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In this paper, a micro-to-macro multiscale approach with peridynamics is proposed to
study metal-ceramic composites. Since the volume fraction varies in the spatial domain,
these composites are called spatially tailored materials (STMs). Microstructure uncer-
tainties, including porosity, are considered at the microscale when conducting peridy-
namic modeling and simulation. The collected dataset is used to train probabilistic
machine learning models via Gaussian process regression, which can stochastically pre-
dict material properties. The machine learning models play a role in passing the infor-
mation from the microscale to the macroscale. Then, at the macroscale, peridynamics
is employed to study the mechanics of STM structures with various volume fraction
distributions.

Keywords: Multiscale; spatially tailored materials; Gaussian process regression; peridy-

namics.

1. Introduction

As technology advances in materials science, new generations of composites take
the spotlight in day-to-day applications. One set of these next-generation materials

*Corresponding author.
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is the class of materials known as spatially tailored materials (STMs) [Birman et al.
(2008)], also called functionally graded materials (FGMs) [Naebe and Shirvani-
moghaddam (2016)]. STMs are composite materials in which the volume fraction
of individual material phases varies spatially. In addition to offering the expected
benefits of composites, STMs take advantage of their constituent phases in ways
that a traditional composite cannot. Particularly, STMs can tailor the thermal and
mechanical responses due to the spatial variation (or gradient) in their material
properties [Deierling et al. (2021)]. Thus, they have many promising applications in
biomedical, defense, and structural engineering [Akshaya et al. (2021)].

There has been a growing interest in titanium-titanium boride whisker
(Ti-TiB,,) composites over the past 10 years [Morsi (2019); Morsi and Patel (2007)].
TiB,, reinforcements in the form of particulates or whiskers eliminate the disadvan-
tages of Ti, including poor wear resistance and relatively low stiffness. Many exper-
imental works have been done on this metal-ceramic STM family, including Ti-TiB
STMs. Sahay et al. [1999] examined the evolution of microstructure and phases in
Ti-TiB composites processed in situ, and they found high-volume fractions of TiB
whiskers. In another work, Patil et al. [2019] investigated Ti-6A1-4V alloy with the
addition of varying amounts of TiBs. They discovered that the hardness and wear
performance of Ti(Ti-6A1-4V)-TiBs were dramatically improved when the weight
fraction of TiBy was increased. They also observed that the microstructure changed
from a martensite lath to a refined bimodal structure. Additionally, they found that
the porosity reduced the material density by 1 ~ 2%. Shishkovsky et al. [2017] uti-
lized a selective laser melting process to incorporate TiBs of submicron sizes to the
titanium substrate. They investigated the microstructure via SEM and identified
two types of heterogeneity: TiBo particles at the interlayer interfaces and element
chemical segregation on the boundaries of the tracks.

To study STMs via numerical modeling and simulation, one of the current stan-
dard practices is using principles of micromechanics [Ghossein and Lévesque (2012)]
and homogenization of representative volume elements (RVEs) to calculate aver-
aged material properties for macroscale simulations. For example, Deierling and
Zhupanska [2018] employed finite element method (FEM) simulations with RVEs
to estimate graded microstructures’ effective spatially varying material properties
over a wide temperature range. Then, the estimated material properties were used in
macroscale FEM simulations to study thermomechanical responses of STM struc-
tures under a combination of thermal and mechanical loading. They also used a
similar numerical modeling framework to study metal-ceramic composite panels
subjected to high-speed flow [Deierling et al. (2021)]. Xing and Miller [2021] pre-
sented a new continuous—discontinuous multiscale modeling approach to failure in
quasi-brittle materials to address two major issues of conventional homogenization
techniques: macroscale mesh sensitivity and RVE size dependence. However, the
homogenization techniques can smear the effects of microstructure uncertainties on
material properties.
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There are other pioneering works in multiscale modeling and simulation of com-
posite materials. Leonetti et al. [2018] proposed a novel multiscale strategy to ana-
lyze damage of masonry structures, which were modeled as periodic composites.
Their multiscale/multidomain model has an adaptive capability of automatically
zooming in on the zones incipiently affected by damage onset. In another work,
Trovalusci et al. [2017] presented a two-step multiscale procedure for describing the
constitutive behavior of hierarchically structured particle composites. They con-
sidered three nested scales (micro, meso, and macro scales) and utilized homog-
enization techniques for scale transitions. In addition, a combination of molecular
dynamics and micromechanics is developed to predict Young’s modulus of fullerene-
reinforced polymer composites [Izadi et al. (2021)]. More works were reviewed in
[Trovalusci et al. (2009)] and [Kanouté et al. (2009)].

The above-mentioned works employed either the hierarchical multiscale architec-
ture [Xiao and Yang (2006); Xiao and Yang (2007); Yang and Xiao (2008); Ghaffari
et al. (2018)] or the concurrent multiscale strategy [Xiao and Hou (2007)]. Both of
them are common approaches to studying the mechanics of composite materials and
have benefited from machine learning (ML) and deep learning (DL) recently [Alber
et al. (2019)]. Anitescu et al. [2019] and Samaniego et al. [2020] utilized the energy
of a mechanical system as the loss function of artificial neural networks (ANNs) in
an adaptive collocation strategy to solve partial differential equations for the studies
of composites. Liu et al. [2019] proposed a data-driven multiscale method enhanced
via a deep material network to approximate complex overall material responses of
heterogeneously structured composites. In another study, White et al. [2019] used
an ANN-based surrogate model to predict the microscale metamaterial’s elastic
response and optimize macroscale elastic structures. In addition, Xiao et al. [2019]
developed an ML-based multiscale method, in which the datasets collected from
molecular simulations were used to train ML regression and classification models
for continuum simulations.

Ly et al. [2022] integrated deep learning and genetic algorithm to solve multi-
objective optimization problems of laminated functionally graded carbon nanotube-
reinforced composite quadrilateral plates. Rohit et al. [2021] developed a coupled
approach of finite element method and meshfree method with swarm intelligence-
based stochastic zero-order search procedure for shape optimization problems.
In another work, a combined element-free Galerkin and discrete element meth-
ods approach [Wang et al. (2020)] was presented to approximate the interactions
between continuum bodies and granular soils. This approach could be an efficient
and promising tool to model multiscale, multibody contacting problems. Other
recent achievements include a multiscale multi-permeability poroplasticity model
[Wang and Sun (2018)], a 3D architecture of deep material networks [Liu et al.
(2019)], and a neural-network-assisted multiscale analysis [Balokas et al. (2018)].

This paper proposes a hierarchical multiscale approach, enhanced by probabilis-
tic ML, to study the mechanics of metal-ceramic STM structures via peridynamics.
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The contribution of this paper lies in training probabilistic ML models via Gaus-
sian process regression (GPR) to bridge the microscale and the macroscale with
the consideration of microscale uncertainties. Recent work by some of the authors
[Xiao et al. (2021)] employed a similar approach to study metal-ceramic STM struc-
tures via FEM. However, only deterministic predictive models were trained to pass
material properties from the microscale to the macroscale. In addition, there was
difficulty in generating STM microstructure configurations at volume fractions close
to 50%, so only composites with volume fractions less than 25% or greater than 75%
were modeled and simulated at the microscale to collect the dataset. This issue is
resolved by using peridynamics in this paper. Furthermore, porosity and its uncer-
tainty at the microscale are uniquely considered in this study but not in the previous
work [Xiao et al. (2021)].

The outline of this paper is as follows. After the introduction, Sec. 2 describes
metal-ceramic STMs, peridynamics, microstructure uncertainties, Gaussian process
regression, and the proposed multiscale framework. Section 3 narrates microscale
simulations, data collection, and ML model training. Macroscale simulations of STM
structures with the implementation of ML predictive models are discussed in Sec. 4,
followed by conclusions and a future outlook in Sec. 5.

2. Material and Methodology
2.1. Metal-ceramic spatially tailored materials

We use the metal-ceramic Ti-TiBy STM as an example in this paper to illustrate
multiscale modeling and simulation of STM structures via the proposed approach.
It is common to model an STM as a continuously variable composition material
with the volume fractions varying in space. The ceramic volume fraction (CVF),
a function of spatial coordinates, is used to distinguish the compositions of two
materials (Ti and TiBz) at a particular material point. It is obvious that Ti is
the matrix material when the CVF is less than 50%, and the STM is a metal-like
composite material. On the other hand, if the CVF is greater than 50%, the STM
is a ceramic-like material since TiBs is the matrix material.

Considering a plate made of Ti-TiBs in which the volume fraction varies along
with the thickness, the CVF, vy, can be determined via a power-law distribution

vs(2) =0+ (01 =) () M

where z is the depth, and h is the thickness. It is assumed that vg = 0 and v; = 1.0
are the CVF's at two surfaces where z = 0 and z = h, respectively. n is the param-
eter to control the ceramic content distribution. n = 1 is for the linear distribution
while n = 2 (quadratic) and 0.5 (square root) are for the nonlinear distributions.
The numeric changes of CVF along with the thickness via three different distribu-
tions are shown in Fig. 1. In addition, Fig. 2 includes artificially generated images
to demonstrate the content changes of Ti (represented via white) and TiBy (repre-
sented via black) when using different CVF distributions.
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Fig. 1. The ceramic volume fraction distributions.

(a) Linear (b) Square root (c) Quadratic

Fig. 2. Artificially generated images of STM with various CVF distributions

It is permissible that the CVF varies in more than one spatial direction. In
the case of a two-directional STM structure, the CVF changing in space can be
formulated by the following;:

os(,y) = vo+ (o1 = vo) [ (3) " 4, (£) "), @)

where x and y are the coordinates in the horizontal and vertical directions, L and
H are the total width and height, and 7; and n; are parameters controlling the

2250025-5



Page Proof

June 22, 2022 20:46 WSPC/0219-8762 196-1JCM 2250025

N o g b~ W N =

10
11
12
13
14
15
16
17
18
19

A. El Tuhami € S. Xiao

10 10 10 10

0.8 08 0.8 08

0.6 06 0.6 06
s B

0.4 04 04 04

0.2 02 0.2 ‘\ 02

0.0 T — T T 00 0.0 + 00

0.0 02 04 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10
x/L x/L

(a) neg =ny =15 (b) ny =1.5,ny = 0.5

Fig. 3. The contours of CVF distributions in 2D STM plates.

Table 1. Material properties of Ti and TiBg at 20°C.

Young’s modulus  Poisson’s ratio Density Tensile strength
E (GPa) v p (kg/m3) ot (GPa)
Ti 106.2 0.298 4357 1.17
TiBa 495.4 0.100 4505 3.73

ceramic content and profile in each direction. vg = 0 and v; = 1 are the minimum
and maximum CVFs, as assumed above. Figure 3 shows the contours of CVFs in
2D plates when two control parameters, n, and n, in Eq. (2), are assigned with
various values while 7, and 7, are kept as 0.5.

In addition, the material properties of Ti and TiBy at room temperature (20°C)
are listed in Table 1 according to references [American society for metal (1979);
Munro (2000); Wiley et al. (1969)].

2.2. Peridynamics

Peridynamic theory [Silling (2000); Silling and Lehoucq (2010)] is a nonlocal model
in which the partial differential equations from classical continuum mechanics are
reformulated and replaced with integral equations instead. It has been successfully
applied to fracture mechanics [Bobaru and Zhang (2015); Silling and Askari (2014)]
as well as the studies of plastic deformation [Madenci and Oterkus (2016)], fiber-
reinforced composites [Yaghoobi and Chorzepa (2017)], and heterogeneous materials
[Jung and Seok (2016)]. Although state-based peridynamics [Silling et al. (2007);
Silling (2010)] has been developed, bond-based peridynamics is employed in this
paper. In a peridynamic model, the simulation domain is discretized with a number
of equally spaced material points. A pairwise bond force vector f is exerted on
material point & by material point @/, which is in the neighborhood H,, (with the

2250025-6
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deformed configuration

Reference configuration

Fig. 4. The peridynamic bond in the reference and deformed configurations.

radius 0) of material point . Figure 4 shows a visual representation of the reference
and deformed state of a peridynamics virtual bond between x and z’.

Correspondingly, a stress divergence term in the equations of motion is replaced
by a volume integral of force density as

pu(z,t) = [ f(n,&t)dVy + bz, 1), 3)
Hm
where p is the density, @ is the acceleration vector, and b is the body force vec-

tor. & and m are the relative position vector and the relative displacement vector,
respectively. They are defined as

E=x'—x = €H, 4)
and
n= ’LL((L‘,,t) - u(az,t), (5)

where w is the displacement. Letting 4 (x,¢) = 0 will reduce the peridynamics to
peristatics.

In the naive peridynamics, the pairwise force density f is calculated based on
bond strain s.

f(n,&,t) =cs(n, &), (6)
where ¢ is the micromodulus, and
st = EELIEL @

According to the prototype microelastic brittle (PMB) material model [Silling
and Askari (2005)], the critical stretch sg for bond failure is introduced. Once the
bond is stretched beyond the critical value, bond failure occurs, and the bond is
broken.

The above-mentioned classical formulation is for materials with a Poisson’s ratio
of 0.25. To model more general materials, Zhu and Ni [2017] considered the effects

2250025-7
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of bond rotation, and the reformulated pairwise force density function is rewritten
as

f(n»E»t) = ¢S5+ K7, (8)

where c is redefined as the first micromodulus while x is the second micromodulus,
n=(n+&)/|ln+ &|| is the current stretch direction, and the shear strain vector ~
can be calculated as

1
v(n, &) = e (I-nen). 9)

Given material with Young’s modulus E and Poisson’s ration v, the micromoduli
in 2D context are derived as

6L 6E(1—3v)
= = 1
¢ w83 (1 —v)’ " w03 (1 — v?) (10)
for plane stress problems, and
6F 6E(1 —4v)
= = 11
CTIEArnd_2v) T 7B+ - 2w) (11)

for plane strain problems.

2.3. Gaussian process regression

The ML algorithm used to analyze the datasets in this paper is the GPR, in which
the model parameters are random variables. GPR is a Bayesian approach [Gersh-
man and Blei (2012)] to regression when considering both model uncertainty and
data uncertainty. It is an attractive ML algorithm because it provides the capability
to measure uncertainty in the predictions and be compatible with small datasets.
Generally, the Bayesian approach works by specifying a prior distribution, P(w),
on the model parameter w, and updating its probability distribution based on the
data (X,y) used to train the predictive model. Data has input X and output y.
Consequently, the updated distribution P(w |y, X)) is the posterior probability dis-
tribution and incorporates information from both the prior distribution and the
training data. This can be done using Bayes’ Rule [Schulz et al. (2018)]:
Pyl X, w)P(w)
P(w|y, X) PyX)
where P(y|X,w) is the likelihood, and P(y|X) is the marginal likelihood or
evidence. To get prediction y, at a point of interest x, that is not yet observed,
the predictive distribution can be calculated by weighting all possible predictions
by the posterior distribution of the model parameters.

(12)

Pl |20y, X) = / P(ys | 2., w)P(w ]| y, X )dw. (13)

w

It shall be noted that GPR is a nonparametric method that is not limited by
a functional form. GPR can calculate the probability distribution over all admissi-
ble functions that fit the data instead of calculating the probability distribution of

2250025-8
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parameters for a specific function. Similarly, a prior is set upon the function space,
a posterior is calculated using the training data, and the predictive posterior distri-
bution is defined on the points of interest. However, it is common that the prior and
likelihood are typically assumed to be Gaussian for the integration to be tractable.
With this assumption, the predictive distribution can be calculated. It also follows
a Gaussian distribution that provides a point prediction using the mean and the
uncertainty quantification using its variance. Consequently, the Gaussian process is
similar to an infinite-dimensional multivariate Gaussian distribution.

The approximate function, y = f(x), in GRP is distributed as a Gaussian
process

f(@) ~ GP[m(z), k(z,z)] (14)

which is a distribution over functions and is defined by a mean and a covariance
function. The mean function m(x) = E[f(x)] evaluates the average of all functions
in the distribution at the input @. The covariance function, k(x,z’) = E[(f(x) —
m(x))(f(x") —m(x"))], represents the dependence between the outputs at different
input points & and @’. The covariance function serves as the Gaussian process kernel
[Jékel et al. (2007)], and it is chosen based on the smoothness and likely patterns to
be expected in the data. Commonly used kernel functions are the constant, linear,
square exponential, and Matern kernels. It is also possible to use a combination of
multiple kernels. The kernel used to train the models obtained in this paper is the
radial basis function (RBF) kernel, defined as follows:

k(z,a') = e mrle=I”, (15)

where [ is the length scale of the kernel as the hyperparameter that must be tuned
to the data, and ||-|| is the Euclidean distance.

To conduct regressions by Gaussian process model, the training dataset (X, y)
and the predictions y. at new data points X, are joint multivariate Gaussian
distributed, i.e., normal distribution. This can be expressed as

Yy m(X) K K,
bl e <)) o

where K = K(X,X), K, = K(X,X,), K.. = K(X,,X,) are the covariance
matrices, in which K;; = k(x;, x;). It leads to a normal distribution that is defined
by the mean and covariance for the prediction

y*lX,y,X*NN(K*TK?J,K***K*TK%K*) (17)

The Gaussian process regressor allows for easy prediction of values using the
predict function after the model is trained. It is also possible to incorporate inde-
pendently, identically distribution (i.i.d.) Gaussian noise in the regression model.

2250025-9
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Fig. 5. A microscale/macroscale hierarchical multiscale method.

2.4. Multiscale modeling

A hierarchical multiscale approach enhanced via ML is employed in this paper,
as shown in Fig. 5, to study metal-ceramic STM structures. At first, vari-
ous microstructure configurations at different CVFs are generated considering
microstructure uncertainties, especially the uncertainty of porosity. Next, peridy-
namics simulations are conducted on those microstructure configurations to calcu-
late the material properties, including Young’s modulus, Poisson’s ratio, and failure
strength. Then, GPR models are trained based on the collected dataset to pre-
dict those material properties. Finally, given the composite CVF distribution, the
material properties at each material point are predicted via the well-trained GPR
models at the beginning of macroscale simulations. Consequently, probabilistic ML
enhances the message-passing in this hierarchical multiscale method. The process
details mentioned above are described in Secs. 3 and 4.

3. Microscale Simulations and Machine Learning

To collect data at the microscale, peridynamics simulations are performed on var-
ious material microscale configurations, acting as RVEs, at each given CVF. The
dataset is then used to train ML models to predict material properties for macroscale
simulations.

3.1. M:icroscale simulations

The CVF of STM varies spatially at the macroscale. At each macroscale material
point, it is assumed that the CVF is a constant at the microscale. All microscale
models are generated with 2601 (51 x 51) material points located within a 30 gm x
30 um plane. To generate STM microscale configurations, the material points in the
simulation domain are randomly assigned as either metal or ceramic according to
the given CVF. Although we do not consider the randomness of particle size and
orientation [Xiao et al. (2021)], material points can form big particles or whiskers in
the generated configuration, especially when the inclusion volume fraction is high
enough. Furthermore, as a difference from the work in [Xiao et al. (2021)], the
porosity is considered here because a 1% ~ 2% reduction in the material density
has been observed in Ti-TiBs STM images [Patil et al. (2019)].

2250025-10
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The addition of porosity into a microscale configuration is performed by ran-
domly removing a small number of material points to generate vacancies in the
simulation model. The number of vacancies is determined by the number of Pois-
son points in a homogeneous Poisson point process [Xiao et al. (2008)]. In a finite
two-dimensional plane, the probability of the number (k) of Poisson points (i.e.,
vacancies or removed material points in this paper) can be written as

e~ (NA)F

Pk) = I

k=1,2,3,..., (18)
where A is the plane area, and )\ is the Poisson point density that is the number of
vacancies per area. In this paper, the plane area is A = 900 um?2, and an averaged
porosity of 1.5% is chosen. Therefore, A = 0.043 um ™2 is defined for the microscale-
configuration generation. The probability distribution of the number of vacancies is
shown in Fig. 6. It can be seen that, for example, the occurrence probability of 33
vacancies in a generated microscale configuration is 4%. In other words, if a total
of 1000 STM configurations are generated for microscale simulations, there are 40
configurations in which 33 material points are randomly selected and removed.

Figure 7 illustrates four microscale STM configurations at different CVFs:
12.5%, 25%, 50%, and 75%. The numbers of vacancies are 48, 46, 40, and 31, respec-
tively. In our previous work [Xiao et al. (2021)], once the number of ceramic particles
and the particle sizes were randomly selected, we randomly deposited the particles
in the simulation domain before generating meshes. It was difficult to randomly
place the particles without overlapping when the CVFs are higher than 25%. Fig-
ure 7 shows that the peridynamic model does not suffer the difficulty in configura-
tion generation as indicated in Xiao et al. [2021], especially at the transition from
metal-based composites to ceramic-based composites when CVF = 50%. It shall be
noted that even at the same CVF various microscale configurations of STM can be
generated due to the randomness of inclusion and vacancy locations.

It is assumed that the simulated 30 pmx 30 pm plane has a thickness of 1 ym, and
plane stress problems are considered. In the peridynamic model, Az = Ay = 0.6 pm,

2250025-11
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(a) CVF = 12.5% (b) CVF = 25%

(c) CVF = 50% (d) CVF = 75%

Fig. 7. Microscale configurations of STM with various CVFs (gray represents metal, black repre-
sents ceramic, and white represents vacancy).

and the horizon radius § = 1.6Ax is chosen. There are three different types of
bonds in the model: metal-metal, ceramic—ceramic, and metal-ceramic. With the
material properties listed in Table 1, the first and second micromoduli can be
calculated as ¢, = 326.01&52, Km = 47.94S£§ for metal-metal bonds, and as
Ce = 1188.83%, Ke = 756.53G£§ for ceramic—ceramic bonds. In addition, the
PMB material model [Silling and Askari (2005)] is used with constant values of
the critical stretch, sg,, = 0.011 and s,. = 0.008 for metal-metal and ceramic—
ceramic bond failure, respectively. The critical stretches are calculated based on the
material tensile strengths. Furthermore, the combining rule is applied to determine
the corresponding properties of metal-ceramic bonds: ¢ = \/CmCe = 622.55%,
Fome = \/Rmfe = 19044888 and so;mc = /Soms0e = 0.0094.

Peridynamics is employed to conduct the simulations, in which the generated
models are subject to the uniaxial tension by applying the prescribed displacement
on the top and fixing the bottom. A low strain rate is maintained so that the quasi-
static analyses can be approximated by the conducted dynamic simulations. The
stress is evaluated at the middle cross-section by dividing the vertical component
of the total bond force by the cross-section area. Young’s modulus is calculated
at 0.005% strain, while Poisson’s ratio is determined by the ratio of horizontal to

2250025-12
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Fig. 8. Stress-strain relationships of composites with various CVFs.

vertical displacements. Since the enforcement of boundary conditions cannot be
directly applied on the boundary material points in peridynamics, fictitious walls
[Ghaffari et al. (2019)] are applied to eliminate such edge softening phenomena
[Nishawala and Ostoja-Starzewski (2016)].

Figure 8 illustrates the stress-strain relationships of metal-ceramic STMs with
various CVFs. Each stress—strain curve is obtained from one simulation with a
randomly generated configuration. Theoretically, the composite with a larger CVF
achieves a higher failure strength because the ceramic’s failure strength is higher
than that of the metal, as shown in Fig. 8. On the other hand, the composite with
a higher CVF will have a smaller failure strain because the ceramic’s failure strain
is smaller than that of the metal. However, due to the microstructure uncertainty,
especially the porosity considered in this paper, Fig. 8 shows that the simulated
composite with 75% CVF has a bit larger failure strain than the one with 50%
CVF. It is worth mentioning that when we conduct more simulations on various
configurations for each CVF, we do observe that the composites with a larger CVF
have a smaller averaged failure strain.

3.2. Data collection and machine learning

There are 25 microscale configurations generated at each CVF from 0% (metal only)
to 100% (ceramic only) with 1% apart to collect data. Each simulation generates
one data sample so that the collected dataset consists of 2525 data samples, in which
the input feature is the CVF while the output targets include Young’s modulus,
Poisson’s ratio, and failure strength. A few commonly used analytical formulas
[Voigt (1887); Reuss (1929); Hashin and Shtrikman (1963)] that predict the material
properties of composites are used here to validate the simulation results. Voigt
[1887] assumed a uniform strain field to derive the effective mechanical properties
of composite materials, while Reuss [1929] estimated the effective compliance tensor
of composites by considering a uniform stress field. In another work, Hashin and
Shtrikman [1963] (H-S) proposed the upper and lower bounds of elastic properties
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Fig. 10. Failure strength and its probability distributions at various CVFs.

of composites based on variational principles of the strain energy. Our calculated
Young’s modulus and Poisson’s ratio fall in the range of those analytical solutions,
as shown in Fig. 9, in which H-S+ and H-S- represent the upper and lower H-S
bounds, respectively.

Figure 10 shows the collected data of failure strength. At a particular CVF, the
failure strength follows the Gaussian distribution. Figure 10 also shows the proba-
bility distributions of composite failure strength at three different CVFs: 25%, 50%,
and 75%. Obviously, the composite with a higher CVF has a higher mean failure
strength and a larger standard deviation. The probability distributions of Young’s
modulus and Poisson’s ratio are shown in Fig. 11. Averagely, the composite with a
higher CVF has a higher Young’s modulus and a smaller Poisson’s ratio.

Three ML models are trained via GPR to predict Young’s modulus, Poisson’s
ratio, and failure strength for the composite with a given CVF. The radial basis
function is used as the kernel function in the regression models. The mean values
and the 95% confidence intervals are shown in Fig. 12. It is important to note that
GPR, as one of the Bayesian machine learning methods, does not learn a specific
value for each input but rather a probability distribution over all real numbers.
The predictions are sampled according to the learned probability distributions. In
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addition, the GPR shows higher variation around the boundaries (CVF is 0 or 1)
due to the lack of data from the other side of the boundaries.

4. Macroscale Simulations

In macroscale peridynamic simulations, CVF's are assigned to each material point
according to the volume fraction distribution initialized in the simulation domain.
GPR models are applied to sample material properties, including Young’s modulus,
Poisson’s ratio, and failure strength, at each material point to generate various
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configurations. Monte Carlo simulations are conducted to study the mechanical
behavior of metal-ceramic STM structures statistically.

4.1. Spallation in STM plates

In the first example, we study the spallation in Ti-TiBy STM plates with a thickness
of 0.1 m, where the CVF varies along with the thickness. Spallation [Xiao (2006a)]
is an interesting phenomenon of dynamic fracture, which occurs when shock waves
interact to produce a region of tension in the interior of a material body. The
spallation usually occurs under dynamic loadings, such as impact and explosion,
as shown in Fig. 13. Here considers a pressure pulse, modeled via an exponential
function in Eq. (19), to approximate the explosion on one surface of the STM plates.

o =ope P, (19)

where 09 = 1750 MPa is the amplitude, and 8 = 0.15e7s™ L.

Figure 13 demonstrates that once the pressure pulse applies on one surface of
the plate, there is a compressive shock wave propagating towards another surface,
which is a free surface. After being reflected by the free surface, the compressive
wave becomes a tensile wave. If the magnitude of the tensile wave exceeds the
tensile strength of the material during the wave propagation, spallation occurs. It
shall be noted that the flux-corrected transport (FCT) algorithm [Xiao (2004); Xiao
(2006a); Xiao (2006b)] is employed to maintain the strong discontinuity at the shock
wavefronts.

We first consider that the CVFs are 0% at the loading surface (metal) and 100%
at the free surface (ceramic), i.e., vg = 0 and v; = 1.0. Various metal-to-ceramic (or
0-to-1) CVF distributions can be determined via Eq. (1) once the parameter n is
assigned. The metal-to-ceramic linear (n = 1), quadratic (n = 2), and square root
(n = 0.5) distributions were plotted in Fig. 1. Three other nonlinear 0-to-1 CVF
distributions (n = 1.5, n = 2.5, and n = 3.0) are also considered. A total of 800
simulations are conducted for each distribution. The calculated spall thicknesses and
spall speeds follow the Gaussian distributions. The mean values with one standard
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deviation of uncertainties are shown in Fig. 14. It can be seen that the plate with a
0-to-1 CVF distribution has a smaller mean spall thickness and a higher mean spall
speed if the parameter n is larger. This is because a larger n results in a smaller
CVF, as shown in Fig. 1, at the same location on the plates. Since STM has a lower
failure strength at the location where the CVF is smaller, the spallation occurs
earlier. Usually, a thin spall has a high speed.

We also design another type of STM plate with vg = 1.0 and v; = 0, i.e., 1-to-0 or
ceramic-to-metal CVF distributions. In other words, the loading surface is ceramic,
while the free surface is metal. Although we can conclude a similar statement as
mentioned above about the effect of CVF distribution on spallation, there are no
big differences in results, shown in Fig. 15. It is because the failure strength is not
sensitive to small CVFs, as indicated in Figs. 10 and 12.

4.2. Fracture in STM plates with a hole

Several STM plates, with a hole at the center, are studied under uniaxial tension
in the vertical direction. The plates are 30mm by 30mm in size, and the holes’
diameters are 5 mm. Various CVF distributions are considered according to Eq. (2),
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as shown in Fig. 16, in which two configurations have linear distributions while the
other two have nonlinear distributions. After peridynamic models are generated, the
material properties are predicted at each material point via the Gaussian process
regressors. It shall be noted that even if two material points have the same CVF,
they may have different material properties due to the uncertainties. Then, bond
micromoduli and critical stretches between two material points in the peridynamic
model are derived via mixing rule similarly as described in Sec. 3.1.

During the simulations, if a bond is elongated beyond its critical stretch, the
bond is broken, and crack propagates. Figure 17 illustrates the deformed configu-
ration after failures occur on the STM plates. It is observed that cracks propagate
towards the regions with small CVFs because a smaller CVF generally results in
a lower material failure strength and, in turn, a smaller bond critical stretch. The
same conclusions were obtained in our recent work [Xiao et al. (2021)].

To investigate the uncertainty of failure stress, we have conducted 100 simula-
tions for each type of plate. Table 2 lists the mean value and standard deviation of
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Fig. 17. Cracks propagated on the STM plates.

failure stress for STM plates. The table also includes the total CVF for each plate.
It can be seen that Plate D has the highest mean failure stress while Plate C has
the lowest mean failure stress. It is mainly because the total CVF of Plate D is the
largest while the total CVF of Plate C is the smallest. Plates A and B have the
same total CVF. However, due to the different distribution orientations, they have
slightly different failure stresses. On the other hand, Plates B, C, and D have the
same fracture pattern because the CVF distributions vary linearly or nonlinearly
from 0 at the lower-left corner to 1 at the upper-right corner. However, the total
CVFs are different, so material failures occur at various failure stresses listed in
Table 2.

We also calculate the failure stresses of the same composite plates with uniform
distributed particles. Therefore, the materials are considered homogeneous at the
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Table 2. Failure stresses of STM plates.

Plate A Plate B Plate C  Plate D

Mean (MPa) 680.7 712.3 573.2 927.9
Standard deviation (MPa) 11.1 12.2 25.9 20.4
Total CVF 50% 50% 33.8% 66.3%
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Fig. 18. Stress—strain relationships of STM plates under uniaxial tension.

macroscale, and the mean material properties are used. Assuming that the plates
fail when the maximum stress at the hole reaches the tensile strength, we compute
the failure stresses as 423 MPa, 505 MPa, and 643 MPa at the total CVFs of 33.8%,
50%, and 66.3%, respectively. It can be seen that STM plates B, C, and D reach
much higher failure stresses than the corresponding homogeneous composite plates.

The stress—strain relationships are compared in Fig. 18 during the uniaxial ten-
sion on the STM plates. It can be seen that there are no big differences in failure
strains between the STM plates. Plate D has a slightly lower failure strain, while
Plate C has a slightly higher failure strain. Since ceramic (TiBz) has a very low
failure strain (~ 0.75%), the CVF variation has no significant impact on the failure
strain of composites.

5. Conclusions

This study implemented a probabilistic ML model, GPR, in the ML-enhanced mul-
tiscale method to study metal-ceramic STMs. Peridynamics is utilized so that it is
easy to generate computational models at the microscale with the consideration of
microscale uncertainties, especially the uncertainty of porosity. It is observed that
the material properties follow normal probability distributions at a specified vol-
ume fraction. The collected data is used to train GPR models that predict material
properties based on the learned probability distribution. Then, the GPR models are
implemented in macroscale peridynamic simulations to study the mechanics of STM
structures. The effects of volume fraction distribution on the mechanical responses
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of STM structures are investigated. Such a multiscale approach can be extended to
the design optimization of STM structures in future work.
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