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Abstract. In this contribution we present a resummation of the Quantum Chro-

modynamics (QCD) equation of state from lattice simulations at imaginary

chemical potentials. We generalize the scheme introduced in a previous work

[1], to the case of non-zero strangeness chemical potential. We present con-

tinuum extrapolated results for thermodynamic observables in the temperature

range 130 MeV ≤ T ≤ 280 MeV, for chemical potentials up to µB/T = 3.5,

along the strangeness neutral line. Furthermore, we relax the constraint of

strangeness neutrality, by extrapolating to small values of the strangeness-to-

baryon-number ratio R = nS /nB.

1 Introduction

The knowledge of the QCD equation of state is of crucial importance, besides its intrinsic

fundamental interest, for the modeling of heavy-ion collisions. At vanishing baryon density

– where the transition is a crossover [2] – the equation of state has been known for about

a decade from lattice QCD simulations [3–5]. On the other hand, results at finite baryon

density are limited by the sign problem in lattice simulations. Though direct simulations

have been performed recently with a novel reweighting approach [6, 7], on large lattices the

use of indirect (extrapolation) techniques is necessary. These rely on Taylor expansion or

analytical continuation from imaginary chemical potential [8–13].

Recently, different forms of reorganization of the Taylor series have been proposed [1, 14,

15], with the aim of improving its convergence. In particular, in [1] we introduced a scheme

to extrapolate the equation of state of QCD based on the following ansatz:

F(T, µ̂B) = F(T ′, 0) , (1)
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whereby the µ̂B-dependence1 of an observable F(T, µ̂B) is described by a rescaling of the

temperature:

T ′ = T
(

1 + κF2 (T )µ̂2
B + κ

F
4 (T )µ̂4

B + O(µ̂6
B)
)

, (2)

in turn described by the alternative coefficients κFn (T ). In essence, we move to a framework

in which we expand in the shift

∆T = T − T ′ =
(

κF2 (T )µ̂2
B + κ

F
4 (T )µ̂4

B + O(µ̂6
B)
)

. (3)

In these proceedings we illustrate a generalization of this scheme, to the case of non-

vanishing strangeness chemical potential, studying in particular the case of strangeness neu-

trality nS = 0, which has phenomenological relevance for heavy-ion collisions. Moreover,

we perform an initial extrapolation to non-zero strangeness density, through an expansion in

the strangeness-to-baryon ratio R = nS /nB.

2 Observables

We consider three different observables:

cB
1 (µ̂B, T ) , M(µ̂B, T ) =

µS

µB

(µ̂B, T ) , χS
2 (µ̂B, T ) , (4)

where

cB
n =

dn

dµ̂n
B

p

T 4
=

(

∂

∂µ̂B

+
dµ̂S

dµ̂B

∂

∂µ̂S

)n
p

T 4
=













∂

∂µ̂B

−
χBS

11

χS
2

∂

∂µ̂S













n
p

T 4

are the Taylor coefficients of the pressure along the strangeness neutral line, µS is such to real-

ize strangeness neutrality, and χS
2

(µ̂B, T ) = ∂2(p/T 4)/∂µ̂2
S

. Note that, because of strangeness

neutrality, cB
1
= χB

1
= ∂(p/T 4)/∂µ̂B. With respect to [1], we introduce an additional change in

the case of cB
1
: for the observable F in Eq.(1), we consider the ratio cB

1
(T, µ̂B)/cB

1 (µ̂B), where

c
B
1 is the (µ̂B-dependent) Stefan-Boltzmann limit of cB

1
. This is done in order to avoid the

increase of κ2 at large temperatures. With this modification, the expansion parameters are

effectively changed, and we thus refer to the corrected ones by λF
n .

We show in the left panel of Fig.1 results for the ratio cB
1
(T, µ̂B)/cB

1 (µ̂B) at different values

of the imaginary baryon chemical potential, in the case of strangeness neutrality (left). In the

right panel, we show the same curves, with the x-axis replaced by T → T (1 + λµ̂2
B
), with

λ = 0.0165. We see in this case, that the difference between the different curves is minimal

around the transition temperature, as well as in the high temperature limit. We also note that

this value is different from the value κ = 0.0205 used in [1]. This is because the coefficients

λn are defined after dividing by the Stefan-Boltzmann limit, but more importantly because

the curvature in the case of strangeness neutrality seems to be smaller. A similar scenario

appears in the curvature of the QCD transition line, where the numerical value in the case

when µQ = µS = 0 is slightly larger [16].

The procedure to determine the coefficients λF
n makes use of results at both zero and non-

zero chemical potential. The temperature T ′ for which Eq. (1) is satisfied is determined for

different values of T, µ̂B and on lattices with different numbers of timeslices Nτ. A global

fit for each temperature T is then performed, and continuum extrapolated results for the λF
n

are obtained. For more details on the procedure, we refer the reader to [1, 15]. Once the

coefficients are determined, the use of Eq. (1) for the observables in Eq. (4) allows us to

determine the latter at finite (real) values of the chemical potential.

1We use the following notation for the dimensionless chemical potentials: µ̂i = µi/T .
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Figure 3. Left panel: shift in strangeness chemical potential for different values of the ratio R, at µ̂B = 2.

The lines indicate results from the HRG model obtained from Eq. (6) (dashed), or by solving R = ns/nB

for µ̂S (solid). Right panel: first non-vanishing coefficient for the expansion of the pressure in R around

nS = 0, for increasing values of µ̂B. Solid lines show results from the HRG model.

We show in Fig. 2 the baryon density (top left), strangeness-to-baryon chemical poten-

tials ratio (bottom left) and second strangeness susceptibility (bottom right) at increasing real

values of µ̂B. We also show (top right) the pressure, obtained from the baryon density through

simple integration. For the baryon density and pressure, we also show the results in the case

without strangeness neutrality. We see that all results, up to µ̂B = 3.5 show very reasonable

uncertainties, and do not hint at unphysical, non- monotonic behavior typical of traditional

Taylor expansions.

3 Beyond strangeness neutrality

We wish to expand beyond strangeness neutrality in terms of the ratio R = nS /nB. Defining

µ̂�
S

as the strangeness chemical potential realizing strangeness neutrality, we can write:

nS ≡ χ
S
1 (µ̂S ) ≈ χS

2 (µ̂�S )∆µ̂S , nB ≡ χ
B
1 (µ̂S ) ≈ χB

1 (µ̂�S ) + χBS
11 (µ̂�S )∆µ̂S , (5)

where ∆µ̂S ≡ µ̂S − µ̂
�
S

. Hence, we obtain:

R =
χS

1

χB
1

=
χS

2
(µ̂�

S
)∆µ̂S

χB
1
(µ̂�

S
)∆µ̂S + χ

BS
11

(µ̂�
S

)
, ∆µ̂S =

Rχ̂B
1
(µ̂�

S
)

χS
2

(µ̂�
S

) − RχBS
11

(µ̂�
S

)
. (6)

In the left panel of Fig. 3 we show the displacement ∆µ̂S that realizes nS = RnB, for

µ̂B = 2 and different values of R.

The correction to the pressure for small values of R vanishes at first order, because nS = 0

by construction. The first non-zero contribution comes at the second order in R:

d2 p̂

dR2
(T, µ̂B) =

(

χB
1

(T, µ̂B)
)2

χS
2

(T, µ̂B)
. (7)

We show this correction coefficient for different values of µ̂B in the right panel of Fig. 3.

In these proceeding we have shown our continuum extrapolated results for thermody-

namic quantities at finite real chemical potential, up to µ̂B = 3.5. We obtained these with

a generalization of the novel resummation scheme introduced in [1], applied to the case of
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strangeness neutrality. We showed that our results, for all chemical potentials, show no hints
of pathological behavior, and display uncertainties well under control. Finally, we calculated
the first terms for an expansion around the strangeness neutral line, in terms of the ratio
R = nS /nB. These results can be improved systematically with larger statistics, and thus
in the future provide guidance for the knowledge of the QCD equation of state for different
chemical compositions of the QCD medium.
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