
Page Proof

June 22, 2022 20:46 WSPC/0219-8762 196-IJCM 2250025

International Journal of Computational Methods1

(2022) 2250025 (24 pages)2

c© World Scientific Publishing Company3

DOI: 10.1142/S02198762225002564

5

Multiscale Modeling of Metal-Ceramic Spatially6

Tailored Materials via Gaussian Process Regression7

and Peridynamics8

Ahmed El Tuhami9

Department of Mechanical Engineering10

The University of Iowa11

Iowa City, Iowa 52242, United States12

ahmed-eltuhami@uiowa.edu13

Shaoping Xiao∗14

Department of Mechanical Engineering15

Iowa Technology Institute16

The University of Iowa17

3131 Seamans Center18

Iowa City, Iowa 52242, United States19

shaoping-xiao@uiowa.edu20

Received21

Revised22

Accepted23

Published24

In this paper, a micro-to-macro multiscale approach with peridynamics is proposed to25

study metal-ceramic composites. Since the volume fraction varies in the spatial domain,26

these composites are called spatially tailored materials (STMs). Microstructure uncer-27

tainties, including porosity, are considered at the microscale when conducting peridy-28

namic modeling and simulation. The collected dataset is used to train probabilistic29

machine learning models via Gaussian process regression, which can stochastically pre-30

dict material properties. The machine learning models play a role in passing the infor-31

mation from the microscale to the macroscale. Then, at the macroscale, peridynamics32

is employed to study the mechanics of STM structures with various volume fraction33

distributions.34

Keywords: Multiscale; spatially tailored materials; Gaussian process regression; peridy-35

namics.36

1. Introduction37

As technology advances in materials science, new generations of composites take38

the spotlight in day-to-day applications. One set of these next-generation materials39

∗Corresponding author.
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is the class of materials known as spatially tailored materials (STMs) [Birman et al.1

(2008)], also called functionally graded materials (FGMs) [Naebe and Shirvani-2

moghaddam (2016)]. STMs are composite materials in which the volume fraction3

of individual material phases varies spatially. In addition to offering the expected4

benefits of composites, STMs take advantage of their constituent phases in ways5

that a traditional composite cannot. Particularly, STMs can tailor the thermal and6

mechanical responses due to the spatial variation (or gradient) in their material7

properties [Deierling et al. (2021)]. Thus, they have many promising applications in8

biomedical, defense, and structural engineering [Akshaya et al. (2021)].9

There has been a growing interest in titanium–titanium boride whisker10

(Ti-TiBw) composites over the past 10 years [Morsi (2019); Morsi and Patel (2007)].11

TiBw reinforcements in the form of particulates or whiskers eliminate the disadvan-12

tages of Ti, including poor wear resistance and relatively low stiffness. Many exper-13

imental works have been done on this metal–ceramic STM family, including Ti-TiB14

STMs. Sahay et al. [1999] examined the evolution of microstructure and phases in15

Ti-TiB composites processed in situ, and they found high-volume fractions of TiB16

whiskers. In another work, Patil et al. [2019] investigated Ti-6Al-4V alloy with the17

addition of varying amounts of TiB2. They discovered that the hardness and wear18

performance of Ti(Ti-6Al-4V)-TiB2 were dramatically improved when the weight19

fraction of TiB2 was increased. They also observed that the microstructure changed20

from a martensite lath to a refined bimodal structure. Additionally, they found that21

the porosity reduced the material density by 1 ∼ 2%. Shishkovsky et al. [2017] uti-22

lized a selective laser melting process to incorporate TiB2 of submicron sizes to the23

titanium substrate. They investigated the microstructure via SEM and identified24

two types of heterogeneity: TiB2 particles at the interlayer interfaces and element25

chemical segregation on the boundaries of the tracks.26

To study STMs via numerical modeling and simulation, one of the current stan-27

dard practices is using principles of micromechanics [Ghossein and Lévesque (2012)]28

and homogenization of representative volume elements (RVEs) to calculate aver-29

aged material properties for macroscale simulations. For example, Deierling and30

Zhupanska [2018] employed finite element method (FEM) simulations with RVEs31

to estimate graded microstructures’ effective spatially varying material properties32

over a wide temperature range. Then, the estimated material properties were used in33

macroscale FEM simulations to study thermomechanical responses of STM struc-34

tures under a combination of thermal and mechanical loading. They also used a35

similar numerical modeling framework to study metal-ceramic composite panels36

subjected to high-speed flow [Deierling et al. (2021)]. Xing and Miller [2021] pre-37

sented a new continuous–discontinuous multiscale modeling approach to failure in38

quasi-brittle materials to address two major issues of conventional homogenization39

techniques: macroscale mesh sensitivity and RVE size dependence. However, the40

homogenization techniques can smear the effects of microstructure uncertainties on41

material properties.42
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There are other pioneering works in multiscale modeling and simulation of com-1

posite materials. Leonetti et al. [2018] proposed a novel multiscale strategy to ana-2

lyze damage of masonry structures, which were modeled as periodic composites.3

Their multiscale/multidomain model has an adaptive capability of automatically4

zooming in on the zones incipiently affected by damage onset. In another work,5

Trovalusci et al. [2017] presented a two-step multiscale procedure for describing the6

constitutive behavior of hierarchically structured particle composites. They con-7

sidered three nested scales (micro, meso, and macro scales) and utilized homog-8

enization techniques for scale transitions. In addition, a combination of molecular9

dynamics and micromechanics is developed to predict Young’s modulus of fullerene-10

reinforced polymer composites [Izadi et al. (2021)]. More works were reviewed in11

[Trovalusci et al. (2009)] and [Kanouté et al. (2009)].12

The above-mentioned works employed either the hierarchical multiscale architec-13

ture [Xiao and Yang (2006); Xiao and Yang (2007); Yang and Xiao (2008); Ghaffari14

et al. (2018)] or the concurrent multiscale strategy [Xiao and Hou (2007)]. Both of15

them are common approaches to studying the mechanics of composite materials and16

have benefited from machine learning (ML) and deep learning (DL) recently [Alber17

et al. (2019)]. Anitescu et al. [2019] and Samaniego et al. [2020] utilized the energy18

of a mechanical system as the loss function of artificial neural networks (ANNs) in19

an adaptive collocation strategy to solve partial differential equations for the studies20

of composites. Liu et al. [2019] proposed a data-driven multiscale method enhanced21

via a deep material network to approximate complex overall material responses of22

heterogeneously structured composites. In another study, White et al. [2019] used23

an ANN-based surrogate model to predict the microscale metamaterial’s elastic24

response and optimize macroscale elastic structures. In addition, Xiao et al. [2019]25

developed an ML-based multiscale method, in which the datasets collected from26

molecular simulations were used to train ML regression and classification models27

for continuum simulations.28

Ly et al. [2022] integrated deep learning and genetic algorithm to solve multi-29

objective optimization problems of laminated functionally graded carbon nanotube-30

reinforced composite quadrilateral plates. Rohit et al. [2021] developed a coupled31

approach of finite element method and meshfree method with swarm intelligence-32

based stochastic zero-order search procedure for shape optimization problems.33

In another work, a combined element-free Galerkin and discrete element meth-34

ods approach [Wang et al. (2020)] was presented to approximate the interactions35

between continuum bodies and granular soils. This approach could be an efficient36

and promising tool to model multiscale, multibody contacting problems. Other37

recent achievements include a multiscale multi-permeability poroplasticity model38

[Wang and Sun (2018)], a 3D architecture of deep material networks [Liu et al.39

(2019)], and a neural-network-assisted multiscale analysis [Balokas et al. (2018)].40

This paper proposes a hierarchical multiscale approach, enhanced by probabilis-41

tic ML, to study the mechanics of metal-ceramic STM structures via peridynamics.42
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The contribution of this paper lies in training probabilistic ML models via Gaus-1

sian process regression (GPR) to bridge the microscale and the macroscale with2

the consideration of microscale uncertainties. Recent work by some of the authors3

[Xiao et al. (2021)] employed a similar approach to study metal-ceramic STM struc-4

tures via FEM. However, only deterministic predictive models were trained to pass5

material properties from the microscale to the macroscale. In addition, there was6

difficulty in generating STM microstructure configurations at volume fractions close7

to 50%, so only composites with volume fractions less than 25% or greater than 75%8

were modeled and simulated at the microscale to collect the dataset. This issue is9

resolved by using peridynamics in this paper. Furthermore, porosity and its uncer-10

tainty at the microscale are uniquely considered in this study but not in the previous11

work [Xiao et al. (2021)].12

The outline of this paper is as follows. After the introduction, Sec. 2 describes13

metal–ceramic STMs, peridynamics, microstructure uncertainties, Gaussian process14

regression, and the proposed multiscale framework. Section 3 narrates microscale15

simulations, data collection, and ML model training. Macroscale simulations of STM16

structures with the implementation of ML predictive models are discussed in Sec. 4,17

followed by conclusions and a future outlook in Sec. 5.18

2. Material and Methodology19

2.1. Metal-ceramic spatially tailored materials20

We use the metal–ceramic Ti-TiB2 STM as an example in this paper to illustrate21

multiscale modeling and simulation of STM structures via the proposed approach.22

It is common to model an STM as a continuously variable composition material23

with the volume fractions varying in space. The ceramic volume fraction (CVF),24

a function of spatial coordinates, is used to distinguish the compositions of two25

materials (Ti and TiB2) at a particular material point. It is obvious that Ti is26

the matrix material when the CVF is less than 50%, and the STM is a metal-like27

composite material. On the other hand, if the CVF is greater than 50%, the STM28

is a ceramic-like material since TiB2 is the matrix material.29

Considering a plate made of Ti-TiB2 in which the volume fraction varies along30

with the thickness, the CVF, vf , can be determined via a power-law distribution31

vf (z) = v0 + (v1 − v0)
( z

h

)n

, (1)

where z is the depth, and h is the thickness. It is assumed that v0 = 0 and v1 = 1.032

are the CVFs at two surfaces where z = 0 and z = h, respectively. n is the param-33

eter to control the ceramic content distribution. n = 1 is for the linear distribution34

while n = 2 (quadratic) and 0.5 (square root) are for the nonlinear distributions.35

The numeric changes of CVF along with the thickness via three different distribu-36

tions are shown in Fig. 1. In addition, Fig. 2 includes artificially generated images37

to demonstrate the content changes of Ti (represented via white) and TiB2 (repre-38

sented via black) when using different CVF distributions.39
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Fig. 1. The ceramic volume fraction distributions.

(a) Linear (b) Square root (c) Quadratic

Fig. 2. Artificially generated images of STM with various CVF distributions

It is permissible that the CVF varies in more than one spatial direction. In1

the case of a two-directional STM structure, the CVF changing in space can be2

formulated by the following:3

vf (x, y) = v0 + (v1 − v0)
[

ηx

( x

L

)nx

+ ηy

( y

H

)ny
]

, (2)

where x and y are the coordinates in the horizontal and vertical directions, L and4

H are the total width and height, and ηi and ni are parameters controlling the5
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(a) nx = ny = 1.5 (b) nx = 1.5, ny = 0.5

Fig. 3. The contours of CVF distributions in 2D STM plates.

Table 1. Material properties of Ti and TiB2 at 20◦C.

Young’s modulus Poisson’s ratio Density Tensile strength
E (GPa) ν ρ (kg/m3) σt (GPa)

Ti 106.2 0.298 4357 1.17
TiB2 495.4 0.100 4505 3.73

ceramic content and profile in each direction. v0 = 0 and v1 = 1 are the minimum1

and maximum CVFs, as assumed above. Figure 3 shows the contours of CVFs in2

2D plates when two control parameters, nx and ny in Eq. (2), are assigned with3

various values while ηx and ηy are kept as 0.5.4

In addition, the material properties of Ti and TiB2 at room temperature (20◦C)5

are listed in Table 1 according to references [American society for metal (1979);6

Munro (2000); Wiley et al. (1969)].7

2.2. Peridynamics8

Peridynamic theory [Silling (2000); Silling and Lehoucq (2010)] is a nonlocal model9

in which the partial differential equations from classical continuum mechanics are10

reformulated and replaced with integral equations instead. It has been successfully11

applied to fracture mechanics [Bobaru and Zhang (2015); Silling and Askari (2014)]12

as well as the studies of plastic deformation [Madenci and Oterkus (2016)], fiber-13

reinforced composites [Yaghoobi and Chorzepa (2017)], and heterogeneous materials14

[Jung and Seok (2016)]. Although state-based peridynamics [Silling et al. (2007);15

Silling (2010)] has been developed, bond-based peridynamics is employed in this16

paper. In a peridynamic model, the simulation domain is discretized with a number17

of equally spaced material points. A pairwise bond force vector f is exerted on18

material point x by material point x′, which is in the neighborhood Hx (with the19
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Fig. 4. The peridynamic bond in the reference and deformed configurations.

radius δ) of material point x. Figure 4 shows a visual representation of the reference1

and deformed state of a peridynamics virtual bond between x and x′.2

Correspondingly, a stress divergence term in the equations of motion is replaced3

by a volume integral of force density as4

ρü(x, t) =

∫

Hx

f(η, ξ, t)dV
x

′ + b(x, t), (3)

where ρ is the density, ü is the acceleration vector, and b is the body force vec-5

tor. ξ and η are the relative position vector and the relative displacement vector,6

respectively. They are defined as7

ξ = x′ − x x′ ∈ Hx (4)

and8

η = u(x′, t) − u(x, t), (5)

where u is the displacement. Letting ü(x, t) = 0 will reduce the peridynamics to9

peristatics.10

In the näıve peridynamics, the pairwise force density f is calculated based on11

bond strain s.12

f (η, ξ, t) = cs(η, ξ, t), (6)

where c is the micromodulus, and13

s(η, ξ, t) =
‖η + ξ‖ − ‖ξ‖

‖ξ‖ . (7)

According to the prototype microelastic brittle (PMB) material model [Silling14

and Askari (2005)], the critical stretch s0 for bond failure is introduced. Once the15

bond is stretched beyond the critical value, bond failure occurs, and the bond is16

broken.17

The above-mentioned classical formulation is for materials with a Poisson’s ratio18

of 0.25. To model more general materials, Zhu and Ni [2017] considered the effects19
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of bond rotation, and the reformulated pairwise force density function is rewritten1

as2

f(η, ξ, t) = csn + κγ, (8)

where c is redefined as the first micromodulus while κ is the second micromodulus,3

n = (η + ξ)/‖η + ξ‖ is the current stretch direction, and the shear strain vector γ4

can be calculated as5

γ(η, ξ) =
1

‖ξ‖η · (I − n ⊗ n). (9)

Given material with Young’s modulus E and Poisson’s ration ν, the micromoduli6

in 2D context are derived as7

c =
6E

πδ3(1 − ν)
, κ =

6E(1 − 3ν)

πδ3(1 − ν2)
(10)

for plane stress problems, and8

c =
6E

πδ3(1 + ν)(1 − 2ν)
, κ =

6E(1 − 4ν)

πδ3(1 + ν)(1 − 2ν)
(11)

for plane strain problems.9

2.3. Gaussian process regression10

The ML algorithm used to analyze the datasets in this paper is the GPR, in which11

the model parameters are random variables. GPR is a Bayesian approach [Gersh-12

man and Blei (2012)] to regression when considering both model uncertainty and13

data uncertainty. It is an attractive ML algorithm because it provides the capability14

to measure uncertainty in the predictions and be compatible with small datasets.15

Generally, the Bayesian approach works by specifying a prior distribution, P (w),16

on the model parameter w, and updating its probability distribution based on the17

data (X, y) used to train the predictive model. Data has input X and output y.18

Consequently, the updated distribution P (w |y, X) is the posterior probability dis-19

tribution and incorporates information from both the prior distribution and the20

training data. This can be done using Bayes’ Rule [Schulz et al. (2018)]:21

P (w |y, X) =
P (y|X, w)P (w)

P (y|X)
, (12)

where P (y |X, w) is the likelihood, and P (y |X) is the marginal likelihood or22

evidence. To get prediction y∗ at a point of interest x∗ that is not yet observed,23

the predictive distribution can be calculated by weighting all possible predictions24

by the posterior distribution of the model parameters.25

P (y∗ |x∗, y, X) =

∫

w

P (y∗ |x∗, w)P (w |y, X)dw. (13)

It shall be noted that GPR is a nonparametric method that is not limited by26

a functional form. GPR can calculate the probability distribution over all admissi-27

ble functions that fit the data instead of calculating the probability distribution of28
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parameters for a specific function. Similarly, a prior is set upon the function space,1

a posterior is calculated using the training data, and the predictive posterior distri-2

bution is defined on the points of interest. However, it is common that the prior and3

likelihood are typically assumed to be Gaussian for the integration to be tractable.4

With this assumption, the predictive distribution can be calculated. It also follows5

a Gaussian distribution that provides a point prediction using the mean and the6

uncertainty quantification using its variance. Consequently, the Gaussian process is7

similar to an infinite-dimensional multivariate Gaussian distribution.8

The approximate function, y = f(x), in GRP is distributed as a Gaussian9

process10

f(x) ∼ GP [m(x), k(x, x′)] (14)

which is a distribution over functions and is defined by a mean and a covariance11

function. The mean function m(x) = E[f(x)] evaluates the average of all functions12

in the distribution at the input x. The covariance function, k(x, x′) = E[(f(x) −13

m(x))(f(x′)−m(x′))], represents the dependence between the outputs at different14

input points x and x′. The covariance function serves as the Gaussian process kernel15

[Jäkel et al. (2007)], and it is chosen based on the smoothness and likely patterns to16

be expected in the data. Commonly used kernel functions are the constant, linear,17

square exponential, and Matern kernels. It is also possible to use a combination of18

multiple kernels. The kernel used to train the models obtained in this paper is the19

radial basis function (RBF) kernel, defined as follows:20

k(x, x′) = e−
1

2l2
‖x−x

′‖2

, (15)

where l is the length scale of the kernel as the hyperparameter that must be tuned21

to the data, and ‖·‖ is the Euclidean distance.22

To conduct regressions by Gaussian process model, the training dataset (X , y)23

and the predictions y∗ at new data points X∗ are joint multivariate Gaussian24

distributed, i.e., normal distribution. This can be expressed as25

[

y

y∗

]

∼ N
([

m(X)

m(X∗)

]

,

[

K K∗

KT
∗ K∗∗

])

, (16)

where K = K(X, X), K∗ = K(X , X∗), K∗∗ = K(X∗, X∗) are the covariance26

matrices, in which Kij = k(xi, xj). It leads to a normal distribution that is defined27

by the mean and covariance for the prediction28

y∗ |X, y, X∗ ∼ N (KT
∗ Ky, K∗∗ − KT

∗ K−1K∗). (17)

The Gaussian process regressor allows for easy prediction of values using the29

predict function after the model is trained. It is also possible to incorporate inde-30

pendently, identically distribution (i.i.d.) Gaussian noise in the regression model.31
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Fig. 5. A microscale/macroscale hierarchical multiscale method.

2.4. Multiscale modeling1

A hierarchical multiscale approach enhanced via ML is employed in this paper,2

as shown in Fig. 5, to study metal–ceramic STM structures. At first, vari-3

ous microstructure configurations at different CVFs are generated considering4

microstructure uncertainties, especially the uncertainty of porosity. Next, peridy-5

namics simulations are conducted on those microstructure configurations to calcu-6

late the material properties, including Young’s modulus, Poisson’s ratio, and failure7

strength. Then, GPR models are trained based on the collected dataset to pre-8

dict those material properties. Finally, given the composite CVF distribution, the9

material properties at each material point are predicted via the well-trained GPR10

models at the beginning of macroscale simulations. Consequently, probabilistic ML11

enhances the message-passing in this hierarchical multiscale method. The process12

details mentioned above are described in Secs. 3 and 4.13

3. Microscale Simulations and Machine Learning14

To collect data at the microscale, peridynamics simulations are performed on var-15

ious material microscale configurations, acting as RVEs, at each given CVF. The16

dataset is then used to train ML models to predict material properties for macroscale17

simulations.18

3.1. Microscale simulations19

The CVF of STM varies spatially at the macroscale. At each macroscale material20

point, it is assumed that the CVF is a constant at the microscale. All microscale21

models are generated with 2601 (51× 51) material points located within a 30 µm×22

30 µm plane. To generate STM microscale configurations, the material points in the23

simulation domain are randomly assigned as either metal or ceramic according to24

the given CVF. Although we do not consider the randomness of particle size and25

orientation [Xiao et al. (2021)], material points can form big particles or whiskers in26

the generated configuration, especially when the inclusion volume fraction is high27

enough. Furthermore, as a difference from the work in [Xiao et al. (2021)], the28

porosity is considered here because a 1% ∼ 2% reduction in the material density29

has been observed in Ti-TiB2 STM images [Patil et al. (2019)].30

2250025-10
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Fig. 6. Occurrence probabilities of the number of vacancies.

The addition of porosity into a microscale configuration is performed by ran-1

domly removing a small number of material points to generate vacancies in the2

simulation model. The number of vacancies is determined by the number of Pois-3

son points in a homogeneous Poisson point process [Xiao et al. (2008)]. In a finite4

two-dimensional plane, the probability of the number (k) of Poisson points (i.e.,5

vacancies or removed material points in this paper) can be written as6

P (k) =
e−λk(λA)k

k!
k = 1, 2, 3, . . . , (18)

where A is the plane area, and λ is the Poisson point density that is the number of7

vacancies per area. In this paper, the plane area is A = 900 µm2, and an averaged8

porosity of 1.5% is chosen. Therefore, λ = 0.043 µm−2 is defined for the microscale-9

configuration generation. The probability distribution of the number of vacancies is10

shown in Fig. 6. It can be seen that, for example, the occurrence probability of 3311

vacancies in a generated microscale configuration is 4%. In other words, if a total12

of 1000 STM configurations are generated for microscale simulations, there are 4013

configurations in which 33 material points are randomly selected and removed.14

Figure 7 illustrates four microscale STM configurations at different CVFs:15

12.5%, 25%, 50%, and 75%. The numbers of vacancies are 48, 46, 40, and 31, respec-16

tively. In our previous work [Xiao et al. (2021)], once the number of ceramic particles17

and the particle sizes were randomly selected, we randomly deposited the particles18

in the simulation domain before generating meshes. It was difficult to randomly19

place the particles without overlapping when the CVFs are higher than 25%. Fig-20

ure 7 shows that the peridynamic model does not suffer the difficulty in configura-21

tion generation as indicated in Xiao et al. [2021], especially at the transition from22

metal-based composites to ceramic-based composites when CVF = 50%. It shall be23

noted that even at the same CVF various microscale configurations of STM can be24

generated due to the randomness of inclusion and vacancy locations.25

It is assumed that the simulated 30 µm×30 µm plane has a thickness of 1 µm, and26

plane stress problems are considered. In the peridynamic model, ∆x = ∆y = 0.6 µm,27

2250025-11
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(a) CVF = 12.5% (b) CVF = 25%

(c) CVF = 50% (d) CVF = 75%

Fig. 7. Microscale configurations of STM with various CVFs (gray represents metal, black repre-
sents ceramic, and white represents vacancy).

and the horizon radius δ = 1.6∆x is chosen. There are three different types of1

bonds in the model: metal–metal, ceramic–ceramic, and metal–ceramic. With the2

material properties listed in Table 1, the first and second micromoduli can be3

calculated as cm = 326.01GPa

µm3 , κm = 47.94GPa

µm3 for metal–metal bonds, and as4

cc = 1188.83GPa

µm3 , κc = 756.53GPa

µm3 for ceramic–ceramic bonds. In addition, the5

PMB material model [Silling and Askari (2005)] is used with constant values of6

the critical stretch, s0m = 0.011 and soc = 0.008 for metal–metal and ceramic–7

ceramic bond failure, respectively. The critical stretches are calculated based on the8

material tensile strengths. Furthermore, the combining rule is applied to determine9

the corresponding properties of metal–ceramic bonds: cmc =
√

cmcc = 622.55GPa

µm3 ,10

κmc =
√

κmκc = 190.44GPa

µm3 , and s0mc =
√

s0ms0c = 0.0094.11

Peridynamics is employed to conduct the simulations, in which the generated12

models are subject to the uniaxial tension by applying the prescribed displacement13

on the top and fixing the bottom. A low strain rate is maintained so that the quasi-14

static analyses can be approximated by the conducted dynamic simulations. The15

stress is evaluated at the middle cross-section by dividing the vertical component16

of the total bond force by the cross-section area. Young’s modulus is calculated17

at 0.005% strain, while Poisson’s ratio is determined by the ratio of horizontal to18
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Fig. 8. Stress-strain relationships of composites with various CVFs.

vertical displacements. Since the enforcement of boundary conditions cannot be1

directly applied on the boundary material points in peridynamics, fictitious walls2

[Ghaffari et al. (2019)] are applied to eliminate such edge softening phenomena3

[Nishawala and Ostoja-Starzewski (2016)].4

Figure 8 illustrates the stress-strain relationships of metal–ceramic STMs with5

various CVFs. Each stress–strain curve is obtained from one simulation with a6

randomly generated configuration. Theoretically, the composite with a larger CVF7

achieves a higher failure strength because the ceramic’s failure strength is higher8

than that of the metal, as shown in Fig. 8. On the other hand, the composite with9

a higher CVF will have a smaller failure strain because the ceramic’s failure strain10

is smaller than that of the metal. However, due to the microstructure uncertainty,11

especially the porosity considered in this paper, Fig. 8 shows that the simulated12

composite with 75% CVF has a bit larger failure strain than the one with 50%13

CVF. It is worth mentioning that when we conduct more simulations on various14

configurations for each CVF, we do observe that the composites with a larger CVF15

have a smaller averaged failure strain.16

3.2. Data collection and machine learning17

There are 25 microscale configurations generated at each CVF from 0% (metal only)18

to 100% (ceramic only) with 1% apart to collect data. Each simulation generates19

one data sample so that the collected dataset consists of 2525 data samples, in which20

the input feature is the CVF while the output targets include Young’s modulus,21

Poisson’s ratio, and failure strength. A few commonly used analytical formulas22

[Voigt (1887); Reuss (1929); Hashin and Shtrikman (1963)] that predict the material23

properties of composites are used here to validate the simulation results. Voigt24

[1887] assumed a uniform strain field to derive the effective mechanical properties25

of composite materials, while Reuss [1929] estimated the effective compliance tensor26

of composites by considering a uniform stress field. In another work, Hashin and27

Shtrikman [1963] (H-S) proposed the upper and lower bounds of elastic properties28
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Fig. 9. Calculated material properties compared to the analytical solutions.

Fig. 10. Failure strength and its probability distributions at various CVFs.

of composites based on variational principles of the strain energy. Our calculated1

Young’s modulus and Poisson’s ratio fall in the range of those analytical solutions,2

as shown in Fig. 9, in which H-S+ and H-S- represent the upper and lower H-S3

bounds, respectively.4

Figure 10 shows the collected data of failure strength. At a particular CVF, the5

failure strength follows the Gaussian distribution. Figure 10 also shows the proba-6

bility distributions of composite failure strength at three different CVFs: 25%, 50%,7

and 75%. Obviously, the composite with a higher CVF has a higher mean failure8

strength and a larger standard deviation. The probability distributions of Young’s9

modulus and Poisson’s ratio are shown in Fig. 11. Averagely, the composite with a10

higher CVF has a higher Young’s modulus and a smaller Poisson’s ratio.11

Three ML models are trained via GPR to predict Young’s modulus, Poisson’s12

ratio, and failure strength for the composite with a given CVF. The radial basis13

function is used as the kernel function in the regression models. The mean values14

and the 95% confidence intervals are shown in Fig. 12. It is important to note that15

GPR, as one of the Bayesian machine learning methods, does not learn a specific16

value for each input but rather a probability distribution over all real numbers.17

The predictions are sampled according to the learned probability distributions. In18
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Fig. 11. The probability distributions of Young’s modulus and Poisson’s ratio at various CVFs.

Fig. 12. Predictions of STM material properties from Gaussian Process Regression models com-
pared to the test data.

addition, the GPR shows higher variation around the boundaries (CVF is 0 or 1)1

due to the lack of data from the other side of the boundaries.2

4. Macroscale Simulations3

In macroscale peridynamic simulations, CVFs are assigned to each material point4

according to the volume fraction distribution initialized in the simulation domain.5

GPR models are applied to sample material properties, including Young’s modulus,6

Poisson’s ratio, and failure strength, at each material point to generate various7
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Fig. 13. Schematic description of spallation.

configurations. Monte Carlo simulations are conducted to study the mechanical1

behavior of metal–ceramic STM structures statistically.2

4.1. Spallation in STM plates3

In the first example, we study the spallation in Ti-TiB2 STM plates with a thickness4

of 0.1m, where the CVF varies along with the thickness. Spallation [Xiao (2006a)]5

is an interesting phenomenon of dynamic fracture, which occurs when shock waves6

interact to produce a region of tension in the interior of a material body. The7

spallation usually occurs under dynamic loadings, such as impact and explosion,8

as shown in Fig. 13. Here considers a pressure pulse, modeled via an exponential9

function in Eq. (19), to approximate the explosion on one surface of the STM plates.10

σ = σ0e
−βt, (19)

where σ0 = 1750MPa is the amplitude, and β = 0.15e7 s−1.11

Figure 13 demonstrates that once the pressure pulse applies on one surface of12

the plate, there is a compressive shock wave propagating towards another surface,13

which is a free surface. After being reflected by the free surface, the compressive14

wave becomes a tensile wave. If the magnitude of the tensile wave exceeds the15

tensile strength of the material during the wave propagation, spallation occurs. It16

shall be noted that the flux-corrected transport (FCT) algorithm [Xiao (2004); Xiao17

(2006a); Xiao (2006b)] is employed to maintain the strong discontinuity at the shock18

wavefronts.19

We first consider that the CVFs are 0% at the loading surface (metal) and 100%20

at the free surface (ceramic), i.e., v0 = 0 and v1 = 1.0. Various metal-to-ceramic (or21

0-to-1) CVF distributions can be determined via Eq. (1) once the parameter n is22

assigned. The metal-to-ceramic linear (n = 1), quadratic (n = 2), and square root23

(n = 0.5) distributions were plotted in Fig. 1. Three other nonlinear 0-to-1 CVF24

distributions (n = 1.5, n = 2.5, and n = 3.0) are also considered. A total of 80025

simulations are conducted for each distribution. The calculated spall thicknesses and26

spall speeds follow the Gaussian distributions. The mean values with one standard27
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Fig. 14. Spall thickness and speed in plates with various metal-to-ceramic (0-to-1) CVF distribu-
tions with 97.5% confidential levels.

Fig. 15. Spall thickness and speed in plates with various ceramic-to-metal (1-to-0) CVF distribu-
tions with 97.5% confidential levels.

deviation of uncertainties are shown in Fig. 14. It can be seen that the plate with a1

0-to-1 CVF distribution has a smaller mean spall thickness and a higher mean spall2

speed if the parameter n is larger. This is because a larger n results in a smaller3

CVF, as shown in Fig. 1, at the same location on the plates. Since STM has a lower4

failure strength at the location where the CVF is smaller, the spallation occurs5

earlier. Usually, a thin spall has a high speed.6

We also design another type of STM plate with v0 = 1.0 and v1 = 0, i.e., 1-to-0 or7

ceramic-to-metal CVF distributions. In other words, the loading surface is ceramic,8

while the free surface is metal. Although we can conclude a similar statement as9

mentioned above about the effect of CVF distribution on spallation, there are no10

big differences in results, shown in Fig. 15. It is because the failure strength is not11

sensitive to small CVFs, as indicated in Figs. 10 and 12.12

4.2. Fracture in STM plates with a hole13

Several STM plates, with a hole at the center, are studied under uniaxial tension14

in the vertical direction. The plates are 30mm by 30mm in size, and the holes’15

diameters are 5 mm. Various CVF distributions are considered according to Eq. (2),16
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(a) Plate A (b) Plate B

(c) Plate C (d) Plate D

Fig. 16. STM plates with different CVF distributions via Eq. (2): (a) nx = ny = 1.0, ηx = 1, ηy = 0;
(b) nx = ny = 1.0, ηx = ηy = 0.5; (c) nx = ny = 2.0, ηx = ηy = 0.5; and (d) nx = ny = 0.5, ηx =
ηy = 0.5.

as shown in Fig. 16, in which two configurations have linear distributions while the1

other two have nonlinear distributions. After peridynamic models are generated, the2

material properties are predicted at each material point via the Gaussian process3

regressors. It shall be noted that even if two material points have the same CVF,4

they may have different material properties due to the uncertainties. Then, bond5

micromoduli and critical stretches between two material points in the peridynamic6

model are derived via mixing rule similarly as described in Sec. 3.1.7

During the simulations, if a bond is elongated beyond its critical stretch, the8

bond is broken, and crack propagates. Figure 17 illustrates the deformed configu-9

ration after failures occur on the STM plates. It is observed that cracks propagate10

towards the regions with small CVFs because a smaller CVF generally results in11

a lower material failure strength and, in turn, a smaller bond critical stretch. The12

same conclusions were obtained in our recent work [Xiao et al. (2021)].13

To investigate the uncertainty of failure stress, we have conducted 100 simula-14

tions for each type of plate. Table 2 lists the mean value and standard deviation of15
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(a) Plate A (b) Plate B

(c) Plate C (d) Plate D

Fig. 17. Cracks propagated on the STM plates.

failure stress for STM plates. The table also includes the total CVF for each plate.1

It can be seen that Plate D has the highest mean failure stress while Plate C has2

the lowest mean failure stress. It is mainly because the total CVF of Plate D is the3

largest while the total CVF of Plate C is the smallest. Plates A and B have the4

same total CVF. However, due to the different distribution orientations, they have5

slightly different failure stresses. On the other hand, Plates B, C, and D have the6

same fracture pattern because the CVF distributions vary linearly or nonlinearly7

from 0 at the lower-left corner to 1 at the upper-right corner. However, the total8

CVFs are different, so material failures occur at various failure stresses listed in9

Table 2.10

We also calculate the failure stresses of the same composite plates with uniform11

distributed particles. Therefore, the materials are considered homogeneous at the12
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Table 2. Failure stresses of STM plates.

Plate A Plate B Plate C Plate D

Mean (MPa) 680.7 712.3 573.2 927.9
Standard deviation (MPa) 11.1 12.2 25.9 20.4
Total CVF 50% 50% 33.8% 66.3%

Fig. 18. Stress–strain relationships of STM plates under uniaxial tension.

macroscale, and the mean material properties are used. Assuming that the plates1

fail when the maximum stress at the hole reaches the tensile strength, we compute2

the failure stresses as 423MPa, 505MPa, and 643MPa at the total CVFs of 33.8%,3

50%, and 66.3%, respectively. It can be seen that STM plates B, C, and D reach4

much higher failure stresses than the corresponding homogeneous composite plates.5

The stress–strain relationships are compared in Fig. 18 during the uniaxial ten-6

sion on the STM plates. It can be seen that there are no big differences in failure7

strains between the STM plates. Plate D has a slightly lower failure strain, while8

Plate C has a slightly higher failure strain. Since ceramic (TiB2) has a very low9

failure strain (∼ 0.75%), the CVF variation has no significant impact on the failure10

strain of composites.11

5. Conclusions12

This study implemented a probabilistic ML model, GPR, in the ML-enhanced mul-13

tiscale method to study metal–ceramic STMs. Peridynamics is utilized so that it is14

easy to generate computational models at the microscale with the consideration of15

microscale uncertainties, especially the uncertainty of porosity. It is observed that16

the material properties follow normal probability distributions at a specified vol-17

ume fraction. The collected data is used to train GPR models that predict material18

properties based on the learned probability distribution. Then, the GPR models are19

implemented in macroscale peridynamic simulations to study the mechanics of STM20

structures. The effects of volume fraction distribution on the mechanical responses21
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of STM structures are investigated. Such a multiscale approach can be extended to1

the design optimization of STM structures in future work.2

Acknowledgments3

This material is based upon work supported by the National Science Foundation4

(#2104383) and US Department of Education (ED#P116S210005).5

References6

American Society for Metal [1979] Properties and Selection–Nonferrous Alloys and Pure7

Metals: 1. Metals Park, 9th edn., Ohio, American Society for Metal.8

Akshaya, S. L., Prakash, A. and Bharati Raj, J. [2021] “Applications of functionally graded9

materials in structural engineering: A review,” Lect. Notes Civ. Eng. 97, 553–566.10

Alber, M., Buganza Tepole, A., Cannon, W. R. et al. [2019] “Integrating machine learning11

and multiscale modeling — perspectives, challenges, and opportunities in the biologi-12

cal, biomedical, and behavioral sciences,” NPJ Digit. Med. 2(1), 115.13

Anitescu, C., Atroshchenko, E., Alajlan, N. et al. [2019] “Artificial neural network methods14

for the solution of second order boundary value problems,” Comput. Mater. Contin.15

59(1), 345–359.16

Balokas, G., Czichon, S. and Rolfes, R. [2018] “Neural network assisted multiscale analy-17

sis for the elastic properties prediction of 3D braided composites under uncertainty,”18

Compos. Struct. 183, 550–562.19

Birman, V., Chona, R., Byrd, L. W. et al. [2008] “Response of spatially tailored structures20

to thermal loading,” J. Eng. Math. 61(2–4), 201–217.21

Bobaru, F. and Zhang, G. [2015] “Why do cracks branch? A peridynamic investigation of22

dynamic brittle fracture,” Int. J. Fract. 196(1–2), 59–98.23

Deierling, P. E. and Zhupanska, O. I. [2018] “Computational modeling of the effective24

properties of spatially graded composites,” Int. J. Mech. Sci. 145, 145–157.25

Deierling, P. E., Zhupanska, O. I. and Pasiliao, C. L. [2021] “Spatial tailoring of a26

metal-ceramic composite panel subjected to high-speed flow,” J. Aerosp. Eng. 34(1),27

04020093.28

Gershman, S. J. and Blei, D. M. [2012] “A tutorial on Bayesian nonparametric models,”29

J. Math. Psychol. 1, 1–12.30

Ghaffari, M. A., Gong, Y., Attarian, S. and Xiao, S. [2019] “Peridynamics with corrected31

boundary conditions and its implementation in multiscale modeling of rolling contact32

fatigue,” J. Multiscale Model. 10(1), 1841003.33

Ghaffari, M. A., Zhang, Y. and Xiao, S. [2018] “Multiscale modeling and simulation of34

rolling contact fatigue,” Int. J. Fatigue 108, 9–17.35
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