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Abstract

It is well known that any positive matrix can be scaled to have prescribed row and

column sums by multiplying its rows and columns by certain positive scaling factors.

This procedure is known as matrix scaling, and has found numerous applications in

operations research, economics, image processing, and machine learning. In this

work, we establish the stability of matrix scaling to random bounded perturbations.

Specifically, letting Ã ∈ R
M×N be a positive and bounded random matrix whose

entries assume a certain type of independence, we provide a concentration inequality

for the scaling factors of Ã around those of A = E[Ã]. This result is employed to

study the convergence rate of the scaling factors of Ã to those of A, as well as the

concentration of the scaled version of Ã around the scaled version of A in operator

norm, as M,N → ∞. We demonstrate our results in several simulations.
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1 Introduction

Let A ∈ R
M×N be a nonnegative matrix. It was established in a series of classical

papers [28, 29, 30, 4, 3, 21] that under certain conditions one can find a positive

vector x = [x1, . . . , xM ] and a positive vector y = [y1, . . . , yN ], such that the matrix P =

D(x)AD(y) has prescribed row sums r = [r1, . . . , rM ] and column sums c = [c1, . . . , cN ],

where D(v) is a diagonal matrix with v on its main diagonal. The problem of finding

x and y is known as matrix scaling or matrix balancing; see [14] for a comprehensive

review. Formally, we say that a pair of positive vectors (x,y) scales A to row sums r and

column sums c, if

ri =

N∑

j=1

Pi,j =

N∑

j=1

xiAi,jyj , and cj =

M∑

i=1

Pi,j =

M∑

i=1

xiAi,jyj , (1.1)

for all i ∈ [M ] and j ∈ [N ]. We refer to x and y from (1.1) (or their entries) as scaling

factors of A. In the special case of M = N and ri = cj = 1 for all i ∈ [M ] and j ∈ [N ], the

problem of matrix scaling becomes that of finding a doubly stochastic normalization of A,
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Scaling positive random matrices

originally studied by Sinkhorn [28] with the motivation of estimating doubly stochastic

transition probability matrices.

It is important to mention that (1.1) is a system of nonlinear equations in x and y with

no closed-form solution. Nevertheless, if the scaling factors x and y exist, they can be

found by the Sinkhorn–Knopp algorithm [30] (also known as the RAS algorithm), which

is a simple iterative procedure that alternates between computing x via (1.1) using y

from the previous iteration, and vice versa.

Given a nonnegative matrix A, existence and uniqueness of the scaling factors depend

primarily on the particular zero-pattern of A; see [3] and references therein. In this

work, we focus on the simpler case that A is strictly positive, in which case existence and

uniqueness of the scaling factors are guaranteed by the following theorem (see [29]).

Theorem 1.1 (Existence and uniqueness [29]). Suppose that A, r, and c are positive,

and ‖r‖1 = ‖c‖1. Then, there exists a pair of positive vectors (x,y) that scales A to row

sums r and column sums c. Furthermore, the resulting scaled matrix P = D(x)AD(y) is

unique, and the pair (x,y) can be replaced only with (αx, α−1y), for any α > 0.

Note that the condition ‖r‖1 = ‖c‖1 in Theorem 1.1 is necessary for existence of the

scaling factors, as each of the quantities ‖r‖1 and ‖c‖1 must be the sum of all entries

in the scaled matrix P . From this point onward we will always assume that r and c are

positive and ‖r‖1 = ‖c‖1.
Over the years, matrix scaling and the Sinkhorn–Knopp algorithm have found a

wide array of applications in science and engineering. In economy and operations

research, classical applications of matrix scaling include transportation planning [17],

analyzing migration fields [31], and estimating social accounting matrices [27]. In image

processing and computer vision, matrix scaling was employed for image denoising [24]

and graph matching [7]. Recently, matrix scaling has been attracting a growing interest

from the machine learning community, with applications in manifold learning [22, 33],

clustering [34, 20], and classification [10]. See also [26, 8] for applications of matrix

scaling in data science through the machinery of optimal transport.

In many practical situations, matrix scaling is applied to a random matrix that repre-

sents a perturbation, or a random observation, of an underlying deterministic population

matrix; see for example [19, 33, 24, 6]. Arguably, this is the case in all of the previously-

mentioned applications of matrix scaling whenever real data is involved. In particular,

applications of matrix scaling in machine learning and data science often involve large

data matrices that suffer from corruptions and measurement errors. Consequently, it

is important to understand the influence of random perturbations of A on the required

scaling factors and on the resulting scaled matrix, particularly in the setting where A is

large and the entrywise perturbations are not necessarily small.

The existing literature on stability of matrix scaling under random perturbations is

mostly concerned with special instances of the problem. In manifold learning, [33, 19, 18]

investigated the doubly stochastic scaling of kernel matrices constructed from random

point clouds. The perturbation in this case, which stems from the point cloud sampling,

exhibits a special form that depends on the particular kernel (see [9]). The kernel matrix

also admits properties such as symmetry and positive definiteness that are utilized in the

analysis. Another line of work is on entropically-regularized optimal transport between

discrete distributions; see [2, 25, 11, 5, 1, 23, 15] and references therein. In this case,

the matrix to be scaled takes the form (exp{−Ci,j/ε})i,j , where C is a matrix of ground

distances (e.g., Euclidean distances) between two sets of point, and ε is a parameter of

the entropic regularization. The prescribed row and column sums r and c represent the

desired marginals of the transport map, namely the source and target distributions in

the transport. The analysis is focused on the stability and convergence of the scaling
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Scaling positive random matrices

scheme when the points are sampled from certain populations, or under perturbations

of the marginals. In contrast to the aforementioned lines of work, in this work we

focus on scaling unstructured rectangular matrices corrupted by centered entrywise

perturbations, describing, e.g., noisy tabular data obtained experimentally.

Let Ã ∈ R
M×N be a positive random matrix and define A = E[Ã], where Ã represents

a random bounded perturbation of A. Theorem 1.1 establishes the existence and

uniqueness of a set of scaling factors {(αx, α−1y)}α>0 of A, together with the existence

and uniqueness of the corresponding scaled matrix P = D(x)AD(y). Theorem 1.1 can

also be applied analogously to Ã, establishing the existence and uniqueness of a set of

random scaling factors {(αx̃, α−1ỹ)}α>0 of Ã, as well as the existence and uniqueness

of the corresponding scaled random matrix P̃ = D(x̃)ÃD(ỹ). The main purpose of this

work is to establish that under suitable conditions on Ã, r, and c, there is a pair of

scaling factors (x̃, ỹ) of Ã that concentrates entrywise around a pair of scaling factors

(x,y) of A, and furthermore, the resulting scaled random matrix P̃ concentrates around

P in operator norm. Our results demonstrate that matrix scaling is robust to random

perturbations of A when the dimensions of the matrix are sufficiently large.

2 Main results

2.1 Concentration of matrix scaling factors

Denote s = ‖r‖1 = ‖c‖1. Out main result is the following theorem, which provides

a concentration inequality for a certain pair of scaling factors of Ã around any pair of

scaling factors of A.

Theorem 2.1 (Concentration of scaling factors). Let Ã ∈ R
M×N be a positive random

matrix, A = E[Ã], and (x,y) be a pair of positive vectors that scales A to row sums r and

column sums c. Suppose that Ãi,j ∈ [ai,j , bi,j ] a.s. for all i ∈ [M ] and j ∈ [N ], and denote

a = mini,j ai,j , b = maxi,j bi,j , and d = maxi,j{bi,j − ai,j}. Suppose further that {Ãi,j}Nj=1

are independent for each i ∈ [M ], and {Ãi,j}Mi=1 are independent for each j ∈ [N ]. Then,

there exists a pair of positive random vectors (x̃, ỹ) that scales Ã to row sums r and

column c, such that for any δ ∈ (0, 1], with probability at least

1− 2M exp

(
− δ2s2

C2
p‖c‖22

)
− 2N exp

(
− δ2s2

C2
p‖r‖22

)
, (2.1)

we have for all i ∈ [M ] and j ∈ [N ],

|x̃i − xi|
xi

≤ Ceδs

M mini ri
,

|ỹj − yj |
yj

≤ Ceδs

N minj cj
, (2.2)

where Cp =
√
2
(
bd/a2

)
and Ce = 1 + 2 (b/a)

7/2
.

The proof of Theorem 2.1 can be found in Section 4.1. Note that Theorem 2.1

requires the entries of Ã to be independent in each of its rows and each of its columns

separately. Clearly, this condition is less restrictive than requiring all entries of Ã to be

independent. For instance, consider the matrix Ãi,j = gi,j(uivj), where {ui}Mi=1, {vj}Nj=1

are independent Rademacher variables, and gi,j : {−1, 1} → {ai,j , bi,j} are deterministic

functions with 0 < ai,j < bi,j , for all i ∈ [M ], j ∈ [N ]. Evidently, each row and column

of Ã contains independent entries, yet the entries of Ã are strongly dependent since

knowing any single row (column) of Ã substantially restricts the distribution of any other

row (column).

We next apply Theorem 2.1 to study the convergence rate of the scaling factors of Ã

to those of A in relative error, as the dimensions M and N grow. Let (x̃, ỹ) be a pair of
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scaling factors of a random positive matrix Ã ∈ R
M×N , and let (x,y) be a pair of scaling

factors of A = E[Ã]. We then define the error

E = min
α>0

max

{
max
i∈[M ]

|αx̃i − xi|
xi

, max
j∈[N ]

|α−1ỹj − yj |
yj

}
. (2.3)

Note that the scaling factors (x,y) may converge to 0 or grow unbounded as M,N → ∞,

depending on the behavior of the prescribed row sums r and column sums c. Conse-

quently, the normalization by xi and yj in the error (2.3) is important for making E
meaningful in the asymptotic regime of M,N → ∞. In what follows, we use the notation

X . f(M,N) to mean X ≤ Cf(M,N) for a universal constant C > 0 independent of M

and N . We now have the following corollary of Theorem 2.1.

Corollary 2.2 (Convergence rate of scaling factors). Suppose that Ã satisfies the condi-

tions in Theorem 2.1 with universal positive constants a, b (independent of M and N ).

Then, with probability at least 1− 4/min{M,N},

E . ρ1ρ2
√

log(max{M,N}), (2.4)

where

ρ1 = max

{‖r‖2
s

,
‖c‖2
s

}
, ρ2 = max

{
s

M mini ri
,

s

N minj cj

}
. (2.5)

The proof can be found in Section 4.2. To exemplify Corollary 2.2, let us consider the

setting of doubly stochastic matrix scaling, namelyM = N , and ri = cj = 1 for all i ∈ [M ],

j ∈ [N ]. According to (2.5), we have ρ1 = 1/
√
N and ρ2 = 1. Hence, Corollary 2.2 asserts

that E .
√

logN/N with probability approaching 1 as N → ∞. Similarly, it is easy to

verify that the same rate
√
logN/N holds whenever M grows proportionally to N and

maxi ri/mini ri ≤ c, maxj cj/minj cj ≤ c, for some universal constant c > 0. Under the

same conditions on r and c but for general M and N , we have that

E .

√
log(max{M,N})

min{M,N} , (2.6)

with probability at least 1− 4/min{M,N}, which follows immediately from the fact that

ρ1 ≤ cmax{M−1/2, N−1/2} and ρ2 ≤ c (if maxi ri/mini ri ≤ c and maxj cj/minj cj ≤ c).

Aside from the setting where the ri’s and cj ’s have the same orders of magnitude,

Corollary 2.2 provides guarantees on the convergence rate of the scaling factors even if

some of the ri’s or cj ’s grow unbounded with M or N relative to others. For instance,

considering again the setting of doubly stochastic matrix scaling, we can set a fixed

number of the ri’s or cj ’s to be
√
N instead of 1, without affecting the behavior of ‖r‖2,

‖c‖2, and s asymptotically as N grows. Consequently, the convergence rate of (x̃, ỹ) to

(x,y) (in the sense of (2.3)) would remain
√

logN/N in this case.

2.2 Concentration of P̃ around P in operator norm

Let P̃ and P be the matrices obtained from Ã and A, respectively, after scaling them

to row sums r and column sums c, i.e., P̃ = D(x̃)ÃD(ỹ), P = D(x)AD(y). We now have

the following result.

Corollary 2.3. (Concentration of P̃ around P ) Suppose that the entries of Ã are inde-

pendent, and Ãi,j ∈ [a, b] a.s. for all i ∈ [M ], j ∈ [N ] and universal positive constants a, b

(independent of M and N ). Then, with probability at least 1− 6/min{M,N},

‖P̃ − P‖2 . ρ1ρ2ρ3
√
log(max{M,N}), (2.7)
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where ρ1 and ρ2 are from (2.5), and

ρ3 =

√
M maxi ri ·

√
N maxj cj

s
. (2.8)

The proof can be found in Section 4.3. To exemplify Corollary 2.3, we consider again

the case of doubly stochastic matrix scaling, where ρ1 = 1/
√
N , ρ2 = ρ3 = 1. In this

case, ‖P̃ − P‖2 .
√
logN/N with probability approaching 1 as N → ∞. Note that since

P is doubly stochastic, it follows that ‖P‖2 = 1 (see [13]). In the more general case

where the prescribed row and column sums are not 1, ‖P‖2 can converge to zero or grow

unbounded with M and N , depending on the asymptotic behavior of r and c. Therefore,

it is worthwhile to consider the normalized error ‖P̃ − P‖2/‖P‖2. If the conditions in

Corollary 2.3 hold and in addition maxi ri/mini ri ≤ c, maxj cj/minj cj ≤ c, for some

universal constant c > 0, then with probability at least 1− 6/min{M,N},

‖P̃ − P‖2
‖P‖2

.

√
log(max{M,N})

min{M,N} . (2.9)

Equation (2.9) follows from the fact that

‖P‖2 ≥ max

{∥∥∥∥
P1N√

N

∥∥∥∥
2

,

∥∥∥∥
1T
MP√
M

∥∥∥∥
2

}
≥
√
min
i

ri min
j

cj , (2.10)

where 1N is the column vector of N ones, and we used ρ1 ≤ cmax{M−1/2, N−1/2}, ρ2 ≤ c,

and
ρ3

‖P‖2
≤ maxi ri maxj cj

‖P‖2
√
mini ri minj cj

≤ c2, (2.11)

since s =
√
s
√
s ≥

√
M mini ri

√
N minj cj .

3 Numerical experiments

We now exemplify our results in several experiments. In all of our experiments,

the matrix A was generated by sampling its entries independently and uniformly from

[1.5, 2.5], and Ãi,j were sampled independently and uniformly from [Ai,j − 0.5, Ai,j + 0.5]

for all i ∈ [M ] and j ∈ [N ]. Then, the Sinkhorn–Knopp algorithm [30, 16] was applied to

both A and Ã, where the algorithm iterations were terminated once the row and column

sums of the scaled matrices reached their targets up to an error of 10−12. The resulting

pairs of scaling factors were normalized so that ‖x̃‖1 = ‖ỹ‖1 and ‖x‖1 = ‖y‖1. This

process was repeated 20 times (each time for a different realization of A and Ã) and the

error measures appearing in the left-hand sides of (2.4) and (2.9) were computed and

averaged over the 20 randomized trials.

Figure 1 depicts the behavior of the empirical error E (see (2.3)) as a function

of N in several scenarios. Specifically, Figure 1a exemplifies the scenario of doubly

stochastic matrix scaling, i.e., M = N and ri = cj = 1 for all i ∈ [M ] and j ∈ [N ], in

which case (2.6) guarantees that E . N−1/2
√
logN with probability approaching 1 as

N → ∞. Figure 1b illustrates the case of a rectangular matrix with M = 3N , where the

prescribed row and column sums were sampled independently and uniformly from [0.1, 1]

and normalized to sum to 1. In this case, since M is proportional to N , and in addition

maxi ri/mini ri ≤ 10, maxj cj/minj cj ≤ 10, (2.6) again dictates that E . N−1/2
√
logN

(as for the doubly stochastic case). Figure 1c illustrates the scenario of a rectangular

matrix with M = 10
√
N and ri = N , cj = M , for all i ∈ [M ] and j ∈ [N ]. In this case

it follows from (2.6) that E . N−1/4
√
logN . It is evident from Figures 1a, 1b, 1c that

the probabilistic bound in Corollary 2.2 agrees very well with the experimental results,
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(a) M = N , ri = cj = 1 (b) M = 3N , ri, cj are random (c) M = 10
√

N , ri = N , cj = M

Figure 1: Empirical values of E as function of N in log-log scale, compared to the

corresponding bounds from (2.6). Figure 1a corresponds to M = N and ri = cj = 1 for

all i ∈ [M ] and j ∈ [N ]. Figure 1b corresponds to M = 3N , and {ri}, {cj} sampled inde-

pendently and uniformly from [0.1, 1] and normalized to sum to 1. Figure 1c corresponds

to M = 10
√
N and ri = N, cj = M for all i ∈ [M ] and j ∈ [N ].

(a) M = N , ri = cj = 1 (b) M = 3N , ri, cj are random (c) M = 10
√

N , ri = N , cj = M

Figure 2: Empirical values of ‖P̃ − P‖2/‖P‖2 as a function of N in log-log scale for the

same settings as in Figure 1, compared to the corresponding bounds from (2.9).

suggesting that this bound is tight for the considered scenarios, and in particular that

the factor
√
log(N) in the corresponding bounds is necessary.

Figure 2 shows the behavior of the empirical error ‖P̃ − P‖2/‖P‖2 as a function of

N for the same scenarios as in Figure 1. For these scenarios, the rates that govern

the bounds on ‖P̃ − P‖2/‖P‖2 according to (2.9) are the same as those for E from (2.6)

(described previously in the context of Figure 1). In the scenario where M grows

proportionally to N , it is evident from Figures 2a and 2b that the bound in (2.9) is tight

up to the factor
√
log(N), suggesting that this factor is probably not required in the

bound (in contrast to the bound on E depicted in Figure 1). In the scenario where M

grows disproportionately to N , Figure 1c empirically suggests that the bound in (2.9)

can be improved by a factor of log(N), which would bring the rate in this case to be

N−1/4/
√
logN . Overall, these experiments suggest that the bound in (2.9) describes the

correct behavior of ‖P̃ − P‖2/‖P‖2 up to poly-logarithmic factors in the tested scenarios.

4 Proofs

4.1 Proof of Theorem 2.1

Let us define

ri =
ri√
‖r‖1

, cj =
cj√
‖c‖1

, (4.1)
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for i ∈ [M ] and j ∈ [N ]. We begin with the following lemma, which describes a useful

normalization of the scaling factors and the resulting bounds on their entries.

Lemma 4.1 (Boundedness of scaling factors). Let A be a positive matrix, and denote

a = mini,j Ai,j and b = maxi,j Ai,j . There exists a unique pair of positive vectors (x,y)

that satisfies ‖x‖1 = ‖y‖1 and scales A to row sums r and column sums c, and moreover,

for all i ∈ [M ] and j ∈ [N ],

√
a

b
≤ xi

ri
≤

√
b

a
,

√
a

b
≤ yj

cj
≤

√
b

a
. (4.2)

Proof. By Theorem 1.1, we have a pair (x′,y′) of scaling factors of A, and denoting

(x,y) = (αx′, α−1y′) with ‖αx′‖1 = ‖α−1y′‖1, determines α uniquely. According to (1.1),

we have xi = ri/
∑N

j=1 Ai,jyj and yj = cj/
∑M

i=1 Ai,jxi. Therefore, since a ≤ Ai,j ≤ b,

ri
b‖y‖1

≤ xi ≤
ri

a‖y‖1
,

cj
b‖x‖1

≤ yj ≤
cj

a‖x‖1
, (4.3)

for all i ∈ [M ], j ∈ [N ]. Summing the inequalities in (4.3) for xi over i = 1, . . . ,M , and

using ‖y‖1 = ‖x‖1 together with ‖r‖1 = s, gives
√

s/b ≤ ‖y‖1 = ‖x‖1 ≤
√
s/a. Plugging

this last inequality back into (4.3) gives the required result.

We now proceed with the proof of Theorem 2.1. Without loss of generality, we can

always assume that the pair of scaling factors (x,y) satisfies ‖x‖1 = ‖y‖1, as otherwise
we can replace (x,y) and (x̃, ỹ) with (αx, α−1y) and (αx̃, α−1ỹ), respectively, for an

appropriate α > 0, and clearly we are not changing the normalized errors in (2.2).

Since Ãi,j ∈ [ai,j , bi,j ] a.s., then Ai,j = E[Ãi,j ] ∈ [ai,j , bi,j ], and Lemma 4.1 dictates that

xiyj ≤ ricj(b/a
2) = Cricj/s for all i ∈ [M ] and j ∈ [N ], where C = b/a2. Therefore, using

the fact that
∑

j xiAi,jyj = ri, Hoeffding’s inequality [12] implies that

Pr





∣∣∣∣∣∣
1

ri

N∑

j=1

xiÃi,jyj − 1

∣∣∣∣∣∣
> ε



 ≤ 2 exp

(
−2ε2s2

C2
∑N

j=1 c
2
j (bi,j − ai,j)2

)
, (4.4)

for all i ∈ [M ]. Similarly, by a symmetry argument (considering (4.4) when replacing Ã

with ÃT , interchanging the roles of r and c), one can verify that

Pr

{∣∣∣∣∣
1

cj

M∑

i=1

xiÃi,jyj − 1

∣∣∣∣∣ > ε

}
≤ 2 exp

(
−2ε2s2

C2
∑M

i=1 r
2
i (bi,j − ai,j)2

)
, (4.5)

for all j ∈ [N ]. Consequently, applying the union bound over all i ∈ [M ] and j ∈ [N ]

asserts that with probability at least

1− 2

M∑

i=1

exp

(
− 2ε2s2

C2
∑N

j=1 c
2
j (bi,j − ai,j)2

)
− 2

N∑

j=1

exp

(
− 2ε2s2

C2
∑M

i=1 r
2
i (bi,j − ai,j)2

)
, (4.6)

we have

max
j∈[N ]

∣∣∣∣∣
1

M

M∑

i=1

xiÃi,jyj − 1

∣∣∣∣∣ ≤ ε, and max
i∈[M ]

∣∣∣∣∣∣
1

N

N∑

j=1

xiÃi,jyj − 1

∣∣∣∣∣∣
≤ ε. (4.7)

In what follows we assume that the event (4.7) holds, and extend Sinkhorn’s original

proof of uniqueness of the scaling factors (see [29]) to describe their stability under
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approximate scaling (as in (4.7)). Let (x,y) be the unique pair of scaling factors of Ã

with ‖x‖1 = ‖y‖1 (applying Lemma 4.1 to Ã), and define

P̂i,j = xiÃi,jyj , P̃i,j = xiÃi,jyj = uiP̂i,jvj , ui =
xi

xi
, vj =

yj
yj

, (4.8)

for all i ∈ [M ] and j ∈ [N ]. Observe that
∑

i P̃i,j = cj ,
∑

j P̃i,j = ri, and

∣∣∣∣∣
1

cj

M∑

i=1

P̂i,j − 1

∣∣∣∣∣ ≤ ε,

∣∣∣∣∣∣
1

ri

N∑

j=1

P̂i,j − 1

∣∣∣∣∣∣
≤ ε, (4.9)

for all i ∈ [M ], j ∈ [N ]. Using the first inequality in (4.9) for j = argmink vk, we have

1 =
1

cj

M∑

i=1

P̃i,j =
1

cj

M∑

i=1

uiP̂i,jvj ≤ min
j

vj max
i

ui
1

cj

M∑

i=1

P̂i,j ≤ (1 + ε)min
j

vj max
i

ui. (4.10)

Similarly, using the second inequality in (4.9) for i = argmax` v` gives

1 =
1

ri

N∑

j=1

P̃i,j =
1

ri

N∑

j=1

uiP̂i,jvj ≥ max
i

ui min
j

vj
1

ri

N∑

j=1

P̂i,j ≥ (1− ε)max
i

ui min
j

vj , (4.11)

and by combining (4.10) and (4.11) we obtain

1

1 + ε
≤ max

i
ui min

j
vj ≤

1

1− ε
. (4.12)

By a symmetry argument (considering (4.12) in the setting where Ã is replaced with ÃT ,

interchanging the roles of u and v), we also have

1

1 + ε
≤ min

i
ui max

j
vj ≤

1

1− ε
. (4.13)

Let us denote ` = argmaxi ui. By the second inequality in (4.9) together with (4.12), we

can write

1 =
1

r`

N∑

j=1

P̃`,j =
1

r`

N∑

j=1

u`P̂`,jvj ≥
1

(1 + ε)r`

N∑

j=1

P̂`,j
vj

mini vi
, (4.14)

implying that

1

r`

N∑

j=1

P̂`,j

(
vj

mini vi
− 1

)
≤ 1 + ε− 1

r`

N∑

j=1

P̂`,j ≤ 2ε. (4.15)

Multiplying (4.15) by minj vj/mink P̂`,k, it follows that

1

r`

N∑

j=1

(vj −min
i

vi) ≤
1

r`

N∑

j=1

P̂`,j

mink P̂`,k

(vj −min
i

vi) ≤ 2ε
minj vj

mink P̂`,k

≤ 2εminj vj
aC1C2r` minj cj

,

(4.16)

where C1 = mini{xi/ri} and C2 = mink{yk/ck}. Multiplying (4.16) by r`/N and employ-

ing the definitions of ri and cj (see (4.1)) gives

1

N

N∑

j=1

(vj −min
i

vi) ≤
2εsminj vj

aC1C2N minj cj
≤ 2εsmaxj vj

aC1C2N minj cj
. (4.17)
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Similarly, using the second inequality in (4.9) together with (4.13), one can verify by a

derivation analogous to (4.14)–(4.17) that

1

N

N∑

j=1

(max
j

vj − vj) ≤
2εsmaxj vj

aC1C2N minj cj
. (4.18)

Summing (4.17) and (4.18) gives

max
j

vj −min
j

vj ≤
4εsmaxj vj

aC1C2N minj cj
, (4.19)

and by a symmetry argument (considering (4.19) in the setting where Ã is replaced with

its transpose, so N is replaced with M , c is replaced with r, and v is replaced with u) we

also have

max
i

ui −min
i

ui ≤
4εsmaxi ui

aC1C2M mini ri
. (4.20)

Observe that |τ − vj | ≤ maxj vj − minj vj for any τ ∈ [minj vj ,maxj vj ] and all j ∈ [N ].

Taking τ as the geometric mean of maxj vj and minj vj , together with (4.19) gives

∣∣∣∣
√
max

j
vj min

j
vj − vj

∣∣∣∣ ≤
4εsmaxj vj

aC1C2N minj cj
, (4.21)

for all j ∈ [N ]. Multiplying both hand sides of (4.21) by α−1 =
√
maxi ui/maxj vj we get

∣∣∣∣
√
max

i
ui min

j
vj − α−1vj

∣∣∣∣ ≤
4εs

√
maxj vj maxi ui

aC1C2N minj cj
≤ 4εs

√
b

a2C
3/2
1 C

3/2
2 N minj cj

, (4.22)

where we also used ui ≤
√
b/(aC1) and vj ≤

√
b/(aC2) (by Lemma 4.1). According

to (4.12), we have for all ε ∈ (0, 1) that

1− ε

1− ε
≤ 1

1 + ε
≤
√

1

1 + ε
≤
√
max

i
ui min

j
vj ≤

√
1

1− ε
≤ 1

1− ε
= 1 +

ε

1− ε
, (4.23)

which together with (4.21) implies that

∣∣1− α−1vj
∣∣ ≤ ε

1− ε
+

4εs
√
b

a2C
3/2
1 C

3/2
2 N minj cj

≤ ε

(
2 +

4s

N minj cj

(
b

a

)7/2
)
, (4.24)

for all i ∈ [M ], j ∈ [N ], and ε ∈ (0, 1/2], where we also used C1 = mini{xi/ri} ≥ √
a/b

and C2 = minj{yj/cj} ≥ √
a/b (see (4.2)). By a derivation analogous to (4.21)– (4.24),

one can verify that

|1− αui| ≤ ε

(
2 +

4s

M mini ri

(
b

a

)7/2
)
, (4.25)

for all i ∈ [M ], j ∈ [N ], and ε ∈ (0, 1/2].

Overall, taking ε = δ/2 and using the fact that s = ‖r‖1 ≥ M mini ri and s = ‖c‖1 ≥
N minj cj , it follows that with probability at least (4.6), we have

|αxi − xi|
xi

≤ δs

M mini ri

(
1 + 2

(
b

a

)7/2
)
,

|α−1yj − yj |
yj

≤ δs

N minj cj

(
1 + 2

(
b

a

)7/2
)
,

(4.26)

for all i ∈ [M ], j ∈ [N ], and δ ∈ (0, 1]. Denoting (x̃, ỹ) = (αx, α−1y) (which is a pair of

scaling factors of Ã), and using the fact that bi,j − ai,j ≤ d, we proved Theorem 2.1 with

Cp =
√
2
(
bd/a2

)
and Ce = 1 + 2 (b/a)

7/2
.
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4.2 Proof of Corollary 2.2

We begin by considering the case of ρ1ρ2
√
log(max{M,N}) ≤ 1/

√
2Cp, where Cp is

from Theorem 2.1. In this case, we apply Theorem 2.1 using δ = ρ1
√
2Cplog(max{M,N}),

noting that δ ≤ 1 as required since ρ2 ≥ 1. Therefore, there exists a pair of scaling

factors (x,y) of Ã, such that with probability at least

1− 2M exp

(
− δ2s2

Cp‖c‖22

)
− 2N exp

(
− δ2s2

Cp‖r‖22

)

≥ 1− 2M exp (−2 log(max{M,N}))− 2N exp (−2 log(max{M,N})) ≥ 1− 4

min{M,N} ,

(4.27)

we have for all i ∈ [M ] and j ∈ [N ],

|xi − xi|
xi

≤ Ceδs

M mini ri
≤ Ccρ1ρ2

√
2Cp log(max{M,N}),

|yj − yj |
yj

≤ Ceδs

N minj cj
≤ Ccρ1ρ2

√
2Cp log(max{M,N}).

(4.28)

Next, we consider the case of ρ1ρ2
√

log(max{M,N}) > 1/
√

2Cp. In this case, we apply

Lemma 4.1 to Ã, which states there exists a pair of scaling factors (x,y) of Ã, such that√
a/b ≤ xi/ri ≤

√
b/a and

√
a/b ≤ yj/cj ≤

√
b/a for all i ∈ [M ] and j ∈ [N ]. Using these

inequalities with (4.2) asserts that xi/xi ≤ (b/a)
3/2

and yj/yj ≤ (b/a)
3/2

, for all i ∈ [M ]

and j ∈ [N ]. Therefore,

E ≤
(
b

a

)3/2

<
√
2Cp

(
b

a

)3/2

ρ1ρ2
√
log(max{M,N}). (4.29)

Combining (4.28) and (4.29) proves the required result, where we used the fact that

(x,y) = (αx̃, α−1ỹ) for some α > 0.

4.3 Proof of Corollary 2.3

Let us define η = x̃− x, and ξ = ỹ − y. We can write
∥∥∥D(x̃)ÃD(ỹ)−D(x)AD(y)

∥∥∥
2
≤ ‖D(x)(Ã−A)D(y)‖2

+ ‖D(η)ÃD(y)‖2 + ‖D(x)ÃD(ξ)‖2 + ‖D(η)ÃD(ξ)‖2. (4.30)

We now bound the summands in the right-hand side of (4.30) one by one. For the first

summand in (4.30), applying Lemma 4.1 to A we have

‖D(x)(Ã−A)D(y)‖2 ≤ ‖D(x)‖2 · ‖Ã−A‖2 · ‖D(y)‖2

≤ b

a2
maxi ri√

s
‖Ã−A‖2

maxj cj√
s

=
bρ3

a2
√
MN

‖Ã−A‖2. (4.31)

Since a ≤ Ãi,j ≤ b, then also a ≤ Ai,j ≤ b, which implies that a− b ≤ Ãi,j −Ai,j ≤ b− a.

Hence, {Ãi,j −Ai,j}i,j are independent, have mean zero, and are bounded (and therefore

sub-Gaussian). Applying Theorem 4.4.5 in [32] with t =
√
log(max{M,N}) gives that

‖Ã−A‖2 .
√
N +

√
M +

√
log(max{M,N}), (4.32)

with probability at least 1− 2/max{M,N}. Combining (4.32) with (4.31) asserts that

‖D(x)(Ã−A)D(y)‖2 .
ρ3√
MN

(
√
N +

√
M +

√
log(max{M,N})), (4.33)
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with probability at least 1 − 2/max{M,N}. Observe that s = ‖r‖1 ≤
√
M‖r‖2, and

s = ‖c‖1 ≤
√
N‖c‖2. Therefore, ρ1 = max {‖r‖2/s, ‖c‖2/s} ≥ max{1/

√
M, 1/

√
N}. Using

this fact together with ρ2 ≥ 1, it follows that

ρ1ρ2ρ3
√
log(max{M,N}) ≥ ρ3 max{ 1√

M
,

1√
N

}
√
log(max{M,N})

=
ρ3√
MN

max{
√
M,

√
N}
√

log(max{M,N})

≥ ρ3

8
√
MN

(
√
M +

√
N +

√
log(max{M,N})). (4.34)

Applying the above inequality to (4.33) we obtain that

‖D(x)(Ã−A)D(y)‖2 . ρ1ρ2ρ3
√
log(max{M,N}), (4.35)

with probability at least 1−2/max{M,N}. Continuing, for the second summand in (4.30),

‖D(η)ÃD(y)‖2 ≤ ‖D(η)‖2 · ‖Ã‖2 · ‖D(y)‖2 ≤ ‖D(η)‖2 · ‖Ã‖F
maxj cj√

s

≤ max
i

|ηi|
b
√
MN maxj cj√

s
≤ max

i

|x̃i − xi|
xi

·max
i

xi ·
b
√
MN maxj cj√

s

≤ max
i

|x̃i − xi|
xi

· b
3/2

√
MN maxi ri ·maxj cj

as
. ρ1ρ2ρ3

√
log(max{M,N}), (4.36)

with probability at least 1− 4/min{M,N}, where we used Lemma 4.1 and Corollary 2.2.

Analogously, it is easy to verify that the third summand in (4.30) admits the same

probabilistic bound as the second summand. For the fourth summand in (4.30),

‖D(η)ÃD(ξ)‖2 ≤ ‖D(η)‖2 · ‖Ã‖2 · ‖D(ξ)‖2 ≤ max
i

|ηi| · ‖Ã‖F ·max
j

|ξj |

≤ max
i

|x̃i − xi|
xi

·max
i

xi ·
√
MN ·max

j

|ỹj − yj |
yj

·max
j

yj

≤ max
i

|x̃i − xi|
xi

·max
j

|ỹj − yj |
yj

· b
√
M maxi ri ·

√
N maxj cj

a2s

.
(
ρ1ρ2

√
log(max{M,N})

)2
ρ3, (4.37)

with probability at least 1− 4/min{M,N}, where we again used Lemma 4.1 and Corol-

lary 2.2. We now consider the case where ρ1ρ2
√
log(max{M,N}) ≤ 1. In this case, using

all of the above and applying the union bound (on the events (4.32) and (2.4)) gives that

∥∥∥D(x̃)ÃD(ỹ)−D(x)AD(y)
∥∥∥
2
. ρ1ρ2ρ3

√
log(max{M,N}), (4.38)

with probability at least 1− 2/max{M,N} − 4/min{M,N} ≥ 1− 6/min{M,N}. Lastly,
we consider the case where ρ1ρ2

√
log(max{M,N}) > 1. In this case, we write

∥∥∥D(x̃)ÃD(ỹ)−D(x)AD(y)
∥∥∥
2
≤
∥∥∥D(x̃)ÃD(ỹ)

∥∥∥
F
+ ‖D(x)AD(y)‖F . (4.39)

By applying Lemma 4.1 to A and Ã, we have that

x̃iÃỹj ≤
(
b

a

)2
ricj
s

, and xiAyj ≤
(
b

a

)2
ricj
s

, (4.40)
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for all i ∈ [M ] and j ∈ [N ]. Therefore, Combining (4.40) with (4.39) implies

∥∥∥D(x̃)ÃD(ỹ)−D(x)AD(y)
∥∥∥
2
≤ 2

(
b

a

)2 ‖r‖2 · ‖c‖2
s

≤ 2

(
b

a

)2 √
M maxi ri ·

√
N maxj cj

s
< 2

(
b

a

)2

ρ1ρ2ρ3
√
log(max{M,N}), (4.41)

where we used 1 < ρ1ρ2
√
log(max{M,N}) in the last inequality.
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