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Recent research has linked the climate variability associated with ocean-
atmosphere teleconnections to impacts rippling throughout environmental,
economic, and social systems. This research reviews recent literature through
2021 in which we identify linkages among the major modes of climate variability,
in the form of ocean-atmosphere teleconnections, and the impacts to
temperature and precipitation of the South-Central United States (SCUSA),
consisting of Arkansas, Louisiana, New Mexico, Oklahoma, and Texas. The
SCUSA is an important areal focus for this analysis because it straddles the
ecotone between humid and arid climates in the United States and has a
growing population, diverse ecosystems, robust agricultural and other
economic sectors including the potential for substantial wind and solar energy
generation. Whereas a need exists to understand atmospheric variability due to
the cascading impacts through ecological and social systems, our understanding
is complicated by the positioning of the SCUSA between subtropical and
extratropical circulation features and the influence of the Pacific and Atlantic
Oceans, and the adjacent Gulf of Mexico. The Southern Oscillation (SO), Pacific-
North American (PNA) pattern, North Atlantic Oscillation (NAO) and the related
Arctic Oscillation (AO), Atlantic Multidecadal Oscillation/Atlantic Multidecadal
Variability (AMO/AMV), and Pacific Decadal Oscillation/Pacific Decadal
Variability (PDO/PDV) have been shown to be important modulators of
temperature and precipitation variables at the monthly, seasonal, and
interannual scales, and the intraseasonal Madden-Julian Oscillation (MJO) in
the SCUSA. By reviewing these teleconnection impacts in the region alongside
updated seasonal correlation maps, this research provides more accessible and
comparable results for interdisciplinary use on climate impacts beyond the
atmospheric-environmental sciences.
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Introduction

Ocean-atmosphere  teleconnections—climate anomalies
related to each other over large distances—and temporally-
spatially defined climate modes link weather and climate
variability occurring across time and space. Understanding
such linkages can enhance skill in predicting weather and
climate changes at seasonal and longer time scales, which in
turn can be utilized by decision makers to anticipate the
environmental, economic, and social impacts of such ocean-
atmosphere variability, particularly in its extreme modes. At the
synoptic scale, impacts of the major teleconnections as
manifested on synoptic types (Sheridan and Lee, 2012;
McGregor 2017) and hydroclimatic variability (McGregor,
2017) have been reviewed thoroughly. Regionally, similar
work has been done recently for Australia (Frederiksen et al.,
2014), the Horn of Africa (Bahaga et al., 2019), and the North
Polar area (Bushra and Rohli, 2021). The objective of this
research is to review the distinguishing features of the major
modes of climate variability and their teleconnections that
influence the atmospheric environment of the south-central
United States (SCUSA)—defined here as the states of
Arkansas, Oklahoma, and
Texas—including a description of those impacts. While a

Louisiana, New  Mexico,
literature review through 2021 is the primary tool for
meeting the objective, the varying periods of analysis, data
sets employed, and variables impacted complicates the
comparison of previous work. Thus, this research also
includes original maps of each teleconnection’s degree and
of
precipitation, using the 1950-2020 averaging period and a

geographic extent influence on temperature and
modern, high-resolution data set, for comparison to the
consensus of previous work on the impacts of major
teleconnections on temperature and precipitation in the

SCUSA.

Overview of the primary ocean-
atmosphere teleconnections

Teleconnection research has a rich history since the
identification of the Southern Oscillation (SO; Walker and
Bliss, 1932) as the “see-saw” in surface atmospheric pressure
anomalies between the western and eastern tropical Pacific
Ocean. Related and concurrent extreme anomalies in the
ocean have been known for centuries. Specifically, the El Nifo
phenomenon is characterized by weakening or even reversal of
the easterly trade winds in both hemispheres that results in
cooler surface waters and shallower thermocline in the
Pacific with
anomalously warm near-surface waters in the eastern

western  tropical Ocean  concurrent
tropical Pacific Ocean, that produce a reduced tilt in the

equatorial Pacific thermocline and reduces upwelling along
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the South American west coast. By contrast, the La Nifa
phenomenon involves a strengthening of the trade winds
and the Walker circulation in general that results in
warmer near-surface waters and a deepening of the
thermocline in the western tropical Pacific Ocean and
increased tilt in the equatorial Pacific thermocline that
promotes stronger upwelling and colder near-surface waters
in the eastern tropical Pacific Ocean.

Mid-20" century technological advances in upper-air data
collection, along with research emphasizing the connection of the
SO to El Nifio (ENSO; Bjerknes, 1969), led to advances in
understanding the SO, such as the identification of its 2- to 7-
year variability (Trenberth, 1976; Trenberth, 1984), its relation to
extratropical weather (van Loon and Rogers, 1981), complexity
and geographically-varying ocean-air feedbacks (Alexander et al.,
2002), and nonlinearity of impacts (Hoerling et al., 1997; Hsieh
et al., 2006) primarily through variability in surface heat and
moisture fluxes and their transport (Deser et al, 2010).
Meanwhile, research on identifying other teleconnections of
variability in the ocean-atmosphere system at various spatial
and temporal scales continued, including recognition of the
importance of the surface energy fluxes (Deser et al., 2010). In
particular, Barnston and Livezey (1987) provided a thorough
description and analysis of teleconnections that explain
significant low-frequency variability in atmospheric flow.

The spatial domains of the SO and the other modes of climate
variability to be considered in this research, as represented by
correlations of the respective climate mode index with SST or
another key defining atmospheric variable, are depicted in
Figure 1. Among the dozens of modes of climate variability
identified since the SO, the Pacific-North American (PNA)
pattern (Wallace and Gutzler, 1981; Barnston and Livezey,
1987; Leathers and Palecki, 1992) is among the most
prominent for the SCUSA. The PNA index is obtained by
obtaining the second rotated empirical orthogonal function
mode of the 500 mbar geopotential height across 0°-90°N, and
may be an atmospheric response to forcing by ENSO (Renwick
and Wallace, 1996; Straus and Shukla, 2002) with the strength of
the response differing across and within ENSO phases (Wang
et al, 2021) associated with barotropic instability in the
atmosphere (Simmons et al., 1983) or other forcings (He and
Wang, 2013; Liu et al., 2017), and with the extratropical response
to ENSO changing over time (Soulard et al, 2019). The PNA
pattern is expressed in the form of variability in the amplitude
and phase of the atmospheric Rossby wave train. More
specifically, an enhanced mid-tropospheric ridge over the
western cordillera of North America and concurrent trough
over the southeastern United States (i.e., positive PNA phase)
is more commonly associated with the El Nifio phase of ENSO,
and a dampened or reversed ridge-trough configuration over the
same action centers (i.e., negative PNA phase) is more typical in
the La Nifna phase. The PNA pattern has long been linked to
North American climatic variability, including through its
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Centers of action for Nino3.4 (A), AMV (E), PDO (F), identified by mapping their correlations with Hadley sea surface temperature (SST; https://
www.metoffice.gov.uk/hadobs/hadisst/); NAO (C), identified by mapping its correlation with sea-level pressure (ERA5; https://cds.climate.
copernicus.eu/); and PNA (B) and AO (D), identified by mapping their correlations with 500 hPa geopotential (ERA5; https://cds.climate.copernicus.
eu/). Only regions where correlations were significant (alpha = 0.1) are shown on the maps.

connection to tropical variability (Mo and Livezey, 1986),
regarding (Loikith 2014),
precipitation (Henderson and Robinson, 1994; Liu et al,

temperature and  Broccoli,
2014), and extreme weather events (Bentley et al, 2019).
Recent research has identified a causal relationship to sea
surface temperatures (SSTs) less directly related to ENSO, in
the South China Sea (Zhang and Liang, 2021).

The North Atlantic Oscillation (NAO; Rogers, 1984;
Barnston and Livezey, 1987; Lamb and Peppler, 1987; Hurrell
and van Loon, 1997; Marshall et al., 2001) came to prominence

>

first, as an observed simultaneous dipole or “see-saw” in near-

surface air temperature anomalies between Greenland and
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Europe (Loewe, 1966; van Loon and Rogers, 1978). The NAO
has been recognized as a major forcing mechanism for
transporting energy to the North Atlantic Ocean via the
Atlantic Meridional Overturning Circulation (AMOC), with
abundant air-sea energy exchange (Rodwell et al., 1999), and
eventually affecting Northern multidecadal
precipitation patterns (Zhang et al., 2021). The NAO-related
(Wallace, 2000; Rogers and McHugh, 2002) Arctic Oscillation
(AO; Thompson and Wallace, 1998; Thompson and Wallace,
2000) is also known as the Northern Hemispheric Annular Mode
(NAM; Thompson et al, 2000), but was first described
comprehensively by Lorenz (1951) and since has gained

Hemisphere
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increasing attention as a prominent source of atmospheric flow
variability in North America. The degree of coupling between the
NAO and AO is now known to depend on temperature in the
climate system (Hamouda et al,, 2021).

The Atlantic Multidecadal Oscillation (AMO; Schlesinger
and Ramankutty, 1994; Kerr, 2000) is an important and
impactful, though enigmatic, ocean-atmosphere mode of
climate variability in SST observed at multi-decadal time
scales. The AMO had originally been named because of its
characterization as an approximately 50- to 80-year cycle in
which SST in the North Atlantic Ocean undergoes multi-
decadal-scale variability of approximately 0.4 C* between the
extreme phases after removing the global trend (Enfield et al.,
2001). The AMO is now referred to as the Atlantic Multidecadal
Variability (AMV) as recent evidence (Mann, 2021) suggests that
it may not be a true oscillation. Paleoclimate reconstructions of
the AMV reveal multi-decadal variability before the instrumental
period, yet land- (Gray et al, 2004) and ocean-based
reconstructions are misaligned in phasing and timing (Poore
et al,, 2009; Kilbourne et al., 2014), and the Loop Current in the
Gulf of Mexico plays an important but complicating role
(DeLong et al., 2014), leaving continued unanswered questions
as to the AMO being a true oscillation that extends back in time.
Knight et al. (2005) linked the AMV to thermohaline circulation
variability, and Dima and Lohmann (2007) proposed more
specifically that the AMV is modulated as freshwater
variability causes a thermohaline circulation adjustment,
which triggers subsequent SST response with sea ice and wind
feedbacks. Clement et al. (2015) found that AMV variability is
primarily a response to mid-latitude atmospheric forcing, with
the AMOC and similar oceanic circulation responding in turn to
the AMYV rather than forcing it. The most recent AMV-related
warming began around 1997 (Ellis and Marston, 2020).
Interestingly, between 1995 and 2008, the Atlantic coast of the
United States was one of the few places in the North Atlantic in
which SSTs were not anomalously warm (Alexander et al., 2014).
Debate continues as to the extent to which the AMV is driven by
processes internal to the atmosphere-ocean system (Ting et al.,
2009; Han et al,, 2016; Deser and Phillips, 2021) related closely to
the AMOC (Fang et al., 2021), natural external variability such as
volcanic forcing (Wang et al, 2017; Mann, 2021), or
anthropogenic external aerosol forcing (Booth et al, 2012).
Several studies suggest that some combination therein appears
likely (Ting et al., 2014; Qin et al., 2020), with the NAO also
potentially playing a role in the relative contributions (Watanabe
and Tatebe, 2019). Zhang et al. (2019) expressed hope for future
improvements in the most recent climate models for more
complete representation of the role of the AMOC on AMV
and its impacts.

The analogous amorphous mode of low-frequency ocean-
atmosphere variability in the Pacific Ocean initially gained
widespread attention through analyses of SST in the mid-
latitude and tropical Pacific (Davis, 1976). Specifically, North
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Pacific Ocean SST anomalies tended to display a simultaneous
seesaw between near-coast Alaska and the central North Pacific.
Rogers (1990) noted an atmospheric sea-level pressure (SLP; and
therefore flow) seesaw in the northeastern Pacific near Alaska
known as the North Pacific Oscillation (NPO). Gershunov and
Barnett (1998) subsequently referred to the “NPO” as the SST
(rather than the SLP) anomaly seesaw, and others have referred
to a “North Pacific mode” (Tanimoto et al., 1993; Barlow et al.,
2001) to refer to the same phenomenon. This North Pacific SST
seesaw was shown to be an important modulator of within-ENSO
impacts (Gershunov and Barnett, 1998). The collapse of fisheries
off the Pacific Northwest coast of the United States in 1976 that
corresponded to a shift in North Pacific SST anomalies led to the
naming of the Pacific Interdecadal Oscillation (Mantua et al.,
1997), which was shortened to the Pacific Decadal Oscillation
(PDO; Mantua et al., 1997; Biondi et al., 2001; Mantua and Hare,
2002; Newman et al., 2003; Schneider and Cornuelle, 2005). The
“warm phase” (“cold phase”) of the PDO is conventionally
considered to be the phase in which SSTs near North
America are anomalously warm (cold). The recent period of
rapid global warming is also associated with the PDO’s warm
phase, and the slower warming period is associated with the cold
phase, as internal cooling by heat storage and circulation changes
in the Pacific Ocean occurs (Meehl et al., 2013).

Another widely-used climate index used to represent the
mode of whole Pacific Ocean variability is the Interdecadal
Pacific Oscillation (IPO) (Salinger et al., 2001; Folland et al.,
2002). Further research has found three centers of action for
Pacific SST anomalies known as the Tripole Index (TPI) that
combines the PDO, IPO, and Southern Hemisphere PDO
(SHPDO; Shakun and Shaman, 2009) or South Pacific
Decadal Oscillation (SPDO; Hsu and Chen, 2011; DeLong
et al., 2012) as the tripole of variability (Henley et al., 2015).
The North Pacific Gyre Oscillation (NPGO; Di Lorenzo et al.,
2008; Ceballos et al., 2009; Di Lorenzo and Mantua, 2016;
Tranchant et al.,, 2019) is related to the PDO but is a distinct
mode of variability. In recognition that multiple Pacific
atmospheric features are occurring, that an anthropogenic
influence is likely (Bonfils and Santer, 2011), and that like the
AMV, the PDO may not be a true oscillation, recent research now
uses Pacific Decadal Variability (PDV; Deser et al., 2012) rather
than the PDO, with several PDV modes interacting with each
other and ENSO (Shakun and Shaman, 2009; Newman et al,,
2016). that the
observational record back more than 300 years with corals

Paleoclimate  reconstructions extend
confirm these differing modes based on their geographic
location—the IPO in the South Pacific Convergence Zone
region (Linsley et al., 2008), the SPDO; Hsu and Chen (2011)
or Southern Hemisphere Decadal Oscillation (SHPDO) in the
southwestern Pacific Ocean (DeLong et al,, 2012), and the PDO
in the northern Pacific (Felis et al., 2010). Since 1976, the PDO/
PDV has generally been in a so-called warm phase but currently
appears to be shifting toward a cold phase, with the naming
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convention of the phases corresponding to the SST anomalies
near Alaska.

The ocean-atmosphere variability patterns described briefly
here (ENSO, NAO, PNA, AMV, PDV) all produce impacts to
temperature, precipitation, and a variety of other atmospheric
and environmental variables such as prevailing winds and runoff/
streamflow at varying locations and on a variety of time scales.
Moreover, the changing influence of a teleconnection on local
conditions (both across space and time), or non-stationarity, is
an important influence (Stenseth et al., 2003). The variability
patterns themselves can interact, increasing the complexity and
capability for prediction, with compound impacts of multiple
teleconnections (Swain et al., 2017) that can amplify or attenuate
the signal. For example, Newman et al. (2003) described the
relationship between ENSO and the PDO, and showed that the
NPO-like atmospheric SLP signal is weaker than the oceanic
signature in the form of ENSO- and PDO-related SSTs. Chiang
and Vimont (2004) reported evidence of an interannual to
decadal association in SST anomalies between the tropical
Atlantic and Pacific near the ITCZ, which is linked to both
ENSO and the NAO. Budikova (2005) found that AO-
temperature relationship is modulated by the PDO. Mokhov
and Smirnov (2006) described the nature of ENSO forcing of the
NAO since the mid-20th century. Dong et al. (2018) showed the
complicated influence of the IPO on ENSO- and PNA-pattern-
related weather variability. Zhang and Delworth (2007) found
that the AMV could contribute to variability in the PNA and the
PDO and other similar Pacific patterns, independent of ENSO
variability. Wu et al. (2011) concurred with the connection
between the AMV and PDO, with PDO leading the AMV by
1 year. Most recently, Power et al. (2021) echoed that ENSO
governs some, but certainly not all internal tropical Pacific
decadal climate variability and change, as subtropical-tropical
cells in the upper-ocean overturning circulation along with SST
variability beyond the tropical Pacific are also important.
However, even compounded and synergistic effects such as
these may differ by teleconnection phase (e.g., Straus and
Shukla, 2002). Assessment of the influence on complicated
effects be Dbest
simultaneous influences of multiple teleconnections (Stenseth
et al., 2003).

biological might characterized by the

Teleconnections and the south-
central United States

In recent years, the increased attention to the impacts of such
ocean-atmosphere variability in environmental, economic, and
social systems, especially at the regional and local scale (e.g.,
Steptoe et al., 2018), have made teleconnections an important
part of our understanding of the climate system. One region
influenced directly throughout natural and social systems is the
south-central United States (SCUSA). Hopkinson et al. (2013)
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suggested that changes in hydrology during the coming century
may be the most important impact of climate change on natural
systems in the southeastern United States, which includes the
eastern part of the SCUSA as defined here.

The SCUSA is an appropriate area of focus because of its
expanding populations, diverse
agricultural and other economic sectors, significant potential

ecosystems, important
for wind and solar energy generation, and geographic
diversity (both highlands and lowlands, continental and
coastal areas, arid West and humid East, water scarcity and
water richness). The region also sits at the boundary of influences
from the Pacific, Atlantic, and Gulf of Mexico, straddling the
ecotone between humid and arid climates in the United States,
with interplay between subtropical and extratropical circulation
features and the influences of the Pacific and Atlantic Oceans and
the adjacent Gulf of Mexico. These multiple influences lead to a
lack of a dominant pattern of variability (e.g., ENSO, AMV), with
projections for warming and drought looming (Naumann et al.,
2018). This complicated environmental geography calls for the
need to understand the climate variability in the SCUSA,
particularly in light of the cascading impacts of these
environmental influences through ecological and social systems.

The SCUSA is an understudied region vis-a-vis atmospheric
variability and change that contains wide disparities in social
vulnerability to environmental hazards (e.g, Mihunov et al,
2018). The SCUSA has a large proportion of vulnerable
populations—in urban, rural, and borderlands, as well as
indigenous nations, especially in Oklahoma but also in
Louisiana (National Conference of State Legislatures, 2018),
including the Biloxi-Chitimacha-Choctaw on Isle de Jean
Charles. Moreover, despite its diverse ecoregions and lack of
cohesiveness as a distinct hydroregion (Dethier et al., 2020), the
region has relatively tight economic cohesiveness (O’hUallachdin,
2008), with hubs in Houston and the Dallas-Fort Worth metroplex,
and major increases in urbanization at the expense of agricultural
lands being forecasted (Ahn et al,, 2002; Alig et al., 2004).

This research will focus on some important causes and effects
of climate variability, specifically focusing on the SCUSA, but
independently of that put forth in the Intergovernmental Panel
on Climate Change (IPCC) Fifth and Sixth Assessment Reports
(IPCC, 2014; IPCC, 2022). de Chazal and Rounsevell (2009)
noted the importance of integrated analysis of biodiversity, land-
use change, and climate change. Improvements in the
understanding of linkages and feedbacks across the climate
system in the SCUSA would provide tangible benefits, such as
in agriculture (Klemm and McPherson, 2018) and fisheries
management (Karnauskas et al., 2015).

Data analysis and methodology

One challenge to understanding teleconnection patterns and
their relative importance across the SCUSA is a lack of
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FIGURE 2

Time series of annual standardized climate indices for available periods of record (blue lines are monthly values, red are 13-month moving
averages). NAO and AO indices are from the Climate Prediction Center; AMV and PDO indices are determined using the Extended Reconstructed Sea
Surface Temperature (ERSST) data set version 5 (Huang et al,, 2017). Source: https://climexp.knmi.nl/.

consistency in prior work between data sets and methods used.
Thus, a uniform set of analyses of the relationship between
climate modes (ENSO, PNA, NAO, AO, AMV, and PDO)
and temperature and precipitation in each meteorological
season—December-January-February (DJF), March-April-May
(MAM), June-July-August (JJA),
November (SON)—is undertaken, using a consistent method

and September-October-

and data set.

Each mode of climate variability (ENSO, PNA, NAO, AO,
AMV, and PDO) is identified using a commonly-defined
standardized aggregated to monthly
resolution, and displayed in Figure 2. To measure ENSO, the
Nifo 3.4 index (SST anomaly in the region bounded by 5N to
5°S, from 170°W to 120°W), with values estimated back to 1877

statistically index,
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(Bunge and Clarke, 2009) and 1856 (Kaplan et al., 1998), was
selected over the SLP-based Southern Oscillation Index
(Ropelewski and Jones, 1987), Multivariate ENSO
(Wolter and Timlin, 2011), or another indicator, owing to its
direct reliance on SST in the central and Eastern Pacific
(Trenberth, 1997; Trenberth and Stepaniak, 2001). Positive
values correspond to the El Nifio phase, with negative indices
representing La Nina. The NAO was identified using the station-
based NAO index (Hurrell, 1995), which measures the strength
of the NAO as the difference between SLP in Portugal and
Iceland. The PNA index (Barnston and Livezey, 1987) uses
principal components analysis of SLP across the Northern
Hemisphere. The AMV index (Enfield et al, 2001) uses SST
across the North Atlantic, and the PDO index (Hamamoto and

index
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Yasuda, 2021) is constructed using principal components
analysis of SST across the North Pacific. Tree-ring-based
reconstructions of the AMO (e.g, Wang et al, 2011) and
PDO (e.g., D’Arrigo et al, 2001) have also been used to
the
standardized time series of the indices are shown in Figure 2.

Monthly 2-m
(preliminary/provisional from 1950 to 1978 and combined for
1979-2020) from the fifth-generation European Centre for
Medium-range Weather (ECMWFEF) Reanalysis
(ERA5; Copernicus 2017) are
aggregated into seasonal means (i.e., DJF, MAM, JJA, and

extend record by hundreds of years. Statistically

temperature and precipitation fields

Forecasts
Climate Change Service,

SON) and correlated (separately) with each teleconnection
index, for the 1950-2020 period. ERAS5 is a reanalysis product
that combines in-situ observations and numerical modeling and
is available at 31-km horizontal resolution (Hersbach et al.,
2020). Reanalysis products are typically used as gridded
observations for synoptic- and large-scale atmospheric
circulation and are adequate for pattern identification used
herein. Each variable is linearly detrended at each grid point,
and anomalies are calculated by removing the average monthly
climatology. One area of caution in the interpretation of results is
that current gridded data sets tend to suppress precipitation
extremes in the SCUSA (Sun et al., 2019).

The relationship between each pattern of variability (e.g.,
ENSO) and each atmospheric variable (i.e., temperature or
precipitation) is assessed for each season, such that a
correlation analysis is conducted between the annual ENSO
index time series and the (say) DJF temperature at each grid
point across the continental U.S., although the focus here is on
results for the SCUSA. DJF values were assigned to the year of
their January-February components. Statistical significance at the
95 percent confidence interval is assessed by a two-tailed
Student’s t-test, taking

(Bretherton et al., 1999).

into account serial correlation

Impacts of enso in the south-central
United States

The literature suggests that, while every ENSO event is
different (Capotondi et al, 2015), ENSO generally has more
prominent and well-understood impacts on the SCUSA than
other climate modes investigated. Danco and Martin (2018)
observed the influence of ENSO on the low-level jet stream
that advects heat and moisture through the SCUSA toward the
Great Plains. ENSO has been shown to have a predictable
influence on both temperature and precipitation in the
SCUSA (Wang and Robertson, 2019), although Zhou et al.
(2016) that of  ENSO-induced
precipitation tends to underemphasize extremes substantially.

cautioned prediction

The El Nino phase has been linked to positive cold-season

geopotential  height anomalies in the southeastern
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United States (Horel and Wallace, 1981) and negative cold-
season temperature departures across the United States. Gulf
Coast and northern Mexico, especially in southwestern Texas
and adjacent northern Mexico (Hurrell, 1996; Torbenson et al.,
2019). EL Nifio events have also been found to be generally
associated with positive precipitation anomalies throughout the
same area (Ropelewski and Halpert, 1986; Ropelewski and
Halpert, 1987; Wise et al.,, 2015; Torbenson et al., 2019), but
with significant clustering of precipitation “hotspots” over the
Gulf of Mexico (Munroe et al., 2014). Summertime El Nifo
conditions also increase precipitation in the subsequent winter
with La Nifla summers suppressing the upcoming winter’s
precipitation in much of the SCUSA (Kurtzman and Scanlon,
2007). The La Nina phase is linked less conclusively to
temperature and precipitation in the same area, but with
tendencies for negative cold-season precipitation anomalies
(Ropelewski and Halpert, 1989, 1996; Munroe et al., 2014).
Multiple causes of these anomalies have been noted. Vega
et al. (1998) noted the importance of displacement of mid-
tropospheric ridging near the SCUSA that supports ridging
during La Nina events. Eichler and Higgins (2006) linked
precipitation anomalies to displacements in storm tracks in
North America and surrounding ocean environments. Sweet
(2011) the
anomalously strong subtropical jet stream, which advects
moisture (Sanchez-Rubio et al., 2011) that had been displaced
eastward in the tropical Pacific Ocean during the El Nifio event,

and Zervas emphasized influence of an

with weakening of the subtropical jet and decreased cyclogenesis
in the southeastern United States and SCUSA during La Nifa
events (Ropelewski and Halpert, 1986; Schmidt et al., 2001;
McCabe and Muller, 2002). Bove et al. (1998) and Pielke and
Landsea (1999) noted the decreases in upper-level vertical wind
shear in the main hurricane development regions during La Nifa
events and increases during El Nifo events, which can partially
offset the “typical” anomalies during the early part of the cold
season by increasing storm frequency during La Nifia conditions
and reducing storm frequency during El Nifo conditions (Gray,
1984; Shapiro, 1987). The precipitation signature of ENSO is
likely to be most important in the northern part of the SCUSA
and the association with hurricanes is likely most influential in
parts of the SCUSA where tropical cyclones represent an
important part of the precipitation climatology, such as south
coastal Texas and Louisiana, at the time of year when tropical
cyclones may be a factor. However, ENSO’s influence on tropical
cyclone frequencies for the southeastern United States. Gulf of
Mexico coast is likely to be reduced compared to that on the
United States. Atlantic Coast (Smith et al., 2007).

Wide spatial and temporal variability in ENSO-forced
temperature and precipitation anomalies are to be expected
in the SCUSA as elsewhere (Deser et al., 2018), with the
magnitude and even the sign of the winter temperature (Yu
et al., 2012a) and precipitation anomalies affected by the
location of the Pacific warm and cold pools during El Nifo
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events (Zhang et al., 2012). Whereas conventional El Nino
events are characterized by warming in the eastern tropical
Pacific Ocean, the so-called El Nifio Modoki events (Ashok
etal., 2007), also known as central-Pacific El Nifo events (Kao
and Yu, 2009), have anomalously warm SSTs in the central
Pacific Ocean flanked by cooler SST to the east and west. As
Atlantic tropical cyclone landfall frequencies are suppressed
less during Modoki events than during conventional El Nifio
events on the Gulf of Mexico coast and Central America (Kim
et al., 2009), precipitation anomalies in the SCUSA may
depend on the type of El Nino event. The diverging
hydrometeorological responses by type of ENSO event
(i.e., “conventional” vs. Modoki, or east-Pacific vs. central-
Pacific), such as in above vs. below-normal spring Mississippi
River basin precipitation, soil water hydrology, and streamflow
(Liang et al., 2014), requires careful attention to the type of
ENSO event to assess the impact. Flanagan et al. (2019) noticed
the importance of central Pacific SSTs for producing
precipitation anomalies in the southern Great Plains,
including parts of the SCUSA. Nevertheless, “conventional”
ENSO events tend to have a greater overall influence than
Modoki events for the tropical Atlantic Ocean (Taschetto et al.,
2016) westward in the SCUSA (Yu et al., 2017). Other studies
have found that other weather phenomena across the
United States respond to extreme ENSO phases, such as
tornadoes being more frequent and intense in the SCUSA
during winter and early spring (Cook et al, 2017). The
observation of increased prevalence of Modoki El Nifo at
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the expense of “conventional” or eastern Pacific El Nifio (Yu
et al., 2012b; Liang et al., 2015) may have implications for
future ENSO impacts in the SCUSA.

Results, based on ERA5 for the 1950-2020 period, illustrate
the relatively strong but complex spatial and seasonal differences
in ENSO influence on temperature and precipitation in the
SCUSA. The most prominent temperature relationship in the
SCUSA is in Texas in spring, when anomalously cold conditions
occur in the El Nifio events and warm conditions occur in La
Nifa events (Figure 3). Precipitation anomalies are also most
prominent in Texas during the spring, with El Nifo events
associated with anomalously wet conditions and La Nina with
drier-than-normal springs (Figure 4). Our results of generally wet
anomalies during El Nifo events in SON (Figure 4) align with
recent research that suggests a temporally decreasing influence of
El Nifo events on southeastern United States precipitation (Mo,
2010) and increasing autumn precipitation anomalies in the
eastern SCUSA and adjacent Mississippi and Alabama related
to El Nifo events (Bishop et al., 2019).

The Great Plains low-level jet (GPLLJ), the Caribbean low-
level jet (CLLJ), and extratropical wave trains America
(Krishnamurthy et al., 2015) likely force the broader signals in
the SCUSA during spring. Analysis of reanalyzes/observations
demonstrate that ENSO has a significant impact on the strength
of the GPLLJ, with a significant negative correlation in the spring
and a significant positive correlation in summer (Schubert et al.,
2004; Weaver et 2009; 2011;
Krishnamurthy et al.,, 2015; Danco and Martin, 2018). Mufioz

al., Mufioz and Enfield,
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As in Figure 3, but for precipitation.

and Enfield (2011) discovered that colder SSTs in the Niro
3.4 region often result in a stronger GPLLJ in spring.
Observations indicate wintertime La Nina induces high SLP
anomalies over the Intra-Americas Sea the following spring
through changes in the Walker and Hadley circulation. This
leads to a strong CLLJ, which drives a stronger GPLLJ, with the
GPLLJ and CLL]J significantly correlated in spring (Martin and
Schumacher, 2011a). Lee et al. (2013) found that in April and
May, cold SST anomalies in the Nirfo 4 region and warm SST
anomalies in the Nino 1+2 region work together to result in
increased moisture transport from the Gulf of Mexico, which
could imply a stronger GPLL]. Another study presented a similar
pattern in the summer, with a Modoki (i.e., Central Pacific) El
Nino weakening the GPLL] and a conventional (i.e., East Pacific)
El Nirfo strengthening it (Liang et al., 2015).

Going beyond traditional associations between ENSO vs.
temperature and vs. precipitation, cascading socio-ecological
connections to ENSO are also important in the SCUSA. For
example, ENSO is an important control over “greenness,” as
represented by the Enhanced Vegetation Index, and explains
10 to 25 percent of variability in greenness in south-central Texas
and adjacent western

Texas and eastern New Mexico (Swain et al.,, 2017). Mishra
et al. (2011) and Konapala et al. (2018) identified linkages
between ENSO and streamflow variability in Texas, with the
latter finding strong but spatially and temporally inconsistent
associations between El Nifo events and drought in the
subsequent summer, particularly in southern Texas
(Rajagopalan et al., 2000). The Texas and Oklahoma floods of
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May 2015 have also been linked to El Nifio events (Wang et al.,
2015), and periodic Texas drought in the pre-instrumental period
in the region have also been noted (Stahle and Cleaveland, 1988);
such variability is likely associated with ENSO and potentially
other teleconnections. El Nifo events also lead to warmer SST in
the Gulf of Mexico and Caribbean Sea (see Figure 1A) that can
drive coral bleaching events that can impact fisheries in the
northern Gulf of Mexico (Schmidt and Luther, 2002; Tolan, 2007;
Piazza et al., 2010; Gomez et al., 2019).

ENSO has numerous cascading impacts on atmospheric
1982)
precipitation-dependent human activities in the SCUSA. For

circulation  (Rasmusson  and Carpenter, and
example, the linkage of El Nifio events to anomalously weak
surface winds, and therefore reduced ocean waves along the
major shipping routes in the northernmost Pacific Ocean (Chen
et al, 2012), impacts North America including the SCUSA,
particularly considering the temporally increasing volume of
trade with Asia. ENSO-forced

Louisiana estuaries contribute to decreased brown shrimp

salinity fluctuations in

abundance following El Nifo events (Piazza et al., 2010). The
SCUSA will undoubtedly be impacted if recent research (Cai
etal,, 2021) suggesting a widening ENSO-induced SST variability
and therefore enhanced warm-phase-ENSO warming, along with
an eastward shift and intensification of the ENSO-related PNA
pattern and the Pacific-South American patterns, is realized.
The future of ENSO is far from certain, as some recent work
suggests more extreme El Niflo and La Nifa (e.g., Cai et al., 2015;
Liu et al., 2021) events, while other research (e.g., Callahan et al.,
2021) suggests that CO, forcing will dampen ENSO events.
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Correlation coefficients between the PNA pattern index and seasonal temperature across the continental United States (1950-2020); stippling

indicates statistical significance (p < 0.05).

Nevertheless, any future changes in the dominance of
conventional vs. Modoki (or central-Pacific) El Nifo events
are likely to affect SCUSA temperatures, particularly in the
southeastern region (Yu et al., 2012a). Modoki have been
projected to become more common in the future relative to
the more conventional El Nifio-defined SST anomalies (Yeh
et al, 2009), perhaps because of the effect of weakened
equatorial easterlies that in turn flatten the eastern tropical
Pacific’s thermocline (Ashok et al., 2007).

Impacts of the PNA pattern in the
south-central United States

The PNA pattern has a substantial influence on both
temperature and precipitation in the SCUSA (Wang and
Robertson, 2019). Specifically, during the PNA positive phase,
the SCUSA has been found to be anomalously cool (Hurrell,
1996) in all months except summer, when the PNA pattern is
poorly defined (Leathers et al., 1991). Hardy and Henderson
(2003) noted the proclivity for more frequent cold frontal
passages in western Texas during the negative PNA pattern,

thereby having implications on both temperature and
precipitation. Dong et al. (2011) linked the PNA pattern
causatively to cyclonic activity in the southwestern

United States including much of the SCUSA, but they
cautioned that the West Pacific teleconnection (Wallace and
Gutzler, 1981; Barnston and Livezey, 1987) may provide an even
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more direct association. Somewhat wetter than normal
conditions in the coastal SCUSA have also been found to
occur during the positive mode (Wang and Robertson, 2019),
although Leathers et al. (1991) had found only weak associations.
Liu et al. (2014) observed a generally negative correlation
between the winter PNA pattern and the oxygen isotope ratio
(8'*0) of winter precipitation (including in nearly all of the
SCUSA), showing the influence of moisture source and storm
tracks on winter precipitation §'°O.

The ERA5-based analysis using the extended study period
largely confirms results from the existing literature regarding the
PNA-temperature relationship in the SCUSA, with generally
negative correlations (i.e, anomalously low temperatures
accompanying the positive PNA pattern, and vice versa) in
meteorological winter and (especially) spring, and weak
correlations in meteorological summer and autumn (Figure 5).
Specifically, except for the extreme northern and western sectors,
a negative relationship exists in meteorological winter (DJF) in
the SCUSA, with the coastal southeastern corner following the
pattern throughout much of the rest of the southeastern
United States of significant negative correlations. By spring,
the slight negative correlation in extreme northern and
western SCUSA from winter is reversed, and nearly the entire
SCUSA has significant negative correlation between PNA pattern
and temperature. In summer, the pattern deteriorates, with the
zero correlation line bisecting the SCUSA into western (negative)
and eastern (positive) zones; only northeastern Arkansas joins
much of the adjacent southeastern United States in displaying
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significant positive correlations. By autumn, even weaker
relationships are found, not only across the SCUSA but also
across the eastern two-thirds of the United States.

The PNA-precipitation spatial pattern in the SCUSA in the
ERAS for the extended period of years (1950-2020) is also largely
similar to that described previously in the literature. Specifically,
in winter and spring, relatively strong, significant positive
correlations occur in much of the western and coastal SCUSA
and adjacent Gulf of Mexico (Figure 6). A substantial zone of
significant negative correlations exists to the northeast of the
SCUSA, with its southwest-northeast orientation suggesting that
the trough-to-ridge side of the Rossby wave characteristic of a
negative PNA pattern brings anomalously wet conditions to the
Ohio and Tennessee Valleys. However, that zone shrinks and
moves eastward from winter to spring. In summer, the area of
significant positive correlations in the SCUSA is largely confined
to south-central Texas, perhaps due to the increase in albeit very
weak cold frontal passages (Hardy and Henderson, 2003), with
the zone of significant negative correlations

(i.e., PNA-induced trough leading to abundant precipitation)
pushed well to the east of the SCUSA. In autumn, no areas of
significance correlations are found in the SCUSA, with only
isolated pockets of significant correlations elsewhere in the
United States, such as over the Ohio and Tennessee valley
and coastal Virginia and North Carolina (positive) and
peninsular Florida and northern New England (negative).

Variability in the meridionality (i.e., north-to-south or south-
of the PNA-defined
including  both  the

to-north  flowing) ridge-trough

configuration, temperature  and
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precipitation anomalies shown here and previously in the
literature, in turn contribute to fluctuations in other
environmental and human systems in the SCUSA. For
example, Rogers and Rohli (1991) and Rohli and Rogers
(1993) linked PNA-induced variability to economic impacts to
agriculture, including in the SCUSA. The PNA pattern has also
been shown to have an important control over “greenness” in the
western SCUSA, with particular importance in New Mexico and
the Texas High Plains (Swain et al, 2017). Based on the
relationships between the PNA pattern and temperature/
precipitation shown here, many other primary and secondary
impacts of the PNA pattern are likely to exist in the SCUSA.
However, relationships between the PNA pattern and natural
and human systems seem to be documented more thoroughly
elsewhere, such as in the Great Lakes region (e.g., Rodionov and

Assel, 2003; Yu et al,, 2014).

Impacts of the NAO and NAM (AQ) in
the south-central United States

The seesaw in pressure anomalies between the northern and
subtropical North Atlantic associated with the NAO produces a
chain reaction of physical responses. The NAO contributes most
dominantly to winter temperatures across much of the Northern
Hemisphere (Barnston and Livezey, 1987; Hurrell, 1996). A
northward displacement of the polar front jet stream during
the NAO’s positive (i.e., “warm” or “high”) phase (Visbeck et al,
2001) generally contributes to anomalously warm and wet
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indicates statistical significance (p < 0.05).

conditions in the eastern United States (Tootle et al., 2005), but
with warm (Hurrell, 1996) and varied precipitation conditions
over the SCUSA (Ning and Bradley, 2016; Wang and Robertson,
2019). Such conditions and their impacts are generally amplified
in the cold season (Folland et al., 2009). Consistent with colder
conditions in the negative (ie., “cold” or “low”) phase of the
NAO, Hardy and Henderson (2003) attributed their finding of
increased cold frontal passages during the negative phase of the
NAO in much of the SCUSA to troughing over the region and
southerly displacement of the mid-latitude cyclone tracks.
Negative phases of the NAO have also been shown to
coincide with increased probability of cold air outbreaks
across the United States (e.g., Walsh et al.,, 2001; Cellitti et al.,
2006). Non-stationarity associated with the eastward shift of the
NAO, particularly in summer (Sun and Wang, 2012), has likely
been associated with changes in its influence over the SCUSA,
and, similar to other teleconnections, temporally changing
environmental, economic, and social impacts.

The inclusion of the ERA5 data over a longer period of time
generally suggests that the correlation between temperature and
the NAO index is typically insignificant in the SCUSA in all
seasons. During winter, the correlation is positive across the
majority of the United States, with areas of significance in the
southeast and adjacent to and in the Gulf of Mexico, although not
extending into the SCUSA (Figure 7). The implication is that
zonal (i.e., west-east) flow hinders the meridional transport of
Arctic and polar air masses into the United States. In MAM, areas
of significant positive correlations include the Gulf of Mexico and
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adjacent peninsular Florida, and much of the West, with
simultaneous negative correlations across the Northeast and
adjacent Canada, but no significant areas in the SCUSA
(Figure 7). In but
insignificant across the SCUSA, excepting significant negative

summer, correlations are negative,
correlations in Arkansas and down the Mississippi River valley
into Louisiana, extending from the Ohio River Valley, with
insignificant correlations between temperature and the NAO
in the SCUSA and most of the rest of the United States
during SON (Figure 7).

The literature suggests that largest and most significant
precipitation anomalies associated with the NAO tend to
occur along the North Atlantic storm tracks, the Midwest,
northeastern United States, and Europe (e.g., Bradbury et al,
2003; Weaver and Nigam, 2008). For example, strong
correlations have been observed between central United States
precipitation and the NAO index due to the influence of the
GPLLJ in the summer. Ruiz-Barradas and Nigam (2005) and
Weaver and Nigam (2008) found that negative phases of the
NAO coincided with anomalously strong influx of moist Gulf of
Mexico air into the United States interior and unseasonably high
precipitation in the Midwest. Villarini et al. (2013) also found
that in Iowa, the magnitude of the NAO index was a useful
predictor in determining the occurrence of floods. However,
because the positive NAO is tied to a strengthening of the North
Atlantic Subtropical High, also known as the Bermuda-Azores
anticyclone (BAA), which strengthens the northeast trade winds
and promotes evaporation in the Caribbean Sea and Gulf of
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As in Figure 7, but for precipitation.

Mexico, with the opposite effects during the negative NAO phase
(Kapala et al., 1998; Michel et al., 1998), the effect of the NAO on
the SCUSA is opposite to that farther north. Specifically, the
approach of the trade winds to the northwestern Gulf of Mexico,
after turning northward, advects increased moisture to the
SCUSA during the positive NAO phase and reduced moisture
during the negative NAO, thereby contributing to the
precipitation anomalies in that area (Oglesby and Erickson,
1989).

The correlations in ERA5 between precipitation and the
NAO index are shown in Figure 8, which illustrates the
the SCUSA, as with
temperature (Figure 7). The most extensive areas of significant

generally weak relationships in
correlations in the SCUSA occur in spring, when much of
Oklahoma and Texas southward along the Texas-Louisiana
border and adjacent coastal areas show a positive association
between precipitation and the NAO index (Figure 8). In spring,
zonality in the NAO is linked with above-normal precipitation,
and meridionality brings drier air southward, suppressing
precipitation totals, in these areas.

These positive correlations are consistent with the prior
studies showing increased streamflow in the Midwest and into
the Lower Mississippi River basin during the positive NAO
phase. Some negative correlations occur in the westernmost
SCUSA in DJF and the Texas-Mexico border in JJA (Figure 8).
The NAO’s positive phase is linked to significantly greater
streamflow than its negative phase in eastern Texas and
western Louisiana (middle Mississippi River basin), which
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aligns prominently with the Ohio, Missouri, and Upper
2005),
Lower Mississippi stream discharge. Coleman and Budikova
(2010) found that the significant 1993 and 2008 Midwest flood
events were both associated with a positive NAO phase

Mississippi basin (Tootle et al, thereby affecting

preceding the events, but the NAO was in a negative phase
during the flooding events. The NAO is also known to alter the
effects of ENSO on tropical cyclone activity by modulating SLP
associated with the BAA and associated vertical wind shear
(Lim et al., 2016).

Impacts of the AMV in the south-
central United States

Previous research has identified linkages between the AMV
and SCUSA temperatures, through the positive correlation
between tropical Atlantic SST and high cloud cover, the latter
of which is indicative of convection (Vaideanu et al., 2018). This
cloud-cover connection is corroborated by the observation of
positive correlations between minimum daily temperatures and
the AMV in much of North America, including the SCUSA (Gan
et al., 2019).

However, more emphasis has been placed on understanding
the hydrometeorological and hydrological impacts of the AMV
in the SCUSA. The AMYV has been tied to precipitation variability
in the United States primarily through its influence on the
position and intensity of the BAA. A warm-phase AMV tends
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to weaken the BAA, which reduces low-level “back of high”
moisture advection into the SCUSA (Kushnir et al., 2010). The
relationship between tropical cyclone frequency and broad-scale
teleconnections seems to be most robust in the Atlantic,
particularly regarding the AMV at the interannual to decadal
scales (Vimont and Kossin, 2007). The most complete picture is
provided through the synergistic effects of ENSO and the AMV
(Mo et al., 2009), as the combination of La Nifia and AMV warm
phase supports Atlantic-Gulf tropical cyclone activity and
accumulated cyclone energy (Patricola et al, 2014). A
paleoclimate reconstruction from a coral in eastern Caribbean
suggests connection between AMV and tropical cyclone activity
for 1923-1998 (Hetzinger et al., 2008). Other coral-based
reconstructions find strong correlation with AMV and
temperature proxies that extend this record back to 1751
(Kilbourne et 2008) Caribbean
hydroclimate reconstruction varies with the AMV back to
1887 (von Reumont et al., 2018). However, Gulf of Mexico
and Bahamian coral-based reconstructions suggest mixed
results with no direct AMO relationship (DeLong et al., 2014)
to coral-SST lagging the AMO by 6-9 years with a decreased

al, and central coral

relationship before ~1800 (Saenger et al., 2009; Flannery et al.,
2017). Sea surface temperature in the Caribbean Sea and the Gulf
of Mexico plays a vital role in weather, hydroclimate, and
extreme events in the SCUSA (Wang et al, 2006, 2008a,
2008b; Martin and Schumacher, 2011a, 2011b, 2012; Misra
et al., 2014).

The positive mode of the AMV also appears to favor drought
in the SCUSA (Enfield et al., 2001; Rogers and Coleman, 2003;
McCabe et al., 2004; Mo et al., 2009). More recently, Torbenson
and Stahle (2018) confirmed this relationship using tree-ring
reconstructions by finding that the positive (warm) AMYV phase
is strongly associated with central United States negative
precipitation anomalies in autumn (confirmed by Knight
et al, 2006), and also in spring and summer (confirmed by
Nigam et al.,, 2011), and with negative streamflow anomalies
along the northern and western Gulf of Mexico coast (Tootle
et al,, 2005). Cook et al. (2014) found that while drought in the
SCUSA is positively correlated to the AMV index, drought in the
westernmost SCUSA is linked more strongly to La Nina events.
The mechanism responsible for such anomalies is the diversion
of westward trade wind-associated moisture flow southward of
the Gulf of Mexico (Méndez and Magana, 2010). Perhaps the
most striking example of impacts from the AMV on SCUSA
drought is the evidence from a tree-ring reconstruction of the
1838 drought, which is likely to have contributed to many deaths
during the so-called Trail of Tears (Torbenson and Stahle, 2018).
Recent work supports these general findings, as long-term
future decreases in streamflow associated with the AMV is
projected for the southeastern United States, including
Louisiana (Sadeghi et al., 2019), although synergistic impacts
between the AMV and ENSO must also be considered
(Torbenson et al., 2019).
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Results from ERA5 analysis on the extended study period
confirm a statistically significant positive relationship between
the AMV index and the SCUSA temperature for most of the
year (Figure 9), particularly summer and autumn, and weak,
insignificant correlations in spring. When combined with
results from the previous studies, it appears likely that
Atlantic tropical cyclone season would be impacted strongly
by AMV-related variability through its impacts on Gulf of
Mexico SSTs (Poore et al.,, 2009). Other paleoclimate-based
research has suggested that cool North Atlantic SSTs, El Nifio-
like conditions, and the negative phase of the NAO were
associated with fewer hurricanes during the Maunder
2016).
relationships, on the other hand, are weaker in the

Minimum  (Trouet et al, AMV -precipitation
SCUSA, with negative correlations strongest in autumn in
the interior SCUSA (Figure 10) when Gulf of Mexico and
Caribbean SSTs peak. Perhaps the coastal areas display the
weaker relationship due to the influence of tropical cyclones
that are energized by the warmer waters in the summer and

autumn months.

Impacts of the PDO in the south-
central United States

The role of the PDO in the observed cooler period over the
central United States, including the SCUSA, in the last quarter of
the 20th century amid substantial warming elsewhere, has been
noted (Kumar et al., 2013; Pan et al,, 2013; Pan et al.,, 2017).
Responses to PDO-related temperature variability in the SCUSA
are stronger in winter and spring than summer and autumn, with
a tendency for negative temperature anomalies (Figure 11), as
represented by anomalously low geopotential height fields,
during warm-phase PDO, and vice versa (Mills and Walsh,
2013). Winter precipitation (Kurtzman and Scanlon, 2007)
and extreme precipitation (Zhang et al, 2010) have been
shown to be greater in the SCUSA during the positive (warm)
PDO phase than during the negative (cold) phase. The PDO-like
IPO has also been linked to precipitation anomalies of opposing
sign between China and the southwestern U.S., including the
SCUSA, with particular amplification of the relationship when
the AMV is in the opposite phase (Yang et al., 2019). McCabe
et al. (2004) identified the linkage between cooling associated
with the cold- (i.e., negative) phase PDO and drought across the
conterminous United States, including the SCUSA. Ford et al.
(2017) found that below-normal precipitation in the SCUSA is
forced by a negative PDO, which had already been associated
with a prolonged Medieval megadrought (MacDonald and Case,
2005), accompanied by a positive AMV. Barlow et al. (2001)
recognized the synergistic influence of the cold phase of both
ENSO and the PDO on the historic drought of the early to
middle 1950s in the SCUSA. ERA5 analysis on the extended
study period confirms the negative correlation between PDO
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FIGURE 9

Correlation coefficients between the AMV index and seasonal temperature across the continental United States (1950-2020); stippling

indicates statistical significance (p < 0.05).
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FIGURE 10

As in Figure 9, but for precipitation.

phase and SCUSA temperature, with the relationship waters associated with the PDO produce positive

statistically significant across large swaths of the SCUSA in
winter, spring, and summer and in the Gulf of Mexico in winter
and spring months (Figure 11). Anomalously warm Pacific
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precipitation anomalies (and vice versa) in the western and
coastal SCUSA in all seasons and in the Gulf of Mexico in all
seasons except autumn (Figure 12).

frontiersin.org


https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.934654

Rohli et al.

84°W  72°W

10.3389/feart.2022.934654

MAM

50°N -G iz

” % ; Q ...-.;'.. S /
45°N 2 5 S
40°N S G !

. 2 e
35°N 3
o

30°N
25°N

120°W  108°W  96°W  84°W  T72°W

SON
50°N ¢ X ) 00,
e | '_1(. 055000 "’

x L5 A5 e
45°N g0 E K AT Ny

s B s (A
40°N Wl i B
35°N i R &
30°N 2y

25°N 2 & :
120°W  108°W  96°W

84°W  72°W

Correlation Coefficient

FIGURE 11

0.5 1

Correlation coefficients between the PDO index and seasonal temperature across the continental United States (1950-2020); stippling

indicates statistical significance (p < 0.05).
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As in Figure 11, but for precipitation

Tootle et al. (2005) linked the PDO’s warm phase with
significantly enhanced streamflow along the eastern Texas and
Louisiana coast, and in eastern Oklahoma, with Sagarika et al.
(2015) and Rodgers et al. (2020) concurring with these findings in
the SCUSA but with low explained variance (Mantua et al., 1997).
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Khedun et al. (2012) elaborated on the distinction between the PDO’s
winter and spring influence (particularly when working in tandem with
El Nino) on the upper vs. lower Rio Grande, thereby somewhat
mitigating extremes in water availability. Pascolini-Campbell et al.
(2017) showed the importance of the positive PDO (and negative
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FIGURE 13

Outgoing longwave radiation anomalies by Madden-Julian
Oscillation phase, using data from 1979 to 2014. Source: Caparotta
(2018). (A=H) represent MJO Phase 1 through 8 respectively..

AMDV) as a driver of anomalously positive streamflow in the Upper Rio
Grande basin.

Intraseasonal variability: The
madden-julian oscillation

Whereas the focus of this research is on seasonal-scale modes
of climate variability and their teleconnections, the intra-seasonal
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tropical Madden-Julian Oscillation (MJO; Zhang, 2005) deserves
mention because of its proximity to and influence on the SCUSA
and because teleconnections are now recognized to exert an
untapped source of weather predictability at the intraseasonal
scale (Stan et al., 2017). Also known in earlier literature as the
30-60-day Oscillation (e.g., Tokioka et al., 1988; Ferranti et al.,
1990) or 40-50-day Oscillation (e.g., Madden and Julian, 1994),
Roland Madden and Paul Julian discovered the oscillation when
analyzing zonal wind anomalies in the tropical Pacific Ocean
(Madden and Julian, 1971). The MJO is characterized by a
geographically-propagating sequence of convective pulses as
revealed by spatial and temporal fluctuations in outgoing
longwave radiation (Figure 13). The location of MJO- induced
convective bursts define the eight MJO phases, which are
represented by an index developed by Wheeler and Hendon
(2004) based on a pair of empirical orthogonal functions of the
combined fields of near-equatorially averaged 850-hPa zonal
wind, 200-hPa zonal wind, and satellite-observed outgoing
longwave radiation. Phase 1 has relatively benign convection
ubiquitously, while Phases 2 through 6 support vigorous
convection in a west-to-east direction proceeding from the
equatorial central Indian Ocean to New Guinea, and Phases
7 and 8 have milder convective clusters from the central to
eastern equatorial Pacific.

The MJO phase has been linked to extratropical atmospheric
variability, forced largely by convection in the western tropical
Pacific (Lukens et al., 2017) through the modulation of
circulation, including through other teleconnections including
ENSO (Lee et al.,, 2019), the PNA pattern (Schreck et al., 2013;
Zhou et al., 2020; Toride and Hakim, 2021) and the NAO
(Cassou, 2008; Lin et al., 2009). Moon et al. (2011) recognized
the interplay between ENSO and MJO in modulating MJO
impacts.

Regardless of the extent to which other teleconnections
exacerbate or mitigate the effects, the MJO is known to be
related to North American weather and climate through its
impact on circulation. Research has related the MJO to
variability in the jet stream (Barrett, 2019) and associated
storm tracks (Grise et al, 2013; Zheng et al, 2018) and
snowstorms (Moon et al., 2012), temperatures (Zhou et al,
2012), precipitation (Jones, 2000; Martin and Schumacher,
2011b), extreme precipitation (Jones et al., 2011), moisture in
atmospheric rivers (Jones and Carvalho, 2014; Baggett et al.,
2017), and tropical cyclones (Vitart, 2009) impacting North
America. As periods of active MJO activity have been
identified as important modes of cold-season circulation
predictability in the Northern Hemisphere extratropics (Jones
et al., 2004), it is not surprising that improvements in forecast
skill for extreme precipitation were found with MJO active
Phases 1, 2, 7, and 8, and in strong-magnitude cases of Phases
3,4, 7, and 8 (Jones et al., 2011).

Somewhat less predictability for SCUSA temperature and
precipitation is afforded by MJO phase than in most other areas
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of North America (Rodney et al., 2013). There is a suggestion of
positive winter temperature anomalies in the SCUSA during
Phase 4, and in the eastern SCUSA during Phase 6, and positive
precipitation anomalies in the northern SCUSA during Phase 5
(Zhou et al,, 2012), with Phases 4, 5, and 6 characterized by
convective clusters that move across the Maritime Continent into
the western tropical Pacific, respectively. Caparotta (2018)
observed increased storminess in the Gulf of Mexico region
during Phases 7, 8, and 1, which show relatively weak
convective clusters, propagating from the central to eastern
Pacific. Gulf of Mexico tropical cyclones have also been
identified to be modulated by the MJO, with westerly low-
level winds in the eastern Pacific far more supportive of
cyclogenesis than easterly (Maloney and Hartmann, 2000;
Klotzbach and Oliver, 2015), and with Phase 8 associated with
enhanced likelihoods for Gulf tropical cyclogenesis (Klotzbach,
2014).

While causes of MJO-influenced intraseasonal precipitation
variability in the SCUSA have been investigated thoroughly,
including due to mesoscale convective systems (Fritsch et al.,
1986) and most recently using isotopic data (Sun et al., 2019),
relatively few studies have isolated the regional impact of the
MJO. Thompson and Roundy (2013) observed a robust link
between March-May violent tornado days in the United States,
with strong representation in the SCUSA, and Phase 2, which is
manifested as a deep trough over the western and central
United States and veering wind anomalies from the south to
the southwest with increasing height. Guo et al. (2017) noted the
dominance of frequency over intensity of MJO-related cyclonic
activity, including over the SCUSA. MJO influences on
cyclogenesis and severe convective storms with damaging
winds, hail, and/or tornadoes in the United States. Gulf
Coastal region, including parts of SCUSA, have also been
identified (Caparotta, 2018).

Recent research has begun to suggest possible future changes
in the MJO. Zhou et al. (2020) proposed that an eastward shift in
the subtropical jet exit region will extend the MJO influence more
strongly eastward, toward the SCUSA. Despite the potential, little
research exists connecting the MJO beyond atmospheric
conditions to other human and environmental systems in the
SCUSA.

Discussion and summary/
conclusions

Multiple ocean-atmosphere modes of variability and their
teleconnections explain a significant amount of variability in
low-frequency atmospheric flow at seasonal and longer time
scales in the south-central United States (SCUSA). While a
rich literature about these teleconnections has been amassed,
the use of different data sets over different periods of record
with results different units

compiled over temporal
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(i.e., months, seasons, years) complicates comparison of
those results. A thorough review of recent research through
2021 the of the
teleconnections from each major mode of climate variability

regarding environmental impacts
in the SCUSA, with a focus on temperature and precipitation,
is conducted here, independently of that put forth in the
Intergovernmental Panel on Climate Change (IPCC) Fifth
and Sixth Assessment Reports (IPCC 2014; [PCC 2022) and
the United States. National Climate Assessments. Correlation
fields are then generated for each climate mode’s index vs.
seasonal temperature and (separately) precipitation using a
modern, high-resolution data set from 1950 to 2020.
Qualitative comparison reveals consistencies and a few
differences between the literature and this analysis. In
general, the teleconnections associated with the modes of
climate variability examined have different degrees of
impact seasonally and spatially across the SCUSA, with the
spatial impact in the SCUSA varying particularly in the west-
east direction. The ERA5 reanalysis product provides a more
complete data set for our analysis, but because it is not
comprised of direct observations, differences may occur
from earlier assessments that used other data sets.

El Nino-Southern Oscillation (ENSO) is found here to have
different impacts on the SCUSA than has been revealed in
previous work. The fact that ENSO events, particularly
Modoki (or central-Pacific ENSO), which may play an
increasing role in the future, differ substantially from each
other in terms of their physical characteristics and their
impacts may explain the discrepancies with and among the
The
relationship in the SCUSA is in Texas in spring, when

previous  studies. most prominent temperature
anomalously cool conditions occur in the El Nifio phase and
warm conditions occur in La Nifia. Precipitation anomalies are
also most prominent in Texas in spring, with El Nifio associated
with anomalously wet conditions and La Nifia having drier-than-
normal conditions in the spring.

As in most of the rest of the United States, the Pacific-North
American (PNA) pattern relates to temperature only in winter
and spring in the SCUSA, where a negative relationship exists in
(DJF). This that mid-
tropospheric ridging over the Rocky Mountain cordillera is
linked

tropospheric troughing in the same area is associated with

meteorological winter suggests

to anomalously warm temperatures and mid-
anomalously cold conditions. Regarding precipitation, the
positive relationship in much of the western coastal SCUSA
and adjacent Gulf of Mexico means that Rocky Mountain
ridging brings more precipitation than average, as that
region tends to be under the influence of a downstream
trough, while Rocky Mountain troughing makes this area
drier than usual.

Although the relationship between the North Atlantic
Oscillation (NAO) and temperature is weak in the SCUSA,
some extensive of correlations  to

areas significant
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precipitation occur in spring, when much of Oklahoma and
Texas southward along the Texas-Louisiana border and adjacent
coastal areas show a relationship. More specifically, with strongly
zonal flow associated with the NAO associated with increased
precipitation in those areas and weaker zonality linked to
suppressed precipitation.

The two large, amorphous climate modes frequently
defined based on sea-surface temperatures in the Atlantic
and Pacific Oceans also have teleconnections and impacts
on the SCUSA. Unlike most other modes of climate
variability, the Atlantic Multidecadal Oscillation (AMO;
also known as the Atlantic Multidecadal Variability (AMV))
shows its strongest influence in the SCUSA in summer.
The warm-phase AMV is tied to anomalously warm
SCUSA temperatures, and vice versa. AMV-precipitation
relationships, on the other hand, are weaker in SCUSA,
with negative correlations strongest in autumn in the
interior SCUSA. This analysis verifies the existing literature
regarding the impacts of the Pacific Decadal Oscillation (PDO)
on the SCUSA. A slight tendency for below-normal
temperatures, especially in the cold season, and above-
normal precipitation in the SCUSA are apparent during the
warm phase, with generally opposite results in the cold-phase
PDO. The AMV influences the northern Gulf of Mexico
temperatures in summer and autumn whereas the PDO
has greater influence in the winter and spring. The AMV
has little influence over northern Gulf of Mexico precipitation
but the PDO influences precipitation for all seasons
except autumn, suggesting a quasi-persistent atmospheric
teleconnection between the Gulf of Mexico and the North
Pacific Ocean.

Collectively, the SO, NAO, NAM (AO), PNA pattern, AMV,
PDO, and MJO ocean-atmosphere teleconnections set up a
cascade of linkages (Terjung, 1976) that vary seasonally across
the SCUSA that can ripple across environmental, economic, and
social systems. One example of such cascading influence is the
future impacts of atmospheric and land-use land-cover
variability in forest ecosystems (Sohngen and Brown, 2006).
Trigo et al. (2002) conducted a similar analysis on effects of
the NAO on Europe and the adjacent North Atlantic waters. In
general, the teleconnection information collected in previous
studies and summarized here could be directed toward more
human-environmental systems research. To date, most such
work has focused on ENSO but utility exists for connecting
other teleconnection-based forcing patterns, particularly the
PNA pattern, AMV, and PDO, with human-environmental
systems in the SCUSA.

Moreover, modes and

the climate their

teleconnections described here are important modulators of

whereas

atmospheric and hydroclimatic variability in the SCUSA, other
teleconnections, particularly those identified by Barnston and
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Livezey (1987) and/or the circumglobal (Branstator, 2002) and
extratropical Asian-Bering-North American (Yu et al., 2018)
patterns, may also exert an influence on weather and climate in
this region, as these latter two modes have been shown to have
a comparable influence to the PNA pattern on North
American climate (e.g., Yu et al, 2019). It is also possible
that other identified or as-yet-unidentified teleconnection
patterns could also be important for understanding SCUSA
climate and cascading climatic impacts. These modes and their
impacts could change in a changing climate. For example,
non-stationarity associated with the eastward shift of the
NAO, particularly in summer (Sun and Wang, 2012), has
likely been associated with changes in its influence over the
SCUSA.
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