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A bottom-up Einstein-Maxwell-dilaton holographic model is used to compute, for the first time, the
behavior of several transport coefficients of the hot and baryon-rich strongly coupled quark-gluon plasma at
the critical point and also across the first-order phase transition line in the phase diagram. The observables
under study are the shear and bulk viscosities, the baryon and thermal conductivities, the baryon diffusion,
the jet quenching parameter ¢, as well as the heavy-quark drag force and the Langevin diffusion
coefficients. These calculations provide a phenomenologically promising estimate for these coefficients,
given that our model quantitatively reproduces lattice QCD thermodynamics results, both at zero and finite
baryon density, besides naturally incorporating the nearly perfect fluidity of the quark-gluon plasma. We
find that the diffusion of baryon charge, and also the shear and bulk viscosities, are suppressed with
increasing baryon density, indicating that the medium becomes even closer to perfect fluidity at large
densities. On the other hand, the jet quenching parameter and the heavy-quark momentum diffusion are
enhanced with increasing density. The observables display a discontinuity gap when crossing the first-order
phase transition line, while developing an infinite slope at the critical point. The transition temperatures
associated with different transport coefficients differ in the crossover region but are found to converge at the

1

critical point.
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I. INTRODUCTION

More than two decades have been devoted to the study of
the quark-gluon plasma (QGP), the deconfined phase of
strongly interacting QCD matter that existed in the early
universe microseconds after the big bang and that can be
created in relativistic heavy-ion collision experiments
at Brookhaven National Laboratory (RHIC) [1-4] and at
CERN (LHC) [5]. Different experimental conditions allow
us to explore different areas of the phase diagram of
strongly interacting matter, from the very high temperatures
and vanishing net-baryon density realized at the highest
collision energies at the LHC, to the intermediate densities
explored at RHIC in its collider and fixed target modes by
decreasing the collision energy [6], all the way up to the
high density regime, which is/will be the focus of low-
energy experiments such as HADES [7], FAIR [8-11] and
NICA [12,13], and which overlaps with the conditions
achieved in neutron star mergers [14].

One of the surprising features of this deconfined phase of
matter is its almost-perfect fluidity, a property which
emerged from the theoretical analysis of the collective
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behavior observed at RHIC [15,16], and caused a paradigm
shift in our understanding of the theory. What was
anticipated as a weakly interacting gas of quarks and
gluons turned out to be a strongly coupled fluid, whose
transport properties cannot be easily extracted from first
principles. In fact, the strongly coupled nature of the system
calls for a treatment in terms of lattice QCD simulations,
which are however limited in their effective calculation of
dynamical quantities [17-20]. Besides the bulk (&)
and shear (7) viscosities [21-23], which are used as input
in hydrodynamical simulations of the dynamical evolution
of the collision, baryon number diffusion coefficient
and conductivity play an important role at finite density
[24-27]. Other quantities of relevance for the dynamical
description of the QGP are those related to the energy
loss of light and heavy flavors in the medium, such as the
heavy quark drag force and the Langevin diffusion coef-
ficients [28], and also the jet quenching parameter g
associated with the medium-induced radiated energy loss
of light partons [29].

In this work, we use the holographic correspondence
[30-33] to study the transport properties of strongly
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interacting matter in a 5-dimensional Einstein-Maxwell-
dilaton (EMD) model across its phase diagram. We make
use of the EMD model proposed by some of us in Ref. [34],
following a similar approach developed in the seminal
works of Refs. [35-37]. The model not only reproduces
2 41 flavors lattice QCD results with physical values of
the quark masses at zero [38—40] and finite [41] baryon
density but it also naturally incorporates [42] the nearly
perfect fluid behavior of the QGP. Recently, thanks to
important improvements in the numerical treatment of
our EMD model, we extended the coverage of its phase
diagram up to values of baryon chemical potential up ~
1100 MeV [43], unveiling the location of a line of first-
order phase transition ending at a critical end point (CEP).
While in Ref. [43] the focus was on the analysis of
thermodynamic quantities, in the present work we focus
on the study of transport properties of holographic QCD
matter.

Here we make use of well-known holographic formulas
for the transport coefficients considered, and also benefit
from the numerical advances introduced in Ref. [43], in
order to determine new physical results and holographic
predictions for several transport coefficients relevant for the
QGP at finite temperature and baryon density, including not
only the crossover and critical regions of the phase
diagram, but also, for the first time, their behavior across
the first order phase transition line.

For several other applications involving nonconformal
dilatonic holographic models of strongly interacting matter,
see e.g., Refs. [44-75]. For holographic applications
involving QCD in the Veneziano regime (V-QCD), where
both the number of colors N and the number of flavors N,
go to infinity, with the ratio N;/N. kept fixed, see e.g.,
Refs. [76-80]. For microscopic calculations of transport
properties in lattice QCD and other nonholographic
approaches also aimed to effectively describe QCD matter,
see e.g., Refs. [81-97].

This work is organized as follows. In Sec. II we briefly
review the main features of the bottom-up EMD holo-
graphic model constructed in Ref. [34] and further analyzed
with respect to its thermodynamic properties in Ref. [43].
The transport of baryon charge in this EMD model is
presented in Sec. III, with the calculation of the baryon and
thermal conductivities, and the baryon diffusion coefficient.
In Sec. IV we present our results for energy loss by
calculating the heavy-quark drag force, the Langevin
diffusion coefficients, and the jet quenching parameter.
The shear and bulk viscosities are discussed in Sec. V,
while Sec. VI describes the phase diagram obtained from
out-of-equilibrium observables. We summarize our main
conclusions in Sec. VIL In the Appendix we present some
details regarding the numerical calculation of the transport
coefficients in the present EMD model.

Notation: In this work we use a mostly plus metric
signature and natural units ¢ = A = kg = 1.

II. THE HOLOGRAPHIC EMD MODEL

The physical quantities computed in the next sections of
this work have been previously evaluated by some of us in
an older version of the EMD model [50,51,59] at moderate
baryon densities, and far from the CEP and the line of first-
order phase transition. The updated EMD model we put
forward in Refs. [34,43], which we briefly review in this
section, comprises a much more precise fitting to lattice
data on QCD thermodynamics at zero baryon density
[39,40], which is employed to fix the free parameters of
the EMD model. This improvement turned out in a much
better quantitative agreement between the predictions of the
EMD model at finite baryon chemical potential and the
latest lattice results on QCD thermodynamics at finite
baryon density [41]. Going beyond what has been done
in previous papers, in the present work we are going to
cover also the phase transition region when evaluating all
the transport coefficients.

The bulk EMD action is given by [34,36]

1
S:/ dez::—z/ d5x\/=g
Ms 2K5 Ms

X[R_M_ m}

2 vig) -2

(1)

where k% = 872Gs is the 5-dimensional gravitational con-
stant, g, is the bulk metric field with the associated Ricci
scalar R, A, is a Maxwell field with the associated strength
tensor F,, =9,A, —9d,A,, and ¢ is a scalar called the
dilaton field, which has an associated potential V(¢) and
couples to the Maxwell field through the coupling function
f(¢). The dilaton field is responsible for breaking the
conformal invariance of the 4-dimensional dual gauge
theory living at the boundary of the higher dimensional
bulk. Having QCD as the target dual gauge theory at the
boundary, the conformal symmetry breaking is imple-
mented by fixing V(¢) in the bulk such as to have the
holographic equation of state quantitatively matching the
corresponding lattice QCD results with 2 4 1 flavors and
physical values of the quark masses evaluated at vanishing
chemical potential [39,40]. On the other hand, the boun-
dary value of the Maxwell field is meant to introduce the
baryon chemical potential yup in the dual gauge theory,
which may be accomplished by fixing the Maxwell-Dilaton
coupling function f(¢) such that the holographic second-
order baryon number susceptibility at 4z = 0 quantitatively
matches the corresponding lattice QCD results [40,98].
The charged, isotropic, rotationally invariant, and
asymptotically anti—de Sitter (AdS) black hole solutions
can be described by the following Ansatz for the EMD
fields [34,36]:
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dr?
ds? = e [—h(r)dt* + d¥*] + e
¢ =(r),
A =A,dx' = ®(r)dt. (2)

The black hole event horizon is given by the largest root of
the equation h(ry) =0, and the asymptotically AdS
boundary is located at r — co. The AdS radius is set to
unity for simplicity and, in turn, an energy scaling factor A
is introduced to convert the quantities computed from the
gravity side of the holographic duality to field theory units
in MeV [34]:

1 q)far
T=—A  pp= 1701\,
47[¢A/V /h{)ar A/l/ /h{)ar
2 q)far
s=—" A, pp=———2 A (3)
K2¢3/” 2 43/v [ far
5P ks A/ h

where T, up, s and pp are the temperature, the baryon
chemical potential, and the entropy and baryon charge
densities of the medium, respectively. Moreover, A&, @,
<I>£‘“, and ¢, are asymptotic coefficients extracted from the
ultraviolet, near-boundary expansions of the EMD fields,
and v =d — A, where d = 4 is the number of spacetime
dimensions of the boundary gauge theory and A ~ 2.73294
is the effective scaling dimension of the gauge field theory
operator dual to the bulk dilaton field (see Refs. [34,43] for
details).

As mentioned above, the free parameters K% and A, and
the free functions V(¢) and f(¢) of the EMD model were
fixed in Ref. [34] by matching the holographic equation of
state and the second order baryon susceptibility evaluated
at up = 0 with the corresponding lattice QCD results from
Refs. [39,40], which yields

V(¢) = —12cosh(0.63¢) + 0.65¢* — 0.05¢* + 0.0034°,
% = 87Gs = 87(0.46), A = 1058.83 MeV,

h 2
flp) = = (Ti;cztﬁ ) 7 —T—3c3 sech(c,), (4)

where ¢; = —0.27, ¢, = 0.4, ¢c3 = 1.7, and ¢4 = 100.
This EMD model has been shown in Ref. [43]
to quantitatively agree with state-of-the-art lattice QCD
thermodynamics at finite baryon density [41]. In Ref. [34]
this EMD model provided the following prediction for the
location of the QCD CEP, (T¢, u$) ~ (89,724) MeV, and
in Ref. [43] this CEP was shown to be the end point of a
line of first-order phase transitions lying at larger values of
up. The phase diagram of this EMD model is depicted in
Fig. 1, where we also display the normalized energy density
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FIG. 1. Top panel: holographic phase diagram showing the

location of the minimum of the square of the speed of sound at
constant entropy per baryon number c¢2 and of the inflection point
of the second order baryon susceptibility y% that were chosen to
characterize the crossover region, and the line of first-order phase
transitions ending at the CEP. Bottom panel: normalized energy
density as a function of the temperature for different values of
up/T and its comparison with state-of-the-art lattice QCD results
from [41].

at finite baryon density predicted by the EMD model
compared to the corresponding lattice result from Ref. [41].

We note that, even though our EMD model constructed
in Ref. [34] had been the first effective model in the
literature to be shown to correctly predict the behavior of
QCD thermodynamics at finite baryon density (indeed,
4 years before the publication of the latest lattice QCD
results from Ref. [41]), very recently another successful
and similar EMD model [72] has been proposed with a
different set of free parameters. The EMD model of
Ref. [72] was matched at zero baryon density to the lattice
equation of state from Ref. [99], instead of the lattice results
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from Ref. [39] used to fix the free parameters of our EMD
model. Even though both sets of lattice results at zero
baryon density quantitatively agree within error bars for
most values of temperature, at high 7 some quantities start
to disagree even when considering the error bars (see
Fig. 6 of Ref. [99]). The recent EMD model of Ref. [72]
also produces a good quantitative agreement with the
latest lattice QCD results at finite pz from Ref. [41],
which looks competitive with ours [34,43], even though it
predicts a CEP at a significantly different location in the
phase diagram: (T¢, u$) ~ (105,558) MeV. This indicates
that the latest lattice results available at finite up [41]
cannot distinguish between the two predictions, since both
regard a region of the QCD phase diagram with values of
temperature lower than the ones achieved in these lattice
simulations.

The holographic evaluation of the transport coefficients
which we are going to consider for the EMD model of
Refs. [34,43] in the course of the next sections makes use of
well-known formulas already derived in the literature. For
the sake of brevity, in what follows we refer the interested
reader to the appropriate references where those derivations
are presented in detail. However, before proceeding to the
actual calculations with such holographic formulas, we
briefly comment on the general reasoning involved.

In the context of the hot and dense medium described by
the present isotropic EMD model, there is an SO(3)
rotation symmetry which organizes into different irreduc-
ible representations the diffeomorphism and gauge invari-
ant combinations of the perturbations of the bulk EMD
fields with zero spatial momentum at the linearized level
[37]. The gauge and diffeomorphism invariant perturbation
in the SO(3) singlet channel is holographically related to
the bulk viscosity of the dual gauge theory at the boundary,
which we shall discuss in Sec. V B. The perturbation
in the SO(3) triplet channel is related to the baryon
conductivity, which we analyze in Sec. IIl A. Finally, the
perturbation in the SO(3) quintuplet channel is related to
the shear viscosity, which we investigate in Sec. V A. Since
these diffeomorphism and gauge invariant perturbations
transform under different irreducible representations of the
SO(3) rotation symmetry group of the isotropic fluid, they
cannot mix at the linearized level and one needs to solve a
decoupled equation of motion for each of these fluctua-
tions [37].

In the case of the perturbation associated with the shear
viscosity, it can be shown [37] that it gives /s = 1/4x for
any values of 7 > 0 and pp > 0, as it is well known for any
holographic model which is isotropic, rotationally invari-
ant, and has at most two derivatives of the metric field
in the bulk gravity action [42,100]. However, the natural
dimensionless combination appearing in the hydrodynamic
expression for the viscous part of the energy-momentum
tensor of the boundary gauge theory at finite baryon density
is not 5/, but rather nT/(e + P) [86,101], where ¢ and P

are the energy density and the pressure of the fluid,
respectively. The combination n7/(e + P) reduces to
n/s at ug = 0 but acquires a nontrivial behavior at finite
baryon density, as we shall see in Sec. VA.

Concerning the parton energy loss, the associated
observables to be considered in Sec. IV are calculated in
the holographic framework by considering a probe Nambu-
Goto (NG) action for a classical string on top of the
background solutions for the bulk fields [46,47,102—-110].
The NG action is proportional to the square root of the
‘t Hooft coupling, 1/4,, which in a bottom-up setup as ours
is taken as an extra free parameter which should be fixed by
some phenomenological input. In Sec. IV we leave the
value of /4, unspecified, such that when comparing
the holographic energy loss with the results from other
approaches, one may consider different values for the
‘t Hooft coupling following different prescriptions (see
e.g., Ref. [107]).

We close this section by remarking that, since the
EMD background (2) supports nontrivial profiles for the
Maxwell and dilaton fields, one could consider, in princi-
ple, the coupling of these background fields to the string
described by the probe NG action. However, following
Refs. [50,57,67], in this work these couplings are assumed
to be small corrections to the NG action in the gauge/
gravity duality where the ‘t Hooft coupling is assumed to be
large and are, thus, neglected. Concerning the calculations
of the heavy-quark drag force (to be discussed in Sec. [V A)
and the Langevin diffusion coefficients for heavy flavors
(see Sec. IV B), one could minimally couple the string
endpoint at a flavor brane close to the boundary to the
Maxwell field on top of it, as done e.g., in Ref. [111] in
the case of finite mass quarks. However, we shall consider
in our analysis infinitely heavy probe quarks, and in
such a case the minimal coupling term is of order O in
the ‘t Hooft coupling, while the NG action is of order 1/2.
Consequently, the minimal coupling term between the
Maxwell field and the string is suppressed for infinitely
heavy quarks.

Finally, concerning the calculation of the jet quenching
parameter g associated with the energy loss of light partons
(to be considered in Sec. IV C), the minimal coupling term
plays no role at all, since the contributions coming from
each string endpoint (both located at the boundary in this
calculation) cancel each other out. Moreover, as a working
hypothesis, we assume that the coupling term between the
effective 5-dimensional dilaton field and the Ricci scalar
induced on the probe string worldsheet is also of order O in
the ‘t Hooft coupling (as in the 10-dimensional case) and,
therefore, its contribution is also taken to be formally
suppressed relative to the NG action.

III. TRANSPORT OF BARYON CHARGE

In this section we present our results regarding the
transport of baryon charge in a hot and dense QGP, by
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analyzing the baryon and thermal conductivities, and also
the baryon diffusion coefficient. Studies of baryon transport
coefficients at large densities are especially urgent to
understand the dynamical behavior of baryons at large
densities. A large baryon diffusion, for instance, can
transport more baryons to midrapidity [25]. Initial studies
have also considered the influence of criticality on baryon
diffusion [27]. However, a word of caution is that baryon
diffusion is not the only form of diffusion that affects the
QGP. In fact, there is an entire diffusion matrix involving
baryon, strange, and electric (BSQ) conserved charges that
can influence the dynamical evolution [92,93,112].
However, in our current framework we only study the
baryon conserved charge.

A. Baryon conductivity

As discussed in Refs. [37,51,59], the equation of motion
(EOM) for the relevant linearized homogeneous perturba-
tion in the SO(3) triplet channel of the EMD model,
a(r,w), is given by

a'(r,w) + <2A’(r) + }}lz/((:)) +]}/(($)) ¢’(r)>a’(r, )
240 [ o2 L
+ o) (m — f(@)D'(r) >a(r, w) =0, (5)

where @ is the frequency of the plane wave Ansatz
for the pelrturbation1 and the prime denotes a derivative
with respect to the holographic coordinate r, except
for f'(¢) = 0, ().

Equation (5) needs to be solved numerically over the
EMD background fields A(r), h(r), ¢(r), and ®(r) with in-
falling wave condition at the black hole horizon (which in
our numerical calculations is located at r = rg,, = 1078
[34,43]), and normalized to unity at the boundary (which in
our numerical calculations is located at r = r,, ~ 2—10,
depending on how a given background solution asymptotes
to AdS in the ultraviolet [34,43]). These conditions may be
implemented by setting

rP(r,w)

a(r,w) = ———"—, (6)

where P(r,w) must be a regular function at the horizon.
The EOM for P(r,w) can be obtained by substituting (6)
into (5). The procedure for the numerical integration of
P(r, ) is similar to what is done in the case of the black
hole background fields as described in Refs. [34,43], i.e.,
the initial conditions required for integrating the EOM for

'We take the wave number equal to zero in the homogeneous
regime.

the perturbation, P(ry,, ) and P’(rgu, @), are obtained
by Taylor expanding P(r, ®) to second order around ry.
The holographic Kubo formula for the baryon conductivity
in physical units reads as follows [37,51,59]

lim - (X hf($)Imla*a)). (7)

op(T.up) = _W‘”_’O“)

The term e*Ahf(¢)Im[a*a’] in Eq. (7) is a radially con-
served flux which, consequently, may be evaluated at any
value of the holographic coordinate r. We also remark that
the strict dc limit of vanishing frequency, @ — 0, which
should be implemented in the Kubo formula (7), may be
numerically problematic. Therefore, we actually approxi-
mate the dc limit in the numerical evaluation of Eq. (7)
by taking a small but nonzero evaluation frequency
@ = Wy = 107, One consistency check that must be
performed to verify that this is indeed a good approxima-
tion to the dc limit is to test for several selected values
of (T,up) whether o5(T,pup) remains approximately
unchanged when evaluated using different small values
of w around ® = @, = 107>, Typically, the results remain
approximately unchanged for @ ~ 10~—1072, while for
very small frequencies some numerical problems with
artificial divergences occur, and for @ > 107! the frequency
is no longer small enough to be a good approximation to the
dc limit.

The results for the baryon conductivity as a function of
(T, ug) are shown in Fig. 2: the upper panel shows the full
surface plot as a function of 7 and up, while the bottom
panel shows slices at constant up as functions of the
temperature. The overall dependence of the baryon con-
ductivity on the baryon chemical potential is relatively
small, and it remains finite at the CEP, where it develops an
infinite slope. The fact that o is finite at the critical point
indicates that this approach is in the model B dynamical
universality class [113]. Beyond the critical point and over
the line of first order phase transition, o5 /T exhibits a small
discontinuity gap represented by a dashed line in Fig. 2.
The discontinuity gap remains relatively small up to
up ~ 1000 MeV. Another prominent feature of the baryon
conductivity which can be clearly seen in the lower panel of
Fig. 2, is the sharp crossing region between the different
curves with fixed values of up. This feature has been also
observed in the older EMD model of Ref. [51], and seems
to be a robust feature of this observable. Interestingly, in
Ref. [62], the characteristic equilibration times of the
baryon current estimated from the imaginary part of the
lowest nonhydrodynamic quasinormal modes in the SO(3)
triplet channel of the present EMD model have been also
shown to present a sharp crossing region very similar to the
one observed for the baryon conductivity, although at
slightly higher values of temperature.
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FIG. 2. Upper panel: scaled baryon conductivity o5/T as a
function of temperature and baryon chemical potential. Lower
panel: scaled baryon conductivity as a function of the temper-
ature, for several values of the chemical potential.

B. Baryon diffusion

The fact that the baryon conductivity remains finite at the
CEP has a consequence on the baryon diffusion, which
controls the fluid response to inhomogeneities in the
baryon density. As shown in Ref. [114], the baryon
diffusion coefficient Dy can be holographically evaluated
using the Nernst-Einstein’s relation

D= (8)

where y% is the second order baryon susceptibility. The nth
order baryon susceptibility is defined as

P oy
ooy oupt

xn

©)

The holographic results for the baryon diffusion are
displayed in Fig. 3 and clearly show the suppression of

02
[
Q 01
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018y ps = 300 MeV
014+ pp = 500 MeV
pp = 724 MeV
0.12 up = 850 MeV
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Q
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FIG. 3. Upper panel: scaled baryon diffusion coefficient 7Dp

as a function of temperature and baryon chemical potential.
Lower panel: scaled baryon diffusion as a function of temper-
ature, for several values of the baryon chemical potential.

baryon charge diffusion as the baryon chemical potential
increases. One also notices the formation of a dip in the
baryon diffusion at finite y 5, which moves toward the CEP.
As reported in Refs. [34,43], the location of the CEP was
identified by the numerical divergence of the second order
baryon susceptibility, which together with the finite behav-
ior of the baryon conductivity results in a vanishing baryon
diffusion at the CEP. Beyond the critical point and across
the line of first-order phase transition, the baryon diffusion
exhibits a small discontinuity gap, which grows with
increasing pp. Given that Dy has an effect on the rapidity
distribution of net-protons [25], we anticipate that this
behavior may lead to some interesting consequences in
hydrodynamic simulations.

C. Thermal conductivity

The thermal conductivity at finite baryon chemical
potential can be obtained from the following relation [115]
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FIG. 4. Holographic thermal conductivity as a dimensionless combination given by Eq. (12). The left panel shows this combination as
a function of temperature and chemical potential, while the right panel shows it as a function of the temperature, for different values

of HUB-

Dy e+ P\? s ug\?2
= — :T B e . 1
o TXZ(PB) O-B(PB—’—T (10)

Equation (10) could be problematic in the limit of
vanishing chemical potential since pgp — 0 in this limit.
However, because pp(T,ug = 0) = pugy5(T, ug — 0),
one can define the following dimensionless combination
as done e.g., in Ref. [116], which is well behaved in the
limit of zero baryon chemical potential2

2 2 /T 2
HBOT (T.pg) = 4”@”_3 (_s+”3>

nT T Ts \pp
op s (T?

—)47{TT3 —g

2
> , asup—0. (11)

Since it is the combination p%c; that remains finite in the
up — 0 limit, another possible dimensionless normaliza-
tion, employed e.g., in Ref. [51], and which is perhaps a
better representative of the behavior of the thermal con-
ductivity (because it does not mix with the effects of the
shear viscosity, 7), is given by

2 2\ 2
HBOT Op (KBS | Mp
717 = — _— —_—
T ( HB) r <PB T N T2>

TZ 2
- 0-73 (%F> , asug— 0. (12)
2

Our results obtained using Eq. (12) are shown in Fig. 4.
The minimum that the thermal conductivity exhibits at
up =0 moves toward the critical point and becomes
narrower to finally turn into a cusp at the critical point.

*We employed in the first line of Eq. (11) the holographic
relation /s = 1/4x.

However, at some value of the baryon chemical potential,
the thermal conductivity starts to develop another local
minimum, which does not follow the critical point. It starts
as a change in concavity and the minimum really appears
beyond the critical chemical potential as one may observe
in Fig. 4.

IV. ENERGY LOSS

In this section we present the predictions from the EMD
model for the energy loss of heavy and light partons in the
strongly coupled, hot and baryon dense QGP. From the
theoretical point of view, it is interesting to study how a hot,
baryon dense and strongly interacting medium affects the
energy loss experienced by fast moving probes in particular
in the vicinity of the CEP and along the line of first order
phase transition predicted by this model. At low beam
energies (large baryon densities) the high pr spectra drops
off rapidly [117] so it is clear that fewer jets exist at low /.
However, studies by STAR have found hints of jet
quenching effects across the beam energy scan using
comparisons between central and peripheral collisions
[118]. Thus, it is interesting to study heavy and hard
probes across the phase diagram, with specific interest on a
critical point/first-order phase transition. Initial studies
have attempted to calculate §/T> at large densities
and generally found that it should increase with increasing
up [50,59,119].

A. Heavy quark drag force

In the holographic trailing string approach [102,103]
(see also [46] for the generalization of this method
including nonconformal effects due to a dilaton field), a
heavy quark moving through the strongly coupled medium
with a constant velocity v in some direction, x for example,
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is represented by the endpoint of an open string attached to
the boundary, while the remainder of the string trails behind
it, having its other endpoint attached to a new 2D black hole
horizon developed over the string world sheet within the
bulk [47,106,109]. As the quark moves at the boundary,
it loses energy and momentum through the drag
force Fg = dp,/dt, which can be computed through
the energy flow dE/dx from the string endpoint at the
boundary toward the other string endpoint located at the
world sheet horizon within the bulk.

For the EMD model, it has been shown in Ref. [50] that
the heavy quark drag force is given by

\]/V/%r 71 (T3 v) = =8rwhiite V23240,
t

where 4, = 1/a/2 = 1/1* is the ‘t Hooft coupling,’ /, is the
fundamental string length, and r, is the radial location of
the string world sheet horizon, which is obtained as the
numerical solution of the following equation [50]

(13)

h(r,) = hi 2. (14)

In the conformal limit, corresponding to values of
temperature much larger than any other dimensionful
scale of the system, the EMD backgrounds approach the
AdSs-Schwarzschild metric, and correspondingly, the con-
formal limit of Eq. (13) should approach the well-known
N = 4 Super-Yang Mills (SYM) value [102,103]

F
lim ﬂ(T»ﬂBQ v) - _7[7(”)” ___

T—»w\/ZTQ 2 2\/1-1)2‘

The EMD numerical results for the heavy quark drag
force are shown in Figs. 5 (for v =0.5) and 6 (for
v = 0.99). The plots for small and large v display some
qualitative differences. Indeed, for » = 0.5 it is only
possible to observe an appreciable splitting between the
curves with fixed values of yp at high values of the baryon
chemical potential, while for v = 0.99 the splitting is clear
already at lower values of up, showing that the drag force is
more sensitive to the baryon density of the medium at
higher quark velocities. One can also see that in both cases
(v =0.5 and v =0.99), the heavy quark energy loss
associated with the drag force increases in magnitude by
lowering the temperature and/or by increasing the baryon
chemical potential of the medium, developing a dip and an
inflection point at high pp, with the latter moving toward
the CEP as the baryon density of the fluid is enhanced. On
top of the first-order line the heavy quark drag force

(15)

The ‘t Hooft coupling is expected to be related to the coupling
and the number of colors of the dual gauge theory through the
holographic dictionary [30-33]. However, the precise relation is
only known for top-down holographic constructions.

o
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0.5)/ /T2
N

£ 6f
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-8 B = 724 MeV |
pp = 850 MeV
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T [MeV]
FIG. 5. Heavy quark drag force at v = 0.5 as a function of

temperature and baryon chemical potential (top) and slices at
constant up (bottom).

presents a large discontinuity gap, which significantly
increases with the magnitude of the quark velocity. The
aforementioned observations also suggest that a very heavy
quark (e.g., the bottom), which might not achieve a very
high velocity within the plasma, is less sensitive to the in-
medium effects in comparison with a less massive quark
(e.g., the charm), which could attain higher velocities
within the fluid.

B. Heavy quark Langevin diffusion coefficients

A holographic treatment of Langevin diffusion processes
was originally proposed in Refs. [106,109], and further
generalized to include nonconformal effects associated to a
dilaton field in Ref. [47]. The Brownian motion of a heavy
quark moving through a medium can be approximately
modeled by a linearized local Langevin equation that
describes the thermal fluctuations of a heavy quark tra-
jectory with constant velocity. Attempts have been made to
extract the diffusion coefficient from experimental data
using a Bayesian analysis in [120] at yp = 0, although that
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work used the simplifying assumption that the
perpendicular and parallel diffusion coefficients are equal
(even though their microscopic formulas are different), so
their results are not directly comparable to ours. Here we
make use of the nonconformal holographic formulas
derived in Ref. [47], and properly adapted to the EMD
setup in Ref. [50], to evaluate the heavy quark Langevin
|

%(T,ﬂg; )—1671’2}(hfar)3/2e\/27¢ ) +3A(r. \/h’(r*) [4A’ r*)—|—\/7¢’ () (r*))}

K arysj2 €Y
\/_T3 (T HpsV ) = 16””3(}’5”)5/2 i (r*)z

The corresponding conformal limits are given by
[106,109]
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FIG. 6. Heavy quark drag force at v = 0.99 as a function of
temperature and baryon chemical potential (top) and slices at
constant up (bottom).

)+3A(r,)

diffusion coefficients in the limit of zero frequency, which
corresponds to the long time behavior of the stochastic
diffusion process in the hot and baryon dense medium
described by our holographic model.

The EMD holographic formulas for the heavy quark
Langevin diffusion coefficients, perpendicular and parallel
to the quark velocity are given by, respectively,

atr. 1)

h’(r

e o)

Jim — s (T o) = ()" = s (19)
T
Th_{lolo \/—T3 (T ugs v) = ay(v)’* = m- (19)

We remark that, as discussed in detail in Ref. [47], it is
possible to define two velocity-dependent jet quenching
parameters associated with the heavy quark Langevin
diffusion coefficients as follows

(Y o (Aph) x
q. = =—, q = =—,
vt v vt v

(20)

where (p?) and <Apﬁ) are, respectively, linear approx-
imations for the noise-averaged transverse and longitudinal
momentum fluctuations of a heavy quark after traveling a
distance vt within the medium. The velocity-dependent
coefficient ¢, (T, up;v) gives the transverse momentum
broadening of a heavy quark moving with velocity v within
the fluid [47,106].

Our numerical results are shown in Fig. 7 for the
perpendicular (upper panels) and parallel (lower panels)
Langevin diffusion coefficients, where we considered again
two different velocities: the left panels correspond to
v = 0.5, while the right panels refer to » = 0.99.

Analogously to the heavy quark drag force, the heavy
quark Langevin diffusion coefficients are also enhanced
with increasing the baryon density of the medium, and they
also display a more sensitive dependence on the tempera-
ture and the baryon chemical potential of the fluid at large
velocities. As the baryon density of the medium is
enhanced, these coefficients develop a peak and an inflec-
tion point, with the latter moving toward the CEP, where it
acquires an infinite slope. On top of the first order line
these quantities develop a large discontinuity gap and in
particular, the gap in the parallel diffusion coefficient at
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FIG. 7. Perpendicular (upper panels) and parallel (lower panels) Langevin diffusion coefficients as functions of the temperature for
several values of baryon chemical potential and two quark velocities: v = 0.5 (left panels), and v = 0.99 (right panels).

v = 0.99 is extremely large. One also notices that, at fixed
velocities, the parallel diffusion coefficient is always larger
than the perpendicular one, in consonance with the uni-
versal inequality x| >« (the equality is saturated in the
limit v — 0) obtained in Ref. [47]. We note that, due to the
large difference between x| and k| in our framework even
at ug = 0, it would be interesting to revisit the Bayesian
analysis in [120] relaxing the simplifying assumption
that « | = KL

C. The jet quenching parameter

The energy loss from collisional and radiative processes
of high energy partons produced by the interaction with the
hot and dense medium they travel through can be charac-
terized by the jet quenching parameter g, defined as the rate
for transverse momentum broadening [29]. At vanishing
g, there have been a number of studies of § across both the
QGP and HRG phases. It is generally thought that §/T3
increases with increasing temperature in the HRG phase

[119,121], while the QGP phase comparatively has larger
values of §/T3. It is still an open question how the two
phases join together, where some work appears to indicate a
jump/peak in §/T? at the onset of the QGP phase [122,123]
whereas others argue for a smooth matching across the
phase transition [50,59,119,124]. Additionally, there are
known tensions when comparing extractions of § at RHIC
and the LHC [125].

The holographic formalism proposed in Refs. [107,108]
to describe the jet quenching parameter §(7', yg) associated
with the transverse momentum broadening of light partons
moving at the speed of light [29] was employed in Ref. [50]
in order to obtain the following holographic formula in the
context of the EMD model

q _ 647 i
i oe) = [ dp L0 @)
Fstart h(")[héar—h(r)]

with the associated conformal limit given by [107]
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’T(3/4)
I'(5/4)

lim — L (T, uy) =

~7.52814. (22
T—co \//T[T3 ( )

The results for the holographic jet quenching parameter
g given by Eq. (21) are shown in Fig. 8. The jet quenching
parameter, akin to the heavy quark drag force and the
Langevin diffusion coefficients, is also enhanced as one
increases the baryon chemical potential of the medium,
indicating more jet suppression and parton energy loss in
the baryon rich regime. This quantity displays a peak
around the crossover region which largely increases in
magnitude, while also becoming sharper as the chemical
potential increases; however, it is the inflection point that
moves toward the CEP as the baryon density of the fluid is
increased, acquiring an infinite slope in the critical region.
On top of the first-order line the jet quenching parameter
presents a large discontinuity gap, as shown in Fig. 8.

QE 100 1000
= 50
o~
0 600
a0 N 400 pp [MeV]
250 200 200
T [MeV] 10 "o
50 ;
pp =20
a1 wp = 300 MeV
0l 5 = 500 MeV |
up = 724 MeV
351 pup = 850 MeV
C*‘E
Q
=
~_
<

50 100 150 200 250 300
T [MeV]

FIG. 8. Upper panel: scaled jet quenching parameter g/ /1,1 273

obtained from Eq. (21) as a function of temperature and baryon

chemical potential. Lower panel: scaled jet quenching parameter

as a function of the temperature, for several values of yp.

V. SHEAR AND BULK VISCOSITIES

In this section we present our results for the shear and
bulk viscosities of the hot and baryon dense medium
described by our EMD model.

A. Shear viscosity

The nearly perfect fluidity of the QGP, characterized by a
small value of its shear viscosity to entropy density ratio,
n/s, is one of the most striking features of the deconfined
QCD medium produced in relativistic heavy ion collisions.
The calculation of the shear viscosity [126], which measures
the medium’s resistance to sheared flow in the presence of a
velocity gradient of the fluid, as well as other transport
observables, has faced great difficulties from ab initio lattice
calculations [17]. However, the (almost) universal holo-
graphic result for the shear viscosity to entropy density ratio,
n/s = 1/4x [42], which is valid for a broad class of strongly
coupled fluids with holographic duals,* has been successful
in obtaining compatibility with computed bounds for 7/s
extracted from the Bayesian analysis of several experimental
data of heavy ion collisions [127-129].

Although for the present EMD model /s = 1/4x for
any value of temperature and chemical potential, we note
that the actual measure of fluidity in a baryon dense
medium is given instead by the following dimensionless
combination [101]

nT (T, up) 1
aﬂB 3
e+ P 4r(1 + #20%)

(23)

which normalizes the product between the temperature and
the shear viscosity by the enthalpy density of the medium,
and where the right-hand side of Eq. (23), which depends
solely on thermodynamical observables, holds for holo-
graphic models with n/s = 1/4x.

Our results for the normalized shear viscosity, defined in
Eq. (23), are presented in Fig. 9. Atup = 0, Eq. (23) reduces
ton/s = 1/4x, whereas at finite baryon chemical potential,
the normalized shear viscosity develops a nontrivial depend-
ence on the temperature, and a minimum and an inflection
point are produced, with the latter moving toward the CEP as
the baryon density is increased. At the CEP, an infinite slope
is observed,” while for values of yj beyond the CEP, the
normalized shear viscosity develops a discontinuity gap at
the first-order line, as a consequence of the corresponding

“The result /s = 1/4x holds for any holographic model
which is isotropic, translationally invariant, and has at most
two derivatives of the metric field in the bulk gravity action. Our
EMD model fits in such restrictions, and therefore has /s =
1/4zx for any value of 7' > 0 and pp > 0.

The shear viscosity is actually finite at the critical point in our
model. This is again compatible with model B dynamical
universality class [113], in contrast to what is expected to hold
in QCD where 5 (very slowly) diverges at the critical point [130].
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FIG. 9. Holographic shear viscosity times temperature over
enthalpy density obtained from Eq. (23) as a function of 7 and up
(top), and the same observable as a function of the temperature
for several values of yp (bottom). This dimensionless combina-
tion reduces to n/s = 1/4x at ug = 0.

discontinuity gaps in the baryon density pp and the entropy
density s in this region of the phase diagram [43]. The fact
that the normalized shear viscosity given by Eq. (23)
decreases with increasing values of ujp indicates that the
QGP becomes even closer to the perfect fluid limit in the
baryon dense regime. As far as we are aware, no theoretical
models have studied a discontinuity across the first-order
phase transition line within a realistic relativistic viscous
hydrodynamics framework, so we do not know what the
consequences of this effect would be in hydrodynamic
simulations. However, the presence of any shear viscosity
at large baryon densities can significantly affect the passage
through the QCD phase diagram [22,27,131].

B. Bulk viscosity

The bulk viscosity measures the medium’s resistance to
deformations associated with a compression or an

expansion of the fluid, and has been shown to also play
an important role in relativistic heavy ion collisions. It has a
complicated interplay with shear viscosity in the QGP
[132] and it can also affect the transverse momentum
spectra, the azimuthal momentum anisotropy, and the
multiplicity of charged hadrons produced in heavy ion
collisions [133]. Large uncertainties remain on the extrac-
tion of bulk viscosity due to uncertainties in the correct out-
of-equilibrium description at the point where a fluid
switches to particles [132,134-137]. However, it is gen-
erally believed that, at vanishing baryon densities, a peak
exists around the crossover region [84,127,133,138]. There
have been arguments that the bulk viscosity should diverge
at the QCD critical point such that ¢ o« & [139] (where £ is
the correlation length), compatible with the expectation that
QCD is in the model H dynamical universality class [130].
The presence of such divergence has strong implications
for the search for the critical point and the applicability of
hydrodynamics [22,139,140].

In this section we compute the bulk viscosity for the
EMD model and obtain its dependence on T and ug,
including the region of the phase diagram comprising the
CEP and the line of first-order phase transition. As
discussed in Refs. [37,59], the EOM for the relevant
linearized homogeneous perturbation in the SO(3) singlet
channel of the EMD model, H(r, w), is given by

n 24)// 2A"
" 4A" + = _ 1
H" + < + A + & Y >'H

e—2Aw2 7% " ¢//
Tl T\ Ty
h h\A ¢

() - f(¢)¢’)<1>/2] H=0, (24)

n e
he'
which must be solved with in-falling wave condition at the

black hole horizon, and normalized to unity at the boun-
dary, which may be done by setting

H(ro) = Ero) (25)

rl;lla(l;F(rmaX ’ a))

where the EOM for F(r,®) and the initial conditions
F(ryam, @) and F'(rg,, @) are obtained in an analogous
way to what was previously discussed in the case of the
baryon conductivity, below Eq. (6).

The ratio between the bulk viscosity and the entropy
density in the EMD model is then calculated by making use
of the following holographic Kubo formula [37,59]

4Ah /ZI H*Hl

1 1
T, up) = —— lim —
( ﬂB) 367Tw1—r>r(l)a)

¢
N

where analogous observations to what was discussed below
Eq. (7) also apply here.
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From Eq. (26) and from the thermodynamic state
variables given by Egs. (3), one can also obtain the
following dimensionless combination, which naturally
appears in the hydrodynamic expression for the bulk
viscous pressure of charged fluids, like the baryon dense
QGP,

1

HBPB >
I+ 55

{r B
H_—P(T»/‘B) =

U | Uy

(T pp) (27)

and reduces to {/s when ug = 0.

The numerical results obtained using Eq. (27) are
presented in Fig. 10. The holographic bulk viscosity
presents a peak in the crossover region at up = 0.
However, this peak does not evolve toward the CEP as
up is enhanced. Instead, its location slightly shifts toward
higher temperatures as the baryon chemical potential is
increased. This is an important qualitative difference in
comparison with some earlier versions of the EMD model
ase.g., Refs. [37,59]. Additionally, whereas in Ref. [37] the
magnitude of the peak remains about the same as the
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FIG. 10. Holographic bulk viscosity {7/(e + P) as a function
of T and up (top), and the same observable as a function of the
temperature for several values of yp (bottom).

chemical potential is increased up to the critical region, our
present results show that the height of the peak of the bulk
viscosity decreases as up increases, similarly to what is
observed in Ref. [59]. Consequently, one concludes that the
behavior of the peak observed in the holographic bulk
viscosity as the baryon density of the medium is increased
is a model-dependent feature.

In the present EMD model, the normalized bulk viscosity
given by Eq. (27) develops a dip at finite yz, which moves
toward the CEP as the baryon density is increased. At the
CEDP, the bulk viscosity acquires an infinite slope, similarly
to what is observed for the shear viscosity in Fig. 9. In fact,
the quantity {/s computed from Eq. (26) also exhibits a
divergent slope at the CEP as shown in Fig. 13. For values
of up beyond the CEP, and on top of the line of first order
phase transition, the bulk viscosity develops a disconti-
nuity gap.

As observed for the shear viscosity, also the bulk
viscosity is overall suppressed as the baryon chemical
potential of the medium is increased, indicating that
viscous effects become smaller in the baryon dense regime
of the QGP. Such a prediction seems to be a robust feature
of the EMD setup, since it is also observed in earlier
versions of the model discussed e.g., in Refs. [37,59].

Another important observation extracted from the behav-
ior of the holographic bulk viscosity is the fact that this
transport observable remains finite at the CEP in EMD
holography [37], contrary to the prediction obtained in
some other effective models regarding a divergent bulk
viscosity at the CEP [139,141,142]. This is possibly
reminiscent of the different dynamical universality classes
[113] expected to hold for QCD (type-H) [130] and
holographic / large-N. approaches (type-B) [143]. Also,
there are differences in the static critical exponents, since
only the corresponding mean field values for the 3D Ising
universality were found in the EMD holographic model
of Ref. [36].

The peak of the bulk viscosity at zero density, which in
the current holographic model is located at 7 ~ 168 MeV,
seems to be a feature of this dynamical observable since a
similar profile is found in Bayesian analyses where (/s is
extracted from comparisons of relativistic hydrodynamics
calculations to experimental data. A comparison between
the holographic bulk viscosity at up = 0 and the recent
Bayesian analyses from two different groups [128,138] is
shown in Fig. 11.

VI. OUT-OF-EQUILIBRIUM PHASE DIAGRAM

For a crossover transition it is possible to have a wide
range of pseudocritical temperatures that depend on what
observable one is studying. However, at a critical point one
expects that all pseudocritical temperatures should con-
verge. Then, exactly at the critical point the (properly
normalized, hence, dimensionless) transport coefficients
should display an infinite slope. Furthermore, one expects
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FIG. 11. Holographic bulk viscosity {/s at yugp = 0 compared
with the 90% credible intervals of the JETSCAPE Bayesian
model from [128], and with the results of the Duke group [138].

that across the first-order phase transition line a discon-
tinuous gap should open up and become wider with
increasing pp. This behavior is found in all transport
quantities shown here.

However, one surprising effect that we find is that
sometimes the most interesting characteristic points at
up — 0 (such as the peak in the bulk viscosity) are not
the relevant points for criticality. In the case of the bulk
viscosity, a minimum is formed at intermediate pp that
eventually moves to the location of the critical point,
whereas the peak in bulk viscosity remains at nearly the
same temperature even at large pp (contrary to what
happens in some older EMD models considered e.g., in
Refs. [37,59]). A similar effect is seen for the drag force at
v = 0.5 in Fig. 5 and for the Langevin diffusion coefficients
also at v = 0.5 in Fig. 7.

Thus, while some characteristic points of transport
coefficients can be also employed to identify the crossover
region in addition to the equilibrium state variables used in
Ref. [43], one must be careful in correctly identifying the
actual sequence of inflection points which evolve toward
the CEP as the baryon density increases. In particular, due
to the aforementioned nonuniversal behavior of the peak in
the bulk viscosity in different models, caution is needed in
order to avoid being misled by false “transition lines” in the
crossover region associated with points that do not evolve
toward the CEP.

We summarize the characteristic points that are relevant
to the critical point in Fig. 12 and compare them to the
equilibrium points found previously in [43]. The inflection
lines of the jet quenching parameter g, the parallel
Langevin coefficient x| at v =0.99, and the minimum
and inflection point of (T/(e + P), the inflection of
nT/(e + P), and minimum of Dy have been used as

Holographic QCD Phase Diagram
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FIG. 12. Holographic phase diagram which also includes the
inflection lines and extrema from transport observables to
characterize the crossover region. The inflection lines of the
jet quenching parameter g, the parallel Langevin coefficient x| at
v =0.99, and the minimum and inflection point of {T/(e + P),
the inflection of nT/(e + P), and minimum of Dj are also
displayed in the phase diagram in addition to the lines obtained
from equilibrium variables. Notice that some of these character-
istic points are only produced at nonzero values of the baryon
chemical potential.

proxies for a transition line in the crossover region.
Interestingly enough, within the crossover region and far
from the CEP, none of the characteristic curves follow the
same behavior, even though they all converge at the CEP.
Additionally, it also appears that the spread in temperature
in the equilibrium lines is smaller than the out-of-equilib-
rium ones (at a fixed point in pp). This suggest that out-of-
equilibrium quantities demonstrate an even wider cross-
over than equilibrium ones.

VII. CONCLUSIONS

In this work, we studied several transport properties of
the hot and dense QGP across the phase diagram using the
holographic EMD model of Refs. [34,43]. This EMD
model is in quantitative agreement with state-of-the-art
lattice QCD thermodynamics with 2 + 1 flavors at the
physical point, both at zero and finite baryon density [39—
41]. We found that the diffusion of baryon charge and also
the hydrodynamic shear and bulk viscosities are suppressed
with increasing baryon density, indicating that the medium
becomes even closer to perfect fluidity at large densities.
Moreover, we also found that the jet quenching parameter,
the heavy quark drag force, and the momentum diffusion
are enhanced as one increases the baryon density of the
medium toward the critical region of the phase diagram.

Overall, the different physical quantities display a dis-
continuity gap at the line of first order phase transition,
while developing an infinite slope at the critical point,
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which further degenerates into different kinds of extrema in
the crossover region depending on the observable consid-
ered. The baryon conductivity is not greatly affected by the
increasing baryon chemical potential and remains finite at
the critical point, although it develops an infinite slope. The
baryon diffusion coefficient develops a minimum as up
increases, and vanishes exactly at the critical point, where
this minimum becomes a cusp. The minimum exhibited by
the thermal conductivity at vanishing chemical potential
also extrapolates to the critical point, where it too becomes
a cusp. Furthermore, the characteristic points displayed by
the heavy quark drag force, the Langevin diffusion coef-
ficients, the jet quenching parameter and the shear viscosity
all move toward the CEP. It is noteworthy that most of
these inflection points are only present at finite values
of the baryon chemical potential, i.e., are not found at
up = 0. The same is true for the minimum displayed by
the normalized bulk viscosity, which only appears at
up 2 435 MeV, and also coincides with the CEP at larger
densities.

The inflection lines and extrema displayed by some of
the transport observables can be used as markers for the
crossover region in the phase diagram, as shown in Fig. 12,
where they have been used as proxies for a crossover line.

Finally, it is important to try to address the phenom-
enological reliability, and also discuss the limitations of the
present holographic EMD approach. As aforementioned,
the present EMD model has the merits of being able to
quantitatively describe state-of-the-art lattice data on QCD
thermodynamics, both at zero and finite baryon density,
moreover it naturally encompasses the almost perfect
fluidity of the strongly coupled QGP produced in heavy
ion collisions, besides also predicting a bulk viscosity at
zero density which is in the ballpark of values favored in
state-of-the-art Bayesian analyses of phenomenological
models simultaneously describing several sets of heavy-
ion data. However, the present EMD model also has
relevant limitations. In fact, for instance, it does not
describe the chiral condensate and chiral symmetry break-
ing, and it is also unable to describe hadron thermody-
namics (a limitation which is shared with all other
holographic gauge/gravity models which we know—the
reason being ultimately tied to the large N2 suppression of
the pressure of the medium in the hadronic phase relatively
to the deconfined QGP phase in the large N, limit).
Furthermore, the fact that the present EMD model is in
good quantitative agreement with the latest lattice QCD
data at finite baryon density does not automatically
guarantee that the predictions made for regions of the
QCD phase diagram well beyond the reach of current
lattice simulations are phenomenologically reliable.
Indeed, the fact that the EMD model of Ref. [72] is also
able to obtain a good quantitative agreement with lattice
QCD thermodynamics at zero and finite baryon density,
while still predicting the QCD CEP at a significantly

different location than in our model, shows that the
available lattice data is not enough to strongly constraint
such a prediction in the EMD class of holographic models.
It may also be that the freedom of choosing the functional
forms for the free functions V(¢) and f(¢) of the EMD
model plays a relevant role in this issue. This important
question is something which is currently under investiga-
tion in our research group and we hope to report new
findings in this regard soon.

We also hope that the novel behavior displayed by the
multitude of transport coefficients in the vicinity of the
critical point and across the first-order line, computed for
the first time in this paper, will motivate new studies and
simulations of the out-of-equilibrium dynamics of the hot
and baryon-rich quark-gluon plasma.
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APPENDIX: NUMERICAL PROCEDURE

The EMD black hole background fields are obtained by
numerically solving the EOMs resulting from the gravita-
tional action in Eq. (1), with the pair of initial conditions
(¢p9, @), which are, respectively, the value of the dilaton
field and the value of the radial derivative of the Maxwell
field both evaluated at the black hole horizon [34,36]. Each
pair of values chosen for these initial conditions translates,
through the numerical solutions for the EMD fields and the
holographic dictionary given by Eq. (3), into different
thermal states of the dual gauge theory living at the
boundary. In order to obtain the numerical solutions for
the transport coefficients over a finite region of the QCD
diagram, we use the same set of initial conditions that gave
rise to the mapping into the QCD phase diagram region as
reported in our previous work regarding the equilibrium
state variables of this EMD model [43]. The numerical
procedure used to generate the EMD backgrounds can be
summarized as follows:

(1) At ®; =0, which corresponds to vanishing chemi-
cal potential, we choose the values for ¢, such that
the mapping to the solutions in the temperature axis
ranging from 7 =2 MeV to T =550 MeV (at
up = 0) is equally spaced.
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(i)

(iii)

(iv)

For each chosen value of ¢, @, is varied to map
the QCD phase diagram completely up to up =
1100 MeV producing lines of constant ¢y. These
lines run into the phase diagram where they even-
tually cross each other starting at the location of the
CEP and producing a region of multiple solutions
that corresponds to the coexistence region of
thermodynamically stable, metastable, and unstable
extrema of the free energy. This is the region where
the equilibrium state variables s and pp obtained
directly from the solutions of the black hole fields
exhibit a multivalued S-shape, and the line of first-
order phase transition was obtained as described in
[43]. The resulting first-order line is shown in
Fig. 12. Interestingly enough, the numerical results
for the transport coefficients obtained by solving
the corresponding perturbation equations on top of
the EMD background black hole solutions exhibit
the same characteristic S-shape for pp > ug near
the first-order line, with the exception of the bulk
viscosity ¢/s and the thermal conductivity u3o7/T*,
which develop instead a loop for pg > uj over the
coexistence region. This is illustrated in Fig. 13 for
the bulk viscosity.

The lines of constant ¢, that are mapped into the
QCD phase diagram, which are the trajectories
where the equilibrium state variables and transport
coefficients are computed, are significantly affected
by the numerical noise associated with the fitting of
the ultraviolet coefficients that appear in the holo-
graphic formulas in Eq. (3) and the formulas
regarding the dynamical variables. In particular,
the coefficient ¢4 raised to the powers —1/v and
—3/v is the most affected by the noise. In order to
obtain smooth mapping over the phase diagram a
filtering process is applied. These lines of constant
¢o are formed by 3000 black hole solutions. This
number of solutions allows us to treat the lines with a
cubic smoothing spline (CSS) filter that gets rid of
big bumps, and then a Savitzky-Golay (SG) filter
that preserves the shape and features of the signal.
Once the lines of constant ¢, are fixed, they are
fitted with a cubic spline to obtain lines of constant
up, and lines of constant 7.

The final step is to obtain the transport coefficients
as single-valued functions over trajectories of con-
stant T or pz. We use the information about the first-
order line to differentiate the thermodynamically
stable minima of the free energy from the thermo-
dynamically metastable and unstable saddle points
or maxima that are also solutions to the black hole
EOMs as done for the equilibrium variables in [43].
This procedure reveals the discontinuity present in
the transport coefficients that corresponds to the line
of first-order phase transition, as exemplified in

0.025— T T T T

0.02r

0.015
w
~
Ay
0.01}
0.005f 1
pup = 724 MeV
up = 850 MeV
%50 100 150 200 250 300
T [MeV]
FIG. 13. Numerical results from Eq. (26). Bulk viscosity over

entropy density (/s as a function of the temperature at the critical
baryon chemical potential uj, and at up > ug before considering
the line of first-order phase transition. The dashed line corre-
sponds to the discontinuity gap when taking into account the first-
order phase transition, while the line in red represents the unstable
and metastable branches of solutions.

Fig. 13. For a value of ug = 850 MeV, the green
dashed line represents the discontinuity gap in the
bulk viscosity over entropy density, {/s, when the
first-order phase transition line is taken into account.

We close this section with some remarks related to the
numerical calculation of the transport coefficients consid-
ered in the present work. In the EMD model, the baryon
conductivity and the bulk viscosity over entropy density are
obtained from the holographic Kubo formulas (7) and (26),
respectively, and the main features and basic consistency
tests regarding their numerical calculation have been
already discussed before in the text [see around and below
Egs. (6) and (7), and also around and below Egs. (25)
and (26)].

Regarding the numerical calculation of the jet quenching
parameter given by the integral in Eq. (21), due to small
numerical oscillations in the value of A(r) for r ~ rp,,, the
factor [A" — h(r)] may eventually evaluate to small neg-
ative values due to numerical roundoff errors, thus render-
ing a small spurious imaginary part for the jet quenching
parameter and an inadequate oscillatory behavior which
makes the numerical integration difficult to perform in a
reliable way in the near-boundary region. In order to
circumvent this issue, a possible approach is to cut the
numerical integration at some g, chosen just before the
radial position where the change of sign in the factor [ —
h(r)] happens for a given pair of initial conditions [67]. One
can check that, in general, even by cutting the numerical
integration at r considerably less than (ry,, —0.02), our
numerical results do not change by a significant amount.
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