,b) = Ea,p:= (?(ex,XO,a,b))x,xoi

By Choi’s Theorem, is a unital completely positive map. Let (!) =
ir:1 M;!M/ be a Kraus representation (here M; : CAl CXBH,i-=
1,...,m), and set
X — — P
Xa,b,i,j = Fo0,a0"a,a0M “{Y © B 1) M=o p, a,b2A,i,j

2 [m]. a0,b02A

let L2 :CARCXREH ! CX BCA BH be the flip operator defined on
the elementary tensors by 12(¢-q B ¢y B ¢-3) = ¢ @ -1 @ ¢-3, and write

Mil’3 :CARCA ! CXBECABEH for the operator L2(1EM;).
We have
Tf§(xa,b,i,JXafb,i,j)
= Blbo, 2000, 500 TF("'a,ao|Y| < (‘_Y < 1A)Mi'-'b0,b'-'b,ib00 M (Y.

1) Mj =200 3 ). a0,b0,a%0,500
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Letting =, = (*=3 a0)a02a, considered as a row operator over Ma, we have

xm
Tr(Xa,b,i,iXa0b,i,i)
iji=1 a
= [Plho,2002h00,500 TF '-'a,aOI\I7Ij (<Y' 1A)Eb0,b0°(Y_ 1A)Mj'-'a00,a

j,a%,b%,a%0, by -

Tr o=y (M L3 (Y CBY T B1A)E(Y B Yz 1A)Mj1’3--a"‘_
j=1

Write Ry j = EY2(Y. Y1A)M1j'3--;. Then

xm
(Tr2 @)(Ra,jR,%)

i=1

Tr EY2(Y-BYgB1a)M e (M2 LY Y
&

1A)E1/2 ij=1
= (Tr@ @) EY2(Y.BYaB1a)E(Y “BY“@14)EY?2 =0,
iving R5,; = 0, as we assume that the trace is faithful and therefore
g B

=1 Tr(Xa,b,i,i X5, ;) = 0 implying
(36) Xab,ij=0, ab2A,i,j=1,...,m.

We may assume that A is faithfully represented on CZ and so that M is an
operator from CA into CX B CZ. Let Rj = I\T‘Jf‘,j =1,...,m. Fora2 A we

have d

(Ux UZ)Ri UAl(ea)

(Ux BUz)R;{e) = (Ux BUz)(R" ga)®
(Ux BUz)(Miea)? = Miea.

Taking into accoupt (35),~we obtain

d
X z A
RV (¢ B = Rj(V(¢)U 'BV(mz)U ')((UxBUZ)R; U
mz)R; 'Ua=; M (Y “B1)((Ux BUz)RIU Ua
= M (Y-“B1)M;Ua.
(37)
Since is unital,
xm xm
RfRj = MM[ = |
j=1 j=1
P
and hence the map ! ! =1 R,-!R"j‘ from Myz into M, is a quantum

channel. We claim that

(38) Rjv (¢ Bmz)R, v Sy.
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Indeed, fix @2 V?. Since \/()UA 1o Y,"", taking (36) and (37) into account,
we have .
d v
RV(e-Bmz)RY, V(@) = Tr M“{Y“B1) MUaV(B))
Tr MJ»'*(YC__ 1)M;Ypg

E

D
Bz MY, B1)Mien, ea

0 KO
af%,b02A |<—

th,b,i,jeb: eai= 0;

(38) now follows.
(ii))(i) By Proposition 5.4,

(39) Suem, ! Sv.

Let (Ri)T, v L(CX @C?, C*) be a family of Kraus operators of the quan-
tum channel implementing (39). Keeping the notation from the previous
paragraphs and reversing the arguments therein, we see that, if M; = R,
«-2 Uand @2 V?, then I

X D E
(40) Blpo,20 MJK_(\(—_K_ 17)Miepo, €q0 = 0.
a0,b02A
Thus, Xa,b,i,j = Oforalla,b2 A andalli,j=1,...,m.
Lettinlg :Ma ! My B Mgz be the unital completely positive map given by
Il Mi!M afid setting Ea p = (=2 ), weseethatE = (Eap)apisa

stochastic operator matrix acting on CZ. By [30, Theorem 5.2], there exists a
*-representation * : Cx a ! B(C?) such that (T(exx0,a,20))xx0,a,a0 = E. Let
:Myxx ! Maa be the linear map given by

oy, x0 Bl =y vo = Tr(? (ex,xﬂ,a,aoeyﬂ,y,bo,b)) 2,a0,b,t° 7

thus, is a tracial quantum QNS correlation and, by (40) and the previous
paragraphs,

h (¢-e-), (@ B)di= Tr(E{Y.. BYsE1A)ELY “BY“B1z)) = 0.
It follows that h (¢-«-'), Py i = 0 for every «- 2 U, giving h (Py), Pv
' i =0.

I&—

Remark 5.6. It was shown as part of the proof of Theorem 5.5 that, for
symmetric skew spaces U v CX BCX and V v CA B CA, we have that

U ! v if and only if there exist a finite-dimensional algebra A, a unital

comple]g,ely positive map : Ma ! My B A with Kraus representation
(T)= 7, MiTM, such that
(41) M(V(U)Uy ' B1A)M; vV V(V)UL Y 0j=1,...,m.

The same arguments allow us to conclude the equivalence (i),(ii) in the
following statement.
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Theorem 5.7. Let X and A be finite setsand U vV CX BCX, VV CARCA
be symmetric skew spaces. The following are equivalent:

(i) U fv;
(ii) there exists a unital completely positr;ve map :Ma! My BCxa
with Kraus representation (T) = i”z‘l MiTMi*, for which inclu-

sions (41) hold;

(iii) there exists a von Neumann algebra N with a faithful normal tracial
state @ and a unital completely pPositive map :Ma! My BN with
Kraus representation (T) = i”:l MiTMi*, for which inclusions
(41) hold.

Proof. The equivalence (i),(ii) was pointed out in Remark 5.6. The impli-
cation (iii))(i) is similar to that of (ii))(i) of Theorem 5.5. For (ii))(iii),
we take N = 75(Cx,a)%, where g is the GNS representation of @; if «- is the
cyclic vector of T then h(-)¢-, «-i is a faithful normal trace on N. e

Let S v My and T v My be operator anti-systems. Stalhke writes [29]

S | T if there exists a finite set B and a state == 2 M * such that$ B« !
T ; in this case he says that there exists an entanglement assisted
homomorphism from S to T.

Corollary 5.8. Let G, H be graphs. Then
UG !q UH :) Sg !K- S|_(|J

Proof. First observe that SOG = \/(Ug)UX 1. The statement now follows from
Remark 5.6. -

In the next corollary, we partially improve [30, Proposition 10.5] by pro-
viding a lower bound on the relaxed orthogonal rank «-4(G).

a____

Corollary 5.9. If G is a graph then <-4(G) v (G).
Proof. We observe first that
«-q(G) = min{|A] :Ug 1 hmai’}).

Moreover, v (hmai?)U,* = (Cla)?, and hence Ug @ hraAi? implies S2 1

(Cla)?. It follows from [29, Corollary 20] that «q(G) v (G).

I

5.2. Quantum colourings of graphs. Let G be a (finite) simple graph
with vertex set X. For x,y 2 X, we write x <-y when {x, y} is an edge
of G, and x ' y when x «-y or x = y. The classical-to-quantum colouring

game 'AG : P)C('X I Paa is determined by the requirements
2da ifx=1y
A [ e - -7 ;
G( x,x y,y)—>JA if x ¢ Y,

“ laa otherwise.
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In this subsection, we apply the previous results to give a description of per-
fect quantum commuting and perfect quantum strategies for the classical-
to-quantum colouring game in terms of quantum channels whose Kraus
operators respect certain containment relations. These relations define a
“pushforward” of the graph G into Mja or, in the terminology of Weaver
[33], into the quantum graph (S, M) withS = M = M. Namely, for avon
Neumann algebra N, equipped with faithful tracial state @, and a uni-tal

completeF]y positive map :Mp ! Dx BN with Kraus representation
(T)=" 1, MiT M, we consider the inclusion relations

(42) M{(Dx B1y)M; v Cla,, i,j2[m],

and

(43) MS2B1y)M; ? Clp, 102 [ml.

Definition 5.10. Let X and A be finite sets and G be graph with vertex set
X. A pair (N, ), where N is a von Neumann algebraand :Ma ! Dy
is a unital completely positive map with Kraus representation (T) =
T MiTM/<, is called a quantum colouring of G if conditions (42) and
(43) are satisfied.

Let RY denote an ultrapower of the hyperfinite Il;-factor R by a free
ultrafilter u on N and trgu be its trace.

Theorem 5.11. Let G be a graph with vertex set X.

(1) The following are equivalent:
(i) the classical-to-quantum colouring game ' AG has a perfect quan-
tum commuting strategy;
(ii) there exists a quantum colouring (N, ) of G, with N possessing
a faithful tracial state.
(2) The following are equivalent:
() "2 has a perfect approximately quantum strategy;
(ii) there exist a quantum colouring of the form (RY, ).
(3) The following are equivalent:
(i) "2 has a perfect quantum strategy;
(ii) there exists a quantum colouring (N, ) of G, where N is finite
dimensional.

Proof. (1) (i))(ii) Let E:Dxx ! Maa be a CQNS correlation, which is
a perfect quantum commuting strategy for ' é. Let @ be a trace on By, a
associated with E via Corollary 3.12, and N := % (Bx,a)%, where %y is the
GNS representation corresponding to @. If «- is the cyclic vector of %y, then
B(T) := hT<-, «-iis a faithful trace on N. Let : Myxx ! Maa be the
canonical lift of E to a QNS correlation:

('-'x,xo '-'ylyo) ( x,x0 y,yom(ex,a,bey,bo,ao))a,aO,b,bO

== x,x0 y,yU(?Ef(ex,a,bey,bU,aO))a,aO,b,bO-
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As ( xxotm(ex,a,a0)xx0,a,a0) is @ stochastic operator matrix, there exists a *-
representation ¥ : Cx,a ! N such that %(exxo,a,a0) = xxofm(€x a,a0), X, X
2 X0 a,a 2 AC Therefore is a tracial QNS correlation with

d ,
(PUG))I PV? = 0, where V = hmAI

As \/(V?)UA 1= Cl, and \/(UG)Lg( 1= SGO, Theorem 5.7 shows that the
unital completely positive map :Ma ! Dy N,Pgiven by  (*==3,a0)
= (T(ex,x0,a,a0))x,x0, has a Kraus representation (T) = m, MiT M¥ satisfy-
ing (43). As h (=, , Ble=, ), (2“F) i = 0 whenever & 2 V, similar arguments
show that (42) is satisfied. d

(ii))(i) Let Eapb = (=ap), @,b 2 A. Then E := (Eap)a,p is a semi-
classical stochastic operator matrix; thus, there exists a *-representation % :
Cx,a ! N such that (7(ex x0,a,a0))x,x0,a,a0 = E. Let :Mxx | Maa be the
QNS correlation given by

~ 0 0
('-’x,xo '-’y,yO) = (B(t (ex,xo,a,aoeyﬁ,y,bo,b)))a,ao,b,bO; X X,Y,y 2 X.

As T(exxo,a,a0) = 0 whenever x = x° we have that = xx . By
Theorem 5.7, h (PUG)' Pv_i = 0. It hence su ces to show that the CQNS
correlation lex is concurrent. p

Let Bl= " ,s[apealle, be orthogonal to ma; thus, a2a Baa = 0. Let
Yg = P a0 92 Pao o™ a0 po. We have to show that h (= , B =, ), (B )i
= 0.AS Mj (=x x@1n)M; 2 Cl, there exists x 2 C such that

(44) '-'a,aOI\K]lj ('-'x,x In )Mi'-'bo,b = ao%ho x*"™a,b,

for all a,a%b,b° 2 A. As in the proof of Theorem 5.5, let «=, = (=3 ,0)a0,
considered as a row operator over M4, and Mli'3 :CAECA ! CXECAEH bethe
operator 1'2(1M ), where L2:CARCXEH ! CXBCARH is the flip operator
defined on the elementary tensors by 112(<---1<---2<---3) = ¢@e-Be¢-3.Fix a,b

2 A. We have

xm X
Ebo,aObOO,aOO'-’a,aOMj ('-'x,xlN )Mi'-'bo,b'-'b,bOOMi ('-'x,xlN
)Mj'-'aoo,a i,j=1 a0,b0,a%0 H002A e
xm X

= oo ,a0h00,300*™="3,a0 Mj ('-'x, x@1n ) Epo, boo ('-’x,xl N

)Mj.-’aOO’a j=1 aO'bO’aOO’bOOZA

o (M) (om (Y LN )E (= BV 0Ly |

)M 1,3 =1

a
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On the other hand, by (44),
X

Blyo ,a0llh00,300™3 a0 r\_/lj (=x,x @ 1IN )Mije=po p*=, hooM; (= x B 1

)Mj'-'a%a a0,b0,300 h002A <

= an,aoaoo,aoo'-’a,anM I<_('-'x,x 1y )'Vli'-'aﬂ,ao0 M I<_('-'x,x 1n

a%,a%2A
)M){'-'aoola !
K
= .aO,aO'-'a,aofvI ('-'x,x 1n )Mi'-'ao,a
a02A
X !
i
e Bla0,20"="a,a0M K_('-'x,x In
JMije=30 2
a02A
X I X ' —
= P2020 x"™a,a 2020 x"™a,a =
0. a%2aA a02A

=a MY = BY By E (=yxBYg Bly) M e, = 0;
j=1

this implies E/2 (=,  BYg @1y )Mj1'3--a>"‘ = 0 and therefore

0= 9 1

X
(Tra g@ " EY2(wm,  BYgE1y )Mj1'3-;-'*---a](|v|1'3)'*(---” BYz@1y)EY/2A
j=1
(Tre § EY2 (e  BYgB1N) E w=,BY“B1y EY2D

h (o=, x B =y x) B, i

showing that is concurrent.

(2) (ii))(i) The arguments are similar to those in part (1): we first obtain
a *-representation ¥ : Cx o ! RY by letting (*(exx0,a,a0))x,x0 =  (*=a,a0),
and define

('-'x,xO '-'y,yO) = (trRU(?(ex,xo,a,aoeyﬂ,y,bo,b)))a,ao,b,bo-

We have that B := trgu 7 is an amenable trace on Cx,a ([6, Proposition
6.3.5 (1),(2)]). Hence the assignment sg(x B yopr) := B(xy) determines a
state on Cx,a Bmin Cx°R and if @: Cx A ! Cy RPis the *-isomorphism given by
@ (exx0,a,a0) = €x0,x,a0,a ([30, Theorem 7.7]) then s := sz (idEB@) is a state
on Cx,a Bmin Cx,a such that s(exxo,a,a0 Beyyobnn) = [E(exx0,a,a0€y0,y,b00)-
Applying [30, Theorem 6.5], we obtain that is an approximately quantum
QNS correlation. As = xx, by [30, Theorem 7.3], |p is an
approximately quantum CQNS correlation. The above arguments’aiso give
that is concurrent and satisfies h (Py ),Pyv i = 0.

(i))(ii) By Corollary 3.7(i’), a perféect approximately quantum CQNS
strategy  is determined by an amenable trace B on Bx,a. Hence there
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exists a *-homomorphism > : Bx o ! RY such that @ = trgu - (see
[15, Proposition 3.2]). The proof is completed similarly to (1)(i))(1)(ii).

(3) This part of the statement is similar to (1) and (2), and uses the
representation of quantum strategies established in Theorem 3.5. =

In the next two propositions, we clarify some useful properties of quantum
colourings. The first one is an automatic homomorphism result.

Proposition 5.12. Let X and A be finite sets, N be a von Neumann algebra
and : Ma ! Dy I;\I be a unital completely positive map with Kraus
representation (T)= " [, M;TM/. The following are equivalent:
(i) is a *-homomorphism;
(ii) condition (42) holds.
F
Proof. (i))(ii) oreacha,b2 A, we write (=34)=

a=bin A and 1@i,j B m, set
For

p
x2X =x,x A rx,a,b-

(45) Xa,b,ij = *=a,aM; (= x B1y)Mj=pp 2 Ma.

We have

)(n P )(n — —
Xa,b,i,jxa,b,i,j = -=.aM ('-'x,x 1y )Mj'-'q,bM ('-'x,x 1y )Mi'-'a,a

|
j=1
5 1
X
=a,aM; ('-’x,x 1n) @ v,y ry,b,bA ('-'x,x 1n )Mi'-'a,a
y2X

i=1

= "™3,a I\7|i ('-’x,x rx,b,b)Nli'-'a,a

(46) : R :

- / 2
= -_.a I\Wi - Ijr?(,b,b '-’a,aMi eX,x]Iﬁ rx,b,b

N} =

where we have used the fact that ey is positive. Let
’

(47)  Yapi= =o' = B x2X,a,b2A,i=1,...,m

p
By (46), j"ll Xa,b,i,iXah,ij = Yab,iYap,;- Furthermore,
xm X & d
. 2 2
Ya,b,iYa,b,i = X, X r])/,b,b Mj=3 a mi '-'x,xﬁ
F,b,b
i=1 i=1
. 1
1/2 2
= "™xox rx/,b,b @ vy "y,a,% =X, X ud
T,b,b
. y2X,
H M 2,
— o 1/2 1/2 1/2 172
(48) = xox rx,b,brx,a,a rx,b,brx,a,a

Since is a homomorphism, ri/bzbr)l(l/jla = Iybblxa,a = 0ifa= b. By (48), it

follows that Y, p,; = O for all i and all a = b. Using (46), we have X3 ,i,j = O
for all i, j and a = b. By (45), this forces M;“(==y x 11N )M;j 2 Da.
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Next, we show that Mf(--'x,x 1n)Mj liesin Cla. We set

a,x,i,j = PTr ('-'a,ami ('-'x,x 1n )Mj'-'a,a)}

then Mi'“(--'x,x B1n)Mj = 54 axii™aa- TO establish (iii), it su ces
toshow that 5 x,ij= 1, foralla,b2 A.
Set

(49) Ca,b,x,i,j = "™3a I\ﬁi ('-'x,x In )Mj'-'a,a =a,bM; ('-'x,x In )Mj'-'b,a

[l

and observe that

Ca,b,x,i,j = ( a,x,i,j b,x,i,j)'-'a,a-
We note that =3 s M (= x B 1N )My o5 = =y M (g B 1y )Mo= 5 =
0, Since M; (=, @ 1n)Mj 2 Da. Therefore,

(50) Ca,b,x,i,j = ('-'a,a '-'a,b)l\ﬁi ('-'x,x 1n )Mj('-'a,a + '-'b,a)-

Since

('-'a,a + '-'b,a)('-'a,a + '-'a,b) = "™5at ™abpt ™pat ™bb,
by summing over j and setting dx,ab = rxa,a+ xab+ Mxba+ Mxbb 0, we
obtain

xm
1€
(51) Ca,b,x,i,jca,b,x,i,j = (=22 *"™=a,b)M; (=xx Bdxab))Mi(=aa
=h,a).i=1

Let gx,ab 2 N satisfy gx,a,bg;,a,b = dy,a,b and define

(52) Da,b,x,i = ('-'a,a '-'a,b)mi ('-'x,x gx,a,b)-
By (51),
xm
Ca,b,x:i:jca,«g,x,i,j = Da,b,X,iDa,b,x,i'
i=1 1

Set fx,ab = 'xa,a Ixab Ixbat 'xbb and note thatfy s, 0 and

Xm
(53) Da b x,iDa,b,x,i
i=1

('-'x,x gx,a,b)Mi('-'a,a '-'b,a)('-'a,a "|"a,b)M I(_('-'x,x gx,a,b)
=X, x gl(;,a,b(rx,a,a x,a,b  Ix,b,a T rx,b,b)g;:a,b
=X, x (gx,a,bfx,a,ng,a,b)-
Since is a *-homomorphism, the element gx a b = rx,a,a+x,a,b Satisfies the
relation g, ;8x,a,b = dx,a,b. A calculation then shows that g« [ fx a,b8x,a,b =
0. By (53’),IDa,b,X,i = 0, and by (51), C4,b,x,i,j = 0. This forces x,a,i,j =
x,b,i,j for all a= b. Hence, Mi*("'x,x In)M;j 2 Cla.

(ii))(i) The assumption implies that M (==, \B1y)M; 2 Da, so equations
(45)—(48) show that rlx/'igrlx/ib = 0, and hence ry,a,arxbb = 0, whenever a
= b. Sinceeacheraa O and P = 1, we have that r)%,a'a = Ix,a,a

a2A r’<""'ap
foreach x 2 X and a2 A. As (™3,a) = ,5x ™xx@rya,a, the diagonal

X
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matrix unit =, 5 belongs to the multiplicative domain of for each a. In
particular,
X
('-'a,a) ('-'b,c) = ab ('-'a,c) = ab X, X
rx'a’cXZX

for all b,c 2 A.

Now, choose g« a,, wWith g:‘a 8a,x,b = dxab, and hy s p with h hy,ab =
fx,a,b. Our assumption on implies that C,,p,x,i,j = 0 foralla = b, %2 X and
all'i and j. By (49)—(53), g fica bBx,ab = 0, vielding gxaph « = 0.
Multiplying on the left by g* andabn the rlght by hy,a,b, we getdy a, bf(x ab =

Using the fact that = , ana ==, are in the multiplicative domain of , a
calculation shows that

(54) 0= dx,a,bfx,a,b = Ix,a,at I'x,b,b  Ix,a,bfxb,a I'x,b,alx,b,a-

Multiplying equation (54) on both sides by rxaa, we get 0 = rya.a

rx,a,blx,b,a- Therefore, ryaprxba = rxaa- Similarly, ryparx,ab = Ixb,b
so that =, , belongs to the multiplicative domain of . Since a,b 2 A were
arbitrary witha = b, must be a homomorphism, completing the proof.

Remark. We note that an alternative proof of the implications (iii))(ii) in
Theorem 5.11 can be given, using Proposition 5.12. We have decided to
present the given argument instead as it shows that, it order to conclude that
the game "g has a perfect strategy (of the corresponding class) one does
not need to necessarily resort to the fact that  has to be a homomorphism.

The next proposition shows the combinatorial meaning of (43).

Proposition 5.13. Let X and A be finite sets, G be a graph with vertex

set X, and N be a von Neumann algebra. Let T : Ma ! Dx BN be a
unital *-homomorphism with Kraus representation (T) = "j MTM*
and write T(==,}) = ox ™xx Brxab, where ryap 2 N, x 2 X a,b 2

A. The following are equivalent:

(i) condition (43) hoIds
(ii) if ve-win G, then a,b2a f'v,abfw,b,a = 0.

Proof. Let v <~ w in G, and define

X
Re,i,i= "™ c,b Mi ('-'v,w 1n )Mj'-'b,c, C2A,i,j2
[Mm]. b2A
Set
X
Te,i= "=c,a Fi('-'v,v

a2A

ew,a,c)-
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We have
X Xm
RC,i,j RCK_,I,J
c2Ai,j=1
X xm

= =c,a |\7|'i ('-'v,w In )Mj'-'a,c'-'c,b Mj ('-'w,v In
JMj=-, ca,b,c2Ai,j1

X xm
= “=c,a Mi ('-'v,w In )Mj'-'a,ij ('-'w,v 1In

)Mo=y a,b,c2A1,j%1

X xm .
= =c,a Mi ('-'v,w In)i ('-'a,b)('-'w,v 1n

)Mi'-'b,c a,b,c2A i=1

X xm
= “*c,a Mi ('-'v,v

Fw,a,b) M= ca,b,c2A i=1

X xm
= =c,a Mi ('-'v,v rw,a,c)('-'v,v

rw,clb) Mi'-'b,c a,b,c2A i=1

XX m
(55) = TC,iTc,Ii(_l
c2A i=1

On the other hand,

XX m X xm

T, Ji T ST ('-'v, v rw,c,a\)Nli'-'a,c'-’c,Kb—'\/Ii ('-'v,v
Fw,b,c) C2A i=1 a,b,c2A i=1
X xm

('-'v,v r'w,(:,a)lvli'-'a,brvli ('-'v,v

r"}('b'C) a,b,c2A i=1

= (= v B rw,ca)(=y,yBryab)(=yvyvErwpc)
a,b,c2A

(56) = =V F'w,c,afv,a,bfw,b,c-
a,b,c2A

Since T is a *~homomorphism,
0 10 1

13
X X X
(57) F'w,c,alv,a,bfw,b,c = @ F'w,c,a rv,a,cA @ Fw,c,alv,a,cA

a,b,c2A a,c2A a,c2A

Considering equations (55)-(57), it follows that condition (i) is equivalent to
having R¢,i,j = O for all c2 A and all i,j 2 [m]. The latter condition is in
turn equivalent to the condition Tr(M {= B 1n)Mj) = 0 for alli, j 2 [m].
The proof is complete. =
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5.3. Algebraic versions of the orthogonal rank. Recall that the or-
thogonal rank «-(G) of G is the smallest k 2 N for which there exists an
orthogonal representation of G in CX, that is, a collection (<-y)x2x of unit
vectors in Ck such that

X ¢y =) hey, eyi= 0,

In this subsection, we discuss algebraic and C*-algebraic versions of the
parameter «<-(G). To place this into context, we define the relaxed classical-

to-quantum colouring game as the game é : P;'X I Paa determined by

the requirements

(- .
1] ifx ey,

A
17; « »' = .
o (Rx B=yy) Iaan otherwise.

Let x 2 {loc, q, ga, gc}. We consider the following two parameters:
«x(G) = min{|A| : there exists a perfect tracial x-strategy for 2},
which we call the relaxed orthogonal x-rank of G, and
<-9x(G) = min{]|A| : there exists a perfect x-strategy for 'AG },

which we call the orthogonal x-rank of G (we set <4 (G) = 1 if there is no

perfect strategy for "g for any A). These parameters were introduced in

[30, Subsection 10.1] as quantum versions of the orthogonal rank. We note
the following:

(i) Since ’2 is more restrictive than é, we have that < (G) @ ¢
(G); (ii) By [30, Proposition 10.3], we have <-oc(G) = «-(G). On the

C
other loc

hand, if |[A| > 1 then ¢« (G) = 1;
(iii) By [30, Proposition 10.5], <% (K42) = &-4.(Kgq2) = d, and

hqence € [ [X|]+ 1. By Corollary 5.9, «-4(Kq42) = d.
Taking into account Remark 3.11, we see that the ideal I('AG) of Bx,a is
given by % 8 9,
< X =
(") = . €x,a,b€y,b,a + X €Y ,
a,b2A !

that is, B ( 'AG) is the universal *-algebra generﬁxted by matrix unit systems
(ex,a,a0)a,a02a, X 2 X, subject to the relations a,b2A €xa,bey,ba = 0 when-

ever x «-vy. Similarly, B('é) is the universal C*-algebra generated by such
matrix unit systems, subject to these relations.
Corollary 3.12 implies the following characterisations:

Corollary 5.14. Let G be a graph with vertex set X. Then

(i) The quantum commuting colourings of G correspond to traces of
B('&). In particular,

<-QqC(G) = min{|A] : B(AG) possesses a tracial

state}, and



SYNCHRONICITY FOR QUANTUM NON-LOCAL GAMES 45

(ii) The quantum colourings of G correspond to finite dimensional traces
of B('&). In particular,

<-9q(G) = min{|A| : B(";) possesses a finite dim. *-representation}.

Proof. Suppolge that @ is a tracial state on Cx, a that annihilates the gener-

ators Ax,y = 4 paa €xabBy,ba, X <=y, of I(' ). Note that
X X
A;,yAx,y = €y,a,b€x,b,ax,c,dCy,d,c = €y,c,b€x,b,d€y,d,c;
a,b,c,d2A b,c,d2A

it follows that
0 1

X
(A;,yAx,y) = |A| @ ex,b,dey,d,bA =
0.

b,d2A

Combining this with the Cauchy-Schwartz inequality we obtain the state-
ments. =

Definition 5.15. (i) The algebraic orthogonal rank «<-5¢(G) is the
small-est cardinality of a set A for which. B (' A) = {0}; if such A
does not exist, set «5g(G) = 1;
(ii) The C*-algebraic orthogonal rank «¢ «(G) is the smallest cardinality
of a set A for which B('é) = {0}; if such A does not exist, set
¢ce(G)= 1.

roposition 5.16. Let G be a graph with vertex set X. Then ¢-¢c«(G)

7”((—('3). Moreover, ¢-c«(Kq2) = d.
Proof. If «¢ «(G) = 1 then the inequality is trivial, assume hence that
B("g) = {0}. Since B('AG) is separable, it possesses a faithful state s. Let 7
be the corresponding GNS representation and «- the corresponding cyclic
vector. Set Exap = T(exab) and ¢xap = Exap¢, X 2 X, a,b 2 A. The
proof of the inequality is now concluded in the same way as the proof of (30,
Proposition 10.5].

For the equality, realise A = Z 4= {0,1,...,d 1}andletX = A-1A. Let

{ be a primitive |A|-th root of unity and, forx = (a% b% andy = (a®,b%) 2 X,
set

Exz0 = 4@ e 6% 02 Ma, x = (%1% 2 X,2,2°2 A.

For x = (a%b%) and y = (a%®,b®) with x = y, we have
X

1 (20 )b (2 Zo)boo(

Ex,z,zOEy,zO,z = e; aoe:_o ao)(ezo aoog'(_

aoo)z,ZOZA X z,202A
' (20 0 00
= 20 20,20 g© 7z a0,z aoo~’y(Z Z)(b% b )| = 0.
z,202A
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In addition,
(20 2)b0; (200 20y 0 - -
Ex,z,20Ex,20,200 = *"( ) *"( )b (e, a0€, o 30)(e20 a0§
s (200 7)b0 “
a°)= ¢(Z 2) €; a0€ o Zo;
thus, B("; ) is non-trivial. =
d2

As the next proposition shows, the algebraic orthogonal rank can be
strictly smaller than the C*-algebraic one.

Proposition 5.17. <-5g(Kg2) = 2 foralld 2.

Proof. We first show that ¢-5g(K42) @ 2. The case of d = 2 follows from
Proposition 5.16, so we assume that d 3. By Proposition 5.16, the algebra
of the (classical) 4-colouring game for K42 is non-zero. Hence, there are self-
adjoint idempotents py,w in_a non-zero, unital *-algebra A, for 1@ v E@d 2
and 1 @ w @ 4, such that i/=1 pvw = 1 forall v, pywpyv: = 0ifw= 2,

and

(58) PuwPv,w =0, u=v.

By Proposition 5.16, the algebra B('Q4) is non-zero when |A| = 2. Hence,
there are elements e, 5 b in a unital «-algebra B, foPr 1Bx@4and 1B a,bl@2,

— — 2 —
such that exa,b€x,c,d = b,cBxa,ds €535 = €xb,as 5-1€xaa = land
XZ
(59) €x,a,by,b,a = 0, x=y.
a,b=1

For 1Bv@d? and 1@ a,b &2, define
X4
fv,a,b = Pv,w Bew,ab 2 A BB.
w=1
We will show that the elements f, 5, satisfy the requirements of the gen-
erators for the classical-to-quantum colouring game for K42 with |A| = 2.
Observe that

x4 X4
fv,a,bfv,c,d = Pv,wPv,z 2 €w,a,b€z,c,d = Pv,w & ew,a,blw,c,d
w,z=1 w=1
X4
= bec Pv,w 2 €w,a,d = b,cfv,a,d-
w=1

Since py\ = pv,w and e;a'b = ew,b,a, We have fv'f‘a’b = fy p,a. In addition,

X2 X2 x4 X4
fv,a,a = Pv,w Bew,a,a = pvwBl=1B1

a=1 a=1lw=1 w=1
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Lastly, using (58) and (59), assuming that u = v, we have

2§ f 2 4
X X X
u,a,b v,b,a = Pu,wPv,z & €w,a,b€z,b,a
a,b=1 a,b=1w,z=1
X4
= PuwpPv,w B1= 0.
w=1

Thus, there is a unital *-homomorphism from B ( 'AK dZ) to ABB with |A] = 2,
SO ‘"'alg(KdZ) 2.

It remains to show that ¢-55(Kq2) 2. To this end, we show that
B('R ,)={0}if |A]| = 1. When |A| = 1, the relations defining B ("'{ ,) re-
duce t% having generators qyaa, @ 2 A, 1@ v Bd?2, such that qj aa =

e . a2A re
1, q\l(,_aa = 0Ov,a,a and Gv,a,alw,a,a = 0 for v = w. Since |A] = 1, the first
relation implies that qy 2, = 1 for all v,a. Then since n 2, we may choose
1@ v,w B d? with v = w. Since we must have Qy,a,a0w,a,a = 0, it follows
that 1= 12= 0in B('Adz ). Hence, <-a1g(Kq2) 2.

le—
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