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Federated learning (FL) is an effective approach to exploiting different data sources for collaborative model
training while maintaining the privacy of users. Adequate data is necessary to improve the accuracy of the
federated learning. However, it is difficult for all data sources to acquire sufficient data for each iteration of
federated training. In this paper, we study the data acquisition problem in cloud-edge networks, where edges
acquire data from users and conduct the local training while the cloud aggregates the local models. Since
data acquired by users with uncertainty, it is not easy to make the data acquisition decision for the FL online.
Even worse, due to the unknown cost of data, it is difficult to make a macro-timescale decision. We propose
a two-timescale online scheduling for federated learning to confront the uncertainty of the data acquisition.
By learning empirical state information of the system with a carefully designed Lyapunov virtual queue and
coordinating the data acquisition in different timescales in an online manner, the proposed approach minimizes
the data acquisition cost of federated learning, reduces the data transmission delay and accelerates the
convergence speed of federated learning. Rigorous theoretical analysis shows strong performance guarantees of
the proposed two-timescale Lyapunov optimization algorithm and extensive trace-driven experimental results
suggests that the algorithm achieves outstanding performance gains over existing benchmarks.

1. Introduction

Federated learning (FL) [1-3] is a kind of distributed machine
learning, which receives increasing interest in the forthcoming era of
5G, Internet of Things, and Artificial. Intelligence. In the paradigm of
federated learning, the local model is trained distributively and then
aggregated to a global model. The global model is shared distributively
for model updates. The procedure iterates until the desired accuracy is
achieved. During the FL training procedure, it always assumes that the
data is adequate for model convergence. However, it is not realistic
in many scenarios, especially in the case that the data needs to be pur-
chased from users. For example, the perception function of autonomous
vehicles needs to collect images from local vehicles for training the
local model by the edge. The data needed may be underestimated by
the edge at the beginning of the FL training, which may lead the edge

to purchase more data during the FL training. Therefore, it is a huge
challenge to acquire sufficient data for distributed FL systems.

Recent studies [4-6] focusing on data acquisition for machine learn-
ing usually use the cloud data warehouse for data collecting, organizing
and storing. These data acquisition decisions are one-time by the cen-
tral server. They cannot be easily adapted to the FL systems because
the data acquisition decision is distributed and online. In this paper,
we study a two-timescale data acquisition approach for the FL system.
As shown in Fig. 1, in the macro-timescale, the system estimates the
need for data and purchases the data from the users. The edge uses
these data for local training to achieve the goal. In the case that the
data purchased in the macro-timescale is not sufficient for the FL, the
edge needs to make the data acquisition decision again in the micro-
timescale to obtain more data. Such a two-timescale data acquisition
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Fig. 1. System architecture.

in the FL system is not an easy task and faces multiple challenges as
follows.

First of all, the two timescales are time-coupled. Under the time-
varying system state information, the data waiting for training is deter-
mined not only by the accumulated data queue but also by the data ar-
rival and departure in the macro-timescale and micro-timescale. There-
fore, the two-timescale data acquisition problem is an online problem
that needs an online solution to decouple the different timescales.

Secondly, the data queue is unstable and often congested. To main-
tain the stability of the queue, the Lyapunov control approach [7]
is usually applied. However, existing Lyapunov control methods [8]
react only to the instantaneous system condition thus resulting in
slow convergence of data queue and large delay. We need to use
the empirical system state for the Lyapunov control approach to en-
hance the convergence speed and meanwhile reduce the delay for data
acquisition.

Thirdly, pursuing the cost optimization of the edges should not
sacrifice the quality of the models being trained [9]. The cost of data
acquisition, data transmission as well as model iterations [10,11] is usu-
ally nonlinearly correlated with the quality of the model. Intertwined
with Lyapunov integer decision variables control, the problem can often
be NP-hard. Even in the offline setting, it is difficult to strike a balance
between data acquisition and model training not to mention the online
setting.

Although existing studies also pay the effort to solve the two-
timescale problems, they cannot fully address all of the challenges
mentioned above same time. Some studies [12-20] apply Lyapunov
technique to deal with different timescales resources problems. How-
ever, they only use the instantaneous system condition to optimize
the system cost, resulting in slow convergence speed and large delay,
especially [O(1/V),O0(V)] cost-delay tradeoff. Some studies use Lya-
punov optimization directly [13,14,16,21-25] for convex problems or
relaxed convex problems, which are not applicable to our problem.
Others [12,26-29] face the NP-hard problem but only use the heuristic
algorithms, which have no proof of approximation ratio and may not
produce optimal results. Zhou et al. [30] tend to minimize the total
resource cost while keeping the model’s quality. But they take the
model’s parameters as input, so they cannot control the model’s quality
online according to the dynamic and time-varying resource price.

In this paper, we formulate the online optimization problem of
minimizing the cost of data acquisition for the edge—cloud FL system
as a mixed-integer problem. The goal of the formulation is to strike
to minimize the total cost of the system and meanwhile maintain the
quality of the FL models being trained by controlling the data acquisi-
tion rhythm and FL convergence parameters. The problem characterizes
the cost of data acquisition, data transmission, and model iteration, the
accuracy of models and data queue stability over the time-varying data
acquisition of the local training data.
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We propose a novel algorithm named Two-timescale Online schEdul-
ing for Federated Learning (TOEF L), to acquire data and minimize the
cost while maintaining the accuracy of the model being trained using
the two-timescale Lyapunov approach. First, we use the two-timescale
Lyapunov approach to make data acquisition and transmission deci-
sions without a priori knowledge. Next, utilizing the characteristics of
Lyapunov queues as the Lagrange multipliers, we design the empirical
virtual queue which learns empirical state information for optimization,
yielding lower delay and higher convergence speed. Finally, we carry
out a novel Randomized Rounding with Weight (RRW) algorithm
which solves the NP-hard problem in the Lyapunov function. It converts
fractional solutions from our relaxed problem into integers by rounding
pairs of fractions in opposite directions for compensation using weights
information, without violating constraints.

We provide rigorous performance analysis and extensive evaluation
of our proposed algorithms. We prove that our algorithm achieves
closer to optimal performance compared with the other algorithms,
i.e., the algorithm can achieve [O(1/V), O([log(V)]?)] cost-delay trade-
off, which significantly improves the [O(1/V), O(V)] cost-delay tradeoff
of the traditional Lyapunov technique. We evaluate the practical perfor-
mance of our approach extensively, via training different models with
federated learning settings. Our proposed algorithm achieves faster
queue length convergence speed and near-optimal average cost while
producing machine learning models with satisfiable inference accuracy
across different training tasks.

The remainder of this paper proceeds as follows. In Section 2, we
survey the related works. In Section 3, we present the basic model
and the problem formulation of our system. In Section 4, the TOEFL
algorithm is developed to minimize the total cost while keeping queues
stable and models’ quality in the Lyapunov NP-hard problem. In Sec-
tion 5, we present the performance analysis. In Section 6, we provide
the simulation results. Section 7 concludes this paper.

2. Related works

We categorize and discuss related work in different groups, and then
point out how our work differs from each group.

Resources Consumption of FL Systems: Yang et al. [31] inves-
tigate the problem of energy-efficient transmission and computation
resource allocation for FL over wireless communication networks. Dinh
et al. [32] employ FL in wireless networks as a resource allocation op-
timization problem that captures the trade-off between FL convergence
wall clock time and energy consumption of UEs with heterogeneous
computing and power resources. Pu et al. [33] propose Cocktail, a cost-
efficient and data skew-aware online in-network distributed machine
learning framework and build a comprehensive model and formulate an
online data scheduling problem to optimize the framework cost. Abad
et al. [34] optimize the resource allocation among mobile users to re-
duce the communication latency in learning iterations. Trans et al. [35]
study the trade-offs between computation and communication latencies
determined by learning accuracy level, and thus between the federated
Learning time and UE energy consumption. Ye et al. [36] propose a
selective model aggregation approach, where “fine” local DNN models
are selected and sent to the central server by evaluating the local
image quality and computation capability. Li et al. [37] propose a novel
optimization objective inspired by fair resource allocation in wireless
networks that encourages a fairer (specifically, more uniform) accuracy
distribution across devices in federated networks.

Two-timescale Lyapunov Algorithm: Zhang et al. [12] determine
the harvested and purchased energy on a large time scale and the
channel allocation and data collection on a small time scale based
on the two-timescale Lyapunov algorithm. Li et al. [13] propose a
two-timescale Lyapunov optimization algorithm to overcome the un-
certainty of the system’s future information and make optimal decisions
only based on the system’s current states. Yao et al. [14] focus on
a stochastic optimization-based approach to make distributed routing
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and server management decisions in the context of large-scale, geo-
graphically distributed data centers using the two-timescale Lyapunov
algorithm. Feng et al. [15] investigate the dynamic resource allo-
cation for content transmission in wireless-powered device-to-device
communications with self-interested nodes including device-to-device
transmitters and power stations. Hu et al. [16] apply two-timescale
Lyapunov optimization to transform the long-term optimization prob-
lem into the drift-plus-penalty and also conduct a theoretic analysis of
the proposed energy management strategy. Deng et al. [17] propose
an online control algorithm for the data centers with a power supply
system based on the two-timescale Lyapunov optimization techniques.
Ma et al. [18] propose a T-slot predictive service placement algo-
rithm to incorporate the prediction of user mobility based on the
two-timescale Lyapunov optimization method. Ren et al. [19] study
the problem of scheduling batch jobs, which originate from multiple
organizations/users and are scheduled to multiple geographically dis-
tributed data centers. Zhang et al. [20] formulate the problem into
an optimization programming to achieve optimal decisions for energy
scheduling and sleep control and implement the power scheduling and
data transmission in time slots by adopting a two-timescale approach.
For solving Lyapunov problems combined with NP-hard problem, Joshi
et al. [26] simply relaxes the problem into a convex problem. Zhang
et al. [12] falls into the category of bipartite matching with con-
flict pairs, which has been proven to be NP-hard. They apply the
Cross Entropy algorithm to solve it. Feng [15] makes some linear
approximations by employing the Taylor expansion, which makes the
optimization terms become a convex problem. Peng et al. [27] use
C-additive approximation algorithm to get the local optimal solution.
Li et al. [28] deals with a mixed-integer problem using a distributed
optimized algorithm, while Chang et al. [29] deals with a similar
mixed-integer problem but using semi-smooth Newton method.

Our research in this paper differs from both of the above two
groups of research. Those [31-37] focus on optimizing the federated
learning systems in wireless networks, edge computing environments,
and vehicular or other platforms while ignoring the data acquisition
process of FL and assuming that all the data exists in the local clients
in the beginning. Those [12-20] use Lyapunov optimization techniques
to deal with different timescales’ problem. But they only use the instan-
taneous system condition to optimize the system cost, resulting in slow
convergence speed and large delay. What is more, those [12,15,27-29]
face the NP-hard problem in Lyapunov techniques. They only apply
heuristic algorithms to solve it, which have no proof of approximation
ratio and may not produce optimal results. To sum up, none of the
existing research, to the best of our knowledge, have studied online NP-
hard optimization problem of minimizing the cost of data acquisition
for edge—cloud FL system with guaranteed model quality and data
queue stability in faster convergence speed.

3. Model and problem formulation
3.1. System model

We study online training data acquisition problem for FL in cloud-
edge networks, which includes a cloud, a crowd of edges and devices.
During the whole process, a set of devices collect data, indexed by
i€ M = {1,2,...,M}. Also, a set of edges are used for devices’
data acquirement and iterative updates of local models, denoted by
j €N=1{1,2,...,N}. All edges are connected to a cloud which is for
the aggregation of global model parameters.

Two-timescale Manner: We consider our system to operate in a two-
timescale manner. As shown in Fig. 2, time is divided into K (K € N+)
time frames named as macro-timescale. Each time frame is further
divided into T (I' € N+) time slots named as micro-timescale. For
acquiring data from devices in different timescales, the system makes
decisions as follows: At macro-timeslot + € kT'(k = 0,1,...,K — 1),
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Fig. 2. Two-timescale manner.

the system observes the current data demanded R and the macro-
timescale data acquisition price “z('t)' Then it decides on how much
amount of macro timescale data u;(7) to be acquired for macro-timescale
use. At micro-timeslot r € [t + 1,t + T — 1], according to the current
data demand for federated learning R(®, current macro-timescale data
u;(t) and the micro-timescale data acquisition price rl(.’), the system
decides how much amount of additional data acquisition z;(r) in a
micro-timescale manner.

Federated Learning: In the setup of a typical machine learning
problem, for a sample data {x,,y,} with a multi-dimension input
feature x, and a corresponding labeled output y,, the objective is to
find a model parameter vector w that maps x,, to y, via a loss function
Sa(w).

For an edge server dataset j € N with a number of D; data samples,
the loss function on this dataset is defined as:

D!
F(w) = % Y faw). m

J n=1

Then, the learning problem can be formulated as finding an optimal
model parameter vector w* to minimize the following global loss
function F(w) over the number of N local datasets:

T D Fw)

N
Ej:l Dj

w* = argminF(w) = argmin (2)
w w

In this paper, we consider the federated learning procedure as
follows. In each time slot 7 € [t,# + T — 1], there are multiple rounds of
local iteration followed by one global aggregation. We use 7;() as the
actual local error rate and e(r) as the actual global error rate at each
time slot . Additionally, we use vlog(l /n;(z)) in [31] to approximate
the number of local iterations in each global aggregation, where v is a
constant. And the global error rate ¢ can be bounded by the following
equation, where / represents the demanded error between #;(z) and 7,

—(1 -1, 2
ege(r):exp(%)

<o [ FA == Dr%E
s CXP T .

3

Then the global loss function F(w'®) at time slot z € [t,t + T — 1] is
bounded by the following equation:

F(w(‘l’)) —F (w*) <e (F(w(o)) - F("ﬁ))

4
<e(r) (Fw®) - Fw"), @

where we assume that F;(w) is L-Lipschitz continuous and y-strongly
convex, and 0 < & < %

3.2. Problem formulation

As mentioned above, we need to make decisions on macro-timescale
data acquisition u;(f) at macro-timeslot 1 € kT'(k = 0,1,...,K — 1) and
micro-timescale data acquisition z;(r) at micro-timeslot = € [tr+1,1+T —
1] according to the current data demand R®. Than the data acquisition
cost is u,-(t)af.” + z,-(r)rf.”, where af.') denotes the data acquisition price
in macro-timescale manner and rﬁ“ denotes the data acquisition price
in micro-timescale manner. What is more, we need to make decisions
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on the number of data sets transmitted from device i to edge server j,
x;;(r) at 7 € [t + 1,1+ T — 1] at data transmission price of m‘(.;.) and at
aggregated model iteration price bﬁ’). The transmission cost is x; j(r)mg).
And the computation cost is x,.j(r)bj.”ulog(l /n;(x)), where vlog(1/n;(1))
is the number of local iterations in each global aggregation. Therefore,
the cost of multiple tasks in each time slot 7 is:

Cost(t) = 2 Z [ui(t)ay) + z,-(‘r)rf.r)

iEM jEN 5)
+xiy(Omy) + x;, ()b vlog(1/m;(T)]

In addition, when n;(7) increases, the number of local training
iterations decreases, leading to the quality of local and global models
becoming worse. When 1;(7) decreases, the total cost will increase as
the number of local training iterations increases. Therefore, we need to
use a given 7 to control #;(z) so that it can be near our expectations.
Using the design of deep learning regularization term, we use the
following formula to control #;(z):

Y, Ay (2) = ). (6)
JEN
Overall, the total cost in each time slot 7 is:

Cost(r) = Z 2 [u,-(t)a?) + zi(‘r)rl(.f) + xl-j(‘r)mg)
iEM jeN @
+ x;; () vlog(1 /n;(x)) + A (x) = )1,
Our objective is to minimize the total cost while keeping the stabil-
ity of the data queues. We formulate the objective function:

t—1

N |
min ,1_1)rtr)1° 7 Z Cost(7). 8)
=0
s.t.
RO < Y [0+ z(2)], VY7 ©)
ieM
0 <u;(1) <u™,0< z(r) < 2", Vi, ViVt (10)
0 < x;(r) £ 8", Vi,Vr; an

Z x;;(t) = x;(1), Vi, Vr,
jen (12)
0 < x;;(7) S X[, Vi,Vj, V1

@) —nl SLO< (o) <1, Vs 13)

Data queues are stable, Vi,Vrt. 14)

Constraint (9) indicates that the overall devices’ data uploaded
should satisfy the current data demand while devices’ ability is limited
according to Constraint (10). Constraint (11) shows that the ability of
data provisioned for edge is limited. Constraint (12) ensures all the
data can be uploaded to the edge. Constraint (13) indicates the local
error rate’s error cannot overrun a limit which is requested by accuracy
demand /. Constraint (14) ensures the queue is stable all the time.

In the next section, we will apply the Lyapunov optimization tech-
nique to minimize (8) subject to (9)—(14) without knowing any system
statistics information. In order to coordinate the diverse cost terms
at different timescales, we will propose the TOEFL algorithm. The
main symbols used in this paper and their meanings are summarized
in Table 1.

4. Two-timescale online scheduling algorithm

In this section, we illustrate the proposed TOEF L algorithm and
explain how the algorithm optimizes the total cost in an online manner.
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Table 1
Main symbols and their meanings.
Inputs Meaning
14 An importance weight on the system cost minimization
af” Data acquisition price in macro-timescale manner
rf’) Data acquisition price in micro-timescale manner
m? Data transmission price from device i to edge j at time 7

b Model iteration price at edge j at time 7

R® Data demanded for federated learning at time ¢
A Key control parameter for error rate penalty

n Desired local error rate

! Demanded error between #;(z) and

M Set of devices

N Set of edges

Variables Meaning

n;(7) Local error rate at edge j at time 7

Q,(r) Queue backlog at device i at time 7

H(r) Backlog of delay-aware virtual queue at device i at time 7
x;(1) Data transmission rate from device i at time 7

x;;(7) Data transmission rate from device i to edge j at time 7
u, (1) Data acquisition rate in macro-timescale manner

z,(7) Data acquisition rate in micro-timescale manner

4.1. Lyapunov queue design

Actual Data Queue: As shown in Fig. 1, we construct a queuing
system in devices. Since delay-tolerant data from the device i can
be acquired before the maximum delay Z"*, we defer data in a
waiting queue Q;(r). At each time slot 7, the system receives the data
transmission price from device i to edge j m?/’.), the model iteration price

on the edge b(.T), the local error rate 7;(r), the actual queue Q,(r) and
the delay-aware virtual queue H,(r) as system states. Then it needs to
determine how much amount of data should be acquired from device
i, which is denoted by x;(r). We assume that x;(z) is bounded by the
maximum acquiring rate S™** and the current waiting queue Q;(7).
Therefore, the amount Q;(z) of device i is given by:

0i(r +1) = Q;(r) — x;(r) + d;(7), (15)

where d;(t) = u;(t) + z;(r). u;(t) refers to the data acquisition rate in
macro-timescale manner and z;(r) refers to the data acquisition rate in
micro-timescale manner.

Because of the limitation of the actual data queue, we need to add
a constraint:

x;(r) £ Q;(r), Vi,Vr. ae)

Delay-Aware Virtual Queue: In order to guarantee the maximum
delay Z™* for data acquisition, we introduce a delay-aware virtual
queue H,(r) based on the ¢; persistent queue whose update equation
is:

Hr+ 1) max{Hi(T)—x,-(T)+€,~,0} if 0;(r) > x;(2),
’T 0if Q,(r) = x,(x),

where ¢; > 0. H;(r) has the same data transmission rate x;(z) as Q;(7),
but has an extra arrival constant ¢; whenever the actual queue Q,(7) is
larger than x;(z). This ensures that H;(z) only grows when there exists
data in queue Q,(r) that have not been acquired. Therefore, if there
exists data staying in the waiting queue Q;(r) for a long time, the queue
length of H;(r) will continue to grow, which makes it easier for the
optimizer to focus on the current congestion queues. In any feasible
algorithm, we should ensure that the deferred delay-tolerant tasks can
be served within a worst-case delay Z™* given in Lemma 1:

a7

Lemma 1. For any time slot z, if the system can be controlled to ensure
that Q,() is less than its certain maximum value Q"** and H,(z) is less
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than its certain maximum value H™, then any delay-tolerant request is
fulfilled with a maximum delay Z] max deﬁned as follows:

Zp 2 [(Qp + HP™) fe]. as)

Proof. See Appendix A. []

Given the above property, we can choose the appropriate ¢; for
data to ensure that it cannot exceed its maximum delay Z*
(e‘g., VAL ﬁ) while waiting in a queue to be processed.

Empirical Virtual Queue: Q;(7) plays the role of the Lagrange dual
multiplier which iterates at each time slot according to [38]. However,
Q;(r) can only update its value according to the actual arrivals and
departures at each time slot which takes a lot of time to reach its
optimal value. To overcome this problem, we design a virtual empirical
queue «;(r) which uses the empirical model state to get its optimal value
to accelerate the algorithm. First, we denote that S(r) = (s,(?), .., s3,(?)
represents the input state information which affects the actual queue
model Q;(), while s;(1) = (7,57, 5,0 = (my),b), etc. We
denote that n(¢) = (my, @, ..., YN(z‘)), where T, (1) = N:[(t)/t and N, ()
is the number of slots where S(r) = s; in (0 1,...,t—1). Note that
lim, , o, 7y, (1) = g, w.p.1.

Using the empirical distribution, we then define the following em-
pirical dual problem as follows:

X gla(),n 2 Yz, (g, (@), st a@)=0. (19)

We denote a(r) = (@@, ... "’L(’»T as an optimal solution vector
of (19), and we call this step of obtaining «(¢) via (19) dual learning.
On the other hand, by its definition, «(¢) is time-varying and error-
prone, which introduces significant challenges in the analysis of the
proposed algorithms. Additionally, ¢, (a) is the dual function of the
original problem.

4.2. Problem transformation via two-timescale lyapunov optimization
We use Lyapunov function to analyze the Q;(r) and H,(r) first. We

concatenate the actual queue Q,(r) and delay-aware virtual queue H,(z)
as a vector:

0 = [Q(®), ..., 0 M), H|(®), ..., Hy ()] , (20)

and introduce the quadratic Lyapunov function:

L) 2 % Y Qi+ H )], 1)
ieEM

as a scalar metric of the congestion level of the system. For example,
a small value of L(O(r)) implies that all the queue backlogs are small.
When any one of the queue backlogs is large, the L(O(r)) would be
large. Obviously, by pushing the Lyapunov function towards a lower
value, we can keep the system stable (all the queue backlogs are
bounded to a certain value). Then, we define the T-slot conditional
Lyapunov drift as:

Ar(©() 2 E[LO( +T)) - LO®) | O1)], (22)

which measures the difference in the Lyapunov function between two
consecutive time frames.

4.3. Joint queue stability and system cost minimization

Intuitively, by minimizing the Lyapunov drift, we can prevent the
queue backlogs from unbounded growth and thus preserves system
stability. Following the drift-plus-penalty algorithm of the Lyapunov
framework, our control algorithm is designed to make decisions on
u;(1), 2;(7), x;;(7), x;(r) and n;(r) at each time slot to minimize the upper
bound on the following drift-plus-penalty term every T time slots:

t+T—-1
AT(@(I))+VE{ Z Cost(7) | @(r)}, (23)
=1
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where the control parameter V' > 0 is a parameter that represents
an importance weight on how much we emphasize the system cost
minimization. Such a control parameter can be motivated as follows:
We want to make 4-(O(t)) small to push queue backlogs towards a
lower congestion state. It would force us to consume more resources
to transport and process the data, which consequently leads to a high
cost. We also want to make the system cost E Z”T ! Cost(z) | O(1)
small so that we do not incur a large cost expenditure. Using the
Lyapunov optimization technique, we decompose the macro-timescale
optimization problem (7) into T-time-slot optimization problems which
are much easier to solve. The analytical bound on the drift-plus-penalty
term is given in the following Theorem 1.

Theorem 1 (Drift-Plus-Penalty Bound). Let V' > 0,¢; > 0T > 1 and
t € kT(k =0,1,2,...,K — 1),z € [t,t + T — 1] Given that x;,(r) < §™%%,
0;(r) < O and H(r) < H™, the drift plus -penalty is bounded under
any possible actions where B, 2 [(S™%)? + (u"’“" +zmaxy2 4 - Z,EM €]

t+T-1
Ap(OM)+VE { Z Cost(7) | 9(1)}

7=t

t+T-1
<BT+VE { > Cost() | @(t)}
=t

t+T-1 (24)
+ ) E{ Y 0@ [di(®) - x,(0)] | 6(:)}
ieM 7=t
t+T-1
+ Y E{ Y Hi(@) [ - x,(7)] IG(I)}.
ieM T=t

Proof. See Appendix B. []

Theorem 1 shows that the T time slot drift-plus-penalty term is
deterministically upper bound. Rather than directly minimize the (23),
our strategy actually seeks to minimize the bound given on the right-
hand side of the inequality (24). By minimizing every time frame
drift plus penalty term, we can find the suboptimal minimizer of the
original objective function (8) subject to (9)-(14). Then, we substitute
the Cost(r) into the inequality above and try to minimize the right-
hand-side of (24), then we can get our optimization objective P1:

t+T-1

x,»d{lji?m %E { Z Z x;;(7) [ VbS'T)UIOg(]/”/(T))

w0,z @) 7=t JEN

+ Vm(T) Q,(r) - H"(T)]l o0 }

t+7T-1 (25)
i { 2 X Viwod +zor”

=t ieEM

+ D M@ =011 00 }
JEN
5.2.(9)(10)(11)(12)(13)(14)(16).

4.4. Optimization via queue approximation and empirical virtual queue

Let us look deeper into the problem P1: the future queue backlogs
O(1) over the time frame [7,7 + T — 1] depends on the arrival data d,(z)
and the acquired data x;(r). Therefore, we can address the issue of
unavailable information by approximating future queue backlog values
as the current value, i.e., Q;(r) = Q;(r) and H;(z) = H,(t) for all
7 € [t,t+T —1]. However, such approximation loosens the upper bound
on the drift-plus-penalty term in (24), Theorem 2 shows the “loosened
drift-plus-penalty bound”.

Theorem 2 (Loosened Drift-Plus-Penalty Bound).: Let V > 0, € >0 and
T > 1. Considering Theorem 1 under approximation, the drift-plus-penalty
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term satisfies where B, 2 [B; + %(u”"”‘ +zm)2 4 % Yiemel:

+T-1
Ap(OM)+VE { 2 Cost(7) | @(t)}

T=t

+T-1
<B,T+VE { Z Cost(7) | @(t)}

7=t

t+T-1
+ ZE{ > 0,0 [di(®) - x,(x)] |@<r>}

ieM 7=t

t+T-1
+ Z E{ ZI H;(®) [65 - xi(T)] | @([)} .

ieM

(26)

Proof. See Appendix C. [

We can find although the above minimize problem is a T-time-
slot optimization problem, there is no influence between the decisions
of the two consecutive time slots since the queue backlogs O(t) are
unchanged over r € [t,t + T — 1] in the problem (26). Therefore,
we can decompose the T-time-slot problem into multiple simple time-
slot optimization problems: at each time slot. We just need to solve
a linear program with the variable tuple [x;(7), x;;(7),u;(?), z;(7), n;(7)]
with constraints (9)-(14),(16) without knowing the future information
about the data demanded and the resource prices. So the simple time
slot optimization problem is as follows:

min ¥ Cost(r) + Y Q;(1) [d,(r) - x,()]

Xj(2),xjj(7), A
4 0).2(2)j (2) ieM

+ Y H0 [ - x,0)] @7
iEM
5.2.(9)(10)(11)(12)(13)(14)(16).

Next, we add the empirical virtual queue ¢;(r) and its bias 6, into
the time slot optimization problem. Bias 6; are used to adjust the total
size of the new queue Q". (1). We define that:

0/ = 0;(0 + (1) - 6, (28)
And the new problem is as follows:

min ¥ Cost(e) + EZA‘; Q1) [dy(z) — x,(7)]
(1,2 (1)1 (7) !
+ Z H;®) [gi - Xi(T)] @9
ieM
5.2.(9)(10)(11)(12)(13)(14)(16).

We obtain a(r) through the following equation g5, () and (19) which
is similar to (23) when exists the actual queue Q(r) because a(r) serves
as the empirical virtual queue:

qs, (a) = max V Cost(s;, 7)

X (s4,7)%; (517,
uj(0),z; (1)1 (7)

+ a;(t) |d;(s;,7) — x;(54, T
ZM (0 [dis1.7) = x,(5,,7)] 0
+ ) H() [e = x(5,,7)]
ieM
5.£.(9)(10)(1DH(A2)(13)(14)(16).
Finally, we substitute the Cost(z) into the inequality (26), then we
can get our optimization objective P2:

t+T—-1

x,(g,lj,rjl(f), ZM]E { Z 2 x;;(7) [Vb;T)UIOg(l/I’Ij(T))

uj (0,2 (0.1 T=t jEN

ij

+ V' - Ql(z) - Hy(x) ]| 0 }
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t+T-1
+E { > Y Vin@®a + z, o

=t ieEM

31
+ ) A (@) = | @(z)} @b
JEN

5.2.(9)(10)(11)(12)(13)(14)(16).

Noticing that u;(r) only be determined in r € kT'(k =0,1,....,K - 1)
and for each time slot 7 € [+ 1,7+ T — 1] we make decisions on z;(z) to
meet the current demand. Then we can get our optimization objectives
P3 and P4:

min 33 x,0 [Vbﬁf)ulog(l /)

X (0Xj5 (1), h
w0 €M IEN

+ V) — Q1) - Hy0) ]

(32)
+ XV w®a + Y am(e) - 11)2]
ieM JEN
5.£.(9)(10)(11)(12)(13)(14)(16)
xi(g}j&n, z Z x;;(7) [be)”l"g(l/"j(f))
(@ (D) iEM jeN
+ VD - 0 - H, |
(33)

+ YV [z,(r)rf.” + ) Aln(o) - n)z]

ieM jEN
5.£.(9)(10)(11)(12)(13)(14)(16).

Then our proposed TOEF L algorithm is summarized in Algorithm
1.
Algorithm 1: The TOEF L Algorithm
1: // macro-timescale data acquisition decisions.
2: for k=0; k< K; k++ do
3:  Obtain «(¢) by solving (19).
4:  minimize the following problem (32) to obtain
(3 (1, X;;(0), ;D 17,(1)).
5:  Invoke Algorithm 2 to round (X;;(t), X;(1), u;(¢), 7;(1)) to
(350, %), w; (D, 77,(1)).
6:  Fix (x;(r),u;(r)) and minimize (32) to obtain
O (0, %0, (D), 17 ().
7:  Invoke Algorithm 2 to round (xj}(t),%i(t),ﬁi(t), n;.*(t)) to
(zij(t),fi(t),ﬂi(t), '1;(1))
8:  Update the queue Q,(r) and H,(r).
9:  // micro-timescale data acquisition decisions.
10: forr=kT+1;7<(k+1)T;7++ do

11: minimize the following problem (33) to obtain
(:;i(f)a;ij(‘r)vzi(r)’ﬁj(f))'

12: Invoke Algorithm 2 to round (%; j(r),f,-(r),f,-(r),ﬁj(r)) to
(%;;(2), %;(2), Z;(2), 7 (7).

13: Fix (x;(7),z;(r)) and minimize (33) to obtain
(X};(T),f,-(r),f,-(f), ﬂ;(f))-

14: Invoke Algorithm 2 to round (x;}(r),},-(r),ii(r), ;1;.‘(1)) to
(1(0). %,(0). 2 (), 71} (7))

15: Update the queue Q;(z) and H,(7).

16: end for

17: end for

Algorithm 1 is executed in the following steps. At the macro-timeslot
t € kT(k = 0,1,...,K — 1), the system makes macro-timescale data
acquisition decisions: First, the optimal value of Lagrange multiplier
of the empirical virtual queue obtained in problem (19) is used as the
input value and substituted into the minimization problem (32) for
the solution. Second, in order to convert the fractional decisions such
as x;;(7), x;(7), z;(z), u;(¢) into integers, we propose Algorithm 2, which
is described later. Note that after we get a set of rounding solutions,
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we need to fix the value of the set of solutions before continuing to
solve the original minimization problem. Finally, the solution to the
optimization problem is used to update the values of Q;(r) and H;(). At
micro-timeslot = € [t + 1,7+ T — 1], the system makes micro-timescale
data acquisition decisions. The remaining steps are similar to the above.

4.5. Randomized rounding with weight algorithm

From Algorithm 1 we can see that since some variables such as
x;;(1), x;(7), z;(7), u;(t) are integer while the first step of Algorithm 1 only
provides the non-integer solutions for them. Therefore, We propose
the RRW algorithm to round the non-integer results into integers
while achieving a better expectation for the minimized formulation
and violating none of our problem’s constraints. This algorithm is
summarized in Algorithm 2.

Algorithm 2: The RRW Algorithm
1: INPUT: Fractional decision such as X;;(7), X;(7), Z;(7), u;(r). We use

I, to present the variables.

2: // For any variables, we define the integer part as X, and the non
integer part as U,. Ensure the sum of all columns in U, is an
integer; ~

2 U, = Uy, Iy )T

4 k=1"U,y = 1- (k- |k]/k,
ra=1+([kl-k)/k .

w

5:
VT = { [r1Uys-...71Uy,] with prob. [k] - k
t [r2Uyss 12Uy ,] with prob. k — k]
6: // Ensure each column of V, is an integer.
7: while V;, and V;, are not integer do
8:  Assume a as the weight of V;, and b as the weight of V.
9: 6, =min { Vil =Vie:Vie = Vil } .0, =

min {V, = (Vi) (Vi1 =V}

(Vie+61.V,,—6))
with prob. —2%2

) a0, +50,
Jjt) —
(Viy =62,V +992)
a0y
a0, +5b0,

with prob.

11: end while
12: Return [, = [V}, ..., Vi 1o X{].

Algorithm 2 is executed in the following steps. First, we adjust U,
in a randomized manner, ensuring that the sum of the adjusted values
equals an integer. It increases each column of U, by multiplying y, > 0
or decreases each column of U, by multiplying y, < 0. The probabilities
of taking these two decisions are k — |k]| and [k] — k respectively,
which can ensure the expectation of each adjusted value equals its
corresponding value before such adjustment. Second, we round ¥, into
integers in a randomized manner. We use the values of ¥, and its weight
as the probability of rounding the columns in pairs into integers while
letting the two fractions compensate each other. In this way, we can
guarantee that the sum of all the values stays unchanged after rounding
and each value is an integer. The complexity of the algorithm reaches
O(N?).

5. Performance analysis

In this section, we present the detailed performance results and
some preliminaries for our proposed TOEF L algorithm.

Theorem 3 (The Maximum Acceptable Value of V). Given any fixed control
parameter V ,¢; > 0, our algorithm achieves:
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(1) While S™* > y™a* 4 zMa%  the delay-tolerant queue Q;(r) and
delay-aware queue H;(7) is bounded as:

max A max max max
o = VCostmmp +u" 4+ z

HM™ & VCostg“:;‘p + €M, 34
(2) The maximum acceptable value of V is:
e _ €7 — emax _ e gmox 5
2Cost2})"‘n’;p

Proof. See Appendix E. []

Assumption 1. There exists a constant e, = ©(1) > 0 such that for any

valid state distribution z’ = (ﬂ';] . ,zr’M) with ||z’ — z|| < ¢, for all s,

s

(possibly depending on z') such that:
Z ., [d[ (s,-,r) - X; (s[,r)] < -1y, (36)
where 7, = (1) > 0 is independent of #’.

Assumption 2. vy is the unique optimal solution of ¢,(y) in R".

Lemma 2. There exists an O(1) time T, e, < 0, such that with probability
1, for all t > T,
V Cost
Y o) < £ & T2 mex, 37)
- 1o

With the above bound, we have the following corollary, which shows the
convergence of q(a,1) to q(c).

Proof. See Appendix F. []
Corollary 1. With probability 1, for all t > T, (here T, is defined in
Lemma 2), the function q(a, t) satisfies:

lg(a,t) — g(a@)] < maxl(SS’ | MV Cost,,,y + rEB). (38)
Proof. See Appendix G. []J
Lemma 3. lim,_, a(t) = y*w.p.1.

Proof. See Appendix H. [

For easy understanding and not to confuse, we use y() to represent
the Q(r) as the Lagrange dual multiplier of the problem (19) and its
optimal value is a*. Lemma 3 thus shows that although such a condition
can appear, it is simply a transient phenomenon and y(r) will eventually
converge to y*.

Lemma 4. There exists a constant D, £ g;j:> withn < p. If ||Q(0) — 7* )|
> D, then |Q+ 1) = 7*OI £ 1O -7 O = 7.

Proof. See Appendix I. [

Theorem 4 (Performance of the Delay).

Oug= .0, =6, +06(1). (39)
Theorem 5 shows that by using the empirical virtual queue «(t), one can

guarantee the average actual queue size is roughly Y. 0,. Hence, by choosing

8; = O([log(V)1%), we can get the better delay performance.

Proof. See Appendix J. []

Theorem 5 (Performance of the Cost). Suppose the conditions in Theorem 5
hold. Then, with a sufficiently large V and 6, = O([log(V)1?) for all i, we
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have:
CostRRW < Cost™ + 5 + 0(i) = Cost* + 0(i). (40)
a = 4 Vv v

Theorems 4 and 5 together show that our proposed algorithm can achieve
the [O(1/V), O([log(V)]*)] cost-delay tradeoff for our problem. We use the
FIFO queueing discipline and do not require any pre-learning phase, which
is suitable for practical implementations.

Proof. See Appendix K. [

Theorem 6 (Performance of the RRW Algorithm). Assume the formulation
as a simple function f(V,,V,) = aV, + bV,, while a,b are the weight of
variables. V| and V, are the results after using the RRW algorithm. Our
algorithm achieves:

(1) while a > b,

E[aV] +bV,] < aV; + bV, (41)

It implies E[CostRRW] < Cost* which shows the performance of the
original function after using the RRW algorithm.
(&)

E[lV/ + V1=V, +V,. (42)

It means after using the RRW algorithm, our original conditions remain
unchanged.

Proof. See Appendix D. []
6. Experimental study
6.1. Experimental settings

Control Algorithms: We implement and compare multiple ap-
proaches that minimize the total cost and control federated learning
over time: (1) TOEFL, our online approach in this paper; (2) Tradi-
tional two-timescale Lyapunov algorithm (7' L), the general approach to
deal with different time scale problems; (3) Traditional two-timescale
Lyapunov algorithm with RRW (TL + RRW). We use RRW to deal
with the NP-hard problems in two-timescale Lyapunov techniques and
improve its performance; (4) Random. The device system decides the
data acquisition and which edge server to upload the data randomly;
(5) Greedy. The device system compares the data acquisition price in
the macro-timescale manner and the micro-timescale manner, and then
chooses the cheaper one to acquire; (6) Of fline. We assume that the
offline algorithm can obtain all the system information and then make
the best decision for the data acquisition in macro-timescale manner
and micro-timescale manner.

Training Data and Tasks: We utilize a federated version of MIN-
IST [39] that has a version of the original NIST dataset that has been
re-processed using Leaf so that the data is keyed by the original writer
of the digits. Since each writer has a unique style, the dataset shows
the kind of non-i.i.d behavior expected of federated datasets, which is
more suitable for our experiment. Also, we utilize an i.i.d version of
Minist for comparison, in order to verify the validity of our algorithms
under i.i.d dataset settings.

FL-CNN: This task trains Convolution Neural Network (CNN) feder-
ated model. It consists of the following structure: two 5 * 5 convolution
layers (the first with 32 channels, the second with 64 channels, each
followed with 2 % 2 max pooling), a fully connected layer with 512
units and ReLu activation, and a final softmax output layer (1,663,370
total parameters)

FL-MLP: This task trains Multi-Layer Perception (MLP) federated
model. It consists of the following structure: two fully connected layers
with 128, 64 units respectively and ReLu activation, and a final softmax
output layer.
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FL-MLR: This task trains the Multinomial Logistic Regression (MLP)
federated model. It consists of a fully connected layer with 64 units and
a sigmoid output layer.

Here we note that we are not doing any fine tuning of the hyper-
parameters of the tasks, so the inference accuracy and loss can achieve
better performance if one continues to tune such hyperparameters.
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Simulation Setup: We assume that aﬁ’) and rl@ are uniformly and

randomly distributed with an order E[r‘(.f)] > E[af’)] where E[r‘(.f)] =05
and E[a?')] = 0.2. We set the 60 micro timescales in a macro timescale in
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these experiments. Also we set the inputs’ value as follows: M =5, N =
5,4=100,7 = 0.1,/ = 0.1, E[R?] = 170, E[m;’] = 0.55, E[6"] = 0.55.

6.2. Experimental results

Queue Length Convergence: Fig. 3 shows that the impact of
different control parameters V on queue length convergence under T L.
With the increase of V, the maximum queue length increases and the
convergence time of the algorithm becomes longer, which is in line with
the control purpose of parameter V.

Fig. 4 shows the impact of different ¢ on queue length convergence.
¢ is the delay-aware parameter used in the delay-aware virtual queue
equation [(17)]. The higher value of ¢ makes the maximum queue
length become smaller and converge faster.

Fig. 5 presents the impact of different control algorithms on queue
length convergence. We set the ideal state of V' = 250, ¢ = 100, which is
actually consistent with the previous analysis, and setting other values
can get similar results. In terms of queue length, TOEFL beats TL
and TL + RRW, reducing by 89.1% and 87.9% average queue length
respectively. In terms of convergence time, TOEF L beats TL and T L+
RRW, reducing by 88.5% and 86.9% convergence time respectively.
Under our proposed TOEFL, the actual queue size converges very
quickly and has a lower delay and stable convergence situation with
the help of an empirical virtual queue.

The Impact of Control Parameter V: Fig. 6 shows that our pro-
posed TOEF L significantly outperforms the other control algorithms
in terms of the average cost, and it is close to the optimal performance.
Especially, our proposed TOEFL can save nearly 0.83 times, 0.61
times, 0.34 times and 0.23 times average cost compared with Random,
Greedy, TL and T L + RRW , respectively. What is more, with the help
of RRW algorithm, TL + RRW has a lower average cost compared to
TL.TL+ RRW is up to 6.2% lower than T'L in terms of average cost,
which actually proves the performance of the RRW algorithm. Fig. 7
also validates the performance of our proposed TOEFL in terms of
delay. It can have a lower average cost while keeping a lower average
delay.

In conclusion, Fig. 8 shows the impact of control Parameter V and
its tradeoff between cost and delay. As V increases, the delay becomes
larger and the cost becomes smaller. Such change trend is consistent
with the [0(1/V), O([log(V)]?)] cost-delay tradeoff.

Quality of Federated Model: Fig. 9 shows the model’s accuracy
and loss of different control algorithms. We can observe that TOEFL
converges in 18 rounds, which is earlier than 20 rounds of TL. And
TOEFL can achieve 95.3% accuracy, which is higher than 86.3%
accuracy of TL. Our proposed TOEFL can achieve higher accuracy
and lower loss in fewer communication rounds, which is similar to the
offline optimal algorithm results. The offline optimal algorithm here
means the data exists in the edge servers in the beginning. Because of
the empirical virtual queue and the delay-aware virtual queue, our data
can reach the edge servers with lower delay and can be trained as fast
as possible.

For non-i.i.d data settings, Fig. 10 validates the robustness and
applicability of TOEFL in the heterogeneous federated learning en-
vironment for the training tasks of FL-CNN, FL-MLP, and FL-MLR. The
results show a good convergence trend, even in the non-IID setting. It
indicates that TOE F L can always control federated learning to achieve
satisfiable inference accuracy and loss. Fig. 11 also shows the validity
of our TOEFL under i.i.d data settings.

7. Conclusion

In this paper, in order to coordinate time-varying data acquisition
in macro-timescale and micro-timescale manners with minimal cost
in federated learning, we propose the TOEF L algorithm, which has
the empirical virtual queue that learns empirical state information
of the system in order to accelerate the convergence speed while
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keeping the low cost and high federated models’ quality. We prove the
performance guarantees for the proposed algorithm which can achieve
[0(1/V), O([log(V)]?)] cost-delay tradeoff, which significantly improves
the [O(1/V), O(V)] cost-delay tradeoff of the traditional Lyapunov tech-
nique. We also propose a novel RRW algorithm that solves the NP-hard
problem in the Lyapunov function with low time complexity and com-
petitive performance and proves its performance. We have carried out
extensive experiments and demonstrated the results to validate the
practical performance of our proposed approach.
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Appendix A. Proof of Lemma 1

Fix a slot t. We show that all the data d,(¢) can be acquired on or
before slot t + Z"**. Suppose this is not true. We reach a contradiction.
Note by (15) that arrivals d,(¢) are added to the queue backlog Q;(r + 1)

and are first available for service on slot t + 1. Therefore, by (17), we
have for all slots 7 € [t + 1,1 + Z"*]:

Hi(t+1) < Hi(r) — x;(7) + ¢;. (A1)
Summing the above 7 € [t + 1,7 + Z"*] gets:
t+Z"%
H(t+ ZM 4 1) - H+ D> — Y x(0)+ Z™ e, (A.2)
T=t+1

Rearranging terms above and using the fact that H; (r + Z"* + 1) <

H"* and H,(t+1) > 0 gets:
t+Z"

ZM™e;, < 2 x;(t) + H™,
T=t+1

(A.3)

On the other hand, the sum of x;(r) over the interval z = [t + 1,7 +
V4 j’.”""] must be strictly less than Q;(r + 1) (else, by the first-in-first-out
(FIFO) rule, any arrival d,(t), which is included at the end of the backlog
Q;(t + 1), would have been cleared during this interval). Thus:

1+Z"x
Y x(0)<Q+1) <O, (A4)
T=t+1
Combining the above two equations together:
Z[maxel_ < Q;‘VIOX + H[max (A.S)

max max max
ZM < (O + H["™)/¢;.
This contradicts the definition of Z"**. So the arrival d,(f) can be
served on or before ¢ + Z"**.

Appendix B. Proof of Theorem 1

Squaring the queue update Eq. (15) :
QX +1) < [Q;(1) — x,(0)) + d;(7)?
+ 2[Q;(r) — x;(v)]d;(7)

B.1
<[04(0) = x; (0 + dy(1)? ®D
+ 20;(1)d;(7).
Therefore:
O} (t+ 1) = Q}(z) < x,(r)* + dy(2)? 32)

+ 20,(0)ld;(7) — x;(7)].

Because x;(1) < S™%, d,(z) = u;(t) + z;(z), u;(f) < u™*, z,(z) < z"m%,
then

Q}(x +1) = Q}(x) < (S™) + ("™ 4 2"

(B.3)
+ 20,(1)[d;(r) — x;(7)].
Similarly, for virtual queues H;(z), we have:
HX(z+ 1) = HX(0) < (S™)’ + & + 2H,(2)le; — x,(2)]. (B.4)
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Applying (B.3) and (B.4) to (23) we get:

+T-1
A (OD) + VIE{ Y Cost() | @(z)}

T=t

=E[LOF+T) - LO) | 00)]

+T-1
+ V]E{ Z Cost(7) | @(r)}
7=t

+T-1
=1 Y Y [QHe+ 1) = QFny + HEAt+ 1) = HE(1)]
2 7=t jeEN
+T-1
+ VE { Y, Cosi() | @(r)} (B.5)
7=t
t+7T—-1
< VIE{ Y Cost(7) | @(r)}
=t
+ lT[Z(SmaX)Z +(umax +zmaX)2 + Z 612]
2 ieM
+T-1
+ Y Y 0 @Id(r) - x,(0)]
=t ieM
+T-1
+ )Y H@le - x,(1)].
=t iEM
Simplifying the above inequality leads to Theorem 1:
+T-1
Ar(O() + VIE{ Y Cost() | @(z)}
7=t
+T-1
<BT+VE { Y, Cost() | @(z)}
=t
+T-1 (B.6)
+ Y E{ Y 0@ [di(®) - x,()] | @(z)}
ieM 7=t
+T-1
+ ) E{ Y H(@) e - x,(0)] |@(r)},
ieM T=t
where B; £ [(S"@)2 + L (" + 272 + 1 3 2],
Appendix C. Proof of Theorem 2
For any 7 € [t,t + T — 1], we can get:
0;(7) < Q;(®) + (r — H™™ + z2™) 1)
H;(t) < H;(t) + (r — t)e;.
Then, applying the first inequality to Q;(z), we get:
t+T—-1
Y 0,(0)ld(z) - x,(7)]
=t
t+T—-1
< 2 [Q;(®) + (z — W™ + 2™ )][d;(7) — x;(7)] (€2
=t
+T-1
< Y 0MId(R) = x, (D] + (z = HE™™ + 272,
=t
Similarly, we apply the second inequality to H;(r), we get:
t+T-1
Y H(@)le - x,(2)]
7=t
+T-1 (€3)

< Z H(0le; — x,(D] + (x = e,
T=t

Substituting the above inequalities into (24) and then summing up
through time slot = € [1,1 + T — 1] leads to (26).
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Appendix D. Proof of Theorem 3

Assume the formulation as a simple way f(V},V,) = aV| +bV,, while
a,b are the weight of variables. V| and V] are the results after using the
RRW Algorithm. Because our problem is a minimized problem, for the
variables with bigger weight, we hope its randomized rounding results
have a higher probability of becoming smaller and vice versa. So we
design the algorithm with weight that can achieve better performance.

(€}
ElaV, + bV,]
= aE(V) + BE(V})
=aV, + bV, +ad 0160 _
0,a+ 0,b
6,0,b
0,a+ 0,b
0,0,(2ab — a* — b*)
0,a+ 0,b
6,0,(a — b)*
Oa+00

6,0,a
0,a+ 050

0,0,a
bl -
0ya+60,b

(D.1)

=aVy +bV, +

=aV) + bV, —

<aV +bVs.

And so on, while using the RRW Algorithm, we can achieve
E[CostRRW | < Cost*. Here CostRRW denotes the cost under Random-
ized Rounding with weight Algorithm, and Cost* denotes the optimal
cost while relaxing the original problem.

(2)

E[V) +V]]
)
" 6a+6,b
0a
+ ——
0,a+60,b
=V +V,

(Vi +0)+(V,—-0))]
(D.2)

[(V1 = 6,) + (V3 + 6))]

Appendix E. Proof of Theorem 4

(1) We use mathematical induction to prove this conclusion. Obvi-
ously, 0;(0) = 0 < Q"**. Now assume that Q,(7) < Q/"* = VCostg"o‘:jl‘p +
are +dpre, then we need to prove Q;(z + 1) < Q.

In the first case Q;(r) < V Cost™? :

comp®
Qi+ 1) = Q;(v) — x;(v) + di(7)
< Qi(T) 4 ymax 4 gmax

max max max __ max
SVC()stwm +u +z —Qi .

(E.1)

In the second case V Cost"%* <

comp —

Q;(v) SV Costypl + um™ + zme%:
Observe the optimization term: x; j(r)[ b(.”vlog(l /() + Vmg;) -

0,(r) - H(T)] In this case, the term V5" vlog(1/n;(e) + V" — 0,(x) -
H;(r) < 0. Consequently, in order to minimize the cost, the variable
x;(t) may will the maximum value $™%* or Q;(7).

If Q;(r) > S§™, then,

0,z + 1) =Q;(7) - x;,(v) + d;(7)
< Q) = S™X 4 dX "X,

While §™9% > "X 4 z"®* Q.(7 + 1) < Q;(zr). That means the queue
will not increase in this situation. So Q;(z + 1) < Q;(r) < Q.

If Q;(r) < §™%%, because of the constraint x;(r) < Q;(), x;(7) =
then Q;(r + 1) < d;(7) S u™™ + z"* < Qm“x

In conclusion, Q™™ £ V Cost™e* + u’”“" + zMax,

comp
Using the same way we can prove H™* £ VCostyl, + €™
(2) From Theorems 5 and 6, we can know our algorithm has the
[0(1/V),0([log(V)]*)] cost-delay trade-off. While getting lower overall
cost by increasing V, we can only get larger queue backlogs which is

unreasonable. So we use constraint (13) to guarantee the data should be

(E.2)

0;(2),
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served within the maximum delay Z"**, which results in the limitation
of V as below:

max max
zZmx < —Qi +H
1 - €,
2V Costmax 4 ymax 4 zmax 4 ghmax (E-3)
= b < zZmax,
€; -
Consequently, we can get:
‘ € Z;‘nax — eMmax _ ymax _ zmax
pmax — (E.4)
2Costmax

comp

Appendix F. Proof of Lemma 2

First we see that z,(f) converges to z, as ¢ goes to infinity with
probability 1 . Consequently, there exists a time T, < o, such that
lz@) — z|| < € for all + > T, with probability 1. "This implies that
a(t) < oo for all ¢ > T...

We now construct a fictitious system, which is exactly the same as
our system, except that we replace the input state distribution r by #(r).
From Assumption 1, we know that for any ¢ > T, ,w.p.1, this system
admits an optimal control policy that achieves the optimal cost (with
the state distribution being (7)) and ensures the queue stability. We
denote Cost} (n(t)) the optimal average cost of the fictitious system
subject to stability. We see then Cost}, (x(r)) > 0.

Then we obtain:

0 < Costy, (m())

@
= q(a(1),1) F.1)

()
< D 7, (1) [V CoStyy =1 Y (1)
Si J

Here (a) follows from Theorem 1 in [40] and (b) follows from the
definition of g(a(?),7), Assumption 1 and Zs, mg, (Dle; — x;(s;, xf"))] <0.
This shows that w.p.1

V Cost

Z () <EE ——D% v > T, | (F.2)
Appendix G. Proof of Corollary 1
From Lemma 2 we know that w.p.1 after T, e, time, |la(®)| < €&

which implies that for all r > T, and all s;, we have w.p.1 that where
ld;() — x; Ol < B:

q5,(a(®)) <V Costyg + NEB, Vs (G.1)
Now note that g(a(z),) can be expressed as:
qa(n), 1) = Z [ﬂs,. + 65, (t)] g5, (a(0)), (G.2)

Si

where 8, () =m, (-7, denotes the error of the empirical distribution.
Therefore,

la(a(r).1) = q(a()] < max g, (a(t)|
' (G.3)

< max M (VCosty + NEB) .
Si

Appendix H. Proof of Lemma 3

For easy understanding and not to confuse, we use y(¢) to represent
the Q(r) as the Lagrange dual multiplier of the problem (8) and its
optimal value is y*. Note that for all ¢, the empirical dual function g(a, 1)
is always concave [41] and hence continuous. Suppose a(f) does not
converge to y*. Then, there exists a 6 > 0 such that we can find an
infinite sequence {a (1)}, with 7, — co such that [|a (1) —y*|| > &
for all k. Since ¢(y) has a unique optimal, this implies that there exists
a constant ¢; > 0 such that for all &,

q(r) —a(a(n)) 2e.

(H.1)
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To see why this holds, suppose this is not the case. Then, for any
small ¢ > 0, we can find some a (tk) such that (H.1) is violated. This
implies that there is a sequence of {(a (t,))} _, which converges to
q(y*). Denote M ={a : ||| < &}. We see that M is compact. Also, by
Lemma I, we see that there exists a finite m*, such that {a (tm)}:’:m*
is an infinite sequence in the compact set M w.p.1. Hence, it has a
converging subsequence [27]. Denote the limit point of this subsequence
by a’. The above thus means that q (a’) = g (y*). However, in this case
|’ —v*|| = 6, which contradicts the fact that y* is the unique optimal

of q(y). Now let us choose a time T such that w.p.1, for all t > T,

lg(a,t) — q(@)| < €5/3, (H.2)

for all @« € M. This is always possible using Corollary 1 and the fact that
max, )ES, (t)) — 0ast — oo. Then, choose a point a (1, ) from { (1;) } ;. ,
with 7, > T. We see that the optimal solution « (1, ) at time #, satisfies:

a(a(n).n) =a(rn). (H.3)
Using (H.2), (H.3) implies that:
q(a(lk))+§€52q(y*), (H.4)

which contradicts. This shows that a(r) converge to y* w.p.1.
Appendix I. Proof of Lemma 4

We know that 7*(¢) = y* — a(t) + 6. Next we need to calculate the
distance between Q(¢) and 7*(¢).

[oc+ 1) -7 0|’
<[l - x() +d@) - 7 )|’
<llow - 7o\ + lIx@) - do)|?
- 2(F* 0 - 0m)" d®) - x().

Here we notice that the term (d(¢)—x(z)) is a subgradient of the dual
problem g, so we can get:

lea+ 1 -7 0|’

((ND)]

<llow -7 @ + B - 20" - a@)) a.2)
<[lo® - 70| + B = 2(a(r*) - 4(Q(®) + a(t) - 0)).

Now for a given > 0, if :
2_2 _ =%
n>=2n||Q@® - 7* )| w3)

>B-2(q(r*) - 9@+ a(t) - 0)) .
Then we can plug this into (I.2) and obtain:
lo¢+ -7

<llo®w -7 o) - 21]|Q@) - 7 ()|| + 7 a4
=(lew -7 @] -n)*.

This implies that:
o+ 1) -7*®| < [|e® -7 - 7. (1.5)

So we need to prove (I.5) hold. Rearranging the terms in (L.5) it
becomes:

2(q(r*) — Q) + a@) - 6))

* 2 (16)
>2n]|Q®) + a(t) -0 —y*|| + B—n”.
This holds whenever:
plly* = Q@) — a@) + 0|
B—n? 1.7

>n]|Q@ +at) -6 —y*|| + B

By choosing 0 < # < p and using (1.7), we see that (I.5) holds
whenever:

B—I12

. 1.8
2(p—n) (.8)

oo -7W|=|r"-0®)-amn+6||>2D,=
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In conclusion, if ||Q(t) —7*(1)| >

> D, then QU+ 1) —7WI <
low - 7Ol - .

Appendix J. Proof of Theorem 5

Using Lemma 4, we know that while |Q(") — 7*(1)|| > D,, Q() will
decrease until ||Q(t) - 7*(|| < D,. Obviously that means the value of
Q(1) will falls into [0 — D,,0+D,] whent > T,

We see that for any e, with probability 1, there exists a time 7, < oo
such that ||a(t) — y*|| < e for all 1 > T,. Using this fact in Lemma 4, we
see that w.p.1, when t > T, and [|Q(®)—6|| = D, =D, +¢:

10t + 1) -0l <10 — Ol —n +2e.

We can now use an argument as in [38] and show that there exist
constants ¢, = 6(1), K, = 6(1) such that w.p.1,

J.n

P, (ljp,m) < cpe_KP'", J.2)
where P, (D,,m) is defined as:

t—1
P, (D, m) én?lilp% ZPI{”Q(T)—@” >D,+m}. (J.3)

=0

This implies that for any Q,(¢), the probability that Q,(t) > 6; +(Dp+
m) and Q;(t) < 6; — (Dp + m) is exponentially decreasing in K M with
K, = O(1). Hence, if we define dis;(t) = max [Q,() - ;,0], it can be
shown that dis;(t) = O(1). Thus, we have:
Qaug = Z Qi = Z 0,- + @(1)' (J4)
i i
By choosing 6, = O([log(V)]?), we can get Theorem 5.

Appendix K. Proof of Theorem 6

t+T-1

Y Cost*RW(7) | @(1)}

T=t

+T-1
{ > (a0 = 6) [d(1) = x,(2)] | @(r)}

A (O(t) + VE {

+ ) E
ieM T=t
t+T-1

Y, Cost®tW(z) | @(1)}

=t

<B,T+VE { (K.1)

+ ) E

ieM

t+T-1
{ Y 0l [di(z) - x,()] |c-)(z)}
=t
t+T—-1
+ 2 E{ > H |6 = x,(0)] |@(r>}.
ieM =t

Because E {d;(r) - x;(r)} < 0 and E{¢; — x;(r)} < 0, then where
Cost* is the optimal value of (8):

+T-1
Ap(O®) + VE{ Y, Cost®W(7) | 0(1)}
+T—-1 (K.z)
+ Y E { Y (@)= 0) [dy(r) = x,(2)] | @(r)}
ieM 7=t

< B,T +VCost*.

Taking expectations on both sides of it, taking a telescoping sum
overt =0,...,T — 1, rearranging the terms, and dividing both sides by
TV, we have:

-1
RRW & o 1 «RRW
Costf™ & inf lim — 3" E[Cost"™ ()]

=0
(K-1)T—-1
A . RRW
= inf I(lgr;o —(K O Z{) E[Cost ()]
- 400
- VT
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(K-1)T-1
. . RRW
+ inf lim X7 12::‘) E[CostRRW (7)]
B2 1 t+T-1 RRW
— + =E Cost ot
<STtT ; 05 |O®)
1S @0 -6 (K.3)
. i —V; .
= Jim 3 S Y —— 4@ - x)]
ieM =0
B
< 72 + Cost*
T-1
. 1 (o; () = 0))
#pin 3 1o 3 A k- a0
ieM =0

We let d?¥ and x{¥ be the average value and analyze the last term
separately:

T-1
(1) — 6.
im Y 1 Y @O0 1)~ do)]
t—00 t Vv
ieM t=0 (K.4)
) 2e5
< %(X?U —d®) + %

Assume that every queue i can only serve .,,, data in a timeslot.
From (J.2), we know that w.p.1, if 6, > f)p + Spax » that means m in
(J.2)= 0, = D, — 6o while 0,(1) < 6, — (D, + m), then:

-1
Tim sup L D Pr{0,(1) < by } < cpe Ko (O Dymomax). (K.5)
tsoo I =0
This shows that the fraction of time that Q;(¢) is smaller than §,,,, is
at most c,,e_KP(‘gi ~Dy=bmax) . So since d;"® and x{"* are the average value
of Q;(1), then:

x;’” - dlf"’ < 6maxcpe_KP(9"_Dﬂ_‘$max), w.p.1. (K.6)
Using 6, = O([log(V)]?) and a sufficiently large V such that
K,([10g(V)> = D, = 8,0) > 2l0g(V), we have:
S5 ¢ er(f)p+5max)
X - < P 0(%). (K.7)
e'r
While y; = O(V), then:
1
(r; — 0 —df¥) = 0(;) (K.8)
In conclusion, w.p.1,
RRWC*BZ oLy = Cost* + O( 4 (K.9)
Cost,"" < Cost™ + a + (7) = Cost™ + (7)' .

This completes the proof of Theorem 6.
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