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Abstract

In this paper, we explore the relation between distributionally robust learning and
different forms of regularization to enforce robustness of deep neural networks. In
particular, starting from a concrete min-max distributionally robust problem, and using
tools from optimal transport theory, we derive first-order and second-order
approximations to the distributionally robust problem in terms of appropriate
regularized risk minimization problems. In the context of deep ResNet models, we
identify the structure of the resulting regularization problems as mean-field optimal
control problems where the number and dimension of state variables are within a
dimension-free factor of the dimension of the original unrobust problem. Using the
Pontryagin maximum principles associated with these problems, we motivate a family
of scalable algorithms for the training of robust neural networks. Our analysis recovers
some results and algorithms known in the literature (in settings explained throughout
the paper) and provides many other theoretical and algorithmic insights that to our
knowledge are novel. In our analysis, we employ tools that we deem useful for a future
analysis of more general adversarial learning problems.

1 Introduction
What is the connection between adversarial learning and regularized risk minimization?
This is a question of theoretical and practical relevance that aims at linking two different
approaches to enforce robustness in learning models. By an adversarial learning problem,
here we mean a distributionally robust optimization (DRO) problem of the form:

inf
θ∈�

sup
μ̃:G(μ0 ,μ̃)≤δ

J (μ̃, θ ), (1.1)

where θ denotes the parameters of a statistical learning procedure (for example a neural
network, a binary classifier, or the parameters of a linear regression), μ0 denotes an
observed data distribution on R

d , G represents some notion of “distance” between data
distributions, J (μ̃, θ ) is a risk relative to some data distribution μ̃ and a loss function j(x, θ ),
and finally δ is a parameter that describes the “power” of an adversary. On the other hand,
by regularization we mean an optimization problem of the form

inf
θ∈�

J (μ0, θ ) + λR(θ ), (1.2)

where λ > 0 is a positive parameter and R is a regularization functional.
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The association between these two types problems has been particularly satisfactory in
classical statistical parametric learning settings; see [4,5,9] and references within. Roughly
speaking, if θ in (1.1) is a finite-dimensional vector representing the parameters of a
generalized linear model, J (μ, θ ) = ´

j(x, θ )dμ, where j is a loss function such as square
loss or logistic loss, and the function G is an appropriate Wasserstein distance, then one
can show that the family of problems (1.1) coincides with a family of Lasso objectives that
includes the popular squared-root Lasso model from [2].
In more general learning settings, and in particular in the setting explored in this paper,

there is no direct equivalence between the adversarial problem (1.1) and regularization.
There are, however, other settings where one can exploit the structure of the given learn-
ing model to derive specific insights into the type of regularization associated to (1.1).
For example, in [18], in the context of nonparametric binary classification, a connec-
tion between adversarial learning and regularization is explored by establishing geometric
evolution equations that must be satisfied by the ensemble of solutions to the family of
adversarial problems (1.1) indexed by δ. In general, an illuminating strategy that can be
followed in a variety of settings in order to gain insights into the regularization counterpart
of (1.1) is to analyze the max part of the problem for small δ and identify its leading-order
terms to use them as regularization terms. This is a strategy that has been followed in
many works that study the robust training of neural networks, e.g., [17,25,27,29,30,40];
see more discussion in subsequent sections. However, even with an approximation in
hand, the specific structure of the resulting regularization problems will depend on the
specific learning models under consideration.
Our goal in this paper is to provide a concrete mathematical connection between a

family of distributionally robust learning problems and regularization problems in the
context of deep neural network models, and specifically ResNet models. Our analysis
provides new theoretical insights into new and existing methods for robust training of
neural networks, suggests new algorithms, and revisits older algorithms that can be recast
as specific instances of a general unifying family. Our work also suggests new forms of
regularization for optimal control problems that are meaningful beyond the applications
to machine learning. The main motivation for working with ResNet models is that there
is a clear interpretation of truly deep ResNet models (formally, the number of layers is
infinity): in the large number of layers limit, the training of a ResNet may be interpreted
as a continuous time optimal control problem. This ODE perspective for understanding
and training neural networks has received increased attention in the past few years—see
[10,20,32].The specific structureof this settingwill then allowus to recognize the resulting
regularization problems asmean-field control problems and thuswillmotivate us to derive
their corresponding Pontryagin maximum principles. In turn, these maximum principles
can be used to motivate a large class of algorithms for the training of robust networks
which includes the double backpropagation algorithm from [12]. The use of Pontryagin
maximum principle-based training algorithms has been advocated for in works like [24]
given their generality, versatility, and theoretical properties.
In the next two sections, we introduce the specific setup that we will work with through-

out the paper. Our main theoretical results are presented in Sect. 1.3 and our algorithms
in Sect. 4.
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1.1 Network models

As discussed in the introduction, we will focus our discussion on deep ResNet neural
networks and use the differential equation in R

d

⎧
⎨

⎩

dXt = f (Xt , θt )dt, t ∈ (0, T ),

X0 = x
(1.3)

to model the transformations that an input data point x ∈ R
d undergoes along a deep

neural network; notice that, with the previous interpretation, XT is the output of the
network when the input is x. The function θ : [0, T ] → �0 represents the parameters of
the network, and � is a family of θs. The “time” variable t can be interpreted as index for
the layers of the model and the time horizon T as the depth of the network.�0 represents
the possible values of parameters at a given layer. We remark once again that a ResNet
model found in practice can be seen as a time discretization of (1.3); see [14,32].

Example 1.1 The previous general setting can be used for regression with the following
interpretation. We write x = (v, y) ∈ R

d−1 × R and interpret v as feature vector and y as
label or output. The function f (ξ ,ϑ) can be taken to be

f (ξ ,ϑ) =
(

σ (ϑ · ξ1:d−1)
0

)

,

interpreting ϑ as a (d − 1)× (d − 1) matrix, and σ as a nonlinear function (e.g., a sigmoid
or ReLu) that acts coordinate-wisely on d−1-dimensional vectors. Notice that if we write
Xt = (Vt, Yt )�, then Yt = y for every t and in particular XT = (VT , y)�.

We introduce two functions 	 : Rd ×�0 → R and
 : Rd ×�0 which from the control
theory perspective can be interpreted as terminal and running costs, respectively. For
x ∈ R

d and θ ∈ � we define:

j(x, θ ) := 	(Xx,T , θT ) +
ˆ T

0

(Xx,t , θt )dt.

In the above, we have used the notation Xx,t to represent the solution to (1.3) with the
extra subscript highlighting the initial condition x. The value of j(x, θ ) can be interpreted
as the loss (including the extra penalization) that the network with parameters θ incurs
into when x is the network’s input.

Example 1.2 (Continuation of Example 1.1) In the setting considered in Example 1.1 we
can take 
 to be either identically equal to zero or be a function penalizing the size of the
parameters only. As for the terminal cost, we can take

	(ξ ,ϑ) = (ϑ · ξ1:d−1 − ξd)2,

this time interpreting ϑ as a d − 1-dimensional vector, i.e., �0 is a subset of Rd−1. With
this choice we obtain 	(Xx,T , θT ) = (θT · Vx,T − y)2, i.e., squared loss.

For a given probability distribution μ0 and for a control θ ∈ � we define the risk

J (μ0, θ ) := Ex∼μ0

[
j(x, θ )

]
,

and consider a so-called mean-field control problem (see [14]):

inf
θ∈�

J (μ0, θ ). (1.4)
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For us, μ0 represents the training data distribution which at this stage can be simply
assumed to be an empirical measure; problem (1.4) is then a risk minimization problem
relative to the training distributionμ0.We havemade the dependence of problem (1.4) on
the training data setμ0 explicit as our goal is precisely to study its sensitivity to changes in
the training input aswill becomemore apparent in the next sectionwhenwe introduce our
adversarial learning problem precisely. We remark that in order to rigorously connect the
optimization problem characterizing the training of a ResNet model with finitely many
layers with the idealized continuous time control problem model considered here one
needs to use variational techniques as discussed in [32].

1.1.1 Further notation

• x, x̃ represent vectors in R
d and will be used to denote inputs of the neural network.

• We use D to denote a matrix of derivatives of a vector valued function whereas we
use ∇ to denote the gradient of a scalar valued function. D2 is reserved to indicate
matrices/tensors of second-order derivatives of scalar/vectorial functions. By con-
vention, we identify the derivative of A : Rd → R

c1×·×ck ; x �→ A(x) with a tensor of
size (c1, . . . , ck , d).

• ξ represents a vector in R
d and ϑ an element in �0. They will be used as dummy

variables for the functions 	, 
, and f . In particular, ∇ξ
 and ∇ϑ
 represent the
vector of derivatives of 
 with respect to ξ and ϑ , respectively.

• The matrix Dξ f has coordinates [Dξ f ]ij = ∂
∂ξj

fi, where (f1, . . . , fd) are the coordinate
functions of f . We write the tensor D2

ξ f in coordinates as

[D2
ξ f ]ijk = ∂2fi

∂ξj∂ξk
.

Notice that [D2
ξ f ]ijk = [D2

ξ f ]ikj . The tensor (D2
ξ f )� is defined as [(D2

ξ f )�]ijk :=
[(D2

ξ f )]kij . Finally, the tensor D
3
ξ f is defined in coordinates as

[D3
ξ f ]ijkl = ∂3fi

∂ξj∂ξk∂ξl
,

and we define [(D3
ξ f )�]ijkl := [(D3

ξ f )]lijk .
• θ represents the weights of the “ideal” (continuous time) ResNet neural network.
• μ̃will generically represent a probabilitymeasure over the variable x andwill typically

be interpreted as a perturbation of the data distribution μ0.

1.2 Adversarial learning

In this paper, we restrict our attention to the family of distributionally robust adversarial
problems:

inf
θ∈�

sup
μ̃:Wp(μ0 ,μ̃)≤δ

J (μ̃, θ ), (1.5)

whereWp stands for the p-Wasserstein distance:

Wp(μ, μ̃) := inf
π∈
(μ,μ̃)

{ˆ

Rd×Rd
cp(x, x̃)dπ (x, x̃)

}1/p

defined for two probability measures μ, μ̃ over Rd (or over a compact subset of Rd). The
function cp : Rd × R

d → R is the p-cost:
cp(x, x̃) := ‖x − x̃‖p,
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where ‖·‖ denotes an arbitrary norm in R
d . The family of problems (1.5) is indexed by

p ∈ [0,∞]. We interpret the case p = ∞ as

W∞(μ, μ̃) = min
π∈
(μ,μ̃)

ess supπ {‖x − x̃‖ : (x, x̃) ∈ R
d × R

d},

while the case p = 0 as the total variation distance between measures. In the remainder,
we will restrict our attention to the case p ∈ [2,∞].

Example 1.3 (Continuation of Example 1.2) While problem 1.5 with the cost cp intro-
duced earlier is meaningful in a regression setting, there are other adversarial settings of
interest where for example adversaries are only allowed to perturb feature vectors and not
labels. In that case, the cost cr introduced earlier can be replaced with the closely related
cost:

ĉp((v, y), (ṽ, ỹ)) =
⎧
⎨

⎩

‖v − ṽ‖p, if y = ỹ,

∞, else .

The analysis that we present in the remainder of the paper adjusts easily to this cost
function. We omit the details.

Remark 1.4 Wenotice that since theWasserstein distances satisfy the relationWp ≤ Wp′

when p ≤ p′, it is straightforward to see that the adversary in problem (1.5) is stronger than
the analogous adversary when choosing p′. In particular, of all the adversaries indexed by
p, the weakest one is the one corresponding to p = ∞.

Remark 1.5 Problem (1.5) can be equivalently reformulated as

inf
θ∈�

sup
π∈Fμ0 ,δ

J (π , θ ), (1.6)

whereFμ0 ,δ is the set of probabilitymeasuresonRd×R
d satisfying

´
Rd×Rd cp(x, x̃)dπ (x, x̃) ≤

δp and P1�π = μ0 (where P1�π denotes the marginal of π on the first coordinate); we
abuse notation slightly and use J (π , θ ) to denote

´
Rd×Rd j(x̃, θ )dπ (x, x̃). In other words, by

replacing the variable μ̃ with the variable π , the nonlinear constraint in μ̃ gets replaced
by linear constraints in π .

Remark 1.6 In an alternative formulation of (1.5), one can replace the constraint on μ̃

with an explicit penalization:

inf
θ∈�

sup
μ̃

{

J (μ̃, θ ) − 1
λ
Wp

p (μ0, μ̃)
}

,

(1.7)

for some λ > 0. Just as for the constrained problem, (1.7) admits an equivalent reformu-
lation in terms of couplings:

inf
θ∈�

sup
P1�π=μ0

{

J (π , θ ) − 1
λ

ˆ

Rd×Rd
cp(x, x̃)dπ (x, x̃)

}

.

1.3 Regularized risk minimization and associated control problems

In order to make our results mathematically precise, we impose some extra conditions on
all the terms that determine the min-max problem (1.5) in our setting.
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Assumption 1.7

i. f is bounded; f,
 are continuous in θ ; and f,
, 	 are continuously differentiable
with respect to x. The first derivatives of f,
, 	 are Lipschitz continuous in space
uniformly in θ . Moreover, 	 is continuously differentiable with respect to θ .

ii. The distribution μ0 has bounded support in R
d .

Assumption 1.8

i. Assumption 1.7 holds; and
ii. f,
, 	 are twice continuously differentiable with respect to x.

Our first theoretical result is the following.

Theorem 1.9 (Regularization of distributionally robust adversarial learning: first-order
case) Let p ∈ [2,∞]. Under Assumptions 1.8 the objective function

sup
μ̃:Wp(μ0 ,μ̃)≤δ

J (μ̃, θ ) (1.8)

is equal to

J (μ0, θ ) + δ · (Ex∼μ0

[‖∇xj(x, θ )‖q∗
])1/q + O(δ2),

where the O(δ2) term is uniform over all θ ∈ �, q is p’s conjugate, i.e., 1p + 1
q = 1, and ‖·‖∗

is the dual norm of ‖·‖. In particular,

V ∗
δ − U∗

δ = O(δ2),

where V ∗
δ is equal to the infimum of (1.8) over all θ ∈ � and U∗

δ is equal to

inf
θ∈�

{
J (μ0, θ ) + δ · (Ex∼μ0

[‖∇xj(x, θ )‖q∗
])1/q

}
. (1.9)

Remark 1.10 Theorem1.9 implies that under the given assumptions, for any fixed control
in the admissible domain, the value function of the robust problem and the value function
of the regularized problem are close with an error of order δ2. Hence, a minimizer for any
of the two problems is a δ2-minimizer for the other.

Remark 1.11 When p = ∞, problem (1.9) can be written more succinctly as

min
θ∈�

{
J (μ0, θ ) + δ · Ex∼μ0

[‖∇xj(x, θ )‖∗
]}

. (1.10)

Notice that the objective is linear in μ0. This property is useful in connection to the use
of stochastic gradient methods for training; see the discussion in Sect. 4. Problem (1.10)
and other closely related problems that are linear in μ0 and that penalize the gradient
of the loss function have been considered in several works in the literature including
[12,17,25,29,30,40].

It is important to highlight that Theorem 1.9 does not depend on the specific structure
of neural networkmodels and indeed continues to be true in other learning settings as long
as the following assumption (implied by Assumption 1.8 in our neural network setting)
holds:
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Assumption 1.12 For every θ ∈ � the function j(·, θ ) is twice differentiable with uni-
formly bounded second derivatives:

‖D2
xj(·, θ )‖L∞(Rd ) ≤ C,

where C > 0 is independent of θ ∈ �.

The interpretation of Theorem 1.9 is straightforward: the leading-order regularization
effect of the adversarial problem (1.5) with p-cost is given by (1.9). Put in another way,
(1.5) for small δ is an approximation to problem (1.9). Moreover, a minimizer of (1.9) is
guaranteed to have value of (1.8) withinO(δ2) of the minimum. Notice that Problem (1.9)
is a form of regularized risk minimization of the form (1.2) with regularization term given
by

(
Ex∼μ0

[‖∇xj(x, θ )‖q∗
])1/q ,

only that in this case the regularizationdoesdependon thedatadistributionμ0. Intuitively,
this new term forces the parameters of themodel to be chosen so as tomake the loss j(x, θ )
insensitive to perturbations of the data (i.e., the gradient in x of the loss function should
be small in the support of μ0).
In our setting of interest, the regularized problem (1.9) possesses an interesting structure

thatwill be convenient to elaborateonas it provides thebasis for the algorithms for training
robust neural networks discussed in Sect. 4. First, let us consider the control problem:

inf
θ∈�

Ex∼μ0

[
j(x, θ )

]

s.t.

⎧
⎨

⎩

dXx,t = f (Xx,t , θt )dt, t ∈ (0, T ),

Xx,0 = x,

(1.11)

which is nothing but the (unrobust) training problem for the neural network; we have
made the constraints in the above problem explicit to facilitate the comparison with the
problems introduced below. For each θ ∈ � and x ∈ R

d , there is a corresponding dual
variable P : [0, T ] → R

d associated to the ODE (1.3) which can be written as:
⎧
⎨

⎩

dPx,t = −∇ξH0(Xx,t , θt , Px,t )dt, t ∈ (0, T ),

Px,T = −∇ξ 	(Xx,T , θT ),
(1.12)

where H0 is the Hamiltonian:

H0(ξ ,ϑ , �) := � · f (ξ ,ϑ) − 
(ξ ,ϑ), ξ ∈ R
d, ϑ ∈ �0, � ∈ R

d.

Px,0 is known to be equal to the negative gradient (in x) of the function j(·, θ ) when holding
θ fixed (see the beginning of section 2.3 for a proof of this fact), that is, Px,0 captures the
sensitivity of j(x, θ ) to perturbations in the input. This insight has been used in [42] to
propose algorithms for the training of robust neural networks.
With this new interpretation, Problem (1.9) can be rewritten as a control problem:

inf
θ∈�

{
Ex∼μ0

[
j(x, θ )

]+ δ · (Ex∼μ0

[‖Px,0‖q∗
])1/q

}

s.t.

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dXx,t = f (Xx,t , θt )dt, t ∈ (0, T )

Xx,0 = x

dPx,t = −∇ξH0(Xx,t , θt , Px,t )dt, t ∈ (0, T )

Px,T = −∇ξ 	(Xx,T , θT ).

(1.13)
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Our second main result identifies the first-order optimality condition for this new con-
trol problem.

Theorem 1.13 Let p ∈ [2,∞]. Suppose that Assumption 1.8 holds and that ‖·‖ is the
Euclidean norm. Suppose that (θ∗, X∗, P∗) is a minimizer for problem (1.13). Then, there
exist absolutely continuous processes α∗,β∗ such that for μ0-a.e. x we have:

α∗
x,t = −∇ξ 	(X∗

x,T , θ
∗
T ) + D2

ξ 	(X
∗
x,T , θ

∗
T )

�β∗
x,T (1.14)

+
ˆ T

t
{Dξ f (X∗

x,s, θ∗
s )�α∗

x,s − ∇ξ
(X∗
x,s, θs)}ds

+
ˆ T

t
{D2

ξ
(X∗
x,s, θ

∗
s ) − D2

ξ f (X
∗
x,s, θ

∗
s )�P∗

x,s}�β∗
x,sds

β∗
x,t = δ

(
Ex0∼μ0

[‖P∗
x,0‖q

])− 1
p ‖P∗

x,0‖q−2P∗
x,0 +

ˆ t

0
Dξ f (X∗

x,s, θ∗
s )β∗

x,sds, (1.15)

and also

θ∗
t ∈ arg max

ϑ∈�0

{
Ex∼μ0

[
H (X∗

x,t , P
∗
x,t ,α

∗
x,t ,β

∗
x,t ,ϑ)

]}
, (1.16)

where

H (ξ , �,α,β ,ϑ) := α · f (ξ ,ϑ) − 
(ξ ,ϑ) − β · (Dξ f (ξ ,ϑ)�� − ∇ξ
(ξ ,ϑ)) (1.17)

is the Hamiltonian of problem (1.13).

Remark 1.14 It is worth highlighting that for themodified problem, the adjoint variable of
X∗ is not P∗, but rather α∗. Indeed, for this problem, P∗ becomes part of the state variables,
and has its own adjoint variable β∗. The Hamiltonian name for H is then justified since

dX∗
x,t = ∇αH (X∗

x,t , P
∗
x,t ,α

∗
x,t ,β

∗
x,t , θ

∗
t ),

dP∗
x,t = ∇βH (X∗

x,t , P
∗
x,t ,α

∗
x,t ,β

∗
x,t , θ

∗
t ),

dα∗
x,t = −∇ξH (X∗

x,t , P
∗
x,t ,α

∗
x,t ,β

∗
x,t , θ

∗
t ),

dβ∗
x,t = −∇pH (X∗

x,t , P
∗
x,t ,α

∗
x,t ,β

∗
x,t , θ

∗
t ).

Remark 1.15 A similar result can be derived formore general norms, only that the expres-
sions for the corresponding adjoint variables are more cumbersome.

The derived Pontryagin principle motivates a class of algorithms for training robust
neural networks that are discussed in Sect. 4. The double backpropagation algorithm
from [12] is a particular instance of this family of algorithms, which, at the moment it was
proposed, was used to enhance the generalization properties of a neural network.

1.3.1 Second-order regularization

The results presented in the previous section can be developed further to include higher-
order expansions for the function J (μ̃, θ ) under the assumption that the function j(·, θ ) is
regular enough.However, unlike in the first-order case, an explicit higher-order expansion
for (1.8) that does not involve any maximization problems is in general difficult to obtain
unless one restricts to specific regimes for the size of the gradient function∇xj(·, θ ) relative
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to the size of the parameter δ. Nevertheless, restricting our attention to the case p ≥ 2 and
‖·‖ the Euclidean norm, in Sect. 3 we can motivate the following optimization problems:

min
θ∈�

⎧
⎪⎨

⎪⎩

J (μ0, θ ) + δ
(
Ex∼μ0

[‖∇xj(x, θ )‖q
])1/q

+ δ2

2
(
Ex∼μ0

[‖∇xj(x, θ )‖q
])−2/p

(

Ex∼μ0

[ ∇xj�D2
xj∇xj

‖∇xj‖2(1−1/(p−1)) (x, θ )
])

⎫
⎪⎬

⎪⎭
,

(1.18)

min
θ∈�

{

J (μ0, θ ) + δ2

2
(Ex∼μ0

[
(λmax(x, θ ))

q̃
+
]
)1/q̃
}

, (1.19)

where q̃ is the conjugate of p/2, i.e., 1
q̃ + 2

p = 1. Both of these optimization problems
can be regarded as second-order regularized risk minimization problems stemming from
the adversarial learning problem (1.5), the difference between them being the relative
size expected for the gradients of the loss function as compared to δ. As in Remark 1.15,
similar second-order problems can be motivated for more general norms ‖·‖, but we skip
the details for concreteness.
It is important to highlight that problems (1.18) and (1.19) are closely connected to

other problems in the literature that have been used to train robust neural networks,
most prominently the curvature regularization problem introduced in [27]. To draw a
closer connection between what we do here and what is done in [27], notice that, as for
the first-order case, when p = ∞ problems (1.18) and (1.19) are linear in μ0 and read,
respectively,

min
θ∈�

{

J (μ0, θ ) + δEx∼μ0

[‖∇xj(x, θ )‖
]+ δ2

2
Ex∼μ0

[∇xj�D2
xj∇xj

‖∇xj‖2 (x, θ )
]}

, (1.20)

min
θ∈�

{

J (μ0, θ ) + δ2

2
Ex∼μ0 [(λmax(x, θ ))+]

}

. (1.21)

Problem (1.21) is closely related to an optimization problem introduced in [27], which
effectively uses a regularization term of the form:

Ex∼μ0

[‖D2
xj(x, θ )‖2

]

(where the matrix norm in the above expectation is the operator norm) instead of the
quadratic term in (1.21). Notice that in (1.21) curvature is only penalized when it is
positive. This is reasonable as directions with positive curvature are precisely those that
an adversary can use to increase the value of the loss function.
Problem (1.20) can also be motivated by considerations discussed in [27]. Indeed,

according to [27], in settings of interest involving the use of neural networks (see Remark 3
in [27]) the inner product between the eigenvector corresponding to themaximum eigen-
value of the Hessian matrix D2

xj(x, θ ) and the sign gradient direction are found to have
a large inner product, suggesting that this direction is (almost) parallel to the direction
of largest curvature. Note that the quadratic term in (1.20) is precisely the effect of the
second derivative along unitary vectors in the direction of the gradient and coincides with
the (1-homogeneous) ∞-Laplacian of the function j(·, θ ). The works [15,22] also suggest
that gradient directions are directions where the loss function j(·, θ ) is highly curved. From
these observations, it is thus reasonable to consider the second-order regularization term
that appears in (1.20).
As in the first-order case, we can also study the optimal control structure that the

objectives in (1.18) and in (1.19) posses. Similarly to the first-order robustness case, we
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write the control problem in a different form by expressing the second-order part in terms
of dual variables.
Let us consider first the second-order problem (1.18). We can readily rewrite it in terms

of the adjoint variables of the first-order expansion.

Proposition 1.16 Under the same assumptions as Theorem 1.13, Problem (1.18) can be
rewritten as

inf
θ∈�

{

Ex∼μ0

[
	(Xx,T , θT )

]+ δ · (Ex∼μ0

[‖Px,0‖q
])1/q + δ

2
Ex∼μ0

[‖Px,0‖q−2α̂x,0 · Px,0
]

(
Ex∼μ0

[‖Px,0‖q
])1/p

}

s.t.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

X, P as in(1.13)
β as in Theorem1.13
dα̂∗

x,t = −Dξ f (Xx,s, θs)�α̂x,s + {D2
ξ f (Xx,s, θs)�Px,s}�βx,s

α̂x,T = D2
ξ 	(Xx,T , θT )�βx,T .

(1.22)

Themain advantage of writing this case of second-order problem as in (1.22) is that this
writing avoids the need to keep track of the whole matrix of second derivatives D2

xj(x, θ )
which is usually expensive to calculate when the dimension of the problem is large, i.e.,
O(d2) as opposed to the cost for keeping track of the gradient only which is O(d)).

Remark 1.17 Thanks to the linearity of the adjoint variableα inTheorem1.13 it is possible
to write

αx,t = Px,t + α̂x,t ,

so that we could have introduced directly α̂ as the adjoint variable of interest.

Remark 1.18 Note that there is no mistake in the powers of δ in the objective function in
(1.22): the adjoint variable α̂ is already scaled by δ via the initial condition in β .

Another advantage of the formulation based in control variables is that, as in the first-
order case, we can use the optimal control tools to deduce a Pontryagin principle: the
adjoint variables β , α̂ are added to the list of primal variables, and new adjoint variables
φ,π , λ,ψ are found. In this case, the system will be composed by eight variables (four
primal and four adjoint), all having the same dimension d. Once more, this shows the
complexity of the training problem for this second-order case has increased by ’only’ a
factor of 2 (i.e., a factor independent of dimension).
As an example, we state, without proof, Pontryagin’s principle for the problem (1.16) in

the case p = ∞.

Theorem 1.19 Suppose that Assumption 1.8 holds, and further that f, 	 are three-times
continuously differentiable with respect to x. Assume also that (θ∗, X∗, P∗,α∗,β∗) is an
optimalminimizer for problem (1.22) (with p = ∞). Then, there exist absolutely continuous
processes φ∗,π∗, λ∗,ψ∗ such that for μ0-a.e. x we have:

dφ∗
x,t = −Dξ f (X∗

x,t , θ∗
t )�φ∗

x,t + {D2
ξ f (X

∗
x,t , θ∗

t )�P∗
x,t}�π∗

x,t

+ {D2
ξ f (X

∗
x,t , θ∗

t )�α∗
x,t}�λ∗

x,t − {D2
ξ f (X

∗
x,t , θ∗

s )�β∗
x,t}�ψ∗

x,t

− ({D3
ξ f (X

∗
x,t , θ

∗
t )�P∗

x,t}�β∗
x,t )�λ∗

x,tdt

dπ∗
x,t = Dξ f (X∗

x,t , θ
∗
t )π∗

x,t − {(β∗
x,t )�(D2

ξ f (X
∗
x,t , θ

∗
t ))�}�λ∗

x,tdt,
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dλ∗
x,t = Dξ f (X∗

x,t , θ∗
t )�λ∗

x,tdt,

dψ∗
x,t = −{D2

ξ f (X
∗
x,t , θ

∗
t )�P∗

x,t}�λ∗
x,t − Dξ f (X∗

x,t , θ
∗
t )ψ∗

x,tdt

with boundary conditions

φ∗
x,T = P∗

x,T + D2
ξ 	(X

∗
x,T , θ

∗
T )π

∗
x,T − {D3

ξ 	(X
∗
x,T , θ

∗
T )β

∗
x,T }�λ∗

x,T

π∗
x,0 = 1

‖P∗
x,0‖

(

P∗
x,0 + δ

2
α∗
x,0 − δψ∗

x,0

)

− δ

‖P∗
x,0‖3

P∗
x,0 ·

(
1
2
α∗
x,0 − ψ∗

x,0

)

P∗
x,0

λ∗
x,0 = δ

2
P∗
x,0

‖P∗
x,0‖

ψ∗
x,T = −D2

ξ 	(X
∗
x,T , θ

∗
T )

�β∗
x,T

and also

θ∗
t ∈ arg max

ϑ∈�0

{
Ex∼μ0

[
H̄ (X∗

x,t , P
∗
x,t ,α

∗
x,t ,β

∗
x,t ,φ

∗
x,t ,π

∗
x,t , λ

∗
x,t ,ψ

∗
x,t ,ϑ)

]}
,

where

H̄ (ξ , �,α,β ,ϕ,� , λ,Ψ ,ϑ) := ϕ�f (ξ ,ϑ) − ��Dξ f (ξ ,ϑ)� − α�Dξ f (ξ ,ϑ)λ

+ λ�(D2
ξ f (ξ ,ϑ)

��)�β + β�Dξ f (ξ ,ϑ)ψ
(1.23)

is the Hamiltonian of problem (1.22)

Remark 1.20 Algorithm 2 in Sect. 4 is an optimization algorithm based on the Pontryagin
principle presented in Theorem 1.19 for the second-order regularization problem (1.20).
Ignoring the δ term in the objective, and considering j(x, θ ) = 	(Xx,T , θT ), the resulting
problem is related to the curvature regularization algorithm studied in [27]. In what
follows, we describe a difference and a similarity between the iterative schemes that we
present here and the scheme presented in [27] for the analogous problem.
First, notice that the term D2

xj∇xj, which appears in the objective in (1.20), can be
interpreted as the derivative of ∇xj in the direction z = ∇xj. It is clear that z depends on θ

and thus it is reasonable (and more accurate) to track this dependence when optimizing
over θ , as we do in our schemes. Notice that our adjoint equations precisely contain
the information to carry out this “chain rule” computation. In contrast, at each iteration
of the algorithm in [27] the value of z gets fixed using the control θ from the previous
iteration before proceeding to take a gradient step in the parameters of the network. In
fact, in [27] a finite difference approximation 1

h‖∇xj(x+ hz, θ )− ∇xj(x, θ )‖ for the second
derivative is considered, as opposed to the explicit computation D2z. Our scheme based
on Pontryagin’s principle does not incur in a higher computational cost than the algorithm
in [27].
On the other hand, our schemes based on Pontryagin principles share with that in [27]

the fact that data points are never updated during training, in contrast to other works like
[19,42] where, at each iteration of their algorithms, data get modified and then used as the
data for one step of gradient descent in the parameters of the network; see the discussion
in Sect. 2.2.

We can now consider the second-order problem (1.19). Unfortunately, it is not simple
to express the maximum eigenvalue or its associated eigenvector in terms of a variable
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having reasonable dynamics in terms of the problem’s data without tracking the full
second-order derivative D2

xj(θ , x). As discussed earlier, choosing such a path would be
costly for high-dimensional problems.
A common idea to deal with dimensionality issues is to introduce random sampling: for

instance, we can consider the action of the second derivative on a sample of directions
taken uniformly from the unit ball. Indeed, using the fact that

(λmax(x, θ ))+ = max
z∈Sd1

{(〈Az, z〉)+}, (1.24)

where Sd1 denotes the surface of the unit ball in dimension d, we could be tempted to
consider as candidate

max
i=1,...,m

{(〈AZi, Zi〉)+}; {Zi}i=1,...,m i.i.d with Z1 ∼ U (Sd1 ).

However, one can easily deduce that this technique requires up to O(ε−d) samples to
guarantee an error of O(ε) in situations where there is an important gap between the
maximal eigenvalue and the remaining ones.
A modified version of the problem lends itself to a better reduction complexity through

this approach. Noticing that the right-hand side of (1.24) can be understood as taking

an 	∞(Sd1 ) norm, we suggest replacing (λmax(x, θ ))+ with
(ffl

Sd1
(z�D2

xj(θ , x)z)b+dz
)1/b

for
some power b ≥ 1. Focusing on the case b = 1, we substitute (1.19) with

min
θ∈�

⎧
⎪⎨

⎪⎩
J (μ0, θ ) + δ2

2

⎛

⎝E

⎡

⎣

{ 

Sd1
(z�D2

xj(θ , x)z)+dz
}q̃
⎤

⎦

⎞

⎠

1/q̃
⎫
⎪⎬

⎪⎭
. (1.25)

Problem (1.25) can be seen as a different form of curvature penalization where the stress
is put on reducing the overall positive curvature of the second derivative. In this sense, this
problem gives less importance to potential worst cases than (1.19). Conveniently, though,
it is better suited for an approximation using randomized directions.

Proposition 1.21 Suppose Assumptions 1.8 and 1.12 hold. Let {zi}i=1,...,m be i.i.d. samples
with z1 ∼ U (Sd1 ) defined on a different probability space (�′,P′,F ′). Consider the problem

inf
θ∈�

⎧
⎪⎨

⎪⎩
Ex∼μ0

[
	(Xx,T , θT )

]+ δ2

2

⎛

⎝Ex∼μ0

⎡

⎣

{
1
m

m∑

i=1
(ρzi

x,0 · zi)−
}q̃
⎤

⎦

⎞

⎠

1/q̃
⎫
⎪⎬

⎪⎭

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

X, P as in(1.13); and

dγ i
x,t = Dξ f (xx,t , θt ) γ i

x,tdt,

dρ
zi
x,t = −Dξ f (Xx,t , θt )� ρ

zi
x,t +

{
D2

ξ f (Xx,t , θt )� Px,t
}�

γ i
x,tdt,

γ i
x,0 = zi, ρ

zi
x,T = D2

ξ 	 (Xx,T , θT ) γ i
x,T for i = 1, . . .m.

(1.26)

and let V δ,m be its optimal value. If V δ is the optimal value in (1.25), then

V δ,m → V δ
P

′ − a.s.

and V δ,m − V δ satisfies a central limit theorem (so that the error is of order m−1/2).

Problem (1.21) also has an associated Pontryagin maximum principle as the other con-
trol problems discussed thus far, only that we do not write it out explicitly for brevity. We
remark, however, that the corresponding Pontryagin principle can be used to motivate
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algorithms just as with the other problems discussed throughout this section. Notice that
the number of state variables in problem (1.26) is 2m + 3. This control problem is more
advantageous than one that directly tracks the Hessian matrix D2j(x, θ ) whenever 2m+ 3
is considerably smaller than d.

Remark 1.22 The variance of V δ,m − V δ in proposition 1.21 depends on the dimension
d. Consider, for example, the case q̃ = 1, which corresponds to the case p = ∞ in the dis-
cussion in Sect. 1.3.1. First, notice that the terms ρzi ·zi can be rewritten as−z�

i D
2
xj(θ , x)zi.

Now, given that the matrix D2
xj(θ , x) is real and symmetric, and given that the zi are uni-

formly distributed on Sd1 , the spectral decomposition theorem can be used to find a linear
growth of this variance with respect to the rank of the matrix, and a fortiori, at most linear
with respect to d. The linear in d dependence of the variance estimate for fixed x and θ

can be upgraded to uniform ones over all x and θ under smoothness assumptions on j. In
terms of the sample size, this means that m would need to grow a bit faster than linearly
to guarantee convergence from the central limit theorem. Compare with the complexity
of using and keeping track of the whole Hessian (as in (1.25)), which is quadratic with
respect to the dimension.
Problem (1.25) can be easily extended to other values of b ≥ 1, with b → ∞ recovering

the original problem (1.19). Notice, however, that the randomization strategy for the
approximation of the integral degenerates for larger values of b. While problem (1.19) is
more closely connected to the original adversarial training problem, formulation (1.25) is
superior from a computational perspective.

1.4 Other forms of regularization in the literature

In this section, we review some works in the literature connected to robust training of
neural networks and discuss four different ways of introducing regularization penalties.
First, it is always possible to explicitly penalize the parameters of a neural network. For

example, in [20,24] the loss function j(x, θ ) in (1.11) is replaced with a loss function of the
form:

j̃(θ , x) = 	(Xx,T , θT ) +
ˆ T

0

̃(Xx,t , θt , θ̇t )dt,

where the running cost
 explicitly penalizes the derivative of θ in time: this is one way to
penalize parameters that is quite reasonable in the deep ResNet setting. A simple choice
for 
̃ that allows us to draw a direct connection with the regularization problem (1.2) is


̃(ξ ,ϑ , u) := 
(ξ ,ϑ) + λ|u|2,
for λ > 0. From a variational perspective, a regularization problem like the one described
above admits optimal controls (parameters) in the classical sense. This contrasts with
our problem (1.9) where in general optimal solutions have to be sought in the space of
generalized controls a.k.a. Young measures; see [28].
There are papers that explicitly penalize the input-to-output mappings of a neural net-

work. These are works that consider problems of the form:

inf
θ∈�

{J (μ0, θ ) + R(g(X·,T ))},
where R(·) is some type of regularization functional (typically a seminorm like for exam-
ple the Lipschitz seminorm) acting explicitly on the input-to-output map x �→ g(Xx,T );
here, the function g is a simple function connected to the learning problem in hand (e.g.,
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classification or regression) and that in general may depend on trainable parameters. The
penalization of parameters via the regularity of their induced input-to-output maps has
been considered in papers such as [16,21,36] where it is has also been shown that the
resulting function objectives do enforce adversarial robustness (i.e., stability to data per-
turbations). The paper [33] considers this problem in the setting of graph-based learning.
Another approach to enforce robustness found in the literature is basedon perturbation-

based regularization terms. These are approaches based on the construction of adversarial
examples around the observed data that can be used to define a new “perturbed” risk
functional that is treated as regularizer. For example, [19] considers the problem

inf
θ∈�

{Ex∼μ0 [j̃(x, θ )]}, where j̃(x, θ ) := αj(x, θ ) + (1 − α)j(x + δ · sign(∇xj(x, θ )), θ ),

(1.27)

for some δ > 0 and some α ∈ [0, 1). In the above, x+δ ·sign(∇xj(x, θ )) can be considered as
an adversarial example. This specificway of constructing adversarial examples is known in
the literature as the Fast Gradient SignMethod (FGSM) from [19]. Although this method
has some practical shortcomings, it has been found in [38] that it provides quickly state-
of-the-art level robustification results when coupled with a random perturbation of the
data μ0 within the 	∞ ball considered.
Finally, objectives like the ones we presented in Sect. 1.3 have regularization terms that

act explicitly on the derivatives of the loss function (derivatives with respect to the input
data) and thus penalize the parameters implicitly though the regularity that they induce
on the loss function. In the literature, the work [12] proposed the use of a regularization
term of the form

Ex∼μ0 [‖∇xj(x, θ )‖]

(i.e., as in problem (1.10)), where it was also noticed that the resulting regularization
problem could be implemented easily with a “double backpropagation approach” (see
our Remark 4.1). There is a plethora of works that in the past few years have used and
analyzed a similar input gradient regularization approach (the case p = ∞ in our results
or similar); see for example [17,25,29,30,40]. More recently, higher-order regularization
terms penalizing curvature of the loss function have been proposed, e.g., [27].

1.5 Outline

The rest of the paper is organized as follows. In Sect. 2, we present the proof of Theorem
1.9 using two approaches, including a formal one based on the geometric structure of opti-
mal transport. In Sect. 2.2, we discuss connections between regularization problems and
perturbation-based training algorithms. In Sect. 2.3, we discuss the Pontryagin principle
associated with the optimal control formulation of the first-order regularization problem
(1.9) (i.e., Theorem 1.13). Section 3 is devoted to second-order regularization problems
and in particular the motivation of problems (1.18) and (1.19), as well as their optimal
control reformulations. Using the Pontryagin principles discussed throughout the paper,
we motivate a family of algorithms for the training of robust neural networks in Sect. 4,
and in Sect. 5 we present a series of numerical experiments to illustrate the performance
of the algorithms. We wrap up the paper in Sect. 6 where we present some conclusions.
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2 First-order regularization
2.1 Proof of Theorem 1.9

In this section, we present the proof of Theorem 1.9, first rigorously, and then by provid-
ing a formal argument that relies on the geometric structure of the space of probability
measures Pp(Rd) endowed with theWp distance. For our rigorous proof, we use the fact
that for every θ ∈ � we have:

max
μ̃:Wp(μ0 ,μ̃)≤δ

J (μ̃, θ ) = max
π∈Fμ0 ,δ

{ˆ

Rd×Rd
j(x̃, θ )dπ (x, x̃)

}

, (2.1)

whereFμ0 ,δ is the set of all Borel probability measures π onR
d ×R

d whose first marginal
is μ0 and satisfy

ˆ

Rd×Rd
‖x − x̃‖pdπ (x, x̃) ≤ δp;

see Remark 1.5. Identity (2.1) has been used repeatedly in the literature of distributionally
robust optimization to obtain dual representations for generic adversarial problems of
the form (1.5) and to in turn propose new frameworks for statistical inference (e.g., [3–
5,9,23,37]; see Sect. 2.2 for an explicit formula for the dual problem). In this section,
however, we do not focus on the dual representation associated to the adversarial problem,
but rather, on the flat geometry of the set of πs that parameterize the right-hand side of
(2.1).

Proof of Theorem 1.9 We follow an approach based on lifting the probability distributions
π to a space of random variables as used, for example, when defining and studying the
L-derivative (see for example sections 5.1-5.2 in [8]). The main idea is to use the fact that,
over an atomless probability space (�,F ,P), and for any coupling π ∈ 
(μ0, μ̃) where
μ0, μ̃ are probability distributions on R

d , we can construct Rd-valued random variables
X, X̃ on�with joint distributionπ (for a proof see Proposition 9.1.2 andTheorem1.13.1 in
[13]).We can then operate using these random variables to approximate our optimization
problem. Since the development only makes use of our assumptions and the properties of
π , the result is independent of the chosen probability space.
With this idea in mind, using Assumptions 1.7, we can write for any coupling π ∈


(μ0, μ̃) that

J (μ̃, θ ) = E[j(X̃ , θ )]

= E
[
j(X, θ ) + ∇xj(X, θ ) · (X̃ − X)

+
ˆ 1

0
{∇xj(X + λ(X̃ − X), θ ) − ∇xj(X, θ )} · (X̃ − X)dλ

]

,

where X, X̃ are random variables with (X, X̃) ∼ π . Using now the fact that ∇xj(·, θ ) is
Lipschitz, it follows that

∣
∣J (μ̃, θ ) − E

[
j(X, θ ) + ∇xj(X, θ ) · (X̃ − X)

]∣
∣ ≤ 1

2
Lip(∇xj(·, θ ))E[‖X̃ − X‖2e ],

where ‖·‖e is the Euclidean norm.
Note that the constraint

´
Rd×Rd‖x − x̃‖pdπ (x, x̃) ≤ δ means that we only consider

couplings where

E[‖X̃ − X‖2e ] ≤ CE[‖X̃ − X‖2] ≤ C(E[‖X̃ − X‖p])2/p ≤ Cδ2



54 Page 16 of 32 C. A. G. Trillos, N. G. Trillos ResMath Sci (2022) 9:54

where C is a constant appearing due to the equivalence of norms inR
d ; in the last line we

use the fact that p ≥ 2 to apply Jensen’s inequality. Since the above is a uniform control
in the space of feasible solutions π and � (thanks to Assumption 1.12), we conclude that

sup
μ̃:Wp(μ0 ,μ̃)≤δ

J (μ̃, θ ) = sup
π :

´
Rd×Rd ‖x−x̃‖pdπ (x,x̃)≤δp

{J (μ0, θ ) + E[∇xj(X, θ ) · (X̃ − X)]} + O(δ2),

forO(δ2) independent of θ . Clearly, the first termwithin the supremum on the right-hand
side is independent of μ̃. We then only need to optimize the second term. Now, by a
(generalized) Hölder inequality (see for example [39]), it follows that

E[∇xj(X, θ ) · (X̃ − X)] ≤ (E[‖∇xj(X, θ )‖q∗]
)1/q (

E[‖X̃ − X)‖p])1/p

where equality can be attained whenever 1 ≤ p ≤ ∞ for a proper choice of X̃ − X with
(
E[‖X̃ − X‖p])1/p = δ. Therefore,

sup
μ̃:Wp(μ0 ,μ̃)≤δ

J (μ̃, θ ) = J (μ0, θ ) + δ
(
E[‖∇xj(X, θ )‖q∗]

)1/q ,

which in turn deduces our claim since the O(δ2) term is uniform over all θ ∈ �. ��

Remark 2.1 Coming back to the literature on L-derivative mentioned in the proof of
Theorem1.9, we remark that in this case ∂μJ (μ0, θ ) = ∇xj(X, θ ) (see section 5.2.2, Example
1 in [8] ). As pointed out before, this quantity does not depend on the choice of lifting.

2.1.1 A formal geometric analysis in the spacePp(Rd )

In this section, we present an alternative formal geometric analysis for Theorem 1.9. We
restrict to the case where p ≥ 2 and for simplicity assume that ‖·‖ is the Euclidean norm.
The idea in this geometric approach is to use the formal differential structure of the space
of probability measures Pp(Rd) endowed with the Wp distance and carry out a Taylor
expansion of the function μ̃ �→ J (μ̃, θ ) around μ0. Ultimately, the goal is to replace the
function J (μ̃, θ ) with an approximation written in terms of a natural retraction of μ̃ to
the tangent space of Pp(Rd) at the point μ0. For a discussion on the general differential
geometric perspective in the Wasserstein space (i.e., when p = 2) see Chapter 8.2 in [35],
and for more details on the geometry of the space (Pp(Rd),Wp) see Chapter 8 in [1].
In more precise terms, let μ̃ belong to theWp-ball of radius δ aroundμ0. For every such

μ̃ we consider the constant speed geodesic t ∈ [0, 1] �→ (μt , Vt ) that connects μ0 with μ̃.
Namely, the continuity equation

∂tμt + div(Vtμt ) = 0, t ∈ (0, 1).

and the relations
ˆ t

0

ˆ

Rd
‖Vs(x)‖pdμs(x)ds = t(Wp(μ0, μ̃))p, t ∈ [0, 1],

are satisfied. Here, Vt is a vector field in R
d and μt is a probability measure in R

d which
at time t = 1 coincides with μ̃. The pair (μt , Vt ) can be characterized further. Indeed,
assuming that there exists an optimal transport map T ∗ between μ0 and μ̃ for the cp cost
(for example assuming that μ0 has a density with respect to the Lebesgeue measure) we
can write:

⎧
⎨

⎩

μt = Tt�μ0, ∀t ∈ [0, 1],

Vt (Tt (x)) = T ∗(x) − x, ∀x ∈ supp(μ0),∀t ∈ [0, 1],
(2.2)
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where the map Tt is given by

Tt (x) := tT ∗(x) + (1 − t)x.

The function μ̃ �→ V0 ∈ Lp(Rd : Rd,μ0) can be understood as a logarithmic map, i.e., a
map that in particular sends points in the manifold Pp(Rd) to tangent vectors at μ0 and
that satisfies:

‖V0‖pLp(Rd :Rd ,μ0)
=
ˆ

Rd
‖V0(x)‖pdμ0(x) = (Wp(μ0, μ̃))p.

Let us now find an approximation for the function J (μ̃, θ ) in terms of an expression
involving V0. For that purpose, we Taylor-expand the function j(·, θ ) along the geodesic
(2.2). First, following equation 8.1.4. in [1] we obtain:

d
dt

J (θ ,μt ) = d
dt

ˆ

Rd
j(x, θ )dμt (x) =

ˆ

Rd
∇xj(x, θ ) · Vt (x)dμt (x);

notice that, geometrically speaking, when p = 2 the above equation is the standard
relation between directional derivatives and gradients in the Wasserstein space. We can
also compute the second derivative along the geodesic as follows:

d2

dt2
J (θ ,μt ) = d

dt

(ˆ

Rd
∇xj(x, θ ) · Vt (x)dμt (x)

)

= d
dt

(ˆ

Rd
∇xj(θ , Tt (x)) · Vt (Tt (x))dμ0(x)

)

=
ˆ

Rd
(D2

xj(θ , Tt (x))V0(x)) · V0(x)dμ0(x).

(2.3)

In particular,
∣
∣
∣
∣
d2

dt2
J (θ ,μt )

∣
∣
∣
∣ ≤ C

ˆ

Rd
‖V0(x)‖2dμ0(x) ≤ C

(ˆ

Rd
‖V0(x)‖pdμ0(x)

)2/p
≤ Cδ2,

where the constant C is uniform over all t ∈ [0, 1], all θ ∈ � (thanks to Assumption 1.12)
and all μ̃ withWp(μ0, μ̃) ≤ δ; notice that in the second to last line we have used Jensen’s
inequality since p ≥ 2.
From the above computations we obtain:

J (μ̃, θ ) = J (μ0, θ ) + d
dt

J (θ ,μt )
∣
∣
t=0 + O(δ2)

= J (μ0, θ ) +
ˆ

Rd
∇xj(x, θ ) · V0(x)dμ0(x) + O(δ2),

where again we notice that the O(δ2) term is uniform over all θ ∈ � and all μ̃ withinWp-
distance δ from μ0. Using the relation between the μ̃s and their corresponding V0s, we
can thus expect that up to an error of orderO(δ2) (independent of θ ∈ �), the expression:

max
μ̃:Wp(μ0 ,μ̃)≤δ

J (θ , μ̃)

(an optimization problem over a curved manifold) is equal to:

J (μ0, θ ) + max
V0: ‖V0‖Lp(Rd :Rd ,μ0)≤δ

{ˆ

Rd
∇xj(x, θ ) · V0(x)dμ0(x)

}

, (2.4)

which is an optimization over a flat Banach space. Since (2.4) is simply a dual representa-
tion for the Lq(Rd : Rd,μ0)-norm of ∇xj(·, θ ), it follows that (2.4) is equal to:

J (μ0, θ ) + δ

(ˆ

Rd
‖∇xj(x, θ )‖qdμ0(x)

)1/q
,
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which is the objective function in (1.9). Notice that the V0 achieving the maximum takes
the form:

V0(x) := δ

[ˆ

Rd
‖∇xj(x̃, θ )‖qdμ0(x̃)

]−1/p ∇xj(x, θ )
‖∇xj(x, θ )‖1−1/(p−1) , (2.5)

with the convention 0/0 = 0.

Remark 2.2 There are a few steps in the above analysis that would need further justifica-
tion in order to make this analysis into a rigurous proof. Here we offer some comments
on this direction.

i) First, we have used the existence of optimal transport maps to write the geodesic
(2.2) and to define an associated retraction map μ̃ �→ V0. This can be done, for
example, if we assume thatμ0 is absolutely continuouswith respect to the Lebesgue
measure. The reduction to the absolutely continuous case can be accomplished by
an approximation argument since theO(δ2) correction terms in the above analysis
only depend on the control we have on the Hessian (in x) of the loss function given
by Assumption 1.12.

ii) Going from the maximization problem maxμ̃:Wp(μ0 ,μ̃)≤δ{J (θ , μ̃)} to (2.4) is moti-
vated by the fact that on a finite-dimensional smooth manifold one can find a
one-to-one correspondence between points in a geodesic ball with small enough
radius R (in particular smaller than the injectivity radius of the manifold) and tan-
gent vectors at the center of the ball that have norm less thanR. In the spacePp(Rd),
however, this intuition breaks down. To illustrate how one can still recover (2.4)
using optimal transport theory let us consider the case p = 2 for concreteness and
assume that μ0 is absolutely continuous with respect to the Lebesgue measure. In
that case, the V0s induced by μ̃s withinW2-distance δ from μ0 can be written as:

δ(∇xϕ(x) − x
δ
) = δ∇x(ϕ(x) − ‖x‖2

2δ
)

for ϕ a convex function, as it follows from Brenier’s theorem (see Theorem 2.12 in
[35]). Now, by Assumption 1.12, the function

x �→ j(x, θ )
c

+ ‖x‖2
2δ

is a convex function for all small enough δ. In the above, c = ‖∇xj(·, θ )‖L2(Rd :Rd ,μ0).
We can thus take ϕ(x) = j(x,θ )

c + ‖x‖2
2δ (assuming δ is small enough) and V0(x) =

δ(∇ϕ(x) − x). It is clear that this V0 maximizes (2.4) when p = 2.
iii) It is worth mentioning that the formal analysis presented here does not use specific

attributes of the Euclidean norm and in fact can be used for general norms (as
done in our rigurous proof of Theorem 1.9) with the difference that the form of the
maximizer in problem (2.4) would be in general more cumbersome. One notable
exception is the case of the 	∞ norm on R

d-vectors and the induced L∞ norm on
vector fields (i.e., p = ∞). Indeed, in that case the maximizer takes the form:

V0(x) = δsign(∇xj(x, θ )),

where the sign function acts coordinatewise on vectors.
iv) Finally, it is worth mentioning that one of the main motivations for presenting this

alternate analysis is to introduce additional tools that may come in useful when



C. A. G. Trillos, N. G. Trillos Res Math Sci (2022) 9:54 Page 19 of 32 54

considering different adversarial learning problems where for example the energy
to maximize is not simply an integral with respect to a measure (here J (μ̃, θ )) but
rather an energy which in general may include entropic or interaction terms as
done recently in [11]. Most modern algorithms used for training robust neural net-
works include a step where data points are randomly perturbed before considering
any drift information induced by the loss function. We believe that making a more
concrete connection between said algorithms and a distributionally robust opti-
mization problem would require analyzing this type of entropic term. This is work
that is left for the future.

2.2 Connection with perturbation-based training algorithms

The current literature on robust training is dominated by algorithms based on construct-
ing explicit adversarial samples around a given distribution that are then used as the
training samples for the network. See for example [6,7,26,34], and references therein.
We can relate the results of our study in terms of adversarial samples. Indeed, equation

(2.2) suggests considering a transport map of the form:

T̂ (x) := V0(x) + x,

for the V0 maximizing (2.4), and in turn consider the associated measure ˆ̃μ := T̂�μ0 (the
pushforward ofμ0 by T̂ ); notice that ˆ̃μdepends on θ , and for each θ ˆ̃μ is a natural surrogate
for the maximizer of problem (1.9). One may then consider an objective function of the
form:

θ ∈ � �→ J ( ˆ̃μ, θ )

or more generally

θ ∈ � �→ αJ (μ0, θ ) + (1 − α)J ( ˆ̃μ, θ ),

for some α ∈ [0, 1), and the corresponding minimization problem over θ ∈ � in order to
enforce robustness. It is straightforward to show that, under the assumptions of Theorem
1.9, the minimum value of the resulting problem when α = 1 − δ is within an error of
order δ2 of the minimum value of the regularization problem (1.9). We remark that if V0
is taken to be V0(x) := δ · sign(∇xj(x, θ )), i.e., as in iii) in Remark 2.2, then one can recover
problem (1.27) introduced in [19].
To conclude our discussion in this section, let us point out that maximizers of problem

(1.8) have a clear mathematical characterization. Unfortunately, even with this character-
ization an optimal μ̃ is in general difficult to compute explicitly.

Proposition 2.3 Let δ > 0 and let θ ∈ �. Then

max
π∈Fμ0 ,δ

{ˆ

Rd×Rd
j(x̃, θ )dπ (x, x̃)

}

= min
γ≥0

{
γ δp + Ex∼μ0

[
jγ (x, θ )

]}
, (2.6)

where

jγ (x, θ ) := sup
x̃

{
j(x̃, θ ) − γ ‖x − x̃‖p} .

Moreover, if π∗ is a solution to the problem on the left-hand side, then there exists a
solution to the problem on the right-hand side γ ∗ such that for π∗-a.e. (x, x∗):

x∗ ∈ arg max
x̃∈Rd

{
j(x̃, θ ) − γ ∗‖x − x̃‖p} .
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Finally, the second marginal of π∗ is a solution to the problem (1.8).

Proof The dual characterization (2.6) is discussed, for example, in any of the following
references: [3–5,9,23,37]. The characterization for the minimizers is a straightforward
consequence of the zero duality gap. ��

2.3 Pontryagin principle for the first-order regularized robust control problem

We start by writing the modified control problem in a slightly different form. Under
Assumption 1.7 and fixed but arbitrary control θ , it follows that

∇xj(x, θ ) = −Px,0.

Indeed, let�x be an arbitrary unitary vector inRd . From the flow property of the ordinary
differential equation for X , we get that for almost all t ∈ [0, T ]

lim
ε↓0

1
ε
{Xx+ε�x,t − Xx,t} = ζ�x

t

where ζ�x satisfies
⎧
⎨

⎩

ζ̇ �x
t = Dξ f (Xx,t , θt )ζ�x

t

ζ�x
0 = �x.

(2.7)

Thus, the chain rule implies that

∇xj(x, θ ) · �x = ∇ξ 	(Xx,T , θT ) · ζ�x
T +

ˆ T

0
∇ξ
(Xx,s, θs) · ζ�x

s ds

= −Px,T · ζ�x
T +

ˆ T

0
∇ξ
(Xx,s, θs) · ζ�x

s ds

= −Px,0 · ζ�x
0 −

ˆ T

0
Ṗx,s · ζ�x

s ds −
ˆ T

0
Px,s · ζ̇ �x

s ds

+
ˆ T

0
∇ξ
(Xx,s, θs) · ζ�x

s ds

= −Px,0 · ζ�x
0 = −Px,0 · �x.

This equivalencebetween thedual variableP and (minus) thederivativeof the loss function
with respect to the input allows us to rewrite problem (1.9) in the form (1.13). We are
ready to provide a proof of the Pontryagin principle result stated in Theorem 1.13.

Proof of Theorem 1.13 The proof follows thewell-known “needle” perturbation approach:
we take the optimal control and change it in a small interval; then, we deduce the effect
on the overall value function and deduce first-order conditions of optimality from linear
expansions and integration by parts.
To simplify theproblem,note thatwe canandwill assume,without loss of generality, that

there is no running cost (i.e., 
 ≡ 0) by transforming the running cost in a state variable:
indeed, set x̂ := (x, x′) with x̂0 = (x0, 0), �̂ := (�,−1), f̂ := (f,
), and 	̂(x̄) := 	(x) + x′,
and note that the reduced is an equivalent control problem, still satisfies Assumptions 1.8,
and does not contain any running cost.
Now, let τ ∈ (0, T ) be a Lebesgue point for (f (X∗

t , θ∗
t ), Dξ f (X∗

t , θ∗
t )). By Assumption 1.8,

the set of such points is dense in [0, T ]. For ε ∈ (0, T − τ ) and η ∈ � let

θ
ε,τ
t =

⎧
⎨

⎩

η if t ∈ [τ − ε, τ ]

θ∗
t otherwise

,
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and let Xε,τ
t , Pε,τ

t be the solutions of

Xε,τ
x,t = x +

ˆ t

0
f (Xε,τ

x,s , θ
ε,τ
s )ds

Pε,τ
x,t = −∇ξ 	(Xε,τ

x,T , θ
∗
T ) +

ˆ T

t
{Dξ f (Xε,τ

x,s , θ
ε,τ
s )�Pε,τ

x,s }ds

that is, solutions of the forward variable using the control θε,τ instead of the optimal θ∗.
Let us study the ε-order effect of this change of control policy. Let
⎧
⎪⎪⎨

⎪⎪⎩

u̇x,t = Dξ f (X∗
x,t , θ∗

t )ux,t for t > τ ;

ux,t = f (X∗
x,τ , η) − f (X∗

x,τ , θ∗
τ ) for t = τ ;

ux,t = 0 for t < τ .

and
⎧
⎪⎪⎨

⎪⎪⎩

v̇x,t = − Dξ f (X∗
x,t , θ

∗
t )�vx,t − (D2

ξ f (X
∗
x,t , θ

∗
t )ux,t )�P∗

x,t

+ δτ {Dξ f (X∗
x,τ , θ

∗
τ ) − Dξ f (X∗

x,τ , η)}�P∗
x,τ

vx,T = −D2
ξ 	(X

∗
x,T )ux,T ;

where the term δτ {Dξ f (X∗
x,τ , θ∗

τ ) − Dξ f (X∗
x,τ , η)}�P∗

τ denotes the jump arising at time τ

due to the change in control. We can show (as in [41]) that

lim
ε↓0

1
ε
(Xε,τ

x,t − X∗
x,t ) = ux,t ;

lim
ε↓0

1
ε
(Pε,τ

x,t − P∗
x,t ) = vx,t .

Since optimality implies

Ex∼μ0

[
	(Xε,τ

x,T )
]

+ δ
(
Ex∼μ0

[‖Pε,τ
x,0 ‖q])1/q ≥ Ex∼μ0

[
	(X∗

x,T )
]+ δ

(
Ex∼μ0

[‖P∗
x,0‖q

])1/q

we have from Assumption 1.8 and dominated convergence that

0 ≤ lim
ε↓0

1
ε

{
Ex∼μ0

[
	(Xε,τ

x,t ) − 	(X∗
x,t )
]+ δ(

(
Ex∼μ0

[‖Pε,τ
0 (x0)‖q

])1/q

− (Ex∼μ0

[‖P∗
x,0‖q

])1/q)
}

= Ex∼μ0

[
∇ξ 	(X∗

x,T )
�ux,T

]
+ δ

(
Ex∼μ0

[‖P∗
x,0‖q

])− 1
p Ex∼μ0

[
‖P∗

x,0‖q−2(P∗
x,0)

�vx,0
]

= Ex∼μ0

[
∇ξ 	(X∗

x,T )
�ux,T + (β∗

x,0)
�vx,0

]
(2.8)

On the other hand, d((β∗
x,t )�vx,t ) = d(β∗

x,t )�vx,t + (β∗
x,t )�dvx,t , which implies after some

cancelations that

(β∗
x,0)

�vx,0 = (β∗
x,T )

�vx,T − (β∗
x,τ )�{Dξ f (X∗

x,τ , θ
∗
τ ) − Dξ f (X∗

x,τ , η)}�P∗
x,τ

+
ˆ T

0
(β∗

x,t )�(D2
ξ f (X

∗
x,t , θ∗

t )ux,t )�P∗
x,tdt.
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Therefore, equation (2.8) becomes

0 ≤ Ex∼μ0

[
{∇ξ 	(X∗

x,T )
� − (β∗

x,T )
�D2

ξ 	(X
∗
x,T )}ux,T

+
ˆ T

0
(β∗

x,t )�(D2
ξ f (X

∗
x,t , θ∗

t )ux,t )�P∗
x,tdt

]

+ Ex∼μ0

[
β∗�
x,τ {Dξ f (X∗

x,τ , η) − Dξ f (X∗
x,τ , θ∗

τ )}�P∗
x,τ

]

= Ex∼μ0

[

−α∗�
x,T ux,T +

ˆ T

0
β∗�
x,t (D2

ξ f (X
∗
x,t , θ∗

t )ux,t )�P∗
x,tdt + β∗�

x,τ {Dξ f (X∗
x,τ , η)

−Dξ f (X∗
x,τ , θ∗

τ )}�P∗
x,τ

]

= Ex∼μ0

[
−α∗�

x,τ {f (X∗
x,τ , η) − f (X∗

x,τ , θ∗
τ )} + β∗�

x,τ {Dξ f (X∗
x,τ , η) − Dξ f (X∗

x,τ , θ∗
τ )}�P∗

x,τ

]
.

This deduces the maximum principle (1.16) in the case without running costs. ��

3 Second-order regularization
Wemotivate now problems (1.18) and (1.19). Continuing our computations from section
2.1.1, we can write for every μ̃ withinWp-distance δ from μ̃:

J (μ̃, θ ) = J (μ0, θ ) +
ˆ

Rd
∇xj(x, θ ) · V0(x)dμ0(x)

+1
2

ˆ

Rd
(D2

xj(x, θ )V0(x)) · V0(x)dμ0(x) + O(δ3),

if for example we assume that the function j(·, θ ) has bounded third-order derivatives
uniformly over θ ∈ �. In that case, we could expect that up to an error of order O(δ3)
(independent of θ ∈ �), the problem

max
μ̃:Wp(μ0 ,μ̃)≤δ

J (θ , μ̃)

(an optimization problem over a curved manifold) is equal to

J (μ0, θ ) + max
V0: ‖V0‖Lp(Rd :Rd ,μ0)≤δ

{ˆ

Rd
∇xj(x, θ ) · V0(x)dμ0(x)

+1
2

ˆ

Rd
(D2

xj(x, θ )V0(x)) · V0(x)dμ0(x)
}

, (3.1)

which is again anoptimizationproblemover a flat Banach space.However, in contrastwith
problem (2.4), problem (3.1) does not have an explicit solution. What is more, in general,
the correct expansion of (3.1) in δ (up to order two) depends on the size of∇xj(·, θ ) relative
to δ as we illustrate with the following analogous finite-dimensional problem.

Remark 3.1 Consider the following maximization problem in R
m:

max
v∈Rm s.t. ‖v‖≤δ

{
b · v + (Av) · v} , (3.2)

where A is an arbitrarym × m symmetric matrix (not necessarily with a sign) and b is an
arbitrary vector in R

m. Notice that:

• If δ is small enough and δ
‖b‖ = o(1), then the linear term dominates the problem and

we can write:

(3.2) = δ‖b‖ + δ2
(

A
b

‖b‖
)

·
(

b
‖b‖

)

+ o(δ2).
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This value is obtained by plugging the maximizer of the problem maxv∈Rm s.t. ‖v‖≤δ
{
b · v} in the objective of (3.2).

• If δ is small enough and ‖b‖
δ

= o(1), then the quadratic term dominates the problem
and we can actually write:

(3.2) = δ2(λmax)+ + o(δ2),

where in the above λmax is the largest eigenvalue of A and (a)+ denotes the positive
part of a ∈ R. This value is obtained by plugging the maximizer of the problem
maxv∈Rm s.t. ‖v‖≤δ

{
(Av) · v} in the objective of (3.2).

• When ‖b‖ ∼ δ, an explicit second order expansion for (3.2) is intractable for all
practical purposes as can be easily seen by inspection afterwriting theKKTconditions
for this in general non-convex problem.

To connect problems (1.18) and (1.19) with the previous remark, we use the following
observations. First, if we plug the V0 from (2.5) (the maximizer of the problem (2.4)) in
the objective function from problem (3.1), we obtain the objective function in problem
(1.18). As for the objective in problem (1.19), we notice the following.

Proposition 3.2 Let p ≥ 2. Then, for every θ ∈ � we have:

max
V0: ‖V0‖Lp(Rd :Rd ,μ0)≤δ

{
1
2

ˆ

Rd
(D2

xj(x, θ )V0(x)) · V0(x)dμ0(x)
}

=
(ˆ

Rd
|(λmax(x, θ ))+|q̃dμ0(x)

)1/q̃
, (3.3)

where λmax(θ , x) is the largest eigenvalue of D2
xj(x, θ ) and where q̃ is the conjugate of p/2,

i.e.:
2
p

+ 1
q̃

= 1.

Proof For each x in the support of μ0 we select V0(x) = g(x)U (x) where U (x) is a unit
(Euclidean) norm eigenvector of D2

xj(x, θ ) with eigenvalue λmax(θ , x) and g is a scalar
function that satisfies g(x) = 0 if λmax(x, θ ) ≤ 0 and

´
Rd |g(x)|pdμ0(x)dx ≤ δp . Plugging

this V0 in the objective function of the max problem in (3.3), we obtain:

1
2

ˆ

Rd
(λmax(θ , x))+(g(x))2dμ0(x).

It is then straightforward to show that:

max‖V0‖Lp(Rd :Rd ,μ0)≤δ

{
1
2

ˆ

Rd
(D2

xj(x, θ )V0(x)) · V0(x)dμ0(x)
}

= max
‖g2‖Lp/2(μ0)≤δ2

{
1
2

ˆ

Rd
(λmax(θ , x))+(g(x))2dμ0(x)

}

.

Given that the scalar function x �→ (λmax(x, θ ))+ is non-negative, we can recognize, by
duality, that the right-hand side of the above expression is equal to:

δ2

2

(ˆ

Rd
|(λmax(x, θ ))+|q̃dμ0(x)

)1/q̃
,

obtaining in this way the desired result. ��
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In summary, problems (1.18) and (1.19) can be interpreted as second-order expansions
for inf θ∈� maxμ̃ :Wp(μ0 ,μ̃)≤δ J (μ̃, θ ) in two distinct regimes: 1) when gradients are not small
relative to δ, more precisely, when the norms ‖∇xj(x, θ )‖Lq(Rd :Rd ,μ0) are larger than δ, and
2) when gradients are considerably smaller than δ. In the next section, we discuss the
structure of both of these regularization problems. Recall that, as discussed in section
1.3.1, both of these problems are closely connected to problems used in the literature to
train robust neural networks.

3.1 Adjoint variable formulation of the second-order regularized robust control problems

The main purpose in this section is to examine the transformations on the second-order
problems (1.18) and (1.19) in terms of adjoint variables.

3.2 The problem in Proposition (1.16)

We aim to deduce Proposition 1.16. We start by studying how to write the derivative of
the regularization term in the first-order expansion problem.

Lemma 3.3 UnderAssumption 1.8, and assuming that p ≥ 2 and that ‖·‖ is the Euclidean
norm, we have:

∇x‖Px,0‖q = −qκμ0 ,δα̂x,0

with κμ0 ,δ = 1
δ

(
Ex0∼μ0 [‖Px0 ,0‖q]

)1/p.

Remark 3.4 The role of the constant κμ,δ is to cancel the terms in the adjoint variables
related to the mean-field contribution of the robust problem to allow us to focus on the
pointwise result.

Remark 3.5 We had already seen for the original problem with loss function j that Px,0 =
−∇x(j(x, θ )), i.e., the direction of steepest descent of the loss function with respect to the
initial point. Given the decomposition for the adjoint variable α, Lemma 3.3 implies that
α plays the analogous role for the first-order robust control problem.

Proof of Lemma 3.3 For an arbitrary �x of unitary norm in R
d , we have that

∇x‖Px,0‖q · �x = lim
ε↓0

1
ε
[‖Px+ε�x,0‖q − ‖Px,0‖q] = q‖Px,0‖q−2(Px,0)�η�x

0 ,

where

η�x
t = lim

ε↓0
1
ε
[Px+ε�x,t − Px,t ]. (3.4)

From Assumption 1.8 and Leibniz rule, we get that

η�x
t = −D2

ξ 	(Xx,T , θT )ζ�x
T +

ˆ T

t
Dξ f (Xx,s, θs)�η�x

s + (D2
ξ f (Xx,s, θs)ζ�x

s )�Px,sds,(3.5)

where ζ�x is defined in (2.7). Using the definition of the process β in (1.15), it follows that

∇x‖Px,0‖q · �x = q‖Px,0‖q−2(Px,0)�η�x
0 = qκμ0 ,δ(βx,0)�η�x

0 .
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We can now use the integration rule for products and the dynamics for β and η�x to get

∇x‖Px,0‖q · �x = qκμ0 ,δ

(

(βx,T )�η�x
T −

ˆ T

0
(η�x

s )�β̇x,sds −
ˆ T

0
(βx,s)�η̇�x

s ds
)

= qκμ0 ,δ

(

−(βx,T )�D2
ξ 	(Xx,T , θT )ζ�x

T −
ˆ T

0
(η�x

s )�β̇x,sds −
ˆ T

0
(βx,s)�η̇�x

s ds
)

= qκμ0 ,δ

(

− (α̂x,T )�ζ�x
T −

ˆ T

0
(η�x

s )�Dξ f (Xx,s, θs)βx,sds

+
ˆ T

0
(βx,s)�Dξ f (Xx,s, θs)�η�x

s ds

+
ˆ T

0
(βx,s)�(D2

ξ f (Xx,s, θs)ζ�x
s )�Px,sds

)

= qκμ0 ,δ

(

− (α̂x,T )�ζ�x
T +

ˆ T

0
(βx,s)�(D2

ξ f (Xx,s, θs)ζ�x
s )�Px,sds

)

. (3.6)

Similarly, from the dynamics of α̂ and ζ�x we get

(α̂x,T )�ζ�x
T = (α̂x,0)�ζ�x

0 +
ˆ T

0
(α̂x,s)�Dξ f (Xx,s, θs)ζ�x

s ds

−
ˆ T

0
(ζ�x
s )�Dξ f (Xx,s, θs)�α̂x,sds +

ˆ T

0
(ζ�x
s )�{D2

ξ f (Xx,s, θs)�Px,s}�βx,sds

= (α̂x,0)��x +
ˆ T

0
(ζ�x
s )�{D2

ξ f (Xx,s, θs)�Px,s}�βx,sds.

Replacing back into (3.6), we conclude that

∇x‖Px,0‖q · �x = −qκμ0 ,δα̂x,0 · �x

from where the claim follows. ��

A straightforward consequence of Lemma 3.3 and the analogous result for P is that the
original cost function j(·, θ ) is twice differentiable in the direction of the gradient. More
precisely we obtain the following result.

Corollary 3.6 Under Assumption 1.8, j(·, θ ) is twice differentiable in x for any fixed control
θ and

‖∇xj(x, θ )‖q−2D2
xj(x, θ )∇xj(x, θ ) = κμ0 ,δα̂x,0.

Proof of Proposition 1.16 It follows directly from Corollary 3.6 and the fact that Px,0 =
−∇xj(x, θ ) in (1.18). ��

3.3 The problem in Proposition (1.21)

As in the previous case, we start examining the role of the adjoint variables that we
introduce into the problem.

Lemma 3.7 For a fixed vector v ∈ R
d, consider the adjoint variables

γ v
x,t = v +

ˆ t

0
Dξ f (xx,s, θs) γ v

x,sds,



54 Page 26 of 32 C. A. G. Trillos, N. G. Trillos ResMath Sci (2022) 9:54

and

ρv
x,t =D2

ξ 	 (Xx,T , θT ) γ v
x,T +

ˆ T

t
Dξ f (Xx,s, θs)� ρv

x,sds

−
ˆ T

t

{
D2

ξ f (Xx,s, θs)� Px,s
}�

γx,sds.

Then

∇x(Px,0 · v) = −ρv
x,0.

Proof The proof of this result is very similar to that of Lemma 3.3 and thus we skip the
details. ��
Proof of Proposition 1.21 On the one hand, re-expressing the problem in terms of the
adjoint variables is a direct consequence of Lemma 3.7.
On the other hand, under the stated assumptions, the argument inside the expectation

in (1.25) has finite variance uniformly in θ and x: therefore, replacing the expectation by
the empirical mean usingm samples produces an estimator that converges almost surely
by the law of large numbers and has errors subject to the central limit theorem. ��

4 Training robust neural networks
An approach to robust training is suggested by the results we have presented on the
regularized adversarial control problems. The Pontryagin principle in Theorem 1.13 can
be used to create optimization algorithms: training the network can be understood as
solving a fixed-point problemwhere the constraints in (1.13), equations (1.14), (1.15), and
the maximum principle (1.16) must be simultaneously satisfied. There are many methods
to solve numerically such a fixed-point problem, but, undoubtedly, the most popular
consists in applying consecutively a step of forward propagation to solve for the primal
variables, a step of backward propagation to get the dual variables, and the solution of an
optimization algorithm to update the controls (typically this is substituted with a gradient
step to solve such optimization problemwith an approach like stochastic gradient descent
or any of its siblings).
We present in Algorithm 1 an implementation of the first-order regularized control

problem applied to ResNets for the case with no running cost. The adjustment to the case
with running cost is straightforward. Note that all equations, except for the one of X , are
linear in their respective variables. Moreover, they involve only f and its two derivatives.
Thus, we can easily implement this algorithm in platforms like TensorFlow or PyTorch.
The algorithm takes an even simpler form when considering a ResNet with ReLu acti-

vation functions at each stage: although this activation function is not differentiable, the
backpropagation algorithm has been successfully applied using a ’relaxed’ gradient. Fol-
lowing the same ideas, Algorithm 1 follows with D2

ξ f (ξ ,ϑ) = 0. In this particular case, all
linear equations are driven by the same factor∇ξ f , which makes it simpler to implement.

Remark 4.1 Let us stress (as has been done before, for example in [14,24]) that backpropa-
gation training is by nomeans the only possible approach to solve the fixed-point problem
for training, and in certain problems can have structure favoring alternative algorithms.
We notice that Algorithm 1 in the case p = ∞ (and q = 1) is the double backpropagation
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Algorithm 1 Backpropagation with SGD for robust control problem - ResNet
1: Set h, γ small constants
2: i = 0
3: Initialize θ0k ≡ 0 for all k
4: while No convergence do
5: for Every batch do
6: Set X0 = x0 for each x0 in the batch
7: Forward propagate using activation function (X):
8: Xk+1 = Xk + hf (Xk , θk )
9: Backpropagate using derivatives of activation functions (P):

10: Set PN = −Dξ 	(XN )
11: Pk = (I + hDξ f (Xk , θk )�)Pk+1
12: Forward propagate using derivatives of activation functions (β):
13: Set β0 = δ

(
Ẽ [‖P0‖q]

)− 1
p ‖P0‖q−2P0; where Ẽ is mean over elements in the

batch.
14: βk+1 = (I + hDξ f (Xk , θk ))βk
15: Backpropagate using first and second derivatives of the activation function (α):
16: αT = −Dξ 	(XN ) + D2

ξ 	(XN )βN
17: αk = (I + hDξ f (Xk , θk )�)αk+1 − hP�

k D
2
ξ f (Xk , θk )βk

18: Calculate for each k the gradient:
19: ∇ϑH (Xk , Pk ,αk ,βk ,ϑ i

k ) = αk · Dϑ f (Xk ,ϑ i
k ) − βk · (Dϑ ,ξ f (Xk ,ϑ i

k )
�Pk )

20: Update the control for each k :
21: θk = θk + γ Ẽ[∇ϑH (Xk , Pk ,αk ,βk , θk )]
22: i = i + 1
23: end for
24: end while

algorithm from [12]. This follows from the discussion presented in section 4.2 in [24]
on the general relation between the method of successive approximations and gradient
descent with backpropagation.

Remark 4.2 In strict terms, we have results that are applicable only to ResNets. However,
they can be formally generalized to other types of neural networks. For instance, one
can rewrite an instance of a vanilla forward network in terms of a ResNet by setting the
diffusion coefficient to be

f̃ (tk , Xk ) = f (tk , Xk ) − Xk
h

,

where h is the small coefficient in 1 representing the time discretization. The net effect on
Algorithm 1 is that equations are no longer residual.

We present in Algorithm 2 the implementation of second-order Pontryagin principle
in (1.22), still in the case of ResNet. Note that there are strong similarities between the
forward and backpropagation of two pairs of variables, which is of advantage for any pos-
sible implementation. Anologously to the case of Algorithm 1, additional simplifications
can be obtained for the case of activation functions like ReLu.
Algorithms 1 and 2 are written in accordancewith themost typical way of implementing

training algorithms via the use of batched optimization. In this type of implementation, the
training sample is subdivided in different batches: We calculate all propagation equations
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Algorithm 2 Backpropagation with SGD for robust control problem - second order
1: Set γ small constant (learning rate)
2: i = 0
3: Initialize θ0k ≡ 0 for all k
4: while No convergence do
5: for Every batch do
6: Set X0 = x0 for each x0 in the batch
7: Forward propagate using activation function (X):
8: Xk+1 = Xk + hf (Xk , θk )
9: Backpropagate using derivatives of activation functions (P):

10: Set PN = −Dξ 	(XN )
11: Pk = (I + hDξ f (Xk , θk )�)Pk+1
12: Forward propagate using derivatives of activation functions (β , λ):
13: β0 = δ

(
Ẽ [‖P0‖q]

)− 1
p ‖P0‖q−2P0; where Ẽ is mean of elements in the batch.

14: βk+1 = (I + hDξ f (Xk , θk ))βk
15: Set λ0 = δ

2
P0‖P0‖

16: λk+1 = (I + hDξ f (Xk , θk )�)λk
17: Backpropagate using first and second derivatives of the activation function (α,ψ):
18: Set αT = D2

ξ 	(XN )βN
19: αk = (I + hDξ f (Xk , θk )�)αk+1 − P�

k D
2
ξ f (Xk , θk )βk

20: Set ψT = −D2
ξ 	(XN )�βN

21: ψk = (I + hDξ f (Xk , θk ))ψk+1 + P�
k D

2
ξ f (Xk , θk )λk

22: Forward propagate using first- and second-order derivatives (π ):
23: Set π0 = 1

‖P0‖
(
P0 + δ

2α0 − ψ0
)− δ

‖P0‖3 P0 · ( 12α0 − ψ0
)
P0

24: πk+1 = (I + Dξ f (Xk , θk ))πk − {(βk )�(D2
ξ f (Xk , θk ))�}�λk

25: Backpropagate using first-, second-, and third-order derivatives (ψ):
26: φN = PN + D2

x	(XN )πN − {D3
ξ 	(XN , θN )βN }�λN

φk = (I + Dξ f (Xk , θk )�)φk+1 − {D2
ξ f (Xk , θk )�Pk}�πk

− {D2
ξ f (Xk , θk )�αk}�λk + {D2

ξ f (Xk , θk )�βk}�ψk

+ ({D3
ξ f (Xk , θk )�Pk}�βk )�λk

27: Calculate for each k the gradient:

∇ϑH (Xk , Pk ,αk ,βk , θk ) = φ�
k Dϑ f (Xk , θ ) − P�

k Dξ f (Xk , θk )πk − α�
k (Dϑ ,ξ f (Xk , θk ))λk

+ λ�
k {(Dϑ ,ξ ,ξ f (Xk , θk )�Pk}�βk + β�

k (Dϑ ,ξ f (Xk , θk ))ψk

28: Update the control for each k :
29: θk = θk + γ Ẽ[∇ϑH (Xk , Pk ,αk ,βk , θk )]
30: i = i + 1
31: end for
32: end while

for initial points in the subsample values and thenupdate the control θk using the empirical
expectation calculated with the points in the sample.
Frequently, practitioners use rather small values for the batch size (referred in those

cases as mini-batches). Note, however, that the mean-field effect of the optimization
implies that in addition to the control updating term, we also need to calculate an average
in the term Ẽ [‖P0‖q] in line 13 to initialize β0. For stability reasons, we therefore advice
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Table 1 Accuracy and relative training time after 5 epochs. Although all training procedures are
similarly capable when evaluated with a clean test, the regularization improves the resilience of the
network when subject to adversarial attacks at a moderate cost. Note the dependence of results on
the chosen vector norm ‖·‖. Best values in bold

r = 2 r =inf

Baseline Order 1 Order 2 Baseline Order 1 Order 2

Accuracy (clean) 98.41 98.42 98.42 98.41 98.45 98.44

Accuracy (adversarial) 0.68 2.09 2.11 0.7 23.11 22.94

Training time (factor) 1.0 1.14 1.39 0.99 1.13 1.38

against using small batch sizes in this case. A notable exception appears when p = ∞ (i.e.,
q = 1), when the initialization of β in line 13 becomes β0 = sign(P0). Thus, in this case,
the mean-field action disappears and small batches are again perfectly acceptable.

5 Numerical illustration
We illustrate our results numerically in the context of image classification. We train a
simple convolutional network1 to perform the classification task on theMNIST database.
We then test the network with a clean testing sample, and with an adversarial version
constructed via modification of the latter using PGD with 20 steps and a step size of 0.04.
We train the network in three different versions: the baseline method (i.e., unrobust)

which uses the cross-entropy loss function, and theOrder 1 andOrder 2 versions obtained
by adding regularization terms as explained in problems 1.13 and 1.22, respectively. As
parameters, we fix δ = 0.2, p = ∞ (equivalently, q = 1), and we take the norm ‖ · ‖∗ to be
the r− norm with r ∈ {2,∞}.
Table 1 shows the accuracy of the network after training with the three stated pro-

cedures. Although all training procedures perform similarly when evaluated with a clean
testing sample, theOrder 1 regularization significantly improves the robustness of the net-
work when subject to a sample modified by the adversarial attack. The table also shows
that the choice of the vector norm to be used plays a significant role. This is not a sur-
prise, since one can understand the PGD attack as directed by taking infinity norms on
successive gradients. Different choices of norms might be better suited for other types of
adversarial attacks. Importantly, the improved robustness comes with a moderate cost in
training time of 14% (39% for Order 2) over the baseline training time.
Table 1 also shows that the Order 2 method does not seem to be contributing to the

overall robustness improvement beyond what is already done by Order 1. In order to have
a better understanding of the numerical effect of each procedure, we plot in Figure 1 a
local view of the loss surface obtained by calculating the cross-entropy for a clean testing
image and perturbations around it. The corrupted images are obtained by an additive
perturbation of the size marked in each axis: one in an adversarial direction and another
in a random direction orthogonal to the adversarial. This way of illustrating the results is
suggested in [31].
The robustness effect of the regularized problems is illustrated in Figure 1 by a reduction

in values of the level of the surface, which translates in smaller cross-entropy and higher
likeliness of obtaining an accurate classification.Theplot also suggests that the effect of the

1Two layers with a convolutional kernel, ReLu activation functions, and maxpool; and two linear layers at the end
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Fig. 1 Cross-entropy loss for one test image perturbed in an adversarial direction z and a random one z⊥
that is perpendicular to the adversarial direction. Top r = 2, bottom r =inf. The first-order regularization
effect is manifested in a reduction in the loss function for perturbed images. The second-order regularization
effect, if still noticeable, is smaller in comparison and tends to reduce slightly the curvature. Notice the
difference of scale from plot to plot

Order 2 method is small compared to the Order 1 procedure and mainly tends to reduce
the curvature of the surfaces close to the clean image. Hence, one would expect better
robustness of Order 2 when considering directions not aligned with the adversarial one.
In this sense, a more thorough study of the robustness induced by the Order 2 procedure
away from the PGD line of attack would be interesting but outside of the scope of this
work.

6 Conclusions
In this paper, we have established a series of connections between distributionally robust
learning as modeled by a min-max problem of the form (1.5) and regularized risk mini-
mization problems on the parameters of a deep ResNet neural network. To establish this
connection, we study the max part of the min-max problem using tools from optimal
transport theory and identify its leading-order terms as a function of δ, i.e., the power
of the adversary. We remark that this approach is not restricted to adversarial problems
on deep neural networks, and in particular can be used in other learning settings as long
as the dependence of the loss function on the input data is regular enough. The spe-
cific ResNet deep neural network structure, however, allows us to interpret the resulting
regularization problems as mean-field optimal control problems. In turn, these control
problems suggest, through their associated Pontryagin maximum principles, a family of
algorithms for the training of robust neural networks which can avoid the computation
of data perturbations during training. A key property of the resulting control problems
is that they are scalable, and in particular the number and dimension of state variables
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is within a dimension-free factor of the dimensions of the original (unrobust) learning
problem.
Some interesting research directions that stem from this work include: (1) Studying

the type of regularity enforced on the input-to-output mappings by the regularization
problemsdiscussed in this paper. (2)The analysis of other distributionally robust problems
where for example their objective target may contain an entropic term (as motivated in
[11]). (3) In general, the use of tools from optimal control theory for the robust training of
a wider class of neural networks. (4) The study of adversarial problems in other learning
settings of interest where specific structure in the models may be exploited to get novel
theoretical or algorithmic insights.
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