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The Beam Energy Scan Theory (BEST) collaboration’s equation of state (EoS) incorporates a three-

dimensional Ising model critical point into the quantum chromodynamics (QCD) equation of state from lattice

simulations. However, it contains four free parameters related to the size and location of the critical region

in the QCD phase diagram. Certain combinations of the free parameters lead to acausal or unstable realizations of

the EoS that should not be considered. In this work, we use an active learning framework to rule out pathological

EoS efficiently. We find that checking stability and causality for a small portion of the parameters’ range is

sufficient to construct algorithms that perform with >96% accuracy across the entire parameter space. Though

in this work we focus on a specific case, our approach can be generalized to any EoS containing a parameter

space-class correspondence.
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I. INTRODUCTION

While widely studied, the phase diagram of the nuclear

matter remains mostly unknown. It has been established from

lattice simulations of quantum chromodynamics (QCD) that

the transition from hadronic to quark degrees of freedom is a

crossover at vanishing baryon chemical potential [1]. Effec-

tive models predict this transition will become first order at

finite densities (for a review see Refs. [2,3]). Since large-scale,

first-principles lattice QCD calculations cannot yet be per-

formed directly at finite baryon density, experimental searches

for the critical point (CP) and a first-order phase transition

are vital in determining the phase structure of QCD at dif-

ferent densities. Preliminary results from the first phase of

the Beam Energy Scan (BES-I) program at the Relativistic

Heavy-Ion Collider (RHIC) showed promising trends in the

data [4–6]. These will be confirmed or disproved during the

program’s second phase, BES-II, which ran through 2021 with

improvements to detectors and statistics. The determination

of the QCD’s phase structure, along with its critical point’s

existence and location, remains among the most important

goals of high-energy nuclear physics in view of results from

BES-II [7–11]. At even lower beam energies, the High Accep-

tance Di-Electron Spectrometer experiment is searching for a

first-order phase transition to support the presence of a critical

point [12].

Previously, a key factor limiting research of critical

signatures on the theoretical side was the lack of an equa-

tion of state (EoS), including a critical point in the correct

universality class and matching what is already known from

lattice simulations. Such an EoS is now available and ready

to be implemented in hydrodynamic simulations at BES-II

energies [13,14]. Results from such simulations are essential

for the analysis of BES-II measurements because they can

provide precise calculations of higher-order net-proton cumu-

lants as functions of the collision energy
√

sNN , promising

experimental signatures for criticality [11,15–17]. Moreover,

they could help quantify the likelihood that such signatures

survive final hadronic scatterings. The first effort in that di-

rection was presented in Ref. [18], where the effects of a

critical point on the fourth-order baryon number susceptibility

χB
4 , accessible experimentally via net-proton kurtosis mea-

surements, were studied in the context of the parameterized

EoS introduced in Ref. [13]. Much work needs to be done

before direct theory-to-experiment comparisons can be made,

including adjustments in hydrodynamic calculations near the

critical point [17,19–22]. Once these modifications are quan-

tified, the EoS in Ref. [13] would allow for a precise survey

of collisions at BES-II energies.

The procedure described in Ref. [13] is based on combin-

ing a critical point in the three-dimensional (3D) Ising model

universality class and lattice QCD results in the form of a

Taylor expansion. This requires the Ising variables (r, h)—

reduced temperature r and magnetic field h, respectively—to

be mapped to QCD variables (T, μB)—temperature and

baryon chemical potential, although the nature of this map-

ping is not fixed from first principles. One is free to choose a

map, which might lead to a particular parametrization of the
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EoS that is not thermodynamically stable and causal by con-

struction. Therefore, filtering viable equations of state must

occur post EoS computation. In order to do this, a number

of thermodynamic quantities must be calculated across the

phase diagram, and then thermodynamics inequalities must

be verified for all (T, μB). A machine-learning (ML) as-

sisted classification would clearly provide a computational

advantage if the process of computing and checking multiple

quantities over a grid could be eliminated. The choice to

eliminate these steps is motivated by the fact that all thermo-

dynamic quantities relevant for stability analyses are directly

related to derivatives of the pressure. Therefore, all the infor-

mation needed is encoded in the pressure itself. Moreover,

for the EoS presented in Ref. [13], once the lattice input is

chosen, the properties of the EoS are dictated solely by the

input parameters, which can in turn be mapped to stable and

causal, acausal, and unstable realizations of the EoS. This

second option, using input parameters instead of the pressure

to determine stability and causality, allows one to bypass the

computation of the EoS entirely once a ML model learns the

acceptable parameter space regions.

The goal of this work is to (i) detail a machine learning

framework for extracting viable regions in the unconstrained

EoS parameter space and (ii) discuss the physical insight

gained from the extracted constraints in the context of the

experimental search for the QCD critical point.

Because of the significant modeling involved in describ-

ing collisions at BES energies, constraining the EoS from

experimental data using Bayesian methods is not currently a

feasible task. On the other hand, the EoS must satisfy certain

conditions dictated by thermodynamics in order to describe

a physical system. In our construction, each parameter in

the Ising-to-QCD map relates directly to the properties of

the conjectured QCD critical point: its location and the size

and shape of the critical region. Therefore, we can rule out

certain critical region configurations by imposing thermody-

namic and causality constraints. The problem at hand is a

binary classification—the EoS is either thermodynamically

acceptable, or it lacks stability/causality. Hence, well-defined

boundaries exist in the parameter space between acceptable

and problematic regions, instead of probability distributions

as in the case of Bayesian model-to-data analyses. Though we

cannot extract confidence regions for the parameters, we are

able to rule out the pathological configurations of parameters

and gain valuable information about the QCD critical point.

In addition to using traditional supervised learning to

tackle the EoS stability and causality problem, we incorporate

active learning [23] into the training pipeline and compare

the performance of models trained in different frameworks. In

active learning, ML models place queries and request labels

for points that are considered most informative; this leads to a

significant reduction in the class labeling cost (normally as a

logarithmic factor), and a speed up in training, as queries are

likely to be placed over points located close to the decision

boundary separating examples of different classes. For a re-

view on active learning and query strategies see Refs. [24,25].

In this work, we implement active learning to expedite learn-

ing the map between the parameter space and output class.

The problem of determining the acceptable parameter space

range for a high-dimensional model using active learning has

been shown to work effectively in Ref. [26].

For this implementation, we train a set of classifiers to

identify thermodynamically stable and causal realizations of

the EoS with the goal of developing a tool that can quickly

rule out pathological EoS. We start by defining two viable

options for the training data—one consisting of the set of

input parameters and the other being the pressure as a function

of temperature and baryon chemical potential. A competitive

set of learning algorithms—random forests (RF), K-nearest-

neighbor (KNN), and support vector machines (SVM)—is

then trained on the EoS input parameters using both active

learning and random sampling [27–29]. We find that active

learning outperforms random sampling in every case, but

the random forests model is the only one that converges

to high accuracy within the number of training samples

generated.

The second set of classifiers is developed using ran-

dom forests trained on a dimension-reduced version of the

pressure—rather than the EoS input parameters. Again, both

active learning and random sampling are used, and their per-

formance is compared. The random forests classifier trained

on the pressure data using active learning converges even

faster and to higher accuracy than the previous random forests

model. Hence, the combination of learning with a random

forests algorithm and using active learning for training is

optimal for the task of thermodynamic stability classification

of the EoS model. We deploy this top-performing classifier

and map the full range of stable and causal regions of the EoS.

Using the ML analysis results, we find a limit on how

far the critical region can extend along the baryon chemical

potential direction of the QCD phase diagram and remain

compatible to the lattice QCD results for the Taylor coef-

ficients at μB = 0. As a consequence, the presence of the

critical point at larger chemical potential is strongly preferred.

We were also able to study the expected nonmonotonic behav-

ior of the baryon kurtosis below the transition line (namely,

the kurtosis has a dip and then a peak when decreasing√
sNN ), which was proposed as a promising signature of the

critical point in heavy-ion collisions in Ref. [30]. Under the

parametrization of the EoS shown in this work, realizations in

which such behavior is more clearly observed do not satisfy

thermodynamic constraints, except for the limit where the

critical region vanishes. On the other hand, our results confirm

that the unambiguous critical signature is the peak of the

baryon kurtosis, as proposed in Ref. [18], as all realizations

of the EoS we find acceptable do indeed show a peak.

We note that various machine learning algorithms have

been previously used in the context of heavy-ion colli-

sions [31–38], but we are not aware of other works that

have been used to constrain the parameter space of possi-

ble critical points through thermodynamic stability. Previous

well-known examples are an attempt to identify new signa-

tures of the QCD phase transition [31,34] or classify jets

origination from quarks vs gluons [38,39]. We are also not

aware of previous investigations in the context of heavy-ion

collisions that have used active learning (though it has been

employed in other contexts in nuclear theory [40] and high-

energy physics [26,41,42]). For a recent review of artificial

054911-2



MAPPING OUT THE THERMODYNAMIC STABILITY OF A … PHYSICAL REVIEW C 107, 054911 (2023)

intelligence and machine learning applications in nuclear

physics, see Ref. [36].

The paper is structured as follows. Section II summarizes

the methodology introduced in Ref. [13] for generating a

realization of the EoS. In Sec. III, we discuss how thermo-

dynamic stability and causality issues can arise in the EoS

formulation, the possible formats of the training data, as well

as the preprocessing framework. Section IV outlines the basic

ideas behind active learning and our query strategy. Section V

deals with the implementation of our training and sampling

methods in the development of the classifiers. Results and

conclusions follow.

II. PARAMETERIZED EOS WITH A CRITICAL POINT

Due to the fermion sign problem, direct lattice simulations

at finite chemical potentials are not possible at the moment.

The most straightforward way to work around this problem

is to define a Taylor expansion around μB = 0. For the equa-

tion of state, this commonly consists of an expansion of the

pressure as:

P

T 4
(T, μB) =

∑

n

cn(T )
(μB

T

)n

, (1)

where the coefficients are related to the derivatives of the

pressure with respect to the chemical potential:

cn(T ) = 1

n!
χB

n (T ) = 1

n!

∂n(P/T 4)

∂ (μB/T )n
. (2)

The BEST Collaboration’s family of EoS of Ref. [13] was

constructed by incorporating a critical point from the 3D Ising

model universality class and imposing exact matching with

lattice QCD results at μB = 0 [up to order O(μ4
B)].

We summarize here the steps followed in Ref. [13] for

generating each EoS:

(1) Define a parametrization of the 3D Ising model EoS in

the vicinity of the critical point. This parametrization

imposes the correct critical behavior by expressing

the magnetization M, the magnetic field h, and the

reduced temperature r = (T − Tc)/Tc, where Tc is the

critical temperature, in terms of new parameters (R, θ )

with [43–46]:

M = M0Rβθ ,

h = h0Rβδ h̃(θ ) , (3)

r = R(1 − θ2) ,

where M0 ≃ 0.605 and h0 ≃ 0.364 are normaliza-

tion constants, h̃(θ ) = θ (1 + aθ2 + bθ4), with a =
−0.76201 and b = 0.00804, and β ≃ 0.326, δ ≃ 4.80

are 3D Ising model critical exponents [44]. The param-

eters satisfy R � 0 and |θ | � θ0, with θ0 ≃ 1.154.

(2) Map the phase diagram of the 3D Ising model onto

that of QCD, in a way that allows one to choose the

location of the critical point. This mapping can be

done using a simple linear map, which requires six

parameters [47]:

T − TC

TC

= w(rρ sin α1 + h sin α2) , (4)

μB − μBC

TC

= w(−rρ cos α1 − h cos α2) , (5)

where (TC, μBC) indicate the location of the critical

point, while (α1, α2) are the angles between the hor-

izontal (T = const) lines on the QCD phase diagram

and the h = 0 and t = 0 Ising model axes, respectively.

The size of the critical region is roughly determined

by the scaling parameters w, ρ in the Ising-to-QCD

map [18,48].

The number of free parameters is reduced from six

to four by imposing that the critical point is located on

the chiral transition line predicted by lattice QCD:

T = T0 + κ2 T0

(

μB

T0

)2

+ O
(

μ4
B

)

, (6)

which fixes the value of TC and α1, given a choice of

μBC.

The lattice QCD input for the pressure and its

derivatives at μB = 0 is from the Wuppertal-Budapest

Collaboration [49,50], and the QCD transition line

is assumed to be a parabola with curvature κ2 =
−0.0149, as estimated in Ref. [51]. This is a valid

assumption in the range of chemical potentials cov-

ered by the BEST EoS, but it should be relaxed

for higher densities. Recent results determining the

“hyper-curvature” κ4 [52,53] of the transition line

found it to be consistent with zero within errors. Ref-

erence [53] also investigated how including κ4 affects

the transition band up to 300 MeV and found that, in

this regime, higher-order corrections are small.

(3) Impose that the EoS exactly matches lattice QCD at

μB = 0 by requiring that the expansion coefficients

determined from the lattice are a sum of a contribution

from the critical point, and a “regular” one

T 4cLAT
n (T ) = T 4cnon-Ising

n (T ) + T 4
C cIsing

n (T ) , (7)

where cLAT
n are the coefficients calculated from the lat-

tice and c
Ising
n determine the contribution from the

critical point. The coefficients c
non-Ising
n contain the

contribution to the thermodynamics at μB = 0 not due

to the Ising critical point. They do not necessarily only

contain regular contributions. In fact, contributions

from other critical points can be—and likely are—

present, for example from chiral O(4) criticality. The

matching enforced by Eq. (7) is carried out up to order

O(μ4
B).

(4) Reconstruct the full QCD pressure as the sum of the

“Ising” and “non-Ising” contributions

P(T, μB) = T 4
∑

n

cnon-Ising
n (T )

(μB

T

)n

+ P
QCD
crit (T, μB) ,

(8)
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FIG. 1. Left to right: Different realizations of EoS pertaining to the three thermodynamic stability classes (acausal, unstable, and stable

and causal.) The black line illustrates the first-order transition line, which ends at the critical point. The projected T -μB plane is also shown, on

which the points where some pathological behavior appears are highlighted (purple corresponding to causality violations and red to negativity

of the second-order baryon susceptibility).

where P
QCD
crit (T, μB) is the critical pressure mapped

onto QCD from the 3D Ising model. For additional

details we refer to Ref. [13].

With the construction just summarized, the pressure in

Eq. (8) only depends on the nonuniversal mapping between

the 3D Ising model and QCD, which is ultimately fixed

by the parameters μBC, αdiff = α2 − α1, w, and ρ. The

complete thermodynamic description is in turn obtained by

computing the baryon number density,

nB(T, μB)

T 3
= 1

T 3

(

∂P

∂μB

)

T

, (9)

entropy density

s(T, μB)

T 3
= 1

T 3

(

∂P

∂T

)

μB

, (10)

energy density

ε(T, μB)

T 4
= s

T 3
− P

T 4
+ μB

T

nB

T 3
, (11)

and speed of sound

c2
s (T, μB) =

(

∂P

∂ε

)

s/nB

, (12)

all of which are normalized by the correct power of the

temperature.

More recently, this formulation has been updated to ac-

count for strangeness neutrality, which is relevant in heavy-ion

collisions [14]. In this work, we implement the original de-

scription of the EoS, assuming vanishing net strangeness and

electric charge chemical potentials, μS = μQ = 0. Last, be-

cause of the few coefficients available from the lattice, the EoS

is limited to 0 � μB � 450 MeV. Though we expect the crit-

ical point to be at the higher end, and likely even beyond, this

range [54,55], an EoS that matches lattice QCD and contains

a critical point in the correct universality class with the same

parametric flexibility of the BEST EoS is not yet available.

The framework presented here is intentionally developed to

accommodate future improved models.

III. TRAINING

Developing a successful classifier requires a thoughtful

selection of training data. We can think of the EoS framework

as a set of two maps:

(μBC, αdiff,w, ρ) �→ P(T, μB)

�→ {acceptable, unstable, acausal}. (13)

The first map yields the pressure as a function of tem-

perature and chemical potential. The second map determines

whether the resulting EoS is acceptable. Figure 1 illustrates

how different realizations of the EoS can present pathological

behaviors.

We use both the input parameters and a dimension-reduced

version of the pressure for training. It is important to in-

vestigate how the choice of training—on either the input

parameters or pressure—map to stable EoS, because the two

spaces relate to thermodynamic stability in fundamentally dif-

ferent ways. The key difference is that models trained on input

parameters are constrained to this particular formulation of the

EoS, while training on the pressure can yield ML models that

generalize to any QCD EoS. However, we will not test how

training on the pressure can be applied to alternative EoS since

that is beyond the scope of this paper. In this work, we focus

on establishing that it is possible to train ML classifiers that

identify viable EoS quickly and with high accuracy. Below

we discuss how the labels for the training set were created

and how the data was processed prior to training.

A. Thermodynamic stability

There are four free parameters that emerge from our con-

struction of the EoS that can lead to pathological behavior.

Hence, thermodynamic stability needs to be verified at the

end of the procedure, once all thermodynamic quantities

have been calculated. In general, we require the positivity of

the pressure, entropy, and baryon density, the second-order

baryon susceptibility (χB
2 ), and the heat capacity (∂S/∂T )nB

,

P, s, ε, nB, χB
2 ,

(

∂S

∂T

)

nB

> 0 , (14)

which follows from the requirement that entropy should be

maximized in equilibrium. We also require that the speed of
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sound squared must be both positive and bounded by causality

0 � c2
s � 1. (15)

All of these must be satisfied at every point in the (T -

μB) plane. As mentioned in Sec. I, there are two options

for training data—using the pressure, which encodes all the

information regarding stability and causality, or the input pa-

rameters which map to a particular EoS. In both cases, some

number of training samples need to be generated. These must

go through the numerical differentiation and grid checking

process to be labeled. Generating a single EoS with a complete

thermodynamic description and label can take between 1.2

and 4 times as long as generating the pressure only. While

this approach reduces computation time and memory require-

ments, the difference is even more dramatic if we use the input

parameters as training data. No calculation is required for

generating an unlabeled sample of the parameter space—we

simply select points from the parameter space grid. The run-

time is negligible compared to how long it takes to generate a

realization of the EoS.

B. Preprocessing

Let us first discuss the dimensionality of our problem at

each stage of the mapping described in Eq. (13). We define

a single set of input parameters as a training vector ��(i) =
(μB(i), αdiff(i),w(i), ρ(i)). Each ��(i) is four dimensional, so we

do not need to apply dimensionality reduction techniques.

The only pre-processing required is a standard scaling of the

distribution of ��(i) in the training set. This is necessary to

ensure the different features are compared along the same

scale, to avoid artificially introducing differences in the data,

and to ensure the pool and test set are analyzed with respect

to the training distribution. We discuss the role of the pool,

training, and test sets in the next section.

In the next step of our mapping, P(T, μB) has dimensions

corresponding to the grid size of the EoS. In our case, the

limits are

30 � T (MeV) � 800, (16)

0 � μB (MeV) � 450, (17)

with a step size of 1 MeV in both directions. Thus, P(T, μB)

is a table of dimension 451 × 771. A grid of this magnitude is

not optimal for machine learning. We use the standard tech-

nique of principal component analysis (PCA) [27,28,56] to

create a dimension-reduced projection of the original matrix

defined by P(T, μB). We check how many components are

needed to account for most of the variance present in the

pressure; our results show that the two-component projected

matrix accounts for over 99% of the variance in nearly all

cases. Based on these findings, we define a new variable, P∗,

with about 1500 features corresponding to the two columns

of the two-dimension projection matrix from the PCA. This

is by no means a low-dimension feature space, but it is easily

handled by most machine learning algorithms.

The final stage of the learning pipeline classifies the input

EoS as either acceptable, unstable and acausal, or acausal,

with no signs of instability (three-dimensional output space).

TABLE I. Ranges and step-sizes used to generate EoS for train-

ing and testing.

Min. Max. Step size

μBC 220 MeV 420 MeV 20 MeV

w 0.1 10.0 0.5

ρ 0.1 10.0 0.5

αdiff −180◦ 180◦ 5◦

IV. SAMPLING

Since the parameter space for our model is continuous,

we first discretize it by defining a grid in each parameter

within a range of interest. The bounds and step sizes for each

parameter are summarized in Table I. The bounds in μBC

are motivated by lattice QCD constraints. The upper bound

is informed by the fourth-order Taylor expansion of lattice

data used in Ref. [13], which breaks down at μB � 450 MeV.

While there is no limit to how close the critical point can

be placed to vanishing chemical potentials by construction,

lattice results indicate that the region μB � 2T is not likely

to contain a critical point [57]. The lower bound in μBC

is loosely determined by these results and based on lattice

calculations for the crossover temperature T0 ≃ 155 MeV at

μB = 0 [58–61]. Since the curvature of the deconfinement

transition line appears to be negative, we can safely expect

that the critical temperature TC � 155 MeV. Lattice results

then roughly rule out μBC � 300 MeV, but we extend this

lower bound down to 220 MeV to accommodate for possible

uncertainties in these values. The other three parameters are

specific to the linear map assumed in the construction of the

EoS and no arguments from first principles constrain their

values, so the corresponding bounds are designed to span all

possible behavior. Broadly speaking, it was observed already

in Ref. [13] that, with all other parameters fixed, when a

certain choice of w was found to be pathological, then the

same occurred for all w
′ < w. The opposite behavior was

observed for a pathological EoS with a certain ρ—with all

other parameters fixed, all ρ ′ > ρ were pathological.

Every time a model is initialized, initial training and test

sets are generated from the parameter grids, containing 350

and ∼20 000 labeled realizations of the EoS, respectively. The

initial training set is chosen randomly at the beginning of each

training cycle from the remaining points (which constitute

the pool set) so that there is no overlap between test and

training sets. The initial training set contains the first labeled

realizations from which the model will learn. More instances

are added to the training set with each iteration. The test set

remains the same throughout all training iterations and it is

used to check the accuracy of the model at each stage.

Once the initial training set L0 has been determined, we

take the following steps:

(1) A machine learning model is trained on L0.

(2) The model makes a prediction on the test set and its

performance is recorded (for reporting purposes only).

(3) The model is then evaluated onU0, the pool set, which

contains all points in neither L0 nor the test set. These

points are unlabeled.
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FIG. 2. Flowchart of model development and testing. From an initial grid of interest, three sets are created—an initial training set and a

test set (each containing labeled realizations of the EoS), and a pool set, which contains all the points outside the test or initial training sets.

With each iteration, the performance of the classifier is recorded, and a new set of points from the pool set is labeled and moved to the training

set.

(4) Using some selection criterion, a query is generated.

This means a size-k pool of points is selected fromU0

according to some distribution, and a label is provided

for these points.

(5) The training and pool sets are updated. The new train-

ing set L1 contains L0 and the queried points, which

are now missing from the updated pool setU1.

(6) The model is trained on L1 and steps 2–5 are repeated

until a stopping criterion is met.

We expect to see the average recorded accuracy increase as

the sample size increases until the model converges at some

maximum accuracy value or until resources for generating

labeled instances have been exhausted. This should happen

independently of the selection criterion. However, if labeled

samples are difficult (e.g., computationally costly) to generate,

then an improved sampling method can provide an advantage

in terms of how many samples are needed to achieve target

performance. Active learning methods seek to increase the

performance of learning algorithms with fewer samples by

allowing models to choose which data to learn from.

We test the performance of our models using both ran-

dom sampling and active learning. We draw our samples in a

pool-based fashion, meaning queries consist of size-k samples

drawn fromU. In the random case, the samples are randomly

pulled fromU assuming a uniform distribution. Margin-based

queries select the k points currently in the pool setU with the

smallest margin values, where the margin M is defined as in

Ref. [62],

M = P(ŷ1) − P(ŷ2) (18)

and ŷ1 and ŷ2 are the first- and second-most-probable class

labels under the current model, with corresponding proba-

bilities P(ŷi ). Therefore, this sampling method favors points

with a small margin, meaning the classification is ambiguous,

whereas points, where one class is clearly preferred, do not get

labeled. Using this query strategy avoids wasting resources

on instances the model already understands how to classify

in favor of those that are still ambiguous. It is important to

note that although we make the choice to fix each query at

k = 200 samples (i.e., each iteration in training represents the

same increase in training set size), that choice is in principle

arbitrary.

V. MODEL TRAINING AND SELECTION

The main goal in the model training and selection stage is

to gauge what is necessary to create a strong EoS classifier—

how much data are needed, how to sample from the available

data, and how to make a choice for the classification al-

gorithm. Generally, the amount of data needed is measured

according to the accuracy of the classifier on the test set,

but it could also be limited by computational resources. The

preference for a sampling method is determined based on

whether random sampling or active learning reached higher

accuracy at a lower number of samples (e.g., 95% test set

accuracy rate at 5000 samples is better than a 95% rate at 7000

samples). The best model is then the combination of algorithm

plus sampling method that reaches the highest accuracy rate

with the fewest possible samples.

We select three classification algorithms as mentioned in

Sec. I (SVM, RF, and KNN) and train them using the sampling

framework described in Sec. IV. The sampling and training

procedures are summarized in Fig. 2. We used the open-source

library scikit-learn [63] and the publicly available implemen-

tation in Ref. [64] to develop the code used in this work.
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Sampling is performed as outlined in Sec. IV. Additionally, at

each training step, the model’s hyperparameters are optimized

over a random grid search using fivefold cross-validation on

the training set. This step is crucial since the training set

changes with each iteration and the hyperparameters need

to be readjusted. Details about the hyperparameters for each

model can be found in the documentation for Ref. [63], and

the specific grid search used in this work is available in the

source code [65].

For RF and KNN methods, training is set to stop at 10 000

samples, regardless of accuracy levels, in order to constrain

computational expenses. For SVM models, the runtime scales

with the cubic power of the number of training samples, and

training is set to stop at 2500 samples instead. To deal with

the cold start problem we randomly select a new initial train-

ing set with each new run. The cold start problem refers to

the expected model instability when faced with data scarcity,

which is common when using active learning on a small

sample [66,67]. We also do not throw away any labels during

training. Once a point is labeled, the label is kept and recycled

if the same point is called again by the sampling algorithm in

a different run.

We perform a total of 25 experiments—5 repetitions for

each of the learning algorithms (RF, SVM, KNN), using either

random sampling or active learning on the input parameter

vector ��(i), and 5 repetitions for RF using either random

sampling or active learning on the dimension-reduced version

of the pressure P∗. For each combination, we take the mean

accuracy at each training set size with a 1σ deviation band.

VI. RESULTS

This section is divided into two parts—the first addresses

the development and selection of an adequate machine learn-

ing model for the EoS classification problem, as well as the

performance of active vs traditional learning implementations.

Second, we discuss the deployment of the best-performing

model, what is learned about the correspondence between EoS

parameter space and stability classes, and implications for the

modeling of heavy-ion collisions and experimental searches

for the QCD critical point.

A. Model development

The primary aspect of developing a machine learning

model is to track how performance evolves during training.

Figure 3 shows test accuracy as a function of training set size

for each class of models trained on only the input ��(i) data

(recall that we distinguish this from training directly on the

EoS itself. That is signified by P∗). The solid and dashed lines

represent the average behavior for a class of models across five

runs with random sampling and active learning, respectively,

and a corresponding 1σ uncertainty band. Generally, a per-

formance measure, which in this case is the recorded test set

accuracy, is expected to improve on average as the number of

training samples increases. We also re-emphasize that, during

training, the model is completely blind to the test set and there

is no overlap between test and training points. From Fig. 3, it

is clear that active learning provides a significant advantage

FIG. 3. Average performance on the test set as a function of

training set size. The black lines correspond to the performance of

models trained using random sampling and the dashed blue lines

correspond to models trained using active learning. The bands show

1σ deviations from the average.

for RF and KNN models. In the SVM case, there is an initial

advantage that vanishes when the training set reaches a size of

∼700 samples.

We are interested in the combination of input data, sam-

pling, and learning algorithm that performs best given the

constraints set for label acquisition. From Fig. 3, we see that

RF coupled to active learning clearly outperforms other mod-

els, with test set accuracy quickly converging around 96% and

exhibiting small variability. This agrees with our understand-

ing of the benefit behind ensemble methods, where voting

over multiple (nearly uncorrelated) models tends to reduce the

bias and the variance component of the error significantly, see

for example Refs. [27–29,68,69] for an in-depth discussion on

the bias-variance trade-off in machine learning.
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FIG. 4. Accuracy on the test set for RF models trained on input

parameters coupled to random (solid black) and margin (dashed blue)

sampling methods. This is compared to RF models trained on the

transformed pressure coupled to random (solid green) and margin

(dashed orange) sampling methods.

Although a consistent final accuracy of 96% is good

enough for most applications of learning algorithms, we

wanted to investigate if an even higher accuracy could be

achieved using the dimension-reduced pressure P∗ as the

training data. Because generating P∗ and training models

using it as input is significantly more computationally ex-

pensive than the previous case, we limit this analysis to

RF algorithms. This is expected considering the complexity

cost behind SVM and KNN (for small K). As an example,

SVMs are mathematically represented by a convex optimiza-

tion problem. Ensemble methods like random forests, gradient

boosting, bagging and others [27,70] normally use shallow

decision trees as weak learners. Such decision trees are easy

to train and require normally less CPU cycles than convex

optimization problems like SVMs, which involve affine trans-

formations with dense matrices.

We compare the performance of RF models using different

training data in Fig. 4, which shows the accuracy on the test

set as a function of the training set size during training. The

dashed orange and solid green lines correspond to margin and

random sampling, respectively, using P∗ as input. The dashed

blue and solid black lines correspond to margin and random

sampling, respectively, using ��(i) as input. The matching

bands represent a 1σ deviation from the mean performance

over five runs. For both input classes, active learning outper-

forms random sampling. Surprisingly, when RF algorithms

are trained using P∗, they outperform RF models trained on
��(i) using active learning in all stages of training. The clas-

sifier performs even better when trained on P∗ with active

learning, consistently achieving nearly perfect accuracy with

under 3000 samples in the training set.

This increase in accuracy is likely due to the nature of the

map between the different input spaces and the EoS classes.

The map between ��(i) and the stability classes is highly non-

linear, whereas in P∗ space, the transition between classes is

likely simpler to model in terms of input variables. Regardless,

a strong classifier can be achieved with either set of input

data. Using P∗ sacrifices the computational advantage over

non-ML classification for near perfect classification accuracy,

while models trained on ��(i) peak at slightly lower accuracy

FIG. 5. Confusion matrix averaged over the final random forests

models’ performance on the test set, after training with �(i) (top) or

P∗ (bottom).

but with a significantly lower computational cost. We discuss

execution-time benchmarking in detail in Sec. VI B 1.

The summary of predictions on the test set is given by

the confusion matrix [71] of the model. In Fig. 5, we show

the confusion matrix for both classes of models with active

learning, where the columns represent the true class (as cal-

culated thermodynamically), and the rows indicate the class

predicted by the model. We normalize the number of points in

each entry by the total number of points in the test set and

show the corresponding percentage. The diagonal elements

are the percentage of points that belonged to a certain class

and were classified correctly by the model. Correspondingly,

the off-diagonal elements quantify the percentage of points in

the test set that were misclassified by the model.

From Fig. 5, we see that acausal EoS are the most problem-

atic class for models trained on ��(i). Of the average 4.33% of

points that were misclassified, an average total of 2.07% were

incorrectly predicted to be acausal, while another average of

1.906% of points that were acausal ended up misclassified as

either acceptable or unstable. Combined, acceptable/unstable

points being incorrectly classified as acausal and, on the

other hand, acausal points being incorrectly classified as

acceptable/unstable account for 92% of misclassifications on

average. If we break down the confusion between acausal and

acceptable/unstable individually, we see that most incorrectly
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classified acausal points are, in reality, unstable, and vice

versa.

In the context of the EoS parameter space, this means

that there is a clear distinction between acceptable and

acausal/unstable EoS, but the boundary between acausal and

unstable can become fuzzy in certain regions. In this aspect,

using P∗ as training input seems to help, but not significantly.

As shown in Fig. 5, of the average 2.07% of points that were

misclassified, confusion in acausal classifications accounts for

77.4% of the mistakes.

In practice, the most important aspect of the confu-

sion matrix analysis is to evaluate the prevalence of false

positives/negatives. A false positive would be an EoS that is

unstable/acausal but gets incorrectly classified as acceptable.

A false negative is an acceptable EoS that gets incorrectly

classified as unstable/acausal. From Fig. 5, we see that the

false negative and positive rates for the models trained on ��(i)

are on average 1.316% and 0.989%, respectively. In the P∗

cases, the average rates are 0.371% for false negatives and

0.697% for false positives.

The incidence of false positives/negatives for the class of

models trained on P∗ is about half of those trained on the input

vectors, but in either case, these rates are low enough for most

applications. In general, models taking in P∗ are more suitable

for analyses that require knowledge of a specific point, since

the overall accuracy is higher. However, models trained on
��(i) still provide an accurate description of the EoS parameter

space and class structure.

B. Model deployment

In addition to training and comparing the performance of

different classes of models, we illustrate a deployment frame-

work by analyzing the features of the EoS parameter space

relevant to experimental searches for the critical point. The

analysis was done using the top-performing model in terms

of classification accuracy and execution time, namely random

forests trained with active sampling and input vectors ��(i).

From here onward, we will refer to this model as RFA
�, where

RF deontes random forests, A denotes active learning, and �

refers to the type of training data.

1. Execution time benchmarking

One of the important metrics when choosing a model for

deployment is accuracy. The RFA
� model yields a final test

set accuracy of 96.772%. This is not as high as the models

that were trained on P∗. However, it is important to also

keep track of the execution time. Machine learning–assisted

classification, if implemented appropriately, should yield a

significant computational advantage. Without ML assistance,

the classification of EoS stability is O(1 − 2) in seconds. The

execution time of ML-assisted classification can be calculated

as a per sample rate, classifying a certain number of sam-

ples in bulk and then dividing the total execution time by

the total number of samples. This is shown in the top panel

of Fig. 6, which displays the execution time in seconds per

sample for RFA
� classification as a function of the number of

EoS classified. In order to test the robustness of the model,

FIG. 6. Top panel: Execution time per sample on a log scale as

a function of the total number of samples with ML classification.

Bottom panel: Speed factor gained using ML versus conventional

classification. In both cases, the error bars represent a 68% confi-

dence interval based on jackknife resampling of 50 samples.

we repeat this rate calculation 50 times and show the 68%

confidence interval based on jackknife resampling. The model

consistently performs at the microsecond scale.

In the bottom panel of Fig. 6, we show the speed gain

factor as a function of the number of EoS classified. This

was calculated by dividing the ML execution time per sam-

ple by the non-ML classification time per sample. The same

statistical methods were used for constructing the confidence

intervals. RFA
� assisted classification consistently provides a

computational advantage of five to six orders of magnitude.

Though the speed-up is relative, the ML approach is preferred

over parallelization of the original code because we expect

the full parameter space of this EoS to be used in future

studies of heavy-ion collisions (a first step in this direction was

presented in Ref. [72]). In such studies, sets of parameters will

be called by an event-generation framework which need to be

checked for stability and causality. Because of the nontrivial

structure of the stable parameter space, the ML model is now

demonstrably the most computationally efficient and storage-

friendly solution.

2. EoS stability analysis

The speed and high accuracy of RFA
� allow us to map

the stability of the EoS as a function of input parameters in

fine detail. These parameters relate to key physical properties

of the QCD critical point. As discussed Sec. II, αdiff repre-

sents the angular separation between Ising axes (r, h) in the

mapping to QCD variables, w globally scales the Ising axes,

i.e., the critical region, and ρ stretches the critical region along

the transition line (μB direction).

In Fig. 7, we fix μB = 400 MeV and determine the

stability/causality of the EoS for different values of the an-

gular parameter αdiff as a function of the scaling parameters
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FIG. 7. Stability and causality regions on the w-ρ plane for dif-

ferent αdiff values at fixed μBC = 400 MeV. As the angular parameter

moves away from orthogonality, the stability region shrinks. An

upper limit appears for ρ, which drives EoS to acausal regions when

too large.

w and ρ on a grid much finer than previous calculations [13].

From Fig. 7 it can be inferred that the stability region in the

w-ρ plane shrinks as the angular parameter moves away from

orthogonality and that there is a hard limit on the value of

ρ, which drives the EoS to acausal regimes when too large.

Hence, under the current mapping, the critical region cannot

be too large in the μB direction.

The exact value of the ρ stability cutoff depends strongly

on the value of αdiff but not as much on the global scaling of

the critical region determined by w. These results reflect the

underlying physics of the model [18]. The EoS with critical

contributions is matched to lattice QCD data by construction,

and these parameters can stretch the critical region along the

transition line to the point where the EoS cannot be simulta-

neously acceptable and consistent with lattice QCD. If either

αdiff or ρ spreads the critical region too broadly across μB,

then the EoS will become acausal. Stability and causality also

depend on μBC, which is discussed below and in Sec. VI C.

Another point of interest is to maximize the overall size

of the critical region. This is reflected by the minimum

value of w, to which to the overall size of the critical re-

gion is (mildly) inversely proportional. In general, one has


μB
T ∼ w
−2/7 [18], where 
μB, T are the corresponding

sizes of the critical region in the T and μBC directions. Hence,

despite the overall size of the critical region only being midly

affected by w, it determines the largest possible critical region

FIG. 8. Smallest possible value w0 (largest global scaling of the

critical region thermodynamically allowed) for different values of

μBC and ρ = 2 as a function of αdiff.

for a particular choice of μBC, ρ, and αdiff. This analysis

is shown in Fig. 8, which displays the smallest acceptable

value w = w0 for different values of μBC and fixed ρ = 2

as a function of αdiff. We see that as αdiff moves away from

± 90◦ (orthogonal Ising axes), it drives the value of w0 up.

In addition, as αdiff → 0, stability disappears entirely. The

band where no EoS are possible shrinks as we move μBC to

larger values, as would be expected since large μBC interferes

the least with lattice results at μB = 0. Most importantly, we

see that regions of low w0 appear at values of αdiff closer

to 90◦, meaning that these regimes are compatible with a

larger critical region. When μBC is larger, the low w0 regions

extend for longer in αdiff, because moving the CP away from

μB = 0 allows for a larger CP to still be consistent with the

matching to lattice QCD. To summarize, we find that placing

the critical point at larger μBC guarantees the most flexibility

in the possible size and shape of the critical region. However,

even when μBC is large, the Ising axes cannot come too close

together without causing pathological behavior.

C. Correlations between input parameters in acceptable EoS

In the process of developing and training the ML models

presented in this work, nearly 40k realizations of the BEST

EoS were labeled. The pool of labeled EoS includes sam-

ples taken randomly and with active learning. Since active

queries oversample along the boundary, this collection of EoS

should strongly reflect the true stable and causal regions. By

selecting only the acceptable EoS from this pool, we can

gain insight on the distribution and correlations between input

values in the stability/causality windows. The analysis of the

acceptable training samples is presented in this work as a tool
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FIG. 9. Off-diagonal: Pairwise correlations between input parameters for acceptable EoS in the combined training set. Each plot shows the

density distribution for pairs of input parameters. Diagonal: Histograms for each parameter and its distribution in the class of acceptable EoS.

complementary to the ML models because the training data

reflects the true distributions and correlations between param-

eters for acceptable EoS. These samples should be studied

because they display the trends ML classification should fol-

low, aside from providing a general intuition for the regime of

thermodynamic validity of the EoS model.

The histogram for each input parameter is shown along the

diagonal in the corner plot in Fig. 9. We see acceptable EoS

are more likely to stem from larger values of μBC, values of

αdiff close to 90◦, and lower ρ. There is not a strong depen-

dence on w, but the number of acceptable EoS decreases for

w � 1. The observations are in line with general arguments

on the size and shape of the critical region [18]. The peak at

ρ ≈ 2.0 is likely due to active learning, since this seems to

be the point where EoS in the intermediate angle regime (10◦

� αdiff � 60◦) become acausal. These findings are consistent

with what was found with ML-assisted classification using

RFA
�.

The off-diagonal elements of Fig. 9 contain the pairwise

density correlations between input parameters. As expected,

αdiff correlates strongly with other input parameters—a CP

further away from μB = 0 and smaller ρ allow for smaller

angles. However, αdiff is always above 5◦, even when ρ is

small, and ρ is always below 5.0–6.0, even when αdiff is not

small. Thus, there is a limit for αdiff and ρ in the current im-

plementation of this model, since we cannot place the critical
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point at a larger value than μBC = 420 MeV due to limitations

from lattice QCD. There is not a strong correlation between

stability and w, because it is always possible to make the

critical region small enough to suppress unstable behavior.

Furthermore, we observe that larger critical regions (w � 1)

only appear for μBC > 300 MeV. This confirms the trends

found by RFA
� for the subsets of the parameter space discussed

in Sec. VI B 2.

In summary, μBC � 300 MeV provides the most freedom,

but it always holds that ρ � 5.0 and αdiff � 5.0◦ under the

current mapping. Recall that any pathological behavior of the

EoS is due to tension with lattice calculations. This is model

dependent because of the choice of mapping between Ising

and QCD variables and the truncation of the lattice Taylor ex-

pansion. Changing either would affect the quantitative results

discussed in this work, which are specific to the EoS presented

in Ref. [13].

VII. CONCLUSIONS

The BEST collaboration EoS relies on a nonuniversal lin-

ear map of 3D Ising model variables onto the QCD phase

diagram, which contains four free parameters. A subset of the

resulting four-dimensional parameter space leads to unstable

and/or acausal realizations of the EoS. In this work, we built a

machine learning framework that incorporates active learning

to guide the model towards the most important regions in

the input parameter space; this helps to efficiently rule out

unphysical EoS with high accuracy. In addition to mapping

the stability and causality of the EoS as a function of the

input parameters across the entire available parameter space,

we find that certain mapping parameters are constrained to

αdiff � 5◦ and ρ � 5.0. Additionally, a strong preference for

a critical point at large baryon chemical potentials μBC is

shown, especially when the critical region is large. Low μBC

can only coexist with significantly smaller critical regions.

Although these findings are quantitatively strongly dependent

on the actual implementation of the BEST EoS, their qualita-

tive nature is likely to be quite general, as it essentially stems

from the (in)compatibility of the universal critical behavior

and first-principles lattice QCD results.

The insights presented in this work can be used in future

hydrodynamic studies of the evolution of matter created in

ultrarelativistic heavy-ion collision experiments at low beam

energies. Currently for heavy-ion collisions, it is not possible

to directly compare the EoS to experimental data. Instead,

one must run relativistic viscous hydrodynamic simulations

with a large number of free parameters that are then di-

rectly compared to experimental data. The free parameters are

constrained using a combination of emulators and Bayesian

analysis [73–77], which are limited by the enormous amount

of computational time required to run a single parameter set.

The results presented here significantly cut down the input

parameter space, allowing for tighter priors in a potential

Bayesian analysis comparing heavy-ion hydrodynamics sim-

ulations to experimental data.

This is the first time that active learning has been employed

in the context of heavy-ion collisions. We demonstrated that

active learning can significantly reduce sampling require-

ments for training classifiers to search for acceptable EoS.

Because of the speed and accuracy we reached in our frame-

work using active learning, our methodology promises to be

useful for a number of problems in the field of heavy-ion colli-

sions. Additionally, the machine learning pipeline developed

in this work is generic enough that it can be applied to any

EoS with a parameter-space-to-class correspondence.

ACKNOWLEDGMENTS

D.M. is supported by the National Science Foundation

Graduate Research Fellowship Program under Grant No.

DGE - 1746047, the Illinois Center for Advanced Studies

of the Universe Graduate Fellowship, and the University of

Illinois Graduate College Distinguished Fellowship. The work

of M.H.J. is supported by the U.S. Department of Energy,

Office of Science, Office of Nuclear Physics under Grant

No. DE-SC0021152 and U.S. National Science Foundation

Grants No. PHY-1404159 and No. PHY-2013047. J.N.H. ac-

knowledges the support from the US-DOE Nuclear Science

Grant No. DE-SC0020633. This material is based on work

supported by the National Science Foundation under Grants

No. PHY-2208724 and No. PHY-2116686. This work was

supported in part by the National Science Foundation within

the framework of the MUSES collaboration under Grant No.

OAC-2103680. The authors also acknowledge support from

the Illinois Campus Cluster, a computing resource that is

operated by the Illinois Campus Cluster Program (ICCP) in

conjunction with the National Center for Supercomputing Ap-

plications (NCSA), and which is supported by funds from the

University of Illinois at Urbana–Champaign. This work was

completed in part with resources provided by the Research

Computing Data Core at the University of Houston.

[1] Y. Aoki, G. Endrodi, Z. Fodor, S. D. Katz, and K. K. Szabo, The

Order of the quantum chromodynamics transition predicted by

the standard model of particle physics, Nature 443, 675 (2006).

[2] M. A. Stephanov, QCD phase diagram and the critical point,

Prog. Theor. Phys. Suppl. 153, 139 (2004).

[3] M. A. Stephanov, K. Rajagopal, and E. V. Shuryak, Signatures

of the Tricritical Point in QCD, Phys. Rev. Lett. 81, 4816

(1998).

[4] J. Adam et al., Nonmonotonic Energy Dependence of Net-

Proton Number Fluctuations, Phys. Rev. Lett. 126, 092301

(2021).

[5] M. S. Abdallah et al., Measurements of proton high order cumu-

lantsin 3 GeV Au+Au collisions and implications for the QCD

critical point.

[6] M. S. Abdallah et al., Flow and interferometry results from

Au+Au collisions at
√

sNN = 4.5 GeV, Phys. Rev. C 103,

034908 (2021).

[7] A. Aprahamian et al., Reaching for the horizon: The 2015 long

range plan for nuclear science.

[8] A. Bzdak, S. Esumi, V. Koch, J. Liao, M. Stephanov, and N. Xu,

Mapping the phases of quantum chromodynamics with beam

energy scan, Phys. Rep. 853, 1 (2020).

054911-12



MAPPING OUT THE THERMODYNAMIC STABILITY OF A … PHYSICAL REVIEW C 107, 054911 (2023)

[9] V. Dexheimer, J. Noronha, J. Noronha-Hostler, C. Ratti, and

N. Yunes, Future physics perspectives on the equation of state

from heavy ion collisions to neutron stars, J. Phys. G 48, 073001

(2021).

[10] A. Monnai, B. Schenke, and C. Shen, QCD equation of state

at finite chemical potentials for relativistic nuclear collisions,

Int. J. Mod. Phys. A 36, 2130007 (2021).

[11] X. An et al., The BEST framework for the search for the QCD

critical point and the chiral magnetic effect, Nucl. Phys. A 1017,

122343 (2022).

[12] J. Adamczewski-Musch et al., Proton-number fluctuations in√
sNN = 2.4 GeV Au + Au collisions studied with the High-

Acceptance DiElectron Spectrometer (HADES), Phys. Rev. C

102, 024914 (2020).

[13] P. Parotto, M. Bluhm, D. Mroczek, M. Nahrgang, J. Noronha-

Hostler, K. Rajagopal, C. Ratti, T. Schäfer, and M. Stephanov,

QCD equation of state matched to lattice data and exhibiting a

critical point singularity, Phys. Rev. C 101, 034901 (2020).

[14] J. M. Karthein, D. Mroczek, A. R. Nava Acuna, J. Noronha-

Hostler, P. Parotto, D. R. P. Price, and C. Ratti, Strangeness-

neutral equation of state for QCD with a critical point,

Eur. Phys. J. Plus 136, 621 (2021).

[15] M. Pradeep, K. Rajagopal, M. Stephanov, and Y. Yin, Freezing

out critical fluctuations, PoS CPOD2021, 035 (2022).
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