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Abstract. In this contribution we present a resummation of the Quantum Chro-
modynamics (QCD) equation of state from lattice simulations at imaginary
chemical potentials. We generalize the scheme introduced in a previous work
[1], to the case of non-zero strangeness chemical potential. We present con-
tinuum extrapolated results for thermodynamic observables in the temperature
range 130MeV < T < 280MeV, for chemical potentials up to uz/T = 3.5,
along the strangeness neutral line. Furthermore, we relax the constraint of
strangeness neutrality, by extrapolating to small values of the strangeness-to-
baryon-number ratio R = ng /np.

1 Introduction

The knowledge of the QCD equation of state is of crucial importance, besides its intrinsic
fundamental interest, for the modeling of heavy-ion collisions. At vanishing baryon density
— where the transition is a crossover [2] — the equation of state has been known for about
a decade from lattice QCD simulations [3-5]. On the other hand, results at finite baryon
density are limited by the sign problem in lattice simulations. Though direct simulations
have been performed recently with a novel reweighting approach [6, 7], on large lattices the
use of indirect (extrapolation) techniques is necessary. These rely on Taylor expansion or
analytical continuation from imaginary chemical potential [8—13].

Recently, different forms of reorganization of the Taylor series have been proposed [1, 14,
15], with the aim of improving its convergence. In particular, in [1] we introduced a scheme
to extrapolate the equation of state of QCD based on the following ansatz:

F(T,pig) = F(T',0) , ey
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whereby the jiz-dependence! of an observable F(T,/ip) is described by a rescaling of the
temperature:
T =T (1+ K5 (D + &§ (D + O@S)) 2

in turn described by the alternative coefficients «£ (7). In essence, we move to a framework
in which we expand in the shift

AT =T - T" = (k§ ()it + k§ (T + O(f1)) - 3)

In these proceedings we illustrate a generalization of this scheme, to the case of non-
vanishing strangeness chemical potential, studying in particular the case of strangeness neu-
trality ng = 0, which has phenomenological relevance for heavy-ion collisions. Moreover,
we perform an initial extrapolation to non-zero strangeness density, through an expansion in
the strangeness-to-baryon ratio R = ng /np.

2 Observables

We consider three different observables:
B T), M(@s, T) = Lﬁ 15,T), X5 (s, T), )
B

where

’ d"p:(a+@a)”p:(a x?fa)"p
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are the Taylor coefficients of the pressure along the strangeness neutral line, yg is such to real-
ize strangeness neutrality, and x5 (25, T) = 0*(p/T*)/0ji5 . Note that, because of strangeness
neutrality, cf = )(f = 0(p/T*)/df15. With respect to [1], we introduce an additional change in
the case of c’f : for the observable F' in Eq.(1), we consider the ratio cf(T, [g) /Ef (itg), where
Ef is the ({1p-dependent) Stefan-Boltzmann limit of cf. This is done in order to avoid the
increase of k, at large temperatures. With this modification, the expansion parameters are
effectively changed, and we thus refer to the corrected ones by A

We show in the left panel of Fig.1 results for the ratio c’f (T, ) /Elf (@1p) at different values
of the imaginary baryon chemical potential, in the case of strangeness neutrality (left). In the
right panel, we show the same curves, with the x-axis replaced by T — T(1 + Afj), with
A = 0.0165. We see in this case, that the difference between the different curves is minimal
around the transition temperature, as well as in the high temperature limit. We also note that
this value is different from the value k = 0.0205 used in [1]. This is because the coefficients
A, are defined after dividing by the Stefan-Boltzmann limit, but more importantly because
the curvature in the case of strangeness neutrality seems to be smaller. A similar scenario
appears in the curvature of the QCD transition line, where the numerical value in the case
when ugp = pus = 01is slightly larger [16].

The procedure to determine the coefficients A7 makes use of results at both zero and non-
zero chemical potential. The temperature 7" for which Eq. (1) is satisfied is determined for
different values of T, [iz and on lattices with different numbers of timeslices N,. A global
fit for each temperature 7 is then performed, and continuum extrapolated results for the AF
are obtained. For more details on the procedure, we refer the reader to [1, 15]. Once the
coeflicients are determined, the use of Eq. (1) for the observables in Eq. (4) allows us to
determine the latter at finite (real) values of the chemical potential.

'We use the following notation for the dimensionless chemical potentials: 2; = /T
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Figure 1. Left panel: results for the ratio c¥(7, ﬁg)/E?(ﬂB) at different values of the imaginary baryon
chemical potential, in the case of strangeness neutrality, on a 48 x 12 lattice. Right panel: same as on
the left panel, with the x-axis rescaled according to 7 — T'(1 + Afi3), with A = 0.0165.
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Figure 2. From top to bottom, left to right: baryon density, pressure, strangeness-to-baryon chemical
potential ratio, and strangeness second susceptibility. The results are shown at increasing real values
of f1p. With solid lines we show the results from the hadron resonance gas (HRG) model. For baryon
density and pressure, we also show (in lighter shades), the results for the non-strangeness neutral case.
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Figure 3. Left panel: shift in strangeness chemical potential for different values of the ratio R, at fi5 = 2.
The lines indicate results from the HRG model obtained from Eq. (6) (dashed), or by solving R = ng/ng
for fis (solid). Right panel: first non-vanishing coefficient for the expansion of the pressure in R around
ng = 0, for increasing values of fiz. Solid lines show results from the HRG model.

We show in Fig. 2 the baryon density (top left), strangeness-to-baryon chemical poten-
tials ratio (bottom left) and second strangeness susceptibility (bottom right) at increasing real
values of fig. We also show (top right) the pressure, obtained from the baryon density through
simple integration. For the baryon density and pressure, we also show the results in the case
without strangeness neutrality. We see that all results, up to jig = 3.5 show very reasonable
uncertainties, and do not hint at unphysical, non- monotonic behavior typical of traditional
Taylor expansions.

3 Beyond strangeness neutrality

We wish to expand beyond strangeness neutrality in terms of the ratio R = ng /ng. Defining
f13 as the strangeness chemical potential realizing strangeness neutrality, we can write:
ns = X3 (@s) ~ x5 (@M np = x7(@s) ~ X7 (@5) + X35 @HAAs . (5)
where Afly = fis — f15. Hence, we obtain:
X5 X5 ()M R REP(i2)
= TB T BiaeAn BS (nxy AMS:SA* BS (n*xy
X1 /\/l(ﬂs)AﬂS +/\/11(:us) Xz(ﬂs)_RXn(ﬂs)
In the left panel of Fig. 3 we show the displacement Afis that realizes ng = Rnp, for
[ = 2 and different values of R.

The correction to the pressure for small values of R vanishes at first order, because ng = 0
by construction. The first non-zero contribution comes at the second order in R:

(6)

d*p

(8 . )
dr?

7

(T, fip) =

We show this correction coefficient for different values of [ip in the right panel of Fig. 3.

In these proceeding we have shown our continuum extrapolated results for thermody-
namic quantities at finite real chemical potential, up to iz = 3.5. We obtained these with
a generalization of the novel resummation scheme introduced in [1], applied to the case of

4
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strangeness neutrality. We showed that our results, for all chemical potentials, show no hints
of pathological behavior, and display uncertainties well under control. Finally, we calculated
the first terms for an expansion around the strangeness neutral line, in terms of the ratio
R = ng/np. These results can be improved systematically with larger statistics, and thus
in the future provide guidance for the knowledge of the QCD equation of state for different
chemical compositions of the QCD medium.
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