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ABSTRACT: As COVID-19 and other infectious diseases continue to
spread globally, removing airborne pathogens from confined spaces such
as buildings, transportation carriers, and stations is becoming increasingly
crucial to curbing transmission and reducing human infection rates.
Bioaerosols can act as vectors or media that could store and transport air
pollutants and pathogens. To mitigate the adverse effects of bioaerosols
and effectively control epidemics, this work reviews the current state-of-
the-art air purification processes and technologies available on the market
or demonstrated in laboratory and industrial settings, including ozone
oxidation, UV disinfection, and photocatalysis. These reactive air
purification processes can be used in conjunction with adsorption or
filtration-based systems to enhance disinfection besides the physical
capture of particulates or the removal of volatile organic compounds

Ozone Oxidation

Triboelectric Effects

Microwave Electrostatics

(VOCs). This review aims to provide a concise yet comprehensive overview of various reactive air purification technologies. Their
principles, applications, and limitations are briefly discussed to provide insight and guidelines for further development of new air
purification processes to address emerging airborne contaminant issues.
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1. INTRODUCTION

The coronavirus outbreak in 2019 (COVID-19) has been
spreading throughout the world and has caused severe
respiratory syndrome and other health issues. Similar to
other airborne diseases such as Ebola, Middle East respiratory
syndrome-associated coronavirus (MERS-CoV), and severe
acute respiratory syndrome (SARS), COVID-19 and its recent
variants (e.g., Delta and Omicron) can be transmitted through
the air or aerosols. As an important vector for airborne
pathogens, bioaerosols mostly originate from plants or animals
with small sizes ranging from 0.001 to 100 pm, which may
contain pathogenic alive or dead microorganisms (e.g,
bacteria, viruses, and fungi), as well as nonmicrobial species
such as dust, animal biological debris, fungal spores, hyphae,
allergens, endotoxins, and mycotoxins. Bioaerosols could
migrate in ambient air due to their being lightweight and
having small sizes." Coxsackievirus A16, Cowxiella burnetii, and
Mycoplasma hyopneumoniae were reported to transport over
several kilometers by wind.>® Residential environments may
expose elevated risks to humans from the indoor bioaerosol
contamination presented by those infected groups when
sneezing or coughing, which is estimated to spray an average
virus density to 10°~10® PFU-mL™" (approximately 37% of 50
pum droplets before dehydration may carry one or more
viruses).”® Health implications may include respiratory
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distress and sensitization (e.g.,, eczema and asthma), microbial
infection, allergenic reaction, and fatal diseases such as SARS
outbreak in 2003, the HIN1 viral infection in 2009, and the
COVID-19 pandemic starting in 2019. The estimated
minimum infective dose of COVID-19 virus for trigging severe
acute respiratory syndrome is 1.26—7 X 10%* PFU (about 1—
107 droplets of 50 ym in diameter).”

To mitigate airborne infection, many countries, such as the
United States, have launched social distancing policies or
advisory practices such as maintaining at least 6 feet between
people to avoid contact with the potential airborne virus or
aerosols from coughs, sneezing, and even normal breathing or
speaking. Generally, the viral concentration in bioaerosols and
residence time of bioaerosols could exponentially decay with
time of travel or droplet size.* However, high concentrations of
bioaerosols may still occur and accumulate in public places or
confined environments such as hospitals, train stations,
airports, classrooms, and offices. For example, Park et al.
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Figure 1. (a) The incorporation of UV lamps into air filtration. (b) Annular and (c) multiannular UV photoreactors. The bottom graph is
reproduced with permission from Barnewall et al.*> Copyright 2021, Cambridge University Press, licensed under https://creativecommons.org/

licenses/.

reported that bacterial concentration in the air reached 720
CFU'm ™, and fungi was at a level of 77 CFU-m™* in hospital
lobbies.” Health authorities report approximately 500,000
health care workers in the U.S. could be regularly exposed to
aerosols from surgery annually.'® Traditional adsorption- or
adsorbent-based air filters are usually effective for capturing
bioaerosols and reducing the transmission of infectious viruses
in heating, ventilation, and air conditioning (HVAC) systems.
For example, high minimum efliciency reporting value
(MERV) rated filters and face piece respirators (FFRs) are
commonly used in healthcare facilities. However, they have
limited capacities to capture and inactivate airborne pathogens,
particularly small viruses that pass through the filter, and the
collected bioaerosols are not inactivated but may accumulate
on the filter surface and spread for long periods at higher
humidity, potentially becoming a new source of contamination
and pathogen reproliferation, posing a secondary risk to human
health.

Effective air sterilization and purification are critical to
mitigating the challenges of airborne pathogen transmission
and protecting the public health. There are many types of air
purification technologies that are reported and even
commercialized in industrial and household applications such
as adsorption by activated carbon adsorbents and photo-
catalysis for disinfection and volatile organic compound
removal.'"!? Additionally, for industrial waste gas treatment,
other technologies such as electrostatic precipitator for
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particulate removal and catalytic conversion to reduce nitrogen
and sulfur oxides were all reported previously, which are not
the focuse of this review. Besides, some review articles also
reported other technologies or processes, such as lysozyme
technology'” and disinfectant spraying,'* which are also not
within the scope of this review. Instead, this review article
presents a comprehensive survey of air cleaning technologies
that employ reactive disinfection processes such as UV
photolysis, ozonation, and electrically and microwave-driven
reactions. The present review article aims to elucidate the basic
mechanisms of such chemical or catalytic disinfection
processes. Their principles, applications, and limitations are
briefly discussed to provide insight and guidelines for the
further development of new air purification processes to
address emerging airborne contaminant issues.

2. REACTIVE AIR DISINFECTION TECHNOLOGIES

2.1. UV Disinfection and Photocatalysis. Ultraviolet
(UV) light has widely been used in both water and air
disinfection.">'® Under UV irradiation (especially under the
germicidal UV wavelength of 254 nm), microorganisms absorb
UV photons that cause damage to their deoxyribonucleic acid
(DNA), and the main mechanism of inactivation is the
formation of pyrimidine dimers from the absorption of
photons between adjacent thymine residues, which prevents
the microbe from replicating.'~" Vacuum UV (VUV) with
wavelengths <200 nm demonstrates stronger germicidal effects
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Figure 2. (a) Photo of the ZIF-8-loaded nonwoven fabrics (MOFilter) mask and a commercial nonwoven fabrics (NWF) filter mask. (b)
Comparison of the ratio of the residual E. coli cells (C) over the initial bacterial level (C,) in the air that passed through the two types of filter
masks under light and dark conditions, respectively. (c) Disinfection performance test of the filter mask under real sunlight irradiation. (d) Survival
ratio of bacteria on TiO,-, N-TiO,-, and TiO,/N-TiO, (7:3 weight ratio)-loaded masks and unloaded masks. Reprinted with minor modifications
and permission from Li et al.** Copyright 2021, American Chemical Society.

due to its higher photon energy (6.70 eV) than those (4.88
and 3.40 eV) of UV irradiation (254 and 365 nm), despite its
high potential for ozone generation in air or water.”

Compared to other disinfection (e.g., ozonation and
photocatalysis), UV air filtration is the most common and
highly commercialized technique for inactivating a wide
spectrum of bacteria, spores, molds, and viruses.”! UV
disinfection requires proper exposure intensity and time (e.g.,
UV dose) to warrant the microbial inactivation rates or
efficiency. For example, it takes 36 s of irradiation with 254 nm
low-pressure mercury vapor (LP-Hg) lamps at 20.06 mJ-cm™>
to reduce the concentration of SARS-CoV-2 by 99.99% (3 log)
on plastic and stainless steel surfaces.”” Exposure or contact
time also varies with different pathogens species. Some UV-
resistant bacterial and mold spores may require a high dosage
of UV light (e.g., 7—59 mJ-cm2).”>** For instance, 23—28 mJ-
em™ is usually required to reach 90% (1 log) removal of
bacterial spores such as strains Sterne and Ames.”> However,
UV lamps are relatively energy consuming (80—120 W-cm™?)
with short life spans (800—1000 h) and are not as widely and
conveniently available as visible light sources (natural sunlight
or room lights). Thus, visible-light driven photocatalysis is
emerging and gaining increasing interest along with the
development of visible-light-driven photocatalysts such as
Ag;AsO, and carbon- or nitrogen-doped titanium dioxide
(TiO,).”° Some commercial photocatalysts used in air
purification systems between 1999 and 2018, such as TiO,
and modified TiO,, have been proven effective against a wide
range of microorganisms.”’

Moreover, a low exposure time in most UV disinfection
technologies or processes (e.g, a few microseconds or
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seconds) could reduce the effectiveness of air disinfection.
For instance, the efficacy of UVC irradiation in killing
microorganisms may decrease when relative humidity and air
dust levels increase, as they can absorb or block UV and
provide shelter to airborne microorganisms.”**’ Additionally,
the efficiency of bioaerosol deactivation is highly dependent on
the distribution patterns of irradiance and the degree of air
mixing.30’31 Therefore, a well-designed UV reactor and
configuration are crucial for sufficient UV exposure. Figure
la—c demonstrates three common configurations of UV
reactors (i.e., plate, annular, and honeycomb reactors),
respectively, that could be coupled with an air filtration
system. The UV disinfection efficacy could be limited by
environmental factors (humidity, irradiation distance, or
exposure time) and UV resistance or self-healing of some
microorganisms.”>*> For example, following 3 h of UV (254
nm) irradiation, the repair phenomenon of airborne MS2
phage was observed, with a photoreactivation percentage
ranging from 18.98% to 35.54%.”* The combination of high-
efficiency particulate air (HEPA) filtration and UVC light (254
nm) has been used in the removal of SARS-CoV-2 bioaerosols
with a removal rate of 93% reducing the particle count from 79
to S particles.”

Photocatalysis can be achieved under UV (180—365 nm)
and visible light (400 nm and above). Compared to visible
light, UV irradiation has greater photon energies and
photogeneration efficiency, which typically enable greater
efficacy of disinfection.”® For example, UVA photocatalysis
(A = 350—400 nm; I = 0.65 mW-cm™?) inactivated 99.8% of
influenza virus H3N2 within 30 min on Pt/TiO,-coated
glass.”” UVC photocatalysis (4 = 254 nm; I = 4.5 mW-cm™2)
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inactivated 99.97% of murine norovirus within 10 min in a
TiO, photocatalytic reactor.”® Photocatalysis reactions under
VUV (vacuum ultraviolet light) conditions with 0.004—0.125 s
irradiation times removed airborne MS2 viruses from the air
that passed through an air purifier with a flow rate of 33 L-
min~".>’ The aerosol microbial suspensions made of Gram-
negative bacteria (Pseudomonas aeruginosa), Gram-positive
bacteria (Staphylococcus aureu, methicillin-resistant Staph-
ylococcus aureus, Aspergillus fumigatus), and fungi (A.
fumigatus) were injected at a flow rate of 1500 mL-min™"
and 0.3 min residence time into a photoreactor with a
honeycomb structure of UVA/TiO, and yielded removal rates
of 92.0%, 88.0%, 93.0%, and 80.7%, respectively.”” Besides,
visible-light-driven photocatalysis is also reported for air
disinfection.""** For example, simulated sunlight at the
intensity of 100 mW-cm™> was applied to inactivate all the
filtered E. coli cells in the air on nonwoven fabrics coated with
bactericidal ZIF-8 (MOFilter) and nitrogen-doped titanium
dioxide (N-TiO,).">** Figure 2 illustrates the fabrication of the
commercial mask N95 with modifications of photocatalysts
and the corresponding air disinfection efficiency compar-
isons.”* For example, the ZIF-8-loaded nonwoven fabrics
(MOFilter) exhibited high photocatalytic activity and dis-
infection power as indicated by the lowest survival under light
exposure (Figure 2a, b). By contrast, the pristine nonwoven
fabrics (NWF) mask caused a slight reduction of the bacterial
level in filtered air. Furthermore, coating with visible-light-
responsive photocatalysts such as N-TiO, led to 100% of
bacteria on the mask under real sunlight exposure (Figure 2c,
d). Nevertheless, photocatalysis or photocatalysts are subjected
to surface fouling or inactivation, which is inevitable in
practical implementations due to the deposition of dust or
other particles. Thus, cleaning the photocatalyst coating is
essential for maintaining the catalyst activity. Photocatalysis
disinfection may suffer the same limitations as UV disinfection,
such as light penetration and exposure time.

2.2. Ozone Disinfection. Ozone disinfection is a widely
used technique in various industries, including food
disinfection, water treatment, and tooth cleaning.”> Ozone
could be generated by splitting oxygen molecules into reactive
oxygen atoms that reform into ozone under a dielectric barrier
discharge (DBD).***” The triatomic molecule of oxygen (O5)
is unstable and quickly degrades to the stable state (diatomic
oxygen), giving rise to formation of secondary oxidants
(hydroxyl radicals) that have high reactivity and short reaction
time.*® Thus, ozone is a strong oxidant with a standard redox
potential of 2.07 V* and nonselectively oxidizes organic
matter without producing chemical residuals and microbial
resistance. As a result, its antimicrobial activity is nearly 3000
times that of chlorine with its oxidation capacity about 600
times that of chlorine. Furthermore, superior to UV
disinfection, ozonation could effectively inactivate airborne
pathogens without the issues of penetration.”” Ozone can not
only inactivate enveloped viruses by oxidizing their outer
envelope but can also inactivate nonenveloped viruses by
peroxidation of their outer proteins® ~>* and thus impairing
viral adhesion to host cells. Besides, the unsaturated fatty acids
present in the lipid envelope could be oxidized by ozone,
leading to destruction of single-stranded RNA.>*>°

A typical ozone reactor in Figure 3 was shown to remove
greater than 99% of four model phages: MS2, 96, PR772 and
X174, which represent norovirus, influenza, adenovirus, and
single-stranded DNA phage, respectively, under 1.23 ppm
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Figure 3. Schematic of a typical aerosol disinfection reactor assembly
for ozonation. Reprinted with permission from Dubuis et al.>®
Copyright 2020, Public Library of Science, licensed under Attribution
4.0 International (CC BY 4.0) and https://creativecommons.org/
licenses/by/4.0/.

ozone exposure for 40 min at a relative humidity of 85%.°°
Under an ambient environment, ozone was able to achieve
over 99.9% inactivation of influenza virus (an enveloped virus)
and Feline calicivirus (a nonenveloped virus) on the glass
surface.”® Ozone oxidation had achieved approximately
99.89%, 99.49%, and 98.74% inactivation of the total aerobic
mesophilic bacteria, Enterobacteriaceae, and yeast mold,
respectively.”” In addition to effectively inactivating bacteria
and viruses, ozone oxidation can inhibit the germination of
fungal spores. Germination of Botrytis cinerea (B. cinerea), a
necrotrophic fungus spore, was inhibited at C X T product of
700 uL-L™! x h dose of ozone.”® Ozone gas also significantly
prevented the growth and development of aspergilli from
inoculate.”” Recently, Wang et al.”’ combined ozone with
photocatalysis to achieve the inactivation efficiency of 99.99%
for E. coli cells in aerosol with an ultrashort retention time of
8.07 s (relative humidity = 90%) via the significant
improvement of reactive oxide species (ROSs) with ozone
compared to only photocatalysis. The inactivation rate of
viruses and other microorganisms increased with the long
exposure times, high ozone concentration, humidity, and
ternperature.(’0 However, prolonged exposure to ozone in
ambient air (e.g, 1 ppm for 4 h at 37 °C) is considered
harmful to human lun$s and can cause inflammation and
impaired lung function.®’ This means that for many areas with
high cleanliness requirements (e.g., ICU wards in hospitals),
good ventilation is required to reduce the remaining ozone and
prevent human exposure.62 Moreover, the ozone cost and
production yield vary in the range of 35—110 eV-molecule™
and 15-55 g-kwh_l. Besides this, high capital, operation, and
maintenance costs (ca. 10 kW-kg™' O;) in many ozonation
contacting systems (e.g, bubble columns, injectors, spray
chambers, or diffusers) also hold back wide applications.
Therefore, ozone for bioaerosol purification may still be in an
infant stage compared to the widespread use of ozone in water
treatment and food industry disinfection.

2.3. Electrically Driven Air Disinfection. Different
electrified technologies have demonstrated effective microbial
pathogen inactivation in water,”> but this approach is not
commonly studied for air or bioaerosol disinfection. One such
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method is electrochemical disinfection, which relies on the
generation of powerful oxidants such as H,0,, O;, or radicals
on the electrode surface when water or other substances (e.g.,
CI7) react with anodic or cathodic materials.””** It is reported
that 10—13 mgL™' of mixed oxidants can be generated
electrochemically in water and achieved more than 99.999%
(>S log) inactivation of MS2 and E. coli cells within 90 min.*®
The inactivations of Cryptosporidium parvum oocysts and
Clostridium perfringens spores by electrochemically produced
mixed oxidants at a dose of S mg-L™" were over 99.9% (>3 log)
in 4 h.%” Air disinfection could possibly be operated by passing
the feed gas through a solution containing electrochemically
produced mixed oxidants. For instance, the SARS-CoV-2
viruses were rapidly inactivated by over 95% in only 30 s and
99.99% in S min at a voltage of 5 V via formed O* on the
lattice oxygen (O, 0O*) of an in situ-formed nickel oxide
hydroxide (NiOOH) anode surface that can oxidize the
peptide chains and decompose the peptide backbone of the
receptor binding domain (RBD) of spike glycoprotein.
Moreover, electrically conductive carbon coatings made of
graphene could achieve ~99% inactivation of Pseudomonas
aeruginosa bacteria and 100% inactivation of T4 virus under a
current density of 4.5 mA-cm? (a voltage potential of 0.3 V).%
This type of conductive air filter is widely demonstrated usin

different coating materials such as Co;0,/Ag nanoparticles,’

copper nanowire,”’ ZnO nanospines,” and iron oxide
nanowires,”” which achieved a 7 log inactivation within 10 s
toward S. epidermidis of indoor bioaerosols. Combined effects
of hydroxyl radicals, electroporation, and Joule heating are
responsible for the inactivation mechanisms of bacteria. Figure
4a—d illustrates a schematic of air filtration with the laser-
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(0.22 pm)

—
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Figure 4. (a) Air filtration with the laser-induced graphene (LIG)-
coated filter. (b), (c) Schematic of filtration with/without Joule-
heating. (d) Schematic of the Joule heating setup in which a potential
is applied across the filter for Joule heating. (e) Infrared image of a
LIG filter. The figure and caption are used with permission from
Stanford et al.”* Copyright 2019, American Chemical Society.

induced graphene (LIG)-coated filter mounted on a vacuum
filtration system, where a poly(ether sulfone) (PES) filter
coated with LIG could achieve surface heating or joule heating
for sterilization when charged by a DC current.”” The
electrified filters could be Joule heated to 100—380 °C
depending on the coating materials (Figure 4e).

Electrostatic air cleaners, also known as electrostatic
precipitators (ESP), are most widely used to remove air
pollutants, primarily charged particles such as pollens and dust,
from air and exhaust gases generated by industrial sites and
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coal-fired power plants. ESPs can be categorized based on the
number of stages used to charge and collect particles from the
polluted gas as shown in Figure S. Single-stage ESPs (Figure
Sa) apply a high voltage to charge and collect particles within
the same chamber on surfaces with the opposite charge. Two-
stage ESPs (Figure Sb) consist of an ionization stage that uses
thin wires equidistant from parallel or cylindrical grounded
plates or tubes to create an electric corona discharge and ionize
the particles in the airflow and a collection stage that involves
the use of parallel metal plates to collect negatively (positively)
charged particles on positively (negatively) charged plates.

ESPs are primarily designed for the collection of bioaerosols
with certain chemical inactivation of microbes in bioaerosols,”*
because the high-voltage corona discharge could produce
reactive species including ozone that may inactivate bacteria,
bacterial endospores, and viruses.'””>~”® For example, Park et
al. demonstrated airborne bacterial removal efficiency of up to
75%—100% for air samples when they flow through micro-
organism-ionizing respirators at a rate of 10—20 L-min",
where built-in miniaturized corona ionizers can generate
ozone.”” Yao et al. reported that under an electric field of 15
kV-cm™ for around 30 min, more than 90% of the vegetative
cells of Pseudomonas fluorescens were inactivated on the surface
of nonconductive filters.”” Similarly, more than 90% of the
bioaerosol was removed using a charged droplet electrified
scrubber and an opposite polarity electrified scrubber with a
liquid-to-gas ratio of 2.4 L-m™.*" Xia achieved a greater than
2.3 log reduction of the infective virus across the packed-bed
dielectric barrier discharge reactor.”” Of course, ESPs may
generate harmful ozone that could cause adverse effects if not
properly managed.

2.4. Triboelectric Effects and Applications in Air
Purification. Triboelectric air purifiers have recently emerged
as superior to traditional electrostatic precipitation and fibrous
filtering.” These purifiers utilize ambient mechanical energy to
generate high voltage through coupling of the triboelectric
effect and electrostatic induction, which enables absorption
and degradation of air-phase pollutants.*** To generate highly
localized electric fields, nanowires (NWs) such as Ag, CuO,
and ZnO are applied to significantly enhance the field at the
wire tiép (>10" V m™") and reduce drive voltages to several
volts.*”*” Triboelectric air filters and commercialized products
have been employed for the removal of sulfur dioxide (SO,),
carbon monoxide (CO), nitrogen dioxide (NO,), form-
aldehyde, and PM,.*® However, few studies have explored
their efficacy against airborne pathogens, such as viruses. One
of the major disinfection mechanisms is electroporation which
applies a sufficiently strong electric field (>10” V m™) to
induce reversible structural changes on the outer surfaces of
the microbes (bacterial membranes and viral capsids) and
inactivation occurs.” Electroporation-based microbial disin-
fection has demonstrated effectiveness against bacteria,
protozoa, and viruses. Figure 6 depicts a design of air
disinfection powered by a triboelectric nanogenerator
(TENG) that could harvest energy from ambient vibration
sources, such as vibration of the ventilators in buildings.90 The
three-electrode filter comprises a macro-mesh negative
electrode and integrated positive/ground electrodes. Airborne
microbes (bacteria and viruses) acquire negative charges when
passing through the macro-mesh electrode, and they are
subsequently trapped and inactivated on the positive electrode
surface by electrostatic attraction and electroporation. This
triboelectric air filtration achieved >99.99% microbial
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inactivation within 0.025 s in a fast airflow (2 m-s™') with low
pressure drops (<24 Pa).

2.5. Plasma Air Disinfection. Plasma is considered the
fourth state of matter after solid, liquid, and gas and is defined
as a partially or fully ionized gas generated by a variety of
electric discharges such DBD, corona discharge, 9plasma jet,
and gliding arc discharge as shown in Figure 7a—d.”" It can be
applied directly or indirectly, with the former involving the
sample as one of the electrodes and the latter remotely

producing plasma components delivered to the target via a
carrier gas such as plasma jets. Energetic electrons in plasma
can generate ROSs and reactive nitrogen species (RNSs) by
exciting, dissociating, and ionizing gas molecules, leading to the
inactivation of biological species.”” Atmospheric cold plasma
(CAP), working under atmospheric conditions below 40 °C,
has emerged as an effective technology for water treatment,”
deodorization,”* and air purification.”” Compared with other
airborne bioaerosol removal technologies, CAP achieves high
effectiveness in a very short period. For example, over 98% of
Bacillus subtilis in aerosols was inactivated within the 0.12 s
treatment by CAP with a power density of 0.38 W-m ™, while
there was 100% inactivation of Pseudomonas fluorescens
aerosols.”® Here, 1.5 and 5.5 log reductions of airborne E.
coli, respectively, were obtained after 10 s and 2 min of single
exposure with CAP with a power density of 3.6 W-m>"" CAP
is also effective against coronavirus (COVID-19) and avian
influenza virus (AIV).”*”” A 2.19 log reduction for the spores
of Aspergillus flavus was achieved with CAP at 0.79 W-cm ™ for
120 s of exposure time, and complete inactivation was achieved
in 480 s.'°” The porcine reproductive and respiratory
syndrome virus (PRRSv) was inactivated with up to a 1.3
log inactivation rate at an air flow rate of 12 cfm under 20
kV.'"”" However, using high-voltage plasma for residential
disinfection raises safety concerns due to the use of high-
voltage electricity, and the formation of secondary pollutants
such as ozone, CO, or NO, may negatively impact treated air
quality.'*?
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2.6. Microwave Air Disinfection. Microwave disinfection
has been extensively studied in the field of food disinfec-
tion' ™% and sludge digestion'*® and moisture reduction in
the food industry'®” over the last few decades. Microwaves are
electromagnetic waves with frequencies between 300 MHz and
300 GHz and could inactivate microorganisms through
thermal and nonthermal effects.'”® The thermal effect results
from the absorption of microwave energy by intra- and
extracellular fluids, causing polar molecules to vibrate and
generate heat. Nonthermal effects occur due to a direct
stabilizing interaction of electric field with specific (polar)
molecules in reaction medium with a rise in temper-
ature. 14,109,110

Microwave inactivation of airborne microorganisms has long
been studied on diverse bacteria, bacterial endospores, fungi,
allergen aerosol, and viruses.'*”"*'7'!* For instance, airborne
E. coli cells decreased by 100% at a microwave exposure at an
energy density of 7.4 X 10> kJ-m™> for 20 s."'> Here, 54% and
87.8% of the airborne Bacillus subtilis varniger spore and
Pseudomonas fluorescens were inactivated after exposure to a
500 W microwave (2.45 GHz) at for 90 and 108 s,
respectively.'"® Also, 90% of the airborne MS2 virus was
inactivated after exposure to microwaves at 700 W for 120 s."'°
Microwaves generally have a greater inactivation efficiency on
airborne bacteria than waterborne bacteria because there is no
significant energy loss due to the low energy absorption by air
moisture. Wang et al. reported that the inactivation rate
constant for airborne E. coli (0.29 s™!) was nearly 20 times
higher than that of waterborne species (0.014 s™').""” MS2
bacteriophage was aerosolized through a Collison nebulizer
and was fed into the microwave irradiation system (125—375
W), which achieved log inactivation efficiencies of 0.8, 1.0, and
1.3 at relative humidities of 30%, 60%, and 90%,
respectively.''” Figure 8 shows a typical conﬁ§uration of a
microwave-assisted air filtration system.''>''® Microwave
power, microwave frequency, and exposure time are the
main factors affecting the efficacy of microwave disinfection of
bioaerosols.

Besides direct microwave exposure, researchers also combine
filtration with microwave irradiation to achieve airborne virus
inactivation.''” Previous research indicates that microwave
treatment of FFRs at 1250 W for 2 min induced a § log IE for
HIN1 virus.""” A microwave-assisted PAN/SIC air filtration
system effectively inactivated B. subtilis endospores and E. coli
under 500 W microwave irradiation in less than 90 s via a high
temperature SiC disk under microwave irradiation.""' Woo et
al. applied 375 W microwave irradiation to an HVAC filter
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supported on a SiC disk to achieve log removal of 3.62 for
aerosol MS2 removal in 10 min, and 90 °C was identified as
the threshold temperature to characterize microwave irradi-
ation power and application time."'*

Electrical energy per order (Egy) is a “figure of merit” for
evaluatin§ the cost of chemical processes following first-order
kinetics.'”® Ego (kWh-m™3.order™!) is defined as the number
of kilowatt-hours of electrical energy needed to decrease the
concentration of a pollutant by 1 order of magnitude (90%) in
1 m® of the treated media such as water or air, which permits
the comparison of energy efficiency among different reaction
systems, >'>* as shown in eq 1.

P-t

Epp= ———
PO v x log(Co/Cp)

(1)
where P is the input power to the disinfection reaction (kW), t
is the reaction time (h), V is the volume of the treated aerosol
(m®), and C, and C; are the initial and final aerosol pathogens
concentrations (CFU-mL™"), respectively. Typically, the
operational parameters such as oxidant or irradiation doses,
pollutant concentrations, and pollutant characteristics (e.%.,
resistance to disinfection) may affect the Epq values.'”*~' ©
The Ego values were calculated by eq 1 for different air
disinfection technologies we surveyed from the literature
(Table 1). Figure 9 shows the calculated Egg, values vary from
1.0 X 107* to 1.2. For the airborne bacteria (e.g., E. coli cells),
the Egq values increase in the order of electrified disinfection,
triboelectric air purification, UV disinfection and photo-
catalysis, ozone disinfection, plasma disinfection, and micro-
wave disinfection. Microwave disinfection renders high
inactivation rate constants (0.46 s™') but the highest Egq
value (>0.5 kWh-m™-order™). By contrast, UV photocatalysis
and photocatalysis, ozone disinfection, and plasma disinfection
yielded much lower Egq values (1.3 X 107* to 4.59 X 1072
kWh-m~3-order™") than microwave disinfection. However, they
all achieve less than 50% of the inactivation rate constant for
microwave disinfection, highlighting the effective or efficient
disinfection power of microwave deposits of its high energy
consumption. Electrified disinfection via electroporation costs
the least energy consumption, but the disinfection kinetics
tend to be lowest with the rate constant near 107 s™%. To
improve the disinfection power and energy efficiency, some
combinations of different air purification technologies were
explored. For example, Zadi et al. combined plasma and
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Table 1. Comparison of Egy Values Reported or Calculated on Different Air Disinfection Technologies

Air disinfection technologies

UV disinfection and
photocatalysis nm)

Catalyst/UV

N/A/UVA (365 nm), UVC (254 nm), and UVD

(185 nm)
N/A/UV-LED

Ti,C,T, and TiO,/UVA (365 nm) and UVC (254

nm)
TiO,/UVA (365 nm)
TiO,/UVA (364 nm)
N/A/UVC (254 nm)
N/A/UV-LED
N/A/UV-LED

TiyC,T, and TiO,/UVA (365 nm) and UVC (254

nm)
Pd-TiO,/VUV (254 + 185 nm)
TiO,/UVC (254 nm)
TiO,/UVA (365 nm)
TiO,/UVA (365 nm)
TiO,/UVA (365 nm)
TiO,/UVA (365 nm)

Ozone disinfection

Electrified disinfection Mixed metal oxide (Ti/IrO, + TaO,)

N/A

Ag—Co30,

Laser-induced graphene

MnO mesh coated with MnO,
Copper-clad plates

Electrostatic precipitation

Copper-clad plates
N/A

Cu;PNW-Cu electrode
N/A

N/A

Triboelectric air purification

Plasma disinfection

TiO,/Cu* @perlite
N/A

N/A

N/A

N/A

Fe,0,@SiC
MW+HVAC filter
N/A

Microwave disinfection

photocatalytic technology and demonstrated possible catalyst
regeneration with nonthermal plasma.'”” Xie et al. achieved
stable and efficient air disinfection performance (Epo= 5.75 X
107 kWh-m™-order™ and rate constant = 10™° s7') by
combining UV and microstatic electricity."”® A summary of
advantages and disadvantages of presented air purification
technologies can be seen in Table SI.

The spread and infection of COVID-19 and other legacy
airborne pathogens have spurred the development and
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TiyC,T, and TiO,/UVA (365 nm) and UVC (254 E. coli

Ego
Bacteria/Virus (k\/\fh-m’%-order’l) ref.
6.6 x 1073 129
E. coli 2.0 X 107 to 130

33x 107
E. coli 13 x 107* 131
B. subtilis 1.5 x 1072 129
Influenza virus 5.1x 1073 132
Influenza virus 12 x 1073 133
Influenza virus 24 % 1073 134
S. marcescens 1.5 x 107* 131
S. epidermidis 2.6 X 107 131
Spore of B. subtilis 4.5 x 107 129
MS2 92 x107* 39
Legionella pneumophila 4.06 X 1072 135
P.aeruginosa 225 x 107 40
S. aureus 2.81 X 1072 40
MRSA 1.51 x 1073 40
A. fumigatus 325 x 1072 40
MS2 4.59 x 1072 56
Cladosporium spp. 2.7 X 1072 136
Alternaria spp. 3.8 X 107 136
Penicillium spp. 7.6 X 107 136
Herpes simplex virus (HSV) 2.8 X 107 54
E. coli 1.5 x 1072 137
0.5 pm airborne particles 2.0 X 107 138
Gram-negative bacteria 32 %107 139
E. coli 24 x107* 140
E. coli 1.0 X 107° to 97

2.0 x 107
E. coli 12 x 107* 69
T4 bacteriophage 3x 107 68
E. coli 8§ x 107 79
P. fluorescens 12 x107* 80
B. subtilis var. niger bacteria 6.5 X 107+ 80
E. coli 4.4 x 107* 141
MS2 2 x 107 90
E. coli 1.90 x 1072 142
Porcine reproductive and respiratory 2.11 X 1072 101

syndrome virus

E. coli 12 X 1072 143
E. coli 7.18 X 1072 144
S. epidermidis 625 x 1072 144
Airborne MS2 5.6 X 107 145
E. coli 2.8 x 107 111
E. coli 4.6 x 107" 115
MS2 12 112
MS2 1.5 x 107" 116

implementation of effective air sterilization and purification
technologies, especially in indoor or enclosed environments
with limited ventilation (e.g., residential homes or offices, train
stations, airports, and aircrafts), where populated density
facilitates the viral spread. Commercially available air purifiers
are mostly based on size exclusion or adsorption that is
increasingly deficient for viral particle removal because most of
the filters are clearly effective at removing micrometer-sized
particles (e.g., dust, dander, pollen, fungus, and other common
allergens) but may not be able to capture small viruses or
bioaerosols, depending on many factors such as the filter
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Figure 9. Relationship between the inactivation rate constant of
bioaerosol and Egpy among different reactive air purification
technologies or processes.

materials and pore sizes, the size, shape, and concentration of
the airborne particles, and the airflow velocity through the
filter. Moreover, poorly maintained air filters in heating
ventilation and air conditioning (HVAC) systems could result
in accumulation of viable pathogens and secondary viral
transmission through air circulation.'*® The resuspension or
emission of the bioaerosols captured on the filter is also
possible and clearly increases the risk of infection. Some
commercial air purifiers may employ UV irradiation for
enhanced disinfection. However, the effectiveness of such
UV/filter combination toward viral inactivation will signifi-
cantly be affected by the UV intensity, exposure time, and UV
penetration. Therefore, there is a still pressing demand for the
development and research studies of novel and cost-effective
air disinfection technologies that may hold paramount
significance to public health as global communities are back
to normal operation with the long-term coexistence of
COVID-19 and other infectious disease-causing pathogens.
Particularly, this review article focused on the introduction of
the chemically or catalytically reactive air disinfection
technologies. Successful implementation of these technologies
requires innovations of new materials, catalysts, reactor
designs, and process operations. For example, chemically
doped TiO, and novel 2D or flat-sheet nanomaterials such as
MZXenes are demonstrated for enhanced photocatalytic air
disinfection.**"** Moreover, owing to the high disinfection
kinetics rate, microwave irradiation may become economically
viable for airborne pathogen removal by combining with
granular activated carbon (GAC) air filters that could provide
adsorption/reaction sites for viral particles and enable a trap—
heating pathway of air disinfection.
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